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Abstract—Erasure coding has been increasingly replac-
ing replication in distributed storage systems, thanks to
its lower storage overhead with the same level of failure
tolerance. However, with lower storage overhead, the
reconstruction overhead of erasure codes can increase
significantly as well. Under the ever-changing workload, in
which the data access can be highly skewed, it is difficult
to achieve a well trade-off between the storage overhead
and the reconstruction overhead.

In this paper, we propose Zebra, a framework that
encodes data into multiple tiers by their demand. Given
the overall storage overhead and the number of failures
to tolerate, Zebra determines the parameters of erasure
coding in each tier by solving a geometric programming
problem. Based on the demand of data, Zebra can
dynamically assign data into the corresponding tiers to
minimize the overall reconstruction overhead, and achieve
a flexible tradeoff between the storage overhead and the
reconstruction overhead in multiple tiers, such that hot
data can enjoy less overhead of reconstruction and cold
data can be stored with lower storage overhead. When
demand changes, Zebra can adjust itself accordingly with
a marginal amount of network transfer.

I. INTRODUCTION

Distributed storage systems [1], [2], [3] store a mas-
sive amount of data over a large number of commodity
servers. Due to the nature of the commodity hard-
ware, as well as other reasons like software glitches,
power failures, and upgrade and maintenance opera-
tions, servers in distributed storage systems are subject
to frequent failures on a daily basis. For example, in a
Facebook cluster with 3000 servers, 50 failures that lead
to data unavailability can be expected every day [4].
Therefore, in distributed storage systems, redundant
data must be stored such that a specific number of
failures can be tolerated.

The naive way to store redundant data in a distributed
storage system is replication. However, replication is
very expensive in terms of storage overhead, especially
for data at a petabyte scale. For example, with 3-
way replication, to store 10 PB of data, we need to
spend additional 20 PB to store the other two copies.
Hence, distributed storage systems are migrating from
replication to erasure coding [5], [6], [7], [8], [9], as
erasure coding can tolerate more failures with much less
storage overhead [10].

With Reed-Solomon (RS) codes [11], the most com-
mon choice of erasure codes in distributed storage
systems, we can encode r parity blocks from k data
blocks of the same size, such that any k among these
k + r blocks can recover the original data. In other
words, at most r failures can be tolerated. When k = 10
and r = 4, we can tolerate at most 4 failures with only
1.4x storage overhead. With the increasing of k, we can
achieve even lower storage overhead while tolerating the
same number of failures.
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Fig. 1. CPU and network overhead to reconstruct one block with RS
code, where each block contains 64 MB.

However, RS codes can incur a significantly higher
overhead when we need to reconstruct an unavailable
block. With the (k = 10, r = 4) RS code, for example,
if one block is not available, we need to obtain 10 blocks
to reconstruct it. The reconstruction in a distributed
storage system is a universal operation, which can also
be triggered when the distributed storage system is
performing a degraded read of a block, i.e., reading data
in a temporarily unavailable block. For example, when a
server is temporarily unavailable, all accesses to the data
blocks it stores will have to be performed by degraded
reads. In a degraded read, the overhead of reconstruction
can lead to higher access latency. Under typical values
of k, the network transfer incurred by reconstructions
can be huge: in a Facebook’s cluster the daily median of
top-of-rack network transfer incurred by reconstruction
can be as much as 180 TB [12]. Fig. 1 illustrates the
overhead of time and network transfer to reconstruct
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Fig. 2. The demand skewness of files in a Facebook workload trace.

one block of 64 MB with RS codes1. We can see
that both the time and network transfer incurred by the
reconstruction increases linearly with k. In other words,
a smaller value of k means less reconstruction overhead,
leading to less network transfer for data reconstruction
as well as lower latency for degraded reads.

Therefore, in a distributed storage system, while we
desire for a small value of k to achieve low recon-
struction overhead, it takes a large k to save storage
overhead. Currently, most distributed storage systems
deploy only one erasure code to encode data, optimized
either for storage overhead or reconstruction overhead.
However, in practical distributed storage systems, the
demand of data can be highly skewed. In Fig. 2a, we
show the demand of data in a workload trace from
Facebook [14]. This workload contains more than 104

files while we only show the 100 most demanded files
in the figure, with all the rest having no more than 11
visits. We can see that a very small portion of data
are highly demanded while the rest are barely touched.
With only one erasure code we can not accommodate
cold data with low storage overhead while achieving
low reconstruction overhead for hot data. Moreover, the
demand for the data can change over time dynamically.
For example, in Fig. 2b, while file No. 1 and 3 have
consistent demand over time, the other three files only
have transient high demand at some time and have no
visit any other time. Therefore, it is also hard to find
an erasure code that can work well adaptively with the
ever-changing demand.

In this paper, we propose Zebra, a novel framework
for distributed storage systems deploying RS codes.
According to the demand of data, Zebra can split data
into multiple tiers such that data in different tiers are
encoded with RS codes with different values of pa-
rameters. By solving geometric programming problems,
Zebra determines the parameter values of RS codes
in each tier, such that hot data can be reconstructed
with low overhead and cold data can enjoy low storage
overhead at the same time. When demand changes,

1The time of the reconstruction is measured using the zfec li-
brary [13] running on an Intel Core i7 processor.
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Fig. 3. Comparison of data encoded in one and two tiers of RS codes.
Ai and Bi are data blocks, i = 1, 2, 3. R1 and R2 are parity blocks
encoded by corresponding RS codes. Colored red, A1 and B1 are hot
blocks with 100 visits per unit of time, while other blocks are cold
with only 10 visits.

Zebra can migrate data accordingly into different tiers or
change the parameter values of the tier, while carefully
controlling overhead in the migration.

We run simulations under various workload traces
to evaluate the performance of the Zebra framework.
The evaluation results show that Zebra can reduce
overall reconstruction overhead, especially by 54.9%
for the hot data. The cold data, on the other hand, will
incur less storage overhead to maintain their tolerance
against failures. With the ever-changing workload, we
demonstrate that the network transfer of migration can
be well controlled, such that it occupies no more than
2.4% of the network transfer of demand.

II. MOTIVATION AND EXAMPLES

In this section, we present the general idea that mo-
tivates the design of the Zebra framework. We assume
that in a distributed storage system, data are stored in
blocks of 64 MB, where we compute 1 parity block
from every 3 data blocks. In other words, a (3, 1) RS
code is deployed in this distributed storage system.

As a toy example in Fig. 3a, assume that we have 6
data blocks in total, stored with two additional parity
blocks. In this way, we can tolerate a failure of any
single block, with 1.33x storage overhead. However, the
demand of the 6 data blocks is not equal to each other,
where A1 and B1 are highly demanded with 100 visits
per unit of time, and all other four blocks are visited
by merely 10 times per unit of time. Suppose that each
data block has equal chance to be unavailable. When
one of them becomes unavailable, we need to obtain 3
other blocks to reconstruct it until it has been repaired
on a replacement server. In a unit of time, this means
that 1

6 (2 × 100 + 4 × 10) × 3 × 64 MB = 7.5 GB on
average will be read from disks and transferred through
network per unit of time.

Under the Zebra framework, on the other hand, we
can encode these 6 data blocks into two tiers, with two
RS codes. We encode the two hot blocks with a (2, 1)
RS code and the other four blocks with a (4, 1) RS code.
In each tier, we still have 1 parity blocks in this way,
maintaining the same storage overhead. Meanwhile, we



can still tolerate the failure of any single block. How-
ever, this time we can significantly reduce the average
number of blocks to visit per unit of time. Though
the cold blocks need to obtain 4 blocks to reconstruct,
the hot blocks have dominant demand with much less
blocks to obtain. On average per unit of time, we need
to have 1

6 (2× 2× 100 + 4× 4× 10)× 64 MB = 5.83
GB to read, saving corresponding disk I/O and network
transfer by 22.23%. For the two hot blocks in particular,
their reconstruction overhead can simply be reduced
from 3 to 2 blocks, i.e., 33.3% reduction in time, disk
I/O, and network transfer.

In this example, we deploy two tiers of RS codes.
However, Zebra is not limited to only two tiers. In fact,
we can flexibly deploy any number of tiers inside the
Zebra framework with different parameter values of RS
codes, where the number of tiers and the parameter
values can be efficiently calculated according to the
demand of data, as well as the requirements of storage
overhead and failure tolerance.

III. RELATED WORK

At the scale of petabyte storage, erasure coding
has become more and more attractive to distributed
storage systems because of its low storage overhead and
high failure tolerance. Hence, many distributed storage
systems, such as HDFS [9], [15], Openstack Swift [5],
Google file system [6], and Windows Azure storage [8],
are moving towards or have deployed erasure coding as
an alternative to replications, where in most cases RS
codes are chosen by these distributed storage systems.
However, they all choose only one kind of erasure code
with fixed parameters. In other words, it is hard to trade
well between storage overhead and reconstruction over-
head of erasure codes, under the dynamical workload
with highly skewed data demand [16].

Traditional RS codes can incur a high overhead of
reconstruction when some of the data are not available
due to failures inside distributed storage systems [12],
[17]. There has been a growing attention of improving
the overhead of reconstruction of erasure codes. For
example, locally repairable codes [18] can achieve low
reconstruction overhead by allowing unavailable data to
be reconstructed from a small number of other servers.
Similar ideas have been applied in the design of other
erasure codes [8], [17], [19], [20], [21]. On the other
hand, another family of erasure codes, called regenerat-
ing codes, are designed to achieve the optimal network
transfer in the reconstruction [22]. All these erasure
codes, however, are optimized for their own objectives
over all encoded data, unaware of that the demand of
data can be high skewed. As data with different demand
may have different performance objectives, applying
one single erasure code over all data may not achieve
all their objectives. Different from these erasure codes,

in Zebra we propose to dynamically assign data into
multiple tiers by their demand so as to achieve a flexible
tradeoff between storage and reconstruction overhead.

Some distributed storage systems, such as
HDFS [23], allow data to be stored under a tiered
architecture, where data in different tiers are stored by
different erasure codes or replication with preconfigured
parameters and can be automatically migrated between
different tiers [15], [24]. However, all these systems
require users to configure the erasure code used in each
tier as well as their parameters statically. Hence, they
can not well adapt themselves to the ever-changing
workload. Besides, as in different tiers the storage
overhead incurred by the corresponding erasure codes
will also be different, it is hard to control the overall
storage overhead. The Zebra framework, on the other
hand, does not need to specify parameters of each tier
or even the number of tiers. According to the demand
of data, Zebra can configure itself flexibly, where only
the overall storage overhead and failure tolerance need
to be manually specified.

IV. SYSTEM MODEL

In this paper, we assume that in a distributed storage
system, data are stored in blocks with the same size.
This is a common practice in distributed storage systems
(e.g., HDFS [3]).

Assume that we have N blocks in total, and each
block Bi is associated with demand of di visits per unit
of time, i = 1, . . . , N . We also assume that any r block
failures should be tolerated without data loss. Hence,
in the Zebra framework each block will be encoded
with a (ki, r) RS code, where we call ki as the rank of
block Bi. For convenience, we let D = (d1, . . . , dN ),
and K = (k1, . . . , kN ). We also want to control the
overall storage overhead such that the overall storage
space consumed is no more than C times of the original
data.

In this model, we assume that the RS codes deployed
in the distributed storage system should be systematic.
In other words, a (k, r) systematic RS code will com-
pute k + r blocks that directly contains k original data
blocks. The other r blocks are known as parity blocks.
In this way, we can always directly obtain any data
block without decoding as long as it is available. Hence,
we can assume that all demand will go directly to the
corresponding data blocks rather than parity blocks,
unless the demanded data blocks are unavailable.

We now use this model to represent the way to encode
data in one or multiple tiers with RS codes. Fig. 3
(without loss of generality, we can rewrite Ai as Bi+3,
i = 1, 2, 3) illustrates two examples of this model where
N = 6, C = 4

3 , and D = {100, 10, 10, 100, 10, 10}. In
Fig. 3a, ki = 3 for all i, i.e., all blocks are encoded in
one tier with a (3, 1) RS code. On the other hand, in



Fig. 3b, we have K = {2, 4, 4, 2, 4, 4} such that the six
blocks are encoded into two tiers with a (2, 1) and a
(4, 1) RS code.

In this way, we can see that the number of tiers in
the model do not need to be explicitly defined as blocks
with the same rank can naturally be categorized into the
same tier. Once the rank of each block is equal to each
other, for example, it becomes the conventional case
of only one tier. Hence, we are not limited by a given
number of tiers, and we can easily change the number
of tiers when demand changes.

In this paper, our objective is to minimize the overall
overhead of reconstruction with respect to the constraint
of the overall storage overhead C. As shown in Fig. 1,
the reconstruction overhead of a block increases linearly
with its rank. We assume that each block has the same
chance to be unavailable. Thus, the chance of recon-
structing a block should also increase linearly with its
demand. Combining all blocks together, we can define
the overall reconstruction overhead as

∑N
i=1 diki =

D ·K.
Besides the overall reconstruction overhead, we need

to control the overall storage overhead, which can be
computed with D and K in the model. Since each block
has the same size, we assume that the size of each block
is 1 for convenience. Thus, the storage space consumed
to store block Bi and its parity is 1 + r

ki
. The sum of

storage space of all blocks is N +
∑N

i=1
r
ki

. Since the
total storage space we can use under the constraint of
the overall storage overhead C is CN , we can write
this constraint as

∑N
i=1

1
ki
≤ (C−1)N

r .
Therefore, we can solve K to minimize the overall

reconstruction overhead with respect to the storage over-
head by the following integer geometric programming
problem.

min D ·K (1)

s.t.
N∑

i=1

1

ki
≤ (C − 1)N

r
, (2)

ki ∈ Z+. (3)

Typically, a geometric programming problem can be
easily converted to a convex optimization problem and
solved efficiently [25]. However, there are some other
issues that makes it challenging to achieve a practical
solution by directly solving this problem.

First, in a distributed storage system there can be an
extremely large number of data blocks. For example,
in HDFS the default block size is 64 MB. If there
are 1 PB of data stored in HDFS, there will be over
107 blocks in total. No solver of convex optimization
problems can solve our model in a reasonable amount
of time. Besides, the geometric programming problem
in (1)-(3) is an integer programming problem. This also
significantly increases the complexity to solve it.

Second, the solution solved from (1)-(3) is an offline
solution. In other words, we need to know the demand
in advance before we can get the optimal solution,
which makes it impractical. We need to find an online
algorithm that can solve K in advance of the demand.

Third, given a solution of this problem, we can’t
even guarantee that it is feasible. For example, if the
solution is K = {8, 8, 8, 8, 8, 8}, we will need to encode
6 blocks with an (8, r) RS code. This is impossible
without rearranging the data blocks into a smaller size.
Variable-size blocks, however, will incur significantly
more complexity to manage data inside the distributed
storage system. In this paper, we retain the assumption
of fixed-size blocks and manage to encode data with
such solutions without incurring much additional over-
head.

In the rest of the paper, we introduce the Zebra
framework that solves these practical issues efficiently
and then show the encoding scheme under the Zebra
framework.

V. ZEBRA FRAMEWORK

A. Solving ranks efficiently

In the Zebra framework, we propose a few heuris-
tics to compute ranks of blocks efficiently. We start
from temporarily removing the integer constraint (3)
and resolving the complexity issues of the non-integer
geometric programming problem in (1)-(2) by studying
its property.

Without loss of generality, we assume that in D, di ≥
dj if i > j. In other words, we sort the element in D in
a non-ascending order. In this way, an optimal solution
of K in (1)-(2) should also be in non-descending order.

We prove this property by contradiction. Assume that
there exist i and j in an optimal solution of (1)-(2) such
that ki > kj where i < j, and then the reconstruction
overhead of block i and j is diki + djkj . If di > dj ,
it is straightforward that diki + djkj > dikj + djki.
Therefore, we can get a solution with even lower overall
reconstruction overhead by exchange the rank of block
Bi and Bj , which is contradictory to the assumption
that the original solution is optimal. On the other hand,
if di = dj , we can assign a new rank, 2kikj

ki+kj
, to both

block Bi and Bj to get a lower overall reconstruction
overhead, while still satisfying the condition in (2). This
is also contradictory to the assumption that the original
solution is optimal.

From this property, we can directly get a corollary
that ki = kj if di = dj . In other words, if two
block have the same demand, they will also have the
same rank in the optimal solution. Therefore, inspired
by this property, we can refine the original model to
significantly decrease the complexity to solve it, by
reducing the number of variables to solve.



First, we assume that all blocks of the same file
should have the same or similar demand in a distributed
storage system. In practice, if the demand of blocks in
a single file is not the same, we can use the demand
of the hottest block of the file as the demand of the
file. The intuition of this assumption is that typically a
distributed storage system that stores large-size files will
have distributed data processing system running upon it,
such as Hadoop and Spark, which will visit each block
of the file distributively. Therefore, once a file is visited,
all of its blocks will probably be visited with the same
demand. Notice that if all blocks of the same file have
the same demand, this step will not hurt the optimality
of the solution.

Second, we extend this property by assuming that
blocks with similar demand will also have similar
ranks. Thus, we can classify the demand of all blocks
into discrete categories. The simplest way is to set a
parameter t where any demand that falls into the interval
(tx−t, tx] will be approximated as tx, ∀x ∈ Z∗. Hence,
files with similar demand will be merged into the same
one, and we can further reduce the complexity to solve
the model. For the cold data, this is especially useful, as
cold data typically occupy a very large portion of all the
data, yet with similar demand of very little values. Thus,
we can quickly categorize cold data into few intervals,
and then thousands of files can be grouped into few
ones.

After these two steps, we can refine the model such
that there are n files, where each file Fi is associated
with size wi and demand di, i = 1, . . . , n. The sum of
of the size of each file must be N , i.e.,

∑n
i=1 wi = N .

Each file will be encoded with a (ki, r) RS code, and
the overall storage overhead should be no more than
C. Hence, the problem to solve the optimal K can be
redefined as

min

n∑

i=1

widiki (4)

s.t.
n∑

i=1

wi

ki
≤ (C − 1)N

r
(5)

ki > 0,∀i. (6)

This is still a geometric programming problem. Notice
that here we remove the constraint (3) that each ki must
be an integer. In the Zebra framework, we will solve
this problem first, and then round ki to an integer. For
now we always round ki to dke in the approximated
solution. In this way, we won’t break the requirement
of storage overhead in (4), while the worst case of
additional reconstruction overhead is

∑n
i=1 widi. Thus,

the approximation ratio of this solution is 1 + 1
mini ki

.
In practice, the approximation ratio of a real workload

can be close to 1. To demonstrate this gap, we run
the simulation on the workload from Facebook that we
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Fig. 4. Complexity and approximation ratio of the refined model.

show in Fig. 2. In this workload, there are 15565 files in
total. If we store data into blocks of 64 MB, there will
be 1.8 × 107 blocks. The result in Fig. 4a shows that
we can reduce the number of files into 55 even when
t = 1. Notice that when t = 1, we actually don’t merge
files unless their demand is exactly the same. When we
increase the value of t, we can even further reduce the
complexity of solving k. In fact, we can always solve
K within 0.1 seconds for this workload, with any value
of t.

We calculate the overall reconstruction overhead in
Fig. 4b. The overall reconstruction overhead is calcu-
lated by (4), which represents the reconstruction over-
head of all block visits under the given demand. We
assume that any two block failures should be tolerated,
i.e., r = 2, and the overall storage overhead should be
no more than 1.25. We can see that the performance
of the approximated solution of K (approximated K)
is close to the non-integer solution of K (ideal K) in
(4)-(6), with 11.4% more reconstruction overhead in
the worst case. Compared to the single erasure code,
which we use (8, 2) RS code in this case to meet
the requirement of storage overhead, the approximated
solution of K can save up to 28.2% reconstruction
overhead.

B. Encoding data in multiple tiers

From the ranks solved above, we can now encode
data into multiple tiers. The number of tiers is deter-
mined by merging files with the same rank into one
tier. We actually encode blocks in each tier with a
(ki, r) RS code, where ki is the rank of the file and
r is the number of failures to tolerate. In particular,
for the blocks of rank 1, i.e., ki = 1, they will be
replicated with 1 + r copies. Since data in each tier
are migrated from multiple files, the chance of having a
tier with no more than ki blocks is negligible. Inside
each tier, we encode every ki blocks into r parity
blocks with the (ki, r) RS code where we term such
a group of ki + r blocks as a stripe. All blocks in
each stripe will be stored into different servers. If we
have remaining blocks or the total number of blocks



is less than ki, we will temporarily encode them with
an (l, r) RS code if the number of remaining blocks
is l. Since l < ki, this will incur additional storage
overhead. However, given the large number of blocks
stored in a distributed storage system, this additional
storage overhead is marginal.

VI. DEPLOYING ZEBRA WITH ONLINE DEMAND

A. Online demand
Before we deploy the Zebra framework in any prac-

tical scenarios, we should be aware that ranks inside
the Zebra framework can only be constructed with the
given demand, however, they must work well with the
demand in the future.

To meet this requirement with online demand, the
demand D we use in the model will not be purely
determined by the most recent demand, but a linear
combination of demand over a longer period of time.
Specifically, we split the time into intervals. For exam-
ple, if the interval is one hour, we measure the demand
of each file every hour, and the demand measured in this
hour is the most recent demand in the next interval.

If we use the most recent demand to solve K, we
may imprudently increase ki of some block if this block
gets transiently high demand in the latest interval and
in the next interval there will be no such high demand.
Therefore, we also need to consider the consistency of
the demand besides the latest demand. In this paper,
we use α to achieve a flexible tradeoff between the
consistency and the transiency of the demand. Assume
that D0 is the most recent demand and D is the demand
we use to calculate K in the last interval. After this
interval, we are going to update the demand D as

(1− α)D + αD0, α ∈ [0, 1]. (7)

It is straightforward that when α = 1, we will always
use the latest demand to calculate K used in the next
interval. On the other hand, as α goes to 0, the latest
demand will be less and less taken into account. When
α = 0, D won’t be updated at any time. In this
way, the transient demand will get smoother over time.
Therefore, we won’t be easily tricked by the transient
demand. In other words, a smaller α can help to make
it more consistent in the updated demand D over time.

Once again, we run the simulation with the hourly
updated demand on the workload from Facebook, with
r = 2, C = 1.25, and t = 1. Fig. 5 illustrates the results.
Compared to the single RS code, Zebra can work well
with online demand, and we can on average save 60.8%
of reconstruction overhead in general. We can observe
that in this workload, the transiency is quite significant
(from the overhead of the single RS code), and thus with
a larger α we can slightly better adapt to the general
workload change. In fact, the best choice of α depends
on the characteristics of the workload, and we will show
the results with more workload in Sec. VII.
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B. Data migration
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Fig. 6. The number of blocks to migrate into different ranks after
each hour.

Once the demand changes after each time interval, we
will need to update the files if their ranks are changed.
This may involve quite a lot of migration overhead,
especially the network transfer. An naive way to update
files with new ranks is to compute new parity blocks
with the new RS code and then remove the old parity
blocks. To encode r parity blocks from k data blocks
with a (k, r) RS code, we need to transfer at least
k + r − 1 blocks, by computing all parity blocks on
one server and sending r − 1 ones to other servers. In
other words, if the rank of a file is updated, the traffic to
generate new parity blocks will be even more than the
amount of this file. Fig. 6 shows the number of blocks
that have different ranks after each hour. We can see
that the migration overhead varies with different values
of α, and it is hard to predict (as we have more blocks
to migrate when α = 0.8 than α = 1. In fact, there
can be 650.5 TB of data to migrate to new RS codes
at some hour when α = 0.8. In other words, we need
to generate new parity blocks for almost 2

3 of all data.
This will not only hinder the migration process from
finishing quickly, but hurt the performance of the data



access as well. Hence, though migration is unavoidable
to meet the ever-changing demand, our objective is to
reduce the network transfer for migration to a marginal
level, for any values of α.

In this paper, we propose a different way to encode
data such that we can control the migration overhead
without increasing the overall reconstruction overhead
significantly. We use Cauchy RS codes [26], [27] in
Zebra, which contains a Cauchy matrix in its generating
matrix. With a (k, r) RS code, we have a (k + r) × k
matrix G as its generating matrix, such that the encod-
ing operation can be formalized as the multiplication
of the generating matrix and the k data blocks, as
illustrated in Fig. 7a. In particular, if the first k rows
of G are an identity matrix, the corresponding RS code
will be systematic. In this way, we can write G as

G =

[
I

Ĝ

]
. In a Cauchy RS code, the matrix Ĝ is

a Cauchy matrix. An advantage of Cauchy RS code is
that all encoding operations can be converted into XOR
operations. More importantly, Cauchy matrix makes it
easy to migrate from one RS code into another RS code
with significantly less overhead, since any submatrix of
a Cauchy matrix is still a Cauchy matrix (Fig. 7b).

Because of this property, we can easily downgrade
or upgrade data between an (mk, r) and a (k, r) RS
code, m ∈ Z+. We show in Fig. 7c and Fig. 7d
how we can migrate between these two RS codes. To
downgrade from a (k, r) RS code to an (mk, r) RS
code, by applying the property of the Cauchy matrix,
we only need to XOR the r parity blocks in the m
stripes together. To upgrade from an (mk, r) RS code
to a (k, r) RS code, we need to generate the parity
blocks in the m − 1 stripes under the (k, r) RS code
and XOR the new parity blocks and the existing parity
blocks into the parity blocks of the last stripe. We show
in Table I the network transfer of both upgrade and
downgrade, as well as the network transfer of the naive
migration scheme. We can see that the Cauchy matrix
can help to save network transfer in both cases, when
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Fig. 7. Construction of the Cauchy RS code and its migration.

TABLE I
NETWORK TRANSFER (NO. OF BLOCKS) BETWEEN (mk, r) AND

(k, r) RS CODES.

without Cauchy matrix with Cauchy matrix
downgrade mk + r − 1 (m− 1)r

upgrade m(k + r − 1) (m− 1)(k + 2r − 1)

m < 2 + k−1
r . Apparently when m = 2 this condition

can always be satisfied, and we will use this property
to save the migration overhead.

However, we can rely on the Cauchy matrix only
when the rank of the new code is multiple times or can
be divided into the rank of the old code. To maximize
this effect, we can also change the way to solve ranks.
We set kmax, an upper bound of ranks of all blocks, such
that all ki should be no more than kmax. Moreover, the
rank of all blocks should be a divisor of kmax. Given ki
solved from (4)-(6) with an additional constraint ki ≤
kmax,∀ki, we encode the corresponding block with a
(k, r) RS code where k is the minimum divisor of kmax

that is no less than ki.
When we migrate m stripes of blocks encoded with

a (k, r) RS code into one stripe with an (mk, r) RS
code, we may also need to move data blocks because
two blocks in different stripes may be stored in the same
server. In Zebra, if kmax is set, we store every kmax data
blocks into different servers, and compute parity blocks
with the corresponding (k, r) RS code which will be
stored into other servers. When we need to migrate into
an (mk, r) RS code, we will not need to move any
data blocks, but only migrate parity blocks as described
above. This method can also be applied to the upgrade
case as well. Apparently, we can maximize the effect
of the Cauchy matrix by wisely selecting the value
of kmax. For example, when kmax = 16, we have 5
available ranks (1, 2, 4, 8, 16). Thus, when downgrading
or upgrading to any neighbor ranks we can always
exploit the Cauchy matrix to save network transfer (with
m = 2). For some other values of kmax, some rank may
not be integer multiples of its neighboring rank (e.g., 4
and 3 when kmax = 12), we will have to remove all
existing parity blocks and generate new parity blocks
with the new ranks.

In Fig. 8, we compare the performance with different
values of kmax. We run the Facebook workload by
updating ranks of data every hour and calculate all
the network transfer incurred by the migration, with
C = 1.25, r = 2, t = 1, and α = 0.8. We can
see that all values of kmax in Fig. 8 can significantly
reduce the network transfer such that only 2.2% of the
original network transfer will be incurred (kmax = 16).
The overall reconstruction overhead, on the other hand,
will increase by between 8.7% (kmax = 24) and 29.8%
(kmax = 16).
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Fig. 8. Network transfer incurred by the migration and the overall
reconstruction overhead with different values of kmax, when α = 0.8.
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Fig. 9. Comparison of network transfer incurred by migration with
various values of α, when kmax = 24.

We show the results of other values of α in Fig. 9.
We can see that with any values of α, the total network
transfer for migration will be reduced to no more than
37 TB, which occupies less than 2.4% of all traffic
incurred by demand. Meanwhile, at most 12.1% more
reconstruction overhead will be incurred. Hence, we
reduce the network transfer for migration to a marginal
level without incurring much additional reconstruction
overhead.

VII. SIMULATION

A. Methodology

We evaluate the performance of the Zebra framework
with more workloads in this section. The two work-
loads [14] used in this paper are obtained from a 600-
machine cluster at Facebook running MapReduce jobs,
each of which spans 24 hours. In the workload, the
demand of HDFS files is recorded. We show character-
istics of the two workloads in Table II, and we have
been using the FB2 workload to evaluate the design of
Zebra throughout this paper so far. From Table II we can
see that both workloads have a significant skewness of
data demand, where more than half of data have demand
less than the 1.6 and only a small portion has very high

demand.

TABLE II
CHARACTERISTICS OF WORKLOADS USED IN THE SIMULATION.

workload size # files max demand mean demand
FB1 0.96 PB 15223 688 1.6
FB2 1.07 PB 16256 721 1.5

Like previous evaluations, we divide the time in each
workload into intervals, where each time interval spans
the same amount of time. In our simulation, we set each
interval as one hour. In each interval, we calculate the
rank of files with the demand updated by (7). The new
file that appears for the first time in an interval will
be stored with with a default rank. The default rank
is calculated as the minimum divisor of kmax that is
no less than r

C−1 , and can hence achieve the required
storage overhead C with r failures to tolerate. In the
simulation, the size of each block is 64 MB. After each
interval, the ranks of all existing files will be updated.
Given the rank of each file, we can further calculate
the average overhead of reconstruction per visit, the
storage overhead of blocks, and the network transfer
of the migration.

In the simulation, besides Zebra and one RS code,
we add another scheme that encodes data into two tiers
of RS codes. This scheme is similar to the method
proposed in [24] which implements two tiers with two
other preconfigured erasure codes. In our simulation, the
two tiers both deploy RS codes for the purpose of fair
comparison. For convenience, we name the two tiers as
hot tier and cold tier, as the hot tier will store hot data
with low reconstruction overhead while the cold tier
can provide low storage overhead for the cold data. In
this scheme, under the constraint of the overall storage
overhead, we try to assign as much hot data as possible
to the hot tier and store the rest in the cold tier. In the
simulation, we deploy a (4, 2) RS code in the hot tier
and a (12, 2) RS code in the cold tier.

B. Results

We first evaluate the reconstruction overhead. At
each time interval, we calculate the average of the
reconstruction overhead per visit, where we define the
reconstruction overhead as the number of blocks to read
in the reconstruction. In other words, if the rank of
a block is k, its reconstruction overhead at that time
is k as well. This average reconstruction overhead per
visit can be considered as the expected reconstruction
overhead of visiting an unavailable block once we have
a failure in the distributed storage system. In all the
simulations below, we set C = 1.4, r = 2, t = 1,
α = 0.5, and kmax = 24, unless mentioned otherwise.

We show the average reconstruction overhead in
Fig. 10, where we sort files by their demand, and then
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Fig. 10. Average reconstruction overhead per visit with storage
overhead 1.2 and 1.4.

calculate the average reconstruction overhead per visit
of files in a given percentage of top demanded files
with C = 1.2 and 1.4, respectively. From Fig. 10a and
Fig. 10b, we can see that all data can expect lower re-
construction overhead per visit than the single RS code
with the same storage overhead. The reason is that in
the Zebra framework, even though cold data may have
higher reconstruction overhead than the single RS code,
their demand can actually occupy a very small portion
of all demand. Hence, on average, the reconstruction
overhead per visit of all data can be lower than the
single RS code, especially for the hotter data. The two
RS codes can also achieve lower average reconstruction
overhead than the single RS codes. However, Zebra
can achieve better results as it tries to minimize the
overall reconstruction overhead. Similar results can also
be obtained when we require for a higher value of
storage overhead in Fig. 10b, where with two RS codes
we can not even compete with single RS codes due to
the static configuration of RS codes. On average, we
can save the average reconstruction overhead by 53.7%
and 54.9% for the top 15% demanded files in Fig. 10a
and Fig. 11b, respectively.
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We compare the choices of α in Fig. 11, in which we

use the same storage overhead as Fig. 10b. We find that
the two workloads demonstrate different reconstruction
overhead with different values of α, where FB1 favors
lower α for the consistency while FB2 favors higher
α for the transiency of the demand. Hence, we believe
that the best choice of α depends on the characteristics
of the workload.
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Fig. 12. Storage overhead of data with different demand.

We compare the storage overhead of data with differ-
ent demand in Fig. 12, where we measure the average
storage overhead of files in all time intervals. This
time we sort the files by their demand (from bottom
to top) and calculate the average storage overhead of
data in a 1% interval of files. For example, data points
with 99% on the x-axis indicate the average storage
overhead of files with demand in the bottom 99%-
100% interval, i.e., the top 1% most demanded files.
In fact, 90% files have very low demand in both FB1
and FB2, and hence they all have very similar storage
overhead. In Fig. 12 we focus on the top 10% files. We
can see that at most 2% files have storage overhead
higher than the given constraint in Zebra, indicating
their extremely high demand. On the other hand, due
to the static configuration of the two RS codes, more
data with high demand have to be stored in the cold tier
with unnecessarily low storage overhead. Hence, with
the two RS codes, we can not fully utilize the storage
space, and this also explains why two RS codes have
higher reconstruction overhead in Fig. 10b.

We illustrate the network transfer incurred by the
migration in Fig. 13, by comparing it with the total
network transfer to serve the demand. With various
constraints of the overall storage overhead, we can see
that the total migration traffic never exceeds the 10% of
the total demand traffic, thanks to the Cauchy RS codes
used in Zebra. Though more migration traffic can be
observed with higher storage overhead, we can see that
this increased amount of traffic is marginal.

VIII. CONCLUSIONS

In this paper, we exploit the skewness of demand
in distributed storage systems and propose the Zebra
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Fig. 13. The ratio of the total network transfer incurred by the
migration to the network transfer incurred to serve demand.

framework that can efficiently encode data according to
their demand into multiple tiers. By deploying the Zebra
framework, we can achieve a much lower reconstruction
overhead for the hot data, while spending less storage
space to store the cold data. With the ever-changing
demand, Zebra can update itself accordingly with a low
network transfer in the migration.
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