
Cooperative Repair with Minimum-Storage
Regenerating Codes for Distributed Storage

Jun Li, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada

Abstract—Distributed storage systems store redundant data to

tolerate failures of storage nodes and lost data should be repaired

when storage nodes fail. A class of MDS codes, called minimum-

storage regenerating (MSR) codes, has been designed to opti-

mize bandwidth consumption when repairing one single failure.

Compared with repairing failures individually, the cooperative

repair of multiple failures can help to further save bandwidth

consumption when multiple failures are being repaired. In

this paper, we present a new construction of minimum-storage

cooperative regenerating (MSCR) codes that repair two failures

cooperatively and exactly. We show that given a valid instance of

linear exact MSR codes, we are able to construct a corresponding

repair procedure to repair any two failures cooperatively with

optimal bandwidth consumption, i.e., to construct an instance of

exact MSCR codes directly from exact MSR codes. With this

connection, we are also able to repair any single failure exactly

with MSCR codes.

I. INTRODUCTION

Distributed storage systems, e.g., HDFS [1] and Windows
Azure Storage [2], rely on spreading data into a large number
of storage nodes that are composed from commodity hardware,
to provide large-scale storage services. However, storage nodes
are subject to failures, due to the large number and commodity
nature of disk drives. Thus, a certain amount of redundant
data should also be stored in the system. Once the data stored
in some storage nodes become unavailable, they can still be
fetched from the storage nodes that store the redundant data.

Conventionally, distributed storage systems use replications
to produce the redundant data. For example, all data in HDFS
are stored with three replicas by default. However, due to the
large storage consumption of exact replicas, there is a trend
for distributed storage systems to migrate from replications
to erasure coding [3], [4]. Among families of erasure codes,
maximum distance separable (MDS) codes achieve the optimal
storage efficiency by generating coded blocks whose size is
1
k of the original data and meanwhile achieving the [n, k]
recoverability property, such that any k among a total of
n coded blocks can recover the original data. For example,
Facebook uses [14, 10] Reed-Solomon codes [5], a classical
family of MDS codes, to store non-fresh data [4], [6], saving
65% of the storage space when tolerating the same number of
node failures, as compared to replication.

Once a storage node fails, it should be replaced by a new
storage node, called a newcomer. A newcomer downloads data
from existing storage nodes to repair the lost data. The amount
of downloaded data, called repair bandwidth, is an important

performance metrics of erasure codes. The repair bandwidth
of some traditional MDS codes such as Reed-Solomon codes
is at least the size of k blocks, i.e., the size of the original
data, even if only one coded block is to be repaired. However,
Dimakis et al. [7] have shown that the repair bandwidth can be
approximately the size of just one coded block, and established
an optimal tradeoff between the storage, i.e., the size of the
coded block, and the repair bandwidth for any single-loss
repair. This tradeoff can be achieved by a family of erasure
codes called regenerating codes, while still maintaining the
recoverability property.

Moreover, it is a common case to have multiple failures
to repair at the same time in large-scale distributed storage
systems [4]. Some distributed storage systems, such as Total
Recall [8], even deliberately repair multiple failures in batches
to avoid unnecessary repairs incurred by temporary node
failures. If multiple newcomers can cooperate, they will enjoy
a better repair bandwidth than that without cooperation [9].
The family of codes that achieve the optimal tradeoff between
the storage and the repair bandwidth in cooperative repair with
multiple newcomers are thus called cooperative regenerating
codes [10], which also maintain the recoverability property.
Obviously, regenerating codes defined in the single-newcomer
repair can be regarded as a special case of cooperative regen-
erating codes with only one newcomer.

In the tradeoff between the storage and the repair bandwidth,
there are two extreme points of special interest: minimum-
storage cooperative regenerating (MSCR) codes and minimum-
bandwidth cooperative regenerating (MBCR) codes. When
there is only one newcomer during repair, the corresponding
families of cooperative regenerating codes are specifically
termed as MSR and MBR codes as well. Though MBCR
codes achieve the minimum repair bandwidth, they sacrifice
the storage efficiency since each coded block contains more
than 1

k of the original data, while MSCR codes belong to the
family of MDS codes by achieving both the optimal storage
efficiency and the recoverability property.

Compared to just maintaining the recoverability property,
it is more desirable to have exact cooperative regenerating
codes such that any coded block can be repaired exactly,
making it very convenient to let the corresponding codes to be
systematic, so that the original data can be embedded explicitly
in coded blocks. Suppose that the constructed codes support
[n, k] recoverability property and t newcomers download data

978-1-4799-3360-0/14/$31.00 c�2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 316

from d storage nodes during repair (n � d+t, d � k). Wang et
al. [11] have proposed an explicit construction of exact MBCR
codes over all possible values of parameters [n, k, d, t]. How-
ever, efficiency as MDS codes, there are only a few explicit
constructions of exact MSCR codes with specific values of
some parameters, e.g., [n, k, d � 2k�2, t = 1] (i.e., [n, k, d �
2k � 2] MSR codes) [12] and [n, k, d = k, t � 1] [10].

On the other hand, all constructions of cooperative regen-
erating codes are designed for particular values of parame-
ters, such that once coded blocks are generated they must
be repaired with a specified number of storage nodes and
newcomers. For example, to repair a coded block generated by
[n = 6, k = 3, d = 5] MSR codes, the newcomer must connect
to all remaining five storage nodes. Once two coded blocks
are not available, they can not be repaired with the repair
bandwidth of the corresponding MSCR codes, since now there
are only four storage nodes remaining, even though they are
still sufficient to recover the original data. As for cooperative
regenerating codes with t > 1, the repair procedure can occur
when there are at least t node failures, and thus the storage
system has no way to perform emergent repairs with fewer
than t newcomers with the corresponding repair bandwidth.

In this paper, we discuss the construction of exact minimum-
storage cooperative regenerating codes for all possible values
of n, k, d, with one or two newcomers (i.e., t = 1 or 2). We
show that when d� 1 � k we can build [n, k, d� 1, 2] exact
MSCR codes directly from [n, k, d] exact MSR codes, and
vice versa. Based on this connection, we can either repair one
failure from any d storage nodes or repair two newcomers
cooperatively from any d�1 storage nodes. Thus even though
two of coded blocks generated by [6, 3, 5] MSR codes are lost,
we can still repair them with the four remaining storage nodes
by the repair procedure of the corresponding [6, 3, 4, 2] MSCR
codes, and both of these two repair procedures achieve the
repair bandwidth of corresponding MSCR codes. In addition,
we are able to show that there exists no linear scalar exact
[n, k, d, t = 2] MSCR codes if d < 2k � 4 and k > 3.

II. AN ILLUSTRATIVE EXAMPLE:
CONNECTION BETWEEN MSR CODES AND MSCR CODES

In this section, we give an example of the connection
between MSR codes and MSCR codes. Suppose that a file
contains four segments A1, A2, B1 and B2, and the data in
each segment can be regarded as a vector of symbols over a
finite field. In this example, we take F8 as the finite field, and
use the exact [4, 2, 3] MSR codes constructed in [13]. Thus,
coded data are distributed to a total of four storage nodes. As
shown in Fig. 1, each storage node stores one block containing
two coded segments that are linear combinations of the four
original segments, and it is easy to see that any two of them
can recover the four original segments.

Since d = 3 in this example, a newcomer needs to download
data from all the three remaining storage nodes, termed
as providers during repair, when one storage node fails to
work. Compared to traditional erasure codes that require the
newcomer to download all data of providers, MSR codes only

A1

A2

B1

A2+B2

2A1+B1

B2B1+B2

A1+2A2+B1+B2

2A1+A2+B1+B2

B1+B2

A1+2A2+B1+B2 2A1+A2+B1+B2

newcomer

A2

A1

A1+B1

2A2+B2

A1

A2

B1

A2+B2

2A1+B1

B2

newcomer

A1+B1

2A2+B2

A1+A2

A1+A2

2A1+2A2+2B1+B2

2A1+2A2+2B1+B2

B1

B2

2A1+2A2+B1+2B2

(a) the repair procedure of A1 and A2

(b) the repair procedure of B1 and B2

provider 1 provider 3

provider 2

provider 2 provider 3

provider 1

2A1+2A2+B1+2B2

Fig. 1. An instance of exact [4, 2, 3] MSR codes and two individual repair
procedures of two different node failures.

require to download a portion of data stored in each provider.
In this example, the newcomer downloads only half of the
data, i.e., one coded segments, from each provider and then
reconstructs the lost data.

Suppose that A1 and A2 become not accessible. As shown in
Fig. 1(a), the newcomer downloads B1+B2, A1+2A2+B1+
B2 and 2A1+A2+B1+B2 from three providers, respectively.
Since three downloaded segments all contain B1+B2, we can
subtract B1 +B2 from A1 +2A2 +B1 +B2 and 2A1 +A2 +
B1 +B2, and then reconstruct A1 and A2. Fig. 1(b) shows the
procedure to repair B1 and B2, and the coded segments stored
in the other two storage nodes can be repaired similarly.

When two nodes fail, we can no longer repair the lost data
of each node by downloading three coded segments, since
the [4, 2, 3] MSR codes ask the newcomer to download data
from three different providers. The only way to repair each
individual newcomer is to let each newcomer download all
four segments from the two remaining storage nodes, incurring
additional repair bandwidth of one more segment than the
repair procedures shown in Fig. 1.

In this paper, we will show that we can actually repair
any two node failures in any instance of [n, k, d] MSR codes
cooperatively and exactly. In the cooperative repair procedure,
multiple newcomers cooperate by exchanging data they have
received from providers. Fig. 2 illustrates how we can coop-
eratively repair two newcomers, which receive data from two
providers. We can see that each newcomer receives the same
data just as what they receive in the individual repair. Since
now there are only two providers, the two newcomers can not

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

317

A1

A2

A1+B1

A2+B2

2A1+B1

2A2+B2

newcomer 1

newcomer 2

2A1+A2+B1+B2

2A1+A2+B1+B2

3B1+3B2

A1

A23B1+3B2

3A1+3A2

3A1+3A2

B2

B1

A1+2A2+B1+B2

A1+2A2+B1+B2

2A1+2A2+2B1+B2

2A1+2A2+B1+2B2 2A1+2A22A1+2A2

+2B1+B2 +B1+2B2
provider 1 provider 2

B1

B2

Fig. 2. The cooperative repair procedure of two node failures in the instance
of exact [4, 2, 3] MSR codes in Fig. 1.

recover the data of the corresponding failed node. However,
the one additional segment that each newcomer needs can
actually be obtained from the other newcomer. For example,
in Fig. 2, the second newcomer can send 3B1 + 3B2 as a
linear combination of its two received symbols (as 2 + 2 = 0
on F8) to the first newcomer, and thus the first newcomer
can still recover A1 and A2 by subtracting B1 + B2 from
received symbols. Similarly, the first newcomer can also send
a linear combination of the two segments it has received (i.e.,
3A1 + 3A2) to the second newcomer, such that the second
newcomer can recover B1 and B2. We will present how to
derive the segments the newcomers exchange in this paper.

In this way, we construct the exact repair procedure of each
pair of two storage nodes of an instance of exact [4, 2, 3] MSR
codes. In other words, we have constructed an instance of
exact [4, 2, 2, 2] MSCR codes directly from MSR codes. As a
matter of fact, this instance of [4, 2, 2, 2] MSCR codes happens
to coincide with the instance given in [10]. In this paper, we
will show that this result can actually be generally applied
to all instances of linear scalar exact MSR codes. From this
connection, we are also able to repair any single node failure
exactly in [n, k, d, t = 2] exact MSCR code.

III. RELATED WORK

A. Regenerating codes
Suppose that each of n storage node stores a coded block

of size ↵ symbols over a finite field Fq while the original
file contains M symbols, and the n coded blocks achieve
the [n, k] recoverability property such that any k among
them can recover the original data. Once one storage node
fails, a newcomer downloads � symbols from each of d

providers (d � k), and thus the repair bandwidth � equals d�

symbols. The concept of regenerating codes was first proposed
by Dimakis et al. [7], which achieves the minimum repair
bandwidth for fixed n, k, d and ↵, while maintaining the [n, k]
recoverability property.

In the family of regenerating codes, the storage ↵ and the
repair bandwidth � can not be minimized simultaneously, i.e.,
there is a tradeoff between ↵ and �. The two extreme points
in the tradeoff are termed as minimum-storage regenerating

(MSR) codes and minimum-bandwidth regenerating (MBR)
codes, respectively. The storage ↵ and the repair bandwidth �

of MSR and MBR codes are (↵MSR, �MSR) =
⇣

M
k ,

Md
k(d�k+1)

⌘

and (↵MBR, �MBR) =
⇣

2Md
k(2d�k+1) ,

2Md
k(2d�k+1)

⌘
, respectively.

Obviously, the repair bandwidth of both MBR and MSR codes
goes to M

k symbols if d !1, which is the size of the coded
block in MSR codes.

The constructions of MSR and MBR codes have attracted
a lot of attention. In the constructions of regenerating codes,
there are two modes of repair that can be implemented in
terms of the repaired data: the functional repair and the exact
repair. Compared with the functional repair (e.g.,[14], [15])
which does not repair the lost data exactly but only preserves
the recoverability property, the exact repair can exactly repair
the lost data and thus it allows regenerating codes to be
systematic, i.e., the original data are contained explicitly in
coded blocks. Systematic codes can significantly reduce the
overhead of data access as no decoding operations are needed.
Thus, exact regenerating codes that support the exact repair is
more favored by distributed storage systems.

As for the exact repair, Rashmi et al. [12] have first pro-
posed a product-matrix framework which provides an explicit
construction of exact [n, k, d] MBR codes for any feasible
values of n, k, d (k d < n). The construction of exact
MSR codes is more complicated. By using the product-matrix
framework, exact [n, k, d] MSR codes can be constructed when
d � 2k � 2. It has been shown that for all [n, k, d], exact
MSR codes can be asymptotically constructed with the symbol
extension [16], such that the repair bandwidth of MSR codes
can be achieved asymptotically by dividing each segment in
Fig. 1 into arbitrarily small segments. Due to the symbol
extension, the constructed MSR codes are not scalar and thus
not practical to implement. However, it has been proved that
no linear scalar exact MSR codes exist if d < 2k � 3 and
k > 3 [17]. Moreover, Shah et al. [18] have shown that no
exact regenerating codes exist that achieve interior points in
the storage-bandwidth tradeoff.

B. Cooperative regenerating codes

The original storage-bandwidth tradeoff that defines the
family of regenerating codes is derived under the assumption
that repairs are considered individually, i.e., node failures are
repaired one by one in different rounds of repairs. However,
Hu et al. [9] have first found that the repair bandwidth can have
a better lower bound with multiple newcomers that cooperate
with each other w.r.t. the storage ↵ (for fixed n, k, d and
the number of newcomers). Shum [10] and Kermarrec et
al. [19] have independently identified the storage-bandwidth
tradeoff with multiple cooperative newcomers during repair
and the erasure codes achieving such repair bandwidth in
this tradeoff are termed as cooperative regenerating codes.
Supposing that there are t newcomers during repair, the
storage ↵ and the repair bandwidth � per newcomer of
minimum-storage cooperative regenerating (MSCR) codes and
minimum-bandwidth cooperative regenerating (MBCR) codes

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

318

are (↵MSCR, �MSCR) = (M
k ,

M
k · d+t�1

d+t�k) and (↵MBCR, �MBCR =
(M

k · 2d+t�1
2d+t�k ,

M
k · 2d+t�1

2d+t�k), respectively. In this sense, regen-
erating codes can be regarded as a special case of cooperative
regenerating codes with t = 1.

Wang et al. [11] have proposed an explicit construction
of [n, k, d, t] exact MBCR codes for all feasible values of
n, k, d, and t. However, there exist only a few constructions of
exact MSCR codes for particular values of some parameters.
For example, Shum et al. [10] proposed an construction of
exact MSCR codes when d = k. If k = 2, Le Scouarnec [20]
showed another construction of exact MSCR codes. Recently,
Chen and Shum [21] presented an construction of [n =
2k, k, d = 2k�2, t = 2] MSCR codes built from an particular
construction of MSR codes. In this paper, we go a much
further step by establishing a fundamental connection between
exact MSR codes and exact MSCR codes for any linear scalar
constructions.

IV. DEFINITIONS

Suppose that the original data has M symbols over a
finite field Fq of size q and coded blocks are constructed
over this finite field as well. We want to maintain the [n, k]
recoverability property, such that there are n coded blocks in
total and any k of them can be used to recover the original
data. Each coded block has ↵ symbols, such that k↵ � M .

Minimum-Storage Regenerating (MSR) codes and
Minimum-Storage Cooperative Regenerating (MSCR) codes
are both derived from the minimum-storage point in the
storage-bandwidth tradeoff [7], by taking the storage ↵ to the
theoretical minimum, i.e., ↵ = M

k .

A. Minimum-storage regenerating (MSR) codes
We define the coding schemes of exact MSR codes first.

As for MSR codes, � = Md
k(d�k+1) , i.e. the newcomer needs to

download � symbols from each of d providers, d � k. If we
have [n, k, d] MSR codes with parameters (M, ↵ = M

k , � =
Md

k(d�k+1)), we can easily construct [n, k, d] MSR codes with
parameters (�M,�↵,��) by dividing the �M symbols in
the original data into � groups of M symbols, where � is
a positive integer. If there exists a construction of MSR codes
such that � = 1, the corresponding MSR codes is termed as
scalar MSR codes. When d < 2k � 3 and k > 3, there exists
no linear scalar construction of exact MSR codes [17]. We
consider the linear scalar construction only in this paper, and
thus suppose that � = 1 for simplicity.

When � = 1, we can get that M = k(d � k + 1) and
↵ = d � k + 1. In other words, the original data contain
k(d� k + 1) symbols over Fq. We use M = (m1, . . . ,mM)T

to denote the M symbols of the original data. Each coded
block can be generated by a ((d � k + 1) ⇥ M) generating
matrix �i such that ci = �iM. Without loss of generality,
we suppose that ci is stored in the i-th storage node, i =
1, . . . , n. To achieve the [n, k] recoverability property, for any

k-subset S = {s1, . . . , sk} of {1, . . . , n}, �S =

0

B@
�s1

...
�sk

1

CA is

invertible, i.e., M can be recovered by solving the following
linear system:

�S · M =

0

B@
cs1

...
csk

1

CA .

For example, Fig. 1 illustrates an instance of [4, 2, 3]
MSR codes. Suppose that the original message con-
tains four symbols as A1, A2, B1 and B2, i.e., M =�

A1 A2 B1 B2

�T . Thus the generating matrices of

the four coded blocks are �1 =
✓

1 0 0 0
0 1 0 0

◆
, �2 =

✓
0 0 1 0
0 0 0 1

◆
, �3 =

✓
1 0 1 0
0 2 0 1

◆
, and �4 =

✓
2 0 1 0
0 1 0 1

◆
.

Suppose that the i-th coded block ci becomes not available,
1 i n. To repair ci, the newcomer downloads data
from d providers P = {p1, . . . , pd}, which is a d-subset of
{1, . . . , n} \ {i}. The provider pj sends a linear combination
of its data, i.e., �

T
P,i(pj) ·cpj , to the newcomer where �P,i(pj)

is a ((d � k + 1) ⇥ 1) vector over Fq and the superscript T

denotes the transpose. In �P,i(pj), the superscript represents
the procedure that repairs ci from providers in P and the pa-
rameter pj represents that this is a vector of linear combination
coefficients of provider pj . In this way, each provider sends
one symbol over Fq to the newcomer.

In this paper, we define an operator �d to represent an
operation of two matrices. Suppose that A and B are both
matrices that can be equally partitioned into d row groups,
i.e.,

A =

0

B@
A1
...

Ad

1

CA , and B =

0

B@
B1
...

Bd

1

CA .

Then we define A �d B as

A �d B =

0

B@
A1B1

...
AdBd

1

CA .

In this sense, the operator �d can be regarded as a blockwise
extension of the Hadamard product. Specifically, A �d B =
A · B when d = 1.

Let ⇤P,i =

0

B@
�

T
P,i(p1)

...
�

T
P,i(pd)

1

CA and �P =

0

B@
�p1

...
�pd

1

CA. The data

that the newcomer received from providers can be represented
as (⇤P,i�d�P)M. The newcomer needs to encode the received
data with a d ⇥ (d � k + 1) matrix �P,i to repair ci exactly,
such that ci = �

T
P,i(⇤P,i �d �P)M, i.e.,

�i = �

T
P,i(⇤P,i �d �P). (1)

In this sense, we also use �i in this paper to represent ci

during repair.
Given a linear scalar instance of exact [n, k, d] MSR codes

with generating matrices �i, i = 1, . . . , n, there exists

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

319

(⇤P,i, �P,i) such that (1) holds, 8i 2 {1, . . . , n} and 8 d-
subset P ⇢ {1, . . . , n} \ {i}.

Fig. 1(a) shows the procedure to repair �1 of the corre-
sponding instance of [4, 2, 3] exact MSR codes, i.e., i = 1

and P2 = {2, 3, 4}. Then ⇤P2,1 =

0

@
1 1
1 1
1 1

1

A and �P2,1 =
0

@
6 6
2 4
4 2

1

A. Then we can validate that (1) holds for this

example. Notice again that all linear operations are over F8 and
the primitive polynomial we use in this example is x

3 +x+1.

B. Minimum-storage cooperative regenerating (MSCR) codes
Assume that we have d providers and t newcomers during

repair where d � k, and t � 1. In the cooperative repair
procedure, the newcomer first downloads �1 symbols from
each provider and then receives �2 symbols from each of other
t� 1 newcomers. As for MSCR codes, �1 = �2 = M

k(d�k+t) .
Therefore, the repair bandwidth of MSCR codes per newcomer
is M(d�1+t)

k(d�k+t) symbols. Once again, we can regard MSCR codes
as an extension of MSR codes for t � 1. When t = 1,
the newcomer needs to receive data from providers only, as
there is no other newcomer, and the repair bandwidth for this
newcomer is exactly the repair bandwidth of MSR codes.

Like MSR codes, we discuss the linear scalar construction of
[n, k, d, t] exact MSCR codes. Thus, we still let �1 = �2 = 1
for simplicity, and then we get that M = k(d � k + t) and
↵ = d�k+t. Similar to the coding scheme of MSR codes, we
let M = (m1, . . . ,mM)T to represent the original data. Each
coded block is generated by a (d�k+t)⇥M generating matrix
�i such that ci = �iM, i = 1, . . . , n. For any k-subset S of
{1, . . . , n}, �S is invertible, such that the [n, k] recoverability
property is achieved. Obviously, an instance of [n, k, d

0] MSR
codes can coincide with an instance of [n, k, d, t] MSCR codes,
if d

0 = d + t, as shown in Fig. 1 and Fig. 2.
We suppose that cl1 , . . . , clt are not available, where L =

{l1, . . . , lt} is a t-subset of {1, . . . , n}. Without loss of gener-
ality, we let the newcomer li repair cli , i = 1, . . . , t. Besides,
there are d providers p1, . . . , pd selected from n � t existing
nodes, i.e., P ⇢ {1, . . . , n} \ L where P = {p1, . . . , pd}.
The provider pj sends �

T
P,L(pj , li) · cpj to the newcomer li,

i = 1, . . . , t, j = 1, . . . , d. �P,L(pj , li) is a ((d� k + t)⇥ 1)
vector over Fq, where the superscript denotes the procedure to
repair newcomers in L with providers in P and its parameters
mean that this is the vector of linear combination coefficients
of the symbol that pj sends to li. Therefore, the newcomer li

can get d symbols from all providers, i.e., �

T
P,L(pj , li) · cpj ,

j = 1, . . . , d.
Then the newcomer li sends a linear combination of re-

ceived symbols to each of other newcomers with coefficients
⇡P,L(li, lh), 1 i t, 1 h t, i 6= h. Let

⇤P,L(li) =

0

B@
�

T
P,L(p1, li)

...
�

T
P,L(pd, li)

1

CA, which contains all coefficients

of symbols that the newcomer li receives from providers. Since

�

T
P,L(pj , li) ·cpj = �

T
P,L(pj , li) ·�pj M, the newcomer li sends

⇡

T
P,L(li, lh)(⇤P,L(li) �d �P)M to the newcomer lh, where

⇡P,L(li, lh) is a d ⇥ 1 vector on Fq, h 2 {1, . . . , t} \ {i}. In
return, the newcomer li also receives symbols from other new-
comers, i.e., ⇡

T
P,L(lh, li)(⇤P,L(lh) �d �P)M, h 2 {1, . . . , t} \

{i}.

Let ⇧P,L(li) =

0

BBBBBBBB@

⇡

T
P,L(l1, li)

...
⇡

T
P,L(li�1, li)

⇡

T
P,L(li+1, li)

...
⇡

T
P,L(lt, li)

1

CCCCCCCCA

, and P,L(li) =

0

BBBBBBBB@

⇤P,L(l1) �d �P
...

⇤P,L(li�1) �d �P

⇤P,L(li+1) �d �P
...

⇤P,L(lt) �d �P

1

CCCCCCCCA

. With the d symbols received from

providers and t � 1 symbols received from other newcom-
ers, the newcomer li can repair ci exactly by computing

�

T
P,L(li)

✓
(⇤P,L(li) �d �P)M

(⇧P,L(li) �t�1 P,L(li)M

◆
, where �P,L(li) are

(d � 1 + t) ⇥ (d � k + t) matrix on Fq. Hence, cli =

�

T
P,L(li)

✓
(⇤P,L(li) �d �P)M

(⇧P,L(li) �t�1 P,L(li)M

◆
, i.e.,

�li = �

T
P0,L(li)

✓
⇤P0,L(li) �d �P

⇧P0,L(li) �t�1 P,L(li)

◆
. (2)

Given a linear scalar instance of [n, k, d, t] exact MSCR
codes with generating matrices �i, i = 1, . . . , n, there exists
(⇤P,L(li),⇧P,L(li), �P,L(li)) for all i 2 {1, . . . , t}, 8 t-subset
L ⇢ {1, . . . , n}, 8 d-subset P ⇢ {1, . . . , n} \L, such that (2)
holds.

From the instance of [4, 2, 2, 2] exact MSCR codes shown
in Fig. 1(b), we can get a repair procedure with L = {1, 2}
and P0 = {3, 4}, such that

⇤P0,L(1) =
✓

1 1
1 1

◆
, ⇤P0,L(2) =

✓
2 1
1 2

◆
,

⇧P0,L(1) =
�

6 6
�
, ⇧P0,L(2) =

�
6 6

�
,

�P0,L(1) =

0

@
2 4
4 2
6 6

1

A
, and �P0,L(2) =

0

@
4 2
2 4
7 7

1

A
.

We will show that the corresponding
(⇤P0,L(i),⇧P0,L(i), �P0,L(i)), i = 1, 2, can be derived
from the instance of [4, 2, 3] MSR codes in Fig. 1(a), and
vice versa.

Our definitions of exact MSR codes and exact MSCR codes
can cover all scalar constructions so far, as they are all linear
codes. Even though some constructions, such as the Product-
Matrix construction [12], has different representations, it is
easy to see that they can be transferred equivalently into our
definitions, as long as the coded blocks are linear combinations
of the original data over the finite field.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

320

V. CONSTRUCTING MSCR CODES FROM MSR CODES

In this paper, we will show the connection between exact
MSR codes and exact MSCR codes. Our intuition comes from
Fig. 1 and Fig. 2, where two instances of MSR codes and
MSCR codes have the same coding instance but different
repair procedures. Hence, we suppose that from an instance
and its repair procedure of MSR codes or MSCR codes, we
can derive the repair procedure of the other family of codes
with the same instance. In this section, we discuss one side
of this connection, constructing exact MSCR codes from an
instance of exact MSR codes.

Given an instance of [n, k, d] exact MSR codes (n > d � k),
i.e., �i, i = 1, . . . , n, the repair procedure of any coded block
ci = �iM can be determined by (⇤P,i, �P,i) such that (1)
holds, for any d-subset P ⇢ {1, . . . , n}\{i}. Now suppose that
we have an instance of [n, k, d� 1, t = 2] MSCR codes with
the same generating matrices �i, i = 1, . . . , n. Since there
must be at least k providers in a cooperative repair procedure,
d must be no less than k + 1.

Without loss of generality, we assume that the set of
newcomers contains two nodes, i.e., L = {l1, l2}, 1
l1 < l2 n. To repair �l1 and �l2 exactly with d �
1 providers in P0 = {p1, . . . , pd�1}, we need to derive
(⇤P0,L(li),⇧P0,L(li), �P0,L(li)), i = 1, 2, such that (2) holds.

Let P2 = P0 [{l2}. The corresponding instance of MSR
codes can repair �l1 exactly with providers in P2, i.e.,

�l1 = �

T
P2,l1(⇤P2,l1 �d �P2)

=
✓

�P2,l1(P0)
�P2,l1(l2)

◆T

·
✓✓

⇤P2,l1(P0)
�

T
P2,l1

(l2)

◆
�d

✓
�P0

�l2

◆◆
,

where �P2,l1(P0) and ⇤P2,l1(P0) denotes the rows in �P2,l1

and ⇤P2,l1 that correspond to symbols received from P0,
respectively.

Since A �1 B = A · B, we can get

�l1 = �

T
P2,l1(P0) · (⇤P2,l1(P0) �d�1 �P0)

+ (�P2,l1(l2)�P2,l1(l2))
T�l2 . (3)

Similarly, we can repair �l2 exactly from providers in P1 =
P0 [{l1} and have

�l2 = �

T
P1,l2(P0) · (⇤P1,l2(P0) �d�1 �P0)

+ (�P1,l2(l1)�P1,l2(l1))
T�l1 . (4)

Combining (3) and (4), we can get

�l1 = �P0,L(l1)�1 ·
✓

�P2,l1(P0)
�P2,l1(l2)

◆T

·
✓

⇤P2,l1(P0) �d�1 �P0

(�P1,l2(P0)�P2,l1(l2))T �1 (⇤P1,l2(P0) �d�1 �P0)

◆
,

(5)

where �P0,L(l1) = Id�k+1 �
(�P1,l2(l1)�P1,l2(l1)�P2,l1(l2)�P2,l1(l2))T and Id�k+1

denotes a (d�k +1)⇥ (d�k +1) identity matrix. Therefore,
as long as �P0,L(l1) is invertible, we can have a procedure

with providers in P0 to repairs both �l1 and �l2 exactly. In
Appendix, we prove that for any instance of [n, k, d] exact
MSR codes where d � k + 1, there exists a repair procedure
such that �P0,L(l1) is invertible.

By comparing (5) with (2), we can get

�

T
P0,L(l1) = ��1

P0,L(l1) ·
✓

�P2,l1(P0)
�P2,l1(l2)

◆T

; (6)

⇤P0,L(l1) = ⇤P2,l1(P0); and (7)
⇧P0,L(l1) = (⇡T

P0,L(l2, l1)) = (�P1,l2(P0)�P2,l1(l2))
T
. (8)

Moreover, since P0,L(l1) = ⇤P0,L(l2)�d�1�P0 when t = 2,
we can get that

⇤P0,L(l2) = ⇤P1,l2(P0). (9)

Now we have got the linear coefficients to exactly repair
�l1 . Similarly, we can get the coefficients to repair �l2 ,

�

T
P0,L(l2) = ��1

P0,L(l2) ·
✓

�P1,l2(P0)
�P1,l2(l1)

◆T

; (10)

⇤P0,L(l2) = ⇤P1,l2(P0); and (11)
⇧P0,L(l2) = (⇡P0,L(l1, l2))T = (�P2,l1(P0)�P1,l2(l1))

T
,

(12)

where

�P0,L(l2) = Id�k+1�(�P2,l1(l2)�P2,l1(l2)�P1,l2(l1)�P1,l2(l1))
T
.

Supposing that A and B are square matrices, I � AB is
invertible if and only if I �BA is invertible [22]. Therefore,
�P0,L(l2) is invertible as long as if �P0,L(l1) is invertible.

In addition, from P0,L(l2) we know that

⇤P0,L(l1) = ⇤P2,l1(P0). (13)

�

T
P2,1(4)�4

�

T
P2,1(4)�4

�1

�

T
P1,2(3)�3

�

T
P1,2(3)�3

⇤T
P1,2(P0) �2 �P0 �2

��1
P0,L(1) ·

✓
�P2,1(P0)
�P2,1(2)

◆T

⇥

�

T
P2,1(3)�3

�

T
P2,1(3)�3

⇤T
P2,1(P0) �2 �P0

(�P1,2(P0)�P2,1(2))T⇥ (�P2,1(P0)�P1,2(1))T⇥

��1
P0,L(2) ·

✓
�P1,2(P0)
�P1,2(1)

◆T

⇥
�

T
P1,2(4)�4

�

T
P1,2(4)�4

newcomer 1

newcomer 2

Fig. 3. The cooperative repair procedure of �1 and �2, derived from the
exact [4, 2, 3] MSR codes shown in Fig. 1.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

321

It is interesting to see that (7) and (9) are equivalent to (13)
and (11), respectively. In other words, in the two derived repair
procedures the two newcomers l1 and l2 receive the same data
from each provider and receive one symbol from each other.
Therefore, we can combine them to have a cooperative repair
procedure that repairs both �l1 and �l2 exactly.

Given the instance of [4, 2, 3] exact MSR codes shown in
Fig. 1, we can directly get all coded blocks as �i, i = 1, . . . , n,
of [4, 2, 2, 2] exact MSCR codes, and derive the cooperative
repair procedure of any two coded blocks. For example, to
repair �1 and �2, i.e., L = {1, 2}, from providers in P0 =
{3, 4}, we can derive the corresponding repair procedure from
the repair procedures of �1 (with providers in P2 = P0[{2})
and �2 (with providers in P1 = P0[{1}), as shown in Fig. 3.
Notice that in Fig. 3,

⇤T
P2,1(P0) =

✓
1 1
1 1

◆
,

⇤T
P1,2(P0) =

✓
2 1
1 2

◆
,

(�P1,2(P0)�P2,1(2))T = (�P2,1(P0)�P1,2(1))T =
�

6 6
�
,

�P0,L(1)�1 ·
✓

�P2,1(P0)
�P2,1(2)

◆T

=

0

@
2 4
4 2
6 6

1

A
, and

��1
P0,L(2) ·

✓
�P1,2(P0)
�P1,2(1)

◆T

=

0

@
4 2
2 4
7 7

1

A
.

The equations above formally describe a cooperative repair
procedure that exactly corresponds to the repair procedure
shown in Fig. 2.

Thus, by (6)-(9), (10) and (12), we have already get the
repair procedure of [n, k, d � 1, 2] exact MSCR codes from
an instance of [n, k, d] exact MSR codes, d � k + 1. In other
words, we have found (⇤P0,L

li
,⇧P0,L

li
, �

P0,L
li

) that makes (2)
hold when i equals 1 and 2, respectively.

VI. CONSTRUCTING MSR CODES FROM MSCR CODES

In this section, we discuss the other side of the connection
between exact MSR codes and exact MSCR codes. Suppose
that we have a linear scalar instance of [n, k, d � 1, t = 2]
exact MSCR codes where d � k + 1, and then we show that
we can instantly have an instance of [n, k, d] exact MSR codes
and corresponding repair procedures.

In a linear scalar instance of [n, k, d � 1, t = 2] exact
MSCR codes, any two nodes in L = {l1, l2} can be repaired
exactly from providers in P0 = {p1, . . . , pd�1}, 1 l1 n,
1 l2 n, l1 6= l2, P0 ⇢ {1, . . . , n} \ {l1, l2}. Since

t = 2, we can rewrite �

T
P0,L(l1) as

✓
�P0,L(P0, l1)
�P0,L(l2, l1)

◆T

, where

�P0,L(P0, l1) and �P0,L(l2, l1) denotes the first d � 1 rows
and the last row in �P0,L(l1) that correspond to the symbols
received from providers and the other newcomer, respectively.

By (2) we know that

�l1 = �

T
P0,L(P0, l1) · (⇤P0,L(l1) �d�1 �P0)

+ �

T
P0,L(l2, l1)⇡T

P0,L(l2, l1) · (⇤P0,L(l2) �d�1 �P0).

When k = 1, MSR and MSCR codes will become equiv-
alent to replications. Thus, we can suppose that k � 2
for all instances of MSR codes and MSCR codes. Since
�

T
P0,L(P0, l1) is a (d � k + 1) ⇥ (d � 1) matrix and has a

rank of d � k + 1, it has a right inverse rinv(�T
P0,L(P0, l1)),

such that �

T
P0,L(P0, l1) · rinv(�T

P0,L(P0, l1)) = Id�k+1. Thus,
we have

⇤P0,L(l1) �d�1 �P0 = rinv(�T
P0,L(P0, l1))

· (�l1 � �

T
P0,L(l2, l1)⇡T

P0,L(l2, l1) · (⇤P0,L(l2) �d�1 �P0)).
(14)

Similarly, to repair �l2 we have

�l2 = �

T
P0,L(P0, l2) · (⇤P0,L(l2) �d�1 �P0)

+ �

T
P0,L(l1, l2)⇡T

P0,L(l1, l2) · (⇤P0,L(l1) �d�1 �P0). (15)

Replace ⇤P0,L(l1) �d�1 �P0 in (15) with (14), we can get
a repair procedure of �l2 from providers in P1 = P0 [{l1}:

�l2 =
✓

�P1,l2

�P0,L(l1, l2)

◆T

·
✓

⇤P0,L(l2) �d�1 �P0

⇡

T
P0,L(l1, l2)rinv(�T

P0,L(P0, l1)) · �l1

◆
, (16)

where �T
P1,l2

= �

T
P0,L(P0, l2) � �

T
P0,L(l1, l2)⇡T

P0,L(l1, l2) ·
rinv(�T

P0,L(P0, l1))�T
P0,L(l2, l1)⇡T

P0,L(l2, l1).
Comparing (16) with (1), we can get the exact repair

procedure of �l2 with providers in P1, where

�P1,l2 =
✓

�P1,l2

�P0,L(l1, l2)

◆T

; and (17)

⇤P1,l2 =
✓

⇤P0,L(l2)
⇡

T
P0,L(l1, l2)rinv(�T

P0,L(P0, l1))

◆
. (18)

Consider the instance of [4, 2, 2, 2] exact MSCR codes
which is shown in Fig. 2 and is also derived in Sec. VI, we can
apply (17) and (18) to repair any single failure. For example,
to repair �2, i.e., l2 = 2, Fig. 4 illustrates the derived repair
procedure where

⇤P0,L(l2) =
✓

2 1
1 2

◆
,

⇡

T
P0,L(l1, l2)rinv(�T

P0,L(P0, l1)) =
�

1 1
�
, and

✓
�P1,l2

�P0,L(l1, l2)

◆
=

0

@
4 2
2 4
7 7

1

A
.

The repair procedure described above corresponds to the repair
procedure shown in Fig. 1(b).

Therefore, 8 l1 6= l2, we can derive the repair procedure
of �l2 from the cooperative repair procedure of �l1 and
�l2 . In this way, we can repair any single failure exactly in

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

322

�1

⇤P0,L(2) �2 �P0

�

T
P0,L(3, 2) · �3

�

T
P0,L(4, 2) · �4

⇡

T
P0,L(1, 2)rinv(�T

P0,L(P0, 1)) · �1

✓
�P1,2

�P0,L(1, 2)

◆T

⇥

newcomer

Fig. 4. The repair procedure of �2, derived from the instance of [4, 2, 2, 2]
MSCR codes in Fig. 2.

[n, k, d, t = 2] MSCR codes. In other words, from an instance
of [n, k, d, t = 2] MSCR codes we can get an instance of
[n, k, d + 1] exact MSR codes directly and derive the repair
procedure of any �i, i = 1, . . . , n.

VII. DISCUSSIONS

We have established the connection between exact MSR
codes and exact MSCR codes in Sec. V and Sec. VI. In this
section, we discuss some interesting properties of MSCR codes
derived from this connection.

A. Construction of [n, k, d, t = 2] MSCR codes
In this paper, we show that given an instance of [n, k, d]

exact MSR codes (d � k + 1), we can instantly construct an
instance of [n, k, d�1, t = 2] exact MSCR codes. This means
that we have broadly expanded the parameters of exact MSCR
codes that have explicit constructions. To our best knowledge,
there exists a construction of exact MSR codes as long as
d � 2k � 2 [12]. Therefore, if n � d + 1 and d � k, we can
get [n, k, d, t = 2] exact MSCR codes as long as d � 2k � 3.

On the other hand, we also show that given a scalar
construction of linear exact MSCR codes, we can derive a
construction of exact MSCR codes. Since we know that there
exists no scalar construction of [n, k, d] linear exact MSR
codes when d < 2k � 3 and k > 3 [17], it is impossible
to have scalar construction of [n, k, d, t = 2] exact MSCR
codes when d < 2k � 4 and k > 3.

To summarize, we discuss the construction of [n, k, d, t = 2]
exact MSCR codes for all possible values of [n, k]. We show
the existence or the non-existence of linear scalar constructions
of all possible values of d, except the only open case of d =
2k � 3, where k > 3.

B. Flexible repair of MSCR codes
Based on the connection between exact MSR codes and

exact MSCR codes, when d � k + 1, the set of linear scalar
instances of [n, k, d] exact MSR codes and [n, k, d� 1, t = 2]
exact MSCR codes are equivalent. In other words, given

a linear scalar instance of exact MSR codes, there is the
same instance of exact MSCR codes with the corresponding
parameters, and vice versa. When d = k, on the other hand,
there exists no instance of [n, k, d � 1, t = 2] MSCR codes,
since there must be at least k providers during repair.

In fact, the equivalence between exact MSR codes and exact
MSCR codes makes it possible to construct exact MSCR codes
directly from linear scalar MSR codes, by repairing any two
failures cooperatively. In this sense, we can achieve a much
more flexible repair procedure than the repair procedure of
all constructions of regenerating codes proposed previously.
Conventionally, once an instance of MSR codes or MSCR
codes has been constructed, it is supposed to repair a fixed
number of t newcomers (t = 1 for MSR codes). In this paper,
we show that we can repair not only one failure, but two
failures in exact MSR codes as well. In other words, due to
the equivalence between MSR codes and MSCR codes, we
can also repair any single failure in MSR codes. This property
makes it possible to achieve a flexible repair procedure with
either one or two newcomers in distributed storage systems.

C. Inheriting advantages of MSR codes

Because the MSCR codes constructed in this paper are
derived from MSR codes, we can directly inherit advantages
of the corresponding instance of MSR codes. The most
straightforward and important advantage inherited from MSR
codes is that the derived instance of MSCR codes can be
systematic, i.e., the original data are embedded into coded
blocks. Systematic MSCR codes can help to significantly
reduce the access latency and the exact repair makes the
repaired data remain systematic after any rounds of repair
procedures.

Some particular constructions of MSR codes can have extra
advantages. For example, Han et al. [23] have presented a con-
struction of MSR codes with the optimal update complexity.
Since we can build cooperative repair procedures from this
instance of MSR codes, the derived MSCR codes can also
enjoy this advantage of efficient updating.

VIII. CONCLUSION

In this paper, we present a connection between exact MSR
codes and exact MSCR codes, such that we can build exact
MSCR codes directly from any instance of linear scalar exact
MSR codes. From this connection, we know that when d � k+
1, the set of instances of linear scalar [n, k, d�1, t = 2] exact
MSCR codes and linear scalar [n, k, d] exact MSR codes are
equivalent. In other words, we propose an explicit construction
of [n, k, d, t = 2] MSCR codes for d � 2k � 3 and show
that there exists no explicit construction when d < 2k � 4
and k > 3. Since the constructed MSCR codes are directly
derived from corresponding MSR codes, we can achieve a
flexible repair procedure that repairs any one or two failures
in MSR codes as well.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

323

APPENDIX
PROOF OF THAT �P0,L(l1) IS INVERTIBLE.

As

�P0,L(l1) = Id�k+1 � (�P1,l2(l1)�P1,l2(l1)�P2,l1(l2)�P2,l1(l2))
T
,

= Id�k+1 � �

T
P2,l1(l2)�

T
P2,l1(l2)�

T
P1,l2(l1)�

T
P1,l2(l1),

(19)

�P0,L(l1) is non-invertible if and only if 1 is an eigenvalue
of �

T
P2,l1

(l2)�T
P2,l1

(l2)�T
P1,l2

(l1)�T
P1,l2

(l1).
Since the rank of �

T
P2,l1

(l2)�T
P2,l1

(l2)�T
P1,l2

(l1)�T
P1,l2

(l1)
is 1, the only non-zero eigenvalue is
�

T
P2,l1

(l2)�T
P1,l2

(l1)�T
P1,l2

(l1)�T
P2,l1

(l2). We prove that we
can have an arbitrary �P2,l1(l2) such that the non-zero
eigenvalue is not 1.

By (1), we have

�l1 =
d�1X

j=0

�

T
P2,l1(pj)�T

P2,l1(pj)�pj ,

where �P2,l1(pj) denotes the row in �P2,l1 that corresponds
to the symbol received from provider pj . Without loss of
generality, let p0 = l2 and thus �

T
P2,l1

(p0) = �

T
P2,l1

(l2).
Given �

T
P2,l1

(l2)�T
P1,l2

(l1)�T
P1,l2

(l1), we can find �̃

T
P2,l1

(p0)
such that �

T
P2,l1

(l2)�T
P1,l2

(l1)�T
P1,l2

(l1)�̃T
P2,l1

(l2) 6= 1. When
d � k + 1, there exist �̃

T
P2,l1

(pj), j = 1, . . . , d� 1, such that

(�T
P2,l1(p0)� �̃

T
P2,l1(p0))�T

P2,l1(p0)�p0 =
d�1X

j=1

(�T
P2,l1(pj)� �̃

T
P2,l1(pj))�T

P2,l1(pj)�pj , (20)

because

0

B@
�p1

...
�pd�1

1

CA has full-rank, which is guaranteed by

the recoverability property of MSR codes.
By (20), we know that

�l1 =
d�1X

j=0

�̃

T
P2,l1(pj)�T

P2,l1(pj)�pj .

Now we have another repair procedure of �l1 and then we can
replace �

T
P2,l1

(pj) with �̃

T
P2,l1

(pj) in (19) such that �P0,L(l1)
is invertible.

Therefore, there exists a repair procedure such that
�P0,L(l1) is invertible, for any linear scalar instance of
[n, k, d] MSR codes when d � k + 1.

REFERENCES

[1] D. Borthakur, “HDFS Architecture Guide,”
Hadoop Apache Project, 2008. [Online]. Available:
http://hadoop.apache.org/common/docs/current/hdfs design.pdf

[2] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F.
ul Haq, M. I. ul Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas, “Windows Azure
Storage: A Highly Available Cloud Storage Service with Strong Con-
sistency,” in Proc. of ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure Coding in Windows Azure Storage,” in
Proc. USENIX Annual Technical Conference (USENIX ATC), 2012.

[4] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” Proc. VLDB Endowment (to appear), 2013.

[5] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[6] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A Solution to the Network Challenges of Data
Recovery in Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster,” in Proc. 5th USENIX Workshop on
Hot Topics in Storage and File Systems, 2013.

[7] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network Coding for Distributed Storage Systems,” IEEE
Trans. Inform. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[8] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
Recall: System Support for Automated Availability Management,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2004.

[9] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative Recovery
of Distributed Storage Systems from Multiple Losses with Network
Coding,” IEEE Journal on Selected Areas in Communications, vol. 28,
no. 2, pp. 268–276, 2010.

[10] K. W. Shum, “Cooperative Regenerating Codes for Distributed Storage
Systems,” in Proc. IEEE International Conference on Communications
(ICC), 2011.

[11] A. Wang and Z. Zhang, “Exact Cooperative Regenerating Codes with
Minimum-Repair-Bandwidth for Distributed Storage,” in Proc. IEEE
INFOCOM, 2013.

[12] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR Points
via a Product-Matrix Construction,” IEEE Trans. Inform. Theory, vol. 57,
no. 8, pp. 5227–5239, 2011.

[13] Y. Wu and A. Dimakis, “Reducing Repair Traffic for Erasure Coding-
based Storage via Interference Alignment,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2009.

[14] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic Regener-
ating Codes for Distributed Storage,” Allerton Conference on Control,
Computing, and Communication, 2007.

[15] Y. Wu, “Existence and Construction of Capacity-Achieving Network
Codes for Distributed Storage,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 2, pp. 277–288, 2010.

[16] V. R. Cadambe, S. A. Jafar, and H. Maleki, “Distributed Data Storage
with Minimum Storage Regenerating Codes - Exact and Functional
Repair are Asymptotically Equally Efficient,” in Proc. 2010 Wireless
Network Coding (WINC) Workshop, 2010.

[17] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “In-
terference Alignment in Regenerating Codes for Distributed Storage:
Necessity and Code Constructions,” IEEE Trans. on Inform. Theory,
vol. 58, no. 4, pp. 2134–2158, 2012.

[18] N. B. Shah, K. V. Rashmi, P. Vijay Kumar, and K. Ramchandran,
“Distributed Storage Codes With Repair-by-Transfer and Nonachiev-
ability of Interior Points on the Storage-Bandwidth Tradeoff,” IEEE
Trans. on Inform. Theory,, vol. 58, no. 3, pp. 1837–1852, 2012.

[19] A. Kermarrec and N. Le, “Repairing Multiple Failures with Coordinated
and Adaptive Regenerating Codes,” IEEE International Symposium on
Network Coding (NetCod), 2011.

[20] N. Le Scouarnec, “Exact Scalar Minimum Storage Coordinated Regen-
erating Codes,” Proc. IEEE International Symposium on Information
Theory (ISIT), 2012.

[21] J. Chen and K. W. Shum, “Repairing Multiple Failures in the Suh-
Ramchandran Regenerating Codes,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2013.

[22] T. Andreescu and R. Gelca, Mathematical Olympiad Challenges.
Springer, 2000.

[23] Y. S. Han, H.-T. Pai, R. Zheng, and P. K. Varshney, “Update-Efficient
Regenerating Codes with Minimum Per-Node Storage,” in Proc. IEEE
Int. Symp. Inform. Theory (ISIT), 2013.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

324

