
Cooperative Pipelined Regeneration
in Distributed Storage Systems

Jun Li, Xin Wang
School of Computer Science

Fudan University, China

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada

Abstract—In distributed storage systems, a substantial volume
of data are stored in a distributed fashion, across a large number
of storage nodes. To maintain data integrity, when existing
storage nodes fail, lost data are regenerated at replacement
nodes. Regenerating multiple data losses in batches can reduce
the consumption of bandwidth. However, existing schemes are
only able to achieve lower bandwidth consumption by utilizing a
large number of participating nodes. In this paper, we propose
a cooperative pipelined regeneration process that regenerates
multiple data losses cooperatively with much fewer participating
nodes. We show that cooperative pipelined regeneration is not
only able to maintain optimal data integrity, but also able to
further reduce the consumption of bandwidth as well.

I. INTRODUCTION

Distributed storage systems provide a large-volume storage
service by storing data in a large number of storage nodes. Due
to the large number of storage nodes and their commodity
nature, failures of storage nodes should be regarded as the
rule, rather than exceptions. Thus, to maintain data integrity,
redundancy should be stored in the system to tolerate failures
of storage nodes. When some storage nodes fail to work, data
remain available from other operating storage nodes.

The ability of tolerating node failures depends on how
redundancy is achieved. Maximum Distance Separable (MDS)
codes are able to achieve the optimal tolerance ability. By
encoding the original file into n coded blocks and storing
coded blocks into n different storage nodes, MDS codes can
guarantee the recoverability property that any k storage nodes
among the n storage nodes can recover the original file.

To maintain the ability to tolerate node failures, data losses
incurred by such failures should be regenerated in replacement
nodes, called newcomers. Traditional MDS codes, such as
Reed-Solomon codes [1], can regenerate a coded block only
after recovering the entire original data from at least k storage
nodes, called providers. Inspired by network coding [2], ran-
dom linear codes [3] and regenerating codes [4] can also main-
tain the recoverability property with the same storage overhead
as traditional MDS codes. Different from traditional MDS
codes and random linear codes, regenerating codes introduce
an optimal trade-off between storage capacity and bandwidth

This work was supported in part by the National Science Foundation of
China under Grant 61171074, the National S&T Major Project of China
under Grant 2010ZX03003-003-03, and Program for New Century Excel-
lent Talents in University under Grant NCET-11-0113. Xin Wang (Email:
xinw@fudan.edu.cn) is the corresponding author.

consumption during regeneration. Specifically, if one storage
node is allowed to store M

k bits of a M -bit file, which is the
same storage required by traditional MDS codes and random
linear codes, Minimum-Storage Regenerating (MSR) codes
minimize the consumption of bandwidth to approximately M

k
bits when the number of providers is large enough, yet with
a higher computational cost than random linear codes [5].

In some distributed storage systems, such as Total Recall
[6], in order to prevent unnecessary regeneration incurred
by temporary node departures, the regeneration process will
not be triggered until a certain number of node failures
has been detected, and then data losses are regenerated in
batches. Compared with regenerating multiple data losses in
different newcomers independently, the cooperation among
newcomers can further reduce the consumption of bandwidth
[7], [8]. The more nodes participating during regeneration,
the less bandwidth will be consumed. However, in practical
systems, it is not desirable to engage a large number of nodes
during regeneration, due to its weak resilience to node churns
and high management complexity. A higher computational
overhead will also be introduced by more participating nodes
[5]. In some systems where nodes can sleep when they
are idle and wake up on demand, more participating nodes
in the regeneration process can also result in more energy
consumption.

Some techniques (e.g., simple regenerating codes [9]), have
been proposed to reduce the number of participating nodes
during regeneration and thus incur a much lower number of
disk I/O operations on participating nodes during regeneration.
However, they either fail to maintain the recoverability prop-
erty, or are not designed for regenerating multiple data losses.
In this paper, we propose a cooperative pipelined regeneration
process to regenerate multiple data losses in batches. We intro-
duce a new type of nodes into the regeneration process, called
apprentices. During each round of pipelined regeneration,
apprentices and newcomers all receive data from providers.
After regeneration, newcomers are partially regenerated and
become apprentices. Apprentices accumulate data in more than
one round of pipelined regeneration. After apprentices have
received enough data to regenerate coded blocks, they become
fully regenerated and finally “graduate” to become storage
nodes. As shown in Fig. 1, though newcomers can be fully
regenerated after more than one round of cooperative pipelined
regeneration, to compensate for data losses, a corresponding

A

P A...

storage nodes apprentices

A

 1st round of pipelined regeneration

A... ...

2nd round of pipelined regeneration

... ...

failed nodes fully regenerated apprentices
 new storage nodes

N

storage nodes

A

P

P P

...

...

apprentices

providers

providers

X

A

A

→

storage
 node

N newcomer P provider apprentice

P A... A NP... A

...

A... AP P ...X A N

N

...

Fig. 1. Two consecutive rounds of cooperative pipelined regeneration.

number of apprentices that have been introduced as newcomers
several rounds of regeneration before can be fully regenerated
in this round of regeneration, maintaining the recoverability
property. Moreover, even though additional apprentices are
introduced, the pipelined regeneration process is still able to
reduce the number of participating nodes since much fewer
providers are utilized during regeneration, implying a much
fewer disk I/O operations. Moreover, the bandwidth consump-
tion can also be reduced, which can only be achieved by
incurring even more participating nodes during conventional
regeneration. We design cooperative pipelined regeneration
processes based on random linear codes and regenerating
codes, preserving the recoverability property of these codes.
Though apprentices introduce additional storage overhead, we
show that it is marginal in practical distributed storage systems.

II. BACKGROUND AND RELATED WORK

Distributed storage systems store redundancy to tolerate
node failures. Compared with simply storing replications,
coded redundancy is able to provide a higher level of data
integrity since every coded bit can provide innovative infor-
mation for data recovery [10]. MDS codes can guarantee
the optimal data integrity with the same storage overhead.
However, supposing that the size of the original file is M
bits and storage nodes store coded blocks of size M

k bits,
traditional MDS codes require both receiving M bits from
at least k providers and recovering the original file before
regenerating only one coded block.

Random linear codes [3] (with a high probability on a large
Galois field) can perform as well as traditional MDS codes.
Dividing the original file into k blocks and encoding them into
random linear combinations on a Galois Field GF(2q), random
linear codes can regenerate a coded block by encoding any k
coded blocks without recovering the original file. If the size of
the Galois Field GF(2q) is very large (such as q = 16 or 32),
random linear codes can guarantee the recoverability property
with a high probability after a reasonably large number of
regeneration processes, as the upper bound of the probability
of failures scales inversely proportionally to the size of the
Galois field [11].

P

P N

P

N

N

....
....

....

P

P N

P

N

N

....
....

....
....

(a) traditional MDS codes or
random linear codes (b) MSR codes

newcomerprovider NP

Fig. 2. Conventional regeneration processes with multiple newcomers for
traditional MDS codes, random linear codes and MSR codes.

On the other hand, Minimum-Storage Regenerating (MSR)
codes [4] are able to regenerate coded blocks with the least
bandwidth consumption among MDS codes. MSR codes di-
vide the original file into k(d−k+1) segments (d ≥ k), and a
coded block contains d−k+1 coded segments that are linear
combinations of these segments on GF(2q). To regenerate a
coded block, the newcomer needs to download only a linear
combination of the d − k + 1 coded segments in a coded
block from each of d providers. Thus, the consumption of
bandwidth is Md

k(d−k+1) bits, converging to M
k bits when d

is large enough. MSR codes can be constructed in a static
way [12]. When q is large enough, randomized MSR codes
can also guarantee the recoverability property [4] with a high
probability. However, Duminuco and Biersack [5] have shown
that MSR codes incur a much higher computational overhead
than random linear codes during regeneration.

Random linear codes and randomized MSR codes regener-
ate coded blocks in a functional manner, i.e., the regenerated
blocks are not exactly the lost ones, but can be used to
recover the original file with any other k − 1 coded blocks.
The construction of exact MSR codes require either a certain
combination of d and k [13], [14], or infinite sub-packetization
[15], [16], which is impractical to our knowledge. In this paper,
we focus on the functional regeneration.

Cooperation among newcomers can help to further reduce
the bandwidth consumption during regeneration. As for tradi-
tional MDS codes and random linear codes shown in Fig. 2(a),
one newcomer can be selected to receive data from k providers
and regenerate coded blocks for itself and all other newcomers.
If there are r newcomers, the average bandwidth consumed to
regenerate one coded block is reduced to M

k · k+r−1r bits.
On the other hand, as for cooperative MSR codes [17][18],
supposing that there are d providers and r newcomers during
regeneration (d ≥ k, r > 1), each storage node stores one
coded block containing d − k + r coded segments that are
linear combinations of the k(d−k+r) segments divided from
the original file. During regeneration, each newcomer receives
one linear combination of d− k + r coded segments in each
provider, and then sends one linear combination of received
coded segments to each of other newcomers, as shown in
Fig. 2(b). In this process, each newcomer receives M

k · d−1+rd−k+r
bits from d providers and other r − 1 newcomers. When the
number of providers does not change, cooperative regeneration

codes further reduce the consumption of bandwidth during
regeneration with an increase of newcomers.

An increase in the number of participating nodes during re-
generation may lead to higher management and computational
complexity, weaker resilience to node churns and more energy
consumption. Duminuco and Biersack [19] have proposed
hierarchical codes that introduce a trade-off between data in-
tegrity and the consumption of bandwidth during regeneration.
Hierarchical codes are able to regenerate a coded block from
a subset of k coded blocks. The size of the subset, however,
can vary from 2 to k and the recoverability property is no
longer maintained. Self-repairing codes [8], [20] minimize
the number of coded blocks required during regeneration. To
regenerate one coded block, the newcomer can connect to
specific pairs of two providers. Nevertheless, the recoverability
property can not be maintained, either. Simple regenerating
codes [9] and fractional repetition codes [21] can maintain the
recoverability property while the newcomer need to connect
to a low number of providers during regeneration. However,
they both require storage nodes to store data more than what
is required by MDS codes. Moreover, though these works can
save the consumption of bandwidth by reducing the number
of participating nodes during regeneration, none of them can
reach the lower bound of the bandwidth consumption achieved
by MSR codes, while still preserving the recoverability prop-
erty.

A pipelined regeneration process with MSR codes [22]
has been proposed for a single failure. However, it fails
to utilize multiple newcomers cooperatively, and can only
support MSR codes. In this paper, we propose new functional
regeneration processes that can utilize multiple newcomers
in a cooperative fashion, thus further saving the bandwidth
consumption. In addition, both random linear codes and MSR
codes can be supported by our regeneration processes, and
thus the recoverability property can be maintained.

III. SYSTEM MODEL AND
COOPERATIVE PIPELINED REGENERATION

Suppose that one file of size M bits is stored in the
distributed storage system. To maintain the data integrity, the
system stores coded blocks of this file, of size M

k bits, into
n storage nodes. Coded blocks are encoded such that the
recoverability property is maintained, in that any k storage
nodes suffice to recover the original file. We discuss two
codes that can achieve this property in this paper: random lin-
ear codes and Minimum-Storage Regenerating (MSR) codes.
Specifically, we use a randomized implementation of MSR
codes proposed by Duminuco and Biersack [5] in this paper.

Both random linear codes and MSR codes encode the
original file into coded blocks of size M

k bits. Each storage
node stores at most one coded block. Specifically, with random
linear codes, coded blocks are random linear combinations
of k blocks divided from the original file, requiring coded
blocks from k providers to regenerate one coded block. With
randomized MSR codes, coded blocks contain N − k coded
segments that are random linear combinations of k(N − k)

segments divided from the original file (N ≥ k), requiring
N participating nodes (including at least k providers) during
regeneration. We do not consider the impact of storage and
communication overhead incurred by coefficients of coded
blocks (coded segments), since the size of coded blocks (coded
segments) is significantly larger than coefficients in practical
distributed storage systems [11], [5].

As shown in Sec. II, the encoding operations of both random
linear codes and MSR codes are performed on a Galois Field
GF(2q). When q equals 16 or 32, the recoverability can be
achieved with a high probability. Thus, we do not consider
the issue of linear dependence in this paper.

We now describe the basic idea of cooperative pipelined
regeneration. Because random linear codes and MSR codes,
on which we build the cooperative pipelined regeneration,
regenerate data in a functional manner, cooperative pipelined
regeneration we propose in this paper should also be cat-
egorized as functional regeneration. As long as a certain
number of r coded blocks, which may be in storage nodes or
apprentices, are lost (r ≥ 1), a round of cooperative pipelined
regeneration with r newcomers will be triggered. If r = 1,
cooperative regeneration will be degraded to be independent.
We use ν providers during cooperative pipelined regeneration,
ν ≥ 1. Newcomers receive data (coded blocks with random
linear codes or coded segments with MSR codes) from other
participating nodes and encode received data into partially
regenerated coded blocks. Thus, after this round of regener-
ation, newcomers will be partially regenerated and become
apprentices. During the next round of cooperative pipelined
regeneration, apprentices and r new newcomers receive data
from other participating nodes with another set of ν providers.
The value of ν is selected such that r apprentices will be
fully regenerated, i.e., they contact k providers with random
linear codes or N − 1 participating nodes with MSR codes,
and “graduate” to become storage nodes after α + 1 rounds
(α ≥ 1) of cooperative pipelined regeneration (including the
one as newcomers). Thus, there are always αr apprentices in
the system. Throughout cooperative pipelined regeneration, r
newcomers appear and r apprentices become storage nodes,
keeping the number of storage nodes stable in the system.

It is required that there is no provider appearing more
than once within α + 1 consecutive rounds of cooperative
pipelined regeneration, and thus newcomers and apprentices
can always obtain innovative data during each round of
regeneration. The distributed storage system can enforce this
requirement by storing the identifiers of participating nodes
in the latest α rounds of regeneration as the metadata of the
corresponding file. If an apprentice A has received data from
γ other participating nodes, the rank of its coded block B′

is rank(B′) = γ. When rank(B′) ≥ k with random linear
codes or rank(B′) ≥ N − 1 with MSR codes, the block has
a full rank and thus it can recover the original data with
coded blocks in other k − 1 storage nodes, preserving the
recoverability property. We will show cooperative regeneration
processes for random linear codes and MSR codes and analyze
their respective performance in Sec. IV and Sec. V.

rank � rank + 4

A3

rank � rank + 4

A4

rank = 4 rank = 4

B1

B2

�21B1 + �22B2 +

�23B
0
1 + �24B

0
4

�31B1 + �32B2 +

�33B
0
1 + �34B

0
4

�41B1 + �42B2 +

�43B
0
1 + �44B

0
4

�51B1 + �52B2

+�53B
0
1 + �54B

0
4

P1

rank = 10

B1

P2

rank = 10

B2

N

rank = 4

rank � rank + 4

N

rank � rank + 4

rank = 4

A1

rank = 8

B0
1

�11B1 + �12B2

rank = 8

A2

B0
2

B0
2

rank � rank + 2 rank � rank + 2

providers

senior
apprentices

junior
apprentices

newcomers

Fig. 3. An example of cooperative pipelined regeneration process (r =
α = ν = 2) with random linear codes, including 2 newcomers, 2 junior
apprentices, 2 senior apprentices and 2 providers. βij represents random
coefficients of coded blocks conveyed through the corresponding connection.

IV. REGENERATION WITH RANDOM LINEAR CODES

A. Transmission

There are three types of nodes participating in the coopera-
tive regeneration process with random linear codes, including
r newcomers (N1, . . . , Nr), ν providers (P1, . . . , Pν), and αr
apprentices (A1, . . . , Aαr). The coded block of Ai is referred
to as B′i, i = 1, . . . , αr. Without loss of generality, we assume
that rank(B′1) ≥ rank(B′2) ≥ . . . ≥ rank(B′αr). Among
the αr apprentices, A1, . . . , Ar are also denoted as senior
apprentices, and one of the r senior apprentices is selected
as the root. Other apprentices, Ar+1, . . . , Aαr, are referred to
as junior apprentices.

During regeneration, all providers send their coded blocks
to the root. The root updates its coded block by encoding these
coded blocks with its own coded block. Meanwhile, it sends
one random linear combination of received blocks to each
of the other senior apprentices. These senior apprentices also
encode their own coded blocks with received blocks. Thus,
the rank of the coded block in each senior apprentice will be
increased by ν. The values of ν and α are set such that all
senior apprentices can be fully regenerated. All non-root senior
apprentices return their coded blocks to the root. Now the root
owns ν + r fully regenerated coded blocks (ν from providers,
one from itself, and r − 1 from non-root senior apprentices),
and it sends one linear combination of these ν+r coded blocks
to each of the junior apprentices and the newcomers. All junior
apprentices encode their coded blocks with received blocks,
increasing the ranks of their coded blocks by ν + r, and all
newcomers store the received blocks, of rank ν + r.

Fig. 3 illustrates a cooperative pipelined regeneration pro-

cess with random linear codes. The value of k is 10 in this
example. However, there are only 8 nodes participating during
regeneration, including 2 newcomers (r = 2), 4 apprentices
(αr = 4, i.e., α = 2) and 2 providers (ν = 2). In each
round of cooperative pipelined regeneration, newcomers can
get coded blocks of rank 4, junior apprentices increase the
ranks of their coded blocks by 4, and senior apprentices
increase the ranks of their coded blocks by 2. Thus, every
newcomer will have a coded block with a rank of 10, and
thus become fully regenerated after 3 rounds of cooperative
pipelined regeneration. However, since the size of each coded
block is M

10 bits (k = 10) and only 8 coded blocks are
transferred during regeneration, the bandwidth consumed can
be reduced from 6

5M bits, which is required to regenerate two
coded blocks in batches during conventional regeneration (see
Fig. 2(a)), to 4

5M bits, saving the consumption of bandwidth
by 33%.

In α + 1 consecutive rounds of cooperative pipelined re-
generation, a storage node is required to act as a provider at
most once, such that apprentices and newcomers can always
obtain innovative coded blocks. In case any apprentices fail
to work before they are fully regenerated, we use storage
nodes that have not been used in recent α + 1 rounds of
cooperative pipelined regeneration to replace failed appren-
tices, when these apprentices would have acted as senior
apprentices. Specifically, if a senior apprentice fails to work,
we use a new storage node to replace it in the next round
of cooperative pipelined regeneration. If a junior apprentice
that has accomplished τ rounds of regeneration (1 ≤ τ < α)
fails, one additional storage node should be selected to replace
it in the next (α + 1 − τ)th round of cooperative pipelined
regeneration, when it would have become a senior apprentice.
Thus, the number of participating nodes does not increase,
and newcomers and junior apprentices can still receive coded
blocks of rank ν + r. Moreover, the storage node selected to
replace the failed apprentice just receives, encodes and sends
out data, but does not need to update its own coded block,
since its block has already been fully regenerated before. This
storage node should not be used again in recent α+1 rounds
of pipelined regeneration as a provider, or to replace a failed
apprentice.

B. Number of participating nodes

The number of participating nodes depends on the values
of ν and α. We first show feasible values of ν and α.

Since it is required that senior apprentices can be fully
regenerated after each round of cooperative pipelined regener-
ation, the ranks of their coded blocks should be no less than k.
During cooperative pipelined regeneration, a node can obtain a
coded block with a rank of ν+r as a newcomer, and increase
the rank of its coded block by ν + r as a junior apprentice
and by ν as a senior apprentice. Therefore, after α+1 rounds
of cooperative pipelined regeneration, the rank of the coded
block in a senior apprentice is α(ν + r) + ν. Since random
linear codes encode at least k coded blocks to regenerate one
coded block, the senior apprentice becomes fully regenerated

if and only if
α(ν + r) + ν ≥ k. (1)

According to the analysis above, we obtain the following
theorem.

Theorem 1: If α(ν+ r)+ ν ≥ k, the values of ν and α are
feasible, i.e., coded blocks in senior apprentices can always
be fully regenerated after each round of cooperative pipelined
regeneration.

We now investigate how to minimize ν + (α + 1)r, the
number of participating nodes, with the constraint of (1). Let
l = ν + (α + 1)r, and then substitute ν with l − (α + 1)r in
(1):

l ≥ (α+ 1)r +
k − αr
α+ 1

(2)

= (α+ 1)r +
k + r

α+ 1
− r (3)

≥ 2
√
r(k + r)− r. (4)

The equality in (4) is achieved if and only if α =
√
1 + k

r −1.

Then the minimum value of l is lmin = 2
√
r(k + r)− r, and

ν = lmin − (α + 1)r =
√
r(k + r) − r. Note that α < 1

when r > k
3 . Since cooperative pipelined regeneration requires

that α ≥ 1, the regeneration process will be degraded to
conventional regeneration when r > k

3 . To support cooperative
pipelined regeneration, we require that r ≤ k

3 . We believe that
the feasible range of r is large enough in practical distributed
storage systems where k is set large enough to improve the
resilience to data losses (e.g., k = 100 in Wuala [23]).

Therefore, we obtain the following theorem.
Theorem 2: To regenerate r coded blocks with random

linear codes (r ≤ k
3), the minimum number of partic-

ipating nodes during cooperative pipelined regeneration is
lmin = 2

√
r(k + r) − r, while α =

√
1 + k

r − 1 and

ν =
√
r(k + r)− r.

During conventional regeneration, we need at least k
providers to regenerate coded blocks while maintaining the
recoverability property. Thus, when there are r newcomers,
there should be at least k + r participating nodes. However,
we can easily get

lmin = 2
√
r(k + r)− r ≤ r + (k + r)− r = k + r. (5)

The equality in (5) is achieved only when r = k + r, which
is impossible in practical systems since k > 0. Therefore,
cooperative pipelined regeneration is always able to consume
fewer participating nodes than conventional regeneration.

Since the values of ν and α should always be integers, in

practice we can set the values of α and ν as
⌊√

1 + k
r

⌋
− 1

and
⌈
k−αr
α+1

⌉
, respectively.

Fig. 4 shows the practical numbers of participating nodes
in the processes of conventional and cooperative pipelined
regeneration when k = 60, 80, and 100. When r ≤ k

3 ,
cooperative pipelined regeneration is able to save up to 81.1%
participating nodes. We notice that though one coded block

5 10 15 20 25 30
0

20

40

60

80

100

120

140

number of newcomers (r)

nu
m

be
r

of
 p

ar
tic

ip
at

in
g

no
de

s
(l)

CPR, k=100
CR, k=100
CPR, k=80
CR, k=80
CPR, k=60
CR, k=60

Fig. 4. A comparison of the respective number of participating nodes in
the processes of cooperative pipelined regeneration (CPR) and conventional
regeneration (CR), when k = 60, 80, and 100.

needs at least 100 providers to regenerate when k = 100,
the number of participating nodes utilized during cooperative
pipelined regeneration never exceed 100, even though there
are more than 30 newcomers.

C. Bandwidth consumption

Now we analyze the consumption of bandwidth during
cooperative pipelined regeneration with random linear codes.
Throughout the process of cooperative pipelined regenera-
tion, there are ν connections from ν providers to the root,
2(r − 1) connections between the root and r − 1 non-root
senior apprentices, and αr connections from the root to
junior apprentices and newcomers. Thus, there are a total of
ν + 2(r− 1) + αr connections. One coded block is conveyed
through each connection, and thus the bandwidth consumed is
M
k · (ν + 2(r − 1) + αr) bits.

By (4), we can get

ν + 2(r − 1) + αr (6)
≥ lmin + r − 2 (7)
= 2(

√
r(k + r)− 1). (8)

Thus, the lower bound of the bandwidth consumption is M
k ·

2(
√
k(k + r)− 1) bits. The equality in (7) is achieved when

α =
√
1 + k

r − 1 and ν =
√
r(k + r)− r.

During conventional regeneration, there are k + r − 1
connections that also convey coded blocks of size M

k bits.
As r is required to be no more than k

3 , Theorem 3 compares
the bandwidth consumption between cooperative pipelined
regeneration and conventional regeneration.

Theorem 3: When r ≤ k
3 , cooperative pipelined regenera-

tion consumes less bandwidth than conventional regeneration.
Proof: When r ≤ k

3 , 2
√
r(k + r) ≤ k + r. Since

2(
√
r(k + r)−1) ≤ k+r−2 < k+r−1, cooperative pipelined

regeneration that transfers 2(
√
r(k + r) − 1) coded blocks

consumes less bandwidth than conventional regeneration that
transfers k + r − 1 coded blocks.

Fig. 5 illustrates the bandwidth consumption of cooperative
pipelined regeneration and conventional regeneration with

5 10 15 20 25 30
0

20

40

60

80

100

120

140

number of newcomers (r)

nu
m

be
r

of
 c

od
ed

 b
lo

ck
s

tr
an

sf
er

re
d

CPR, k=100
CR, k=100
CPR, k=80
CR, k=80
CPR, k=60
CR, k=60

Fig. 5. Comparison of coded blocks transferred in the processes of
cooperative pipelined regeneration (CPR) and conventional regeneration (CR),
k = 60, 80, 100.

practical values of ν and α, in terms of the number of coded
blocks conveyed during regeneration. When the condition
r ≤ k

3 is satisfied, cooperative pipelined regeneration can
always incur less consumption of bandwidth.

D. Storage overhead

During conventional regeneration with random linear codes,
at least k providers must be contacted. If the distributed storage
system is designed to tolerate r failed storage nodes, there
must be at least k + r storage nodes in the system. We show
that cooperative pipelined regeneration requires the system
to not only maintain at least k + r storage nodes, but also
spend additional storage space for apprentices. However, this
additional storage overhead is marginal.

Theorem 4: To support cooperative pipelined regeneration,
the system should maintain at least k + r storage nodes and√
r(k + r)− r apprentices.

Proof: By Theorem 2, there must be at least αminr =√
r(k + r)− r apprentices in the system.
Since a coded block can be regenerated by contacting k

providers, the amount of redundancy is enough if and only if
ν providers that have not appeared in the previous α rounds
of cooperative pipelined regeneration can always be found.

A round of cooperative pipelined regeneration is triggered
when r node failures have been detected. If a failed node is
a storage node that has not been used in recent α+ 1 rounds
of cooperative pipelined regeneration, the required number of
available storage nodes remains to be ν. If a failed node is
an available storage node, the required number of available
storage nodes should be increased by 1. If a failed node is a
senior apprentice, one more storage node will be required to
replace this apprentice during regeneration. If a failed node
is a junior apprentice that has accomplished τ rounds of
regeneration (1 ≤ τ ≤ α), the required number of storage
nodes remains the same. However, in the next (1 + α − τ)th
rounds regeneration, two more available storage nodes may
be required. Therefore, the total number of required available
storage nodes remains the same during α + 1 rounds of
cooperative pipelined regeneration. Overall, since there are

A...

x available storage nodes αr apprentices

A

during 1st round of pipelined regeneration

A...

x-(ν+r) available storage nodes αr apprentices

after 1st round of pipelined regeneration

... ... A

...

x-α(ν+r)
available storage nodes αr apprentices

after αth round of pipelined regeneration

... A A...

r failed node

storage nodes that
have been used as providers

fully regenerated
 apprentice

αr failed nodes

storage nodes that
have been used as providers

in recent α rounds of pipelined regeneration

αr fully
regenerated apprentices

N

storage
 node

N

newcomer

P
provider

A

apprentice

X

X X

P P

A

A

X

X

X

A... A NP PX
...

A... AX AX
...

... A A...X X AX

...

Fig. 6. The required number of available storage nodes in α+1 consecutive
rounds of cooperative pipelined regeneration, where failed nodes are all
available storage nodes.

r failed nodes before regeneration, the average number of
required available storage nodes is at most ν + r.

We suppose that each round of cooperative pipelined regen-
eration requires ν + r available storage nodes. Without loss
of generality, we assume that failed nodes are all available
storage nodes. As shown in Fig. 6, ν + r available storage
nodes become unavailable to the double-circled apprentices
after each round of cooperative pipelined regeneration. Fully
regenerated senior apprentices are also unavailable because
they have also sent their coded blocks to the double-circled
apprentices. Assume that there are x storage nodes available
to the double-circled newcomer before its first round of regen-
eration. There are x−α(ν+r) nodes available after α rounds
of regeneration. Before the (α + 1)th round of regeneration,
ν + r additional available storage nodes are required, i.e.,

x− α(ν + r) ≥ ν + r. (9)

By (1), x ≥ α(ν + r) + ν + r ≥ k + r. Therefore, the system
should maintain at least k + r storage nodes.

Theorem 4 points out that apart from apprentices that are
required by cooperative pipelined regeneration, the distributed
storage system should still maintain at least k + r storage
nodes, since storage nodes can be used as providers at most
once in α + 1 consecutive rounds of cooperative pipelined
regeneration. However, because r ≤ k

3 during cooperative
pipelined regeneration, it is easy to prove that

√
r(k + r)−r ≥

k
3 . Thus, the additional storage space required by apprentices
will be no more than 1

3 of the original file. Considering that

rank � rank + 4

A3

rank � rank + 4

A4

rank = 4 rank = 4

P1

rank = 11

P2

rank = 11

N

rank = 4

rank � rank + 4

N

rank � rank + 4

rank = 4

A1

rank = 8 rank = 8

A2

rank � rank + 3 rank � rank + 3

providers

senior
apprentices

junior
apprentices

newcomers

Fig. 7. An example of the cooperative pipelined regeneration process (r =
α = ν = 2) with MSR codes (k = 3, N = 12), including 2 newcomers,
2 junior apprentices, 2 senior apprentices and 2 providers. Each connection
conveys one coded segment.

in practical distributed storage systems, redundant data stored
is usually more than three times of the original file (3x in
Google File System by default [24] and 4.17x in Wuala [23]),
this storage overhead is marginal.

V. REGENERATION WITH REGENERATING CODES

A. Transmission

Similar to cooperative pipelined regeneration with random
linear codes, there are also three types of nodes in the cooper-
ative pipelined regeneration process with Minimum-Storage
Regenerating (MSR) codes: r newcomers (N1, . . . , Nr), ν
providers (P1, . . . , Pν) and αr apprentices (A1, . . . , Aαr). We
refer to the coded block of Ai as B′i, i = 1, . . . , αr, and
assume that rank(B′1) ≥ rank(B′2) ≥ . . . ≥ rank(B′αr).
A1, . . . , Ar are referred to as senior apprentices and other
apprentices are referred to as junior apprentices.

During regeneration, all providers send one coded segment,
which is a random linear combination of coded segments in
their coded blocks, to each of the r newcomers and the αr
apprentices. Each senior apprentice then sends (α + 1)r − 1
random linear combinations of coded segments it has received
from providers in recent α + 1 rounds of regeneration to all
other apprentices and newcomers. Throughout this process,
senior apprentices get ν + r − 1 coded segments, and junior
apprentices and newcomers receive ν + r coded segments.
Since each coded block is supposed to contain N − k coded
segments in our model, as described in Sec. III, each senior
apprentice encodes all coded segments they have received so
far into N−k coded segments, and groups them as one coded
block.

Fig. 7 shows an example of cooperative pipelined regen-
eration (r = α = ν = 2). We suppose that 3 coded
blocks can recover the original file (k = 3), and each fully
regenerated coded block contains 9 coded blocks (N = 12).
Since there are 22 connections that convey a total of 22 coded
segments, only M

3 · 22
9 M bits are transferred. As shown in

Sec. II, 12 nodes are required to regenerate two coded blocks
with the same bandwidth consumption during conventional
regeneration. Thus, cooperative pipelined regeneration is able
to save 33.3% of participating nodes by requiring only 8 nodes,
while consuming the same amount of bandwidth. We will
show later that the bandwidth consumption and participating
nodes can both be saved by increasing the value of N .

Similar to cooperative pipelined regeneration with random
linear codes, we use storage nodes that have not been used in
recent α+1 rounds of regeneration to replace the role of failed
apprentices during regeneration. Like other storage nodes used
as providers, they can not be used again in α+1 consecutive
rounds of regeneration.

B. Number of participating nodes

We first analyze the feasible values of ν and α. We show
that feasible values of ν and α can guarantee that α+1 rounds
of cooperative pipelined regeneration can be mapped to one
round of conventional regeneration with N participating nodes.

As shown in Sec. II, in the conventional regeneration pro-
cess with MSR codes, to regenerate r coded blocks [18], all r
newcomers should receive coded segments from all providers,
and then each newcomer sends linear combinations of coded
segments it has received to all other newcomers. Newcomers
then encode received segments to N −k coded segments, and
group them into one coded block that is able to preserve the
recoverability property.

Given r senior apprentice A1, . . . , Ar, which are fully
regenerated after one round of cooperative pipelined regen-
eration, they have received (α + 1)ν coded segments from
(α + 1)ν providers P1, . . . , P(α+1)ν in the recent α + 1
rounds of regeneration. There are also αr senior apprentices,
Ar+1, . . . , A(α+1)r, in the previous α rounds of regenera-
tion. We map these α + 1 rounds of cooperative pipelined
regeneration into one conventional regeneration by mapping
A1, . . . , A(α+1)r to (α + 1)r newcomers (A′1, . . . , A

′
(α+1)r)

and P1, . . . , P(α+1)ν to (α+1)r providers (P ′1, . . . , P
′
(α+1)ν).

We also map the connection to the corresponding pair of
nodes in the conventional regeneration process. Thus, A′i
(i = 1, . . . , r) receives coded segments from all providers
P ′1, . . . , P

′
(α+1)ν and all other newcomers.

Now we show that A′r+1, . . . , A
′
(α+1)r also receive coded

segments from P ′1, . . . , P
′
(α+1)ν after mapping. Actually,

Ar+1, . . . , A(α+1)r receive coded segments from some other
providers that are not mapped into the conventional regenera-
tion process. Assume that one such senior apprentice receives
coded segments from providers Piν+1, . . . , P(i+α+1)ν , 1 <
i ≤ α. Since (α + 1)r ≥ k, coded segments stored in these
providers can all be regarded as linear combinations of coded
segments stored in P1, . . . , P(α+1)ν . As all coded segments a

5 10 15 20 25 30 35 40
0

20

40

60

80

100

number of newcomers (r)

nu
m

be
r

of
 p

ar
tic

ip
at

in
g

no
de

s
(l)

CR, N=100
CPR, N=100
CR, N=80
CPR, N=80
CR, N=60
CPR, N=60

Fig. 8. Comparison of participating nodes in the processes of cooperative
pipelined regeneration (CPR) and conventional regeneration (CR) with MSR
codes, N = 60, 80, and 100.

newcomer receives are random linear combinations of coded
segments stored in providers, it is functionally equivalent with
the fact that, these coded segments received are random linear
combinations of coded segments stored in P1, . . . , P(α+1)ν .
Therefore, coded blocks regenerated in A′1, . . . , A

′
r are regen-

erated equivalently with (α + 1)ν providers and (α + 1)r
newcomers in a conventional regeneration process, which
requires N participating nodes and k providers to preserve the
recoverability property. By the analysis above, we can easily
obtain the following theorem.

Theorem 5: If (α + 1)(ν + r) ≥ N and (α + 1)ν ≥ k, all
senior apprentices can be fully regenerated after cooperative
pipelined regeneration with MSR codes.

By the conditions required by Theorem 5, we analyze the
values of ν and α that require the minimum number of
participating nodes.

Theorem 6: To regenerate r coded block containing N − k
coded segments in one round of pipelined cooperative re-
generation, the minimum number of participating nodes is
lmin = 2

√
Nr − r, when α =

√
N
r − 1, ν =

√
Nr − r,

and k ≤ N −
√
Nr.

Proof: By Theorem 5, N ≤ (α + 1)(ν + r). Thus,
ν ≥ N

α+1 − r. The total number of participating nodes during
cooperative pipelined regeneration is

(α+ 1)r + ν ≥ (α+ 1)r +
N

α+ 1
− r ≥ 2

√
Nr − r. (10)

Equalities in (10) are achieved when α =
√

N
r − 1 and ν =√

Nr− r. Thus, k is required to be no more than (α+1)ν =
N −

√
Nr.

Since the minimum number of participating nodes dur-
ing cooperative pipelined regeneration with MSR codes is
2
√
Nr − r ≤ (N + r) − r = N , the number of participating

nodes can always be saved unless r = N .
In practice, we can set the values of α and ν as

⌈√
N
r

⌉
−1

and
⌈√

Nr
⌉
− r, respectively. In such settings, when r < N ,

α is always no less than 1, which guarantees a round of coop-
erative pipelined regeneration. Moreover, when r < 3−

√
5

2 ·N ,

we can always reduce the number of participating nodes.
Similar to cooperative pipelined regeneration with random
linear codes, we also believe that this range of r is large
enough in practical distributed storage systems, where k is
usually set to be large enough and N should be larger than k
to save bandwidth consumption.

Fig. 8 illustrates the number of participating nodes with
practical values of α and ν, when N = 60, 80, and 100,
assuming that k is always feasible (e.g., k = 30). We set the
number of newcomers (r) no more than 3−

√
5

2 ·N and find that
the number of participating nodes can always be less than N .
We notice that the saving in the number of participating nodes
is more significant when the number of newcomers is small,
since the values of α and ν both increase with the increasing
of r, while conventional regeneration always requires N nodes
participating no matter how many newcomers there are.

C. Bandwidth consumption

According to the transmission scheme during cooperative
pipelined regeneration with MSR codes, there are ν(α + 1)r
connections that convey coded segments from providers to
apprentices and newcomers, and r [(α+ 1)r − 1] connections
from r senior apprentices to all other apprentices and new-
comers. Thus, by Theorem 5, there are a total of ν(α +
1)r + r [(α+ 1)r − 1] ≥ r(N − 1) connections. Since each
connection conveys one coded segment of size M

k(N−k) bits,
the minimum bandwidth consumption to regenerate r coded
blocks is M(N−1)

k(N−k) ·r bits, which is exactly the same amount of
the bandwidth consumption required by conventional regener-
ation with r newcomers using MSR codes.

On the other hand, if we keep using the same number of
participating nodes, we can store data encoded by MSR codes
with a much higher N with the help of cooperative pipelined
regeneration, further saving the consumption of bandwidth.
Supposing that at most n nodes can participate during re-
generation, by (10), the maximum N can be supported by
cooperative pipelined regeneration is Nmax = (n+r)2

4r , while
N must be no more than n for conventional regeneration.

In practice, we can let α =
⌊
n−r
2r

⌋
and ν =

⌊
n−r
2

⌋

50 60 70 80 90 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

maximum number of participating nodes (n)

ba
nd

w
id

th
 c

on
su

m
pt

io
n

(G
b)

CR
CPR, r=2
CPR, r=4
CPR, r=8

Fig. 9. Comparison of the bandwidth consumption in the processes of coop-
erative pipelined regeneration (CPR, k = 40, r = 2, 4, 8) and conventional
regeneration (CR). The size of the original file is 1 Gb.

where r < n. Thus, the maximum N that can be supported
by pipelined regeneration is (α + 1)(ν + r) ≤ (n+r)2

4r . By
storing data encoded by MSR codes with a large N , we can
further reduce the bandwidth consumption during regeneration
significantly. For example, we assume the size of the original
file is 1 Gb. When k = 40 and r = 2, the bandwidth
consumption can be saved by 38%−77%, as shown in Fig. 9.
The bandwidth consumption of conventional regeneration does
not change with r. During cooperative pipelined regeneration,
the bandwidth consumption will increase slightly with r.
However, the saving of the bandwidth consumption remains
significant. Moreover, to save both participating nodes and the
consumption of bandwidth, the system can select the value of
N between n and

⌊
n+r
2r

⌋
·
⌊
n+r
2

⌋
.

D. Storage overhead

We use the same method in Theorem 4 to analyze the stor-
age overhead brought by cooperative pipelined regeneration
with MSR codes. Assume that at least x storage nodes must
be maintained in the system. Since no storage node can be
used twice in α + 1 consecutive rounds of regeneration, (9)
still holds. By Theorem 5, x ≥ (α+ 1)(ν + r) ≥ N . In other
words, at least N storage nodes must be maintained in the
system, which is the same number required by conventional
regeneration with MSR codes.

Though cooperative pipelined regeneration with MSR codes
does not require more storage nodes than conventional regen-
eration, there are also αr apprentices in the system, incurring
additional storage overhead. Since the minimum number of
participating nodes is achieved when αr =

√
Nr − r by

Theorem 6, we obtain the following theorem.
Theorem 7: To support cooperative pipelined regeneration

with MSR codes, the distributed storage system should main-
tain at least N storage nodes and

√
Nr − r apprentices.

Since
√
Nr − r ≤ N

4 , the storage overhead brought by ap-
prentices is marginal in practical distributed storage systems.

VI. CONCLUSION

In this paper, we study the process of data regeneration
in failed storage nodes in distributed storage systems. The
highlight of this paper is to propose a new cooperative
pipelined regeneration mechanism, which depends on both
node cooperation and pipelined regeneration to significantly
reduce the number of participating nodes and the consumption
of bandwidth during regeneration, as compared to existing
schemes in the literature. We show that cooperative pipelined
regeneration can maintain the optimal integrity of data by
supporting both random linear codes and minimum-storage
regenerating codes. Though cooperative pipelined regeneration
incurs additional storage overhead in the system, we show
that such overhead is marginal in practical distributed storage
systems.

REFERENCES

[1] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Infor-
mation Flow,” IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216,
2000.

[3] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits
of Coding over Routing in a Randomized Setting,” in Proc. IEEE
International Symp. Inform. Theory (ISIT), 2003, pp. 442–442.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network Coding for Distributed Storage Systems,” IEEE Tran.
Inform. Theory, vol. 56, no. 9, Sept. 2010.

[5] A. Duminuco and E. Biersack, “A Practical Study of Regenerating Codes
for Peer-to-Peer Backup Systems,” in Proc. 29th IEEE International
Conference on Distributed Computing Systems, 2009, pp. 376–384.

[6] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
Recall: System Support for Automated Availability Management,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2004.

[7] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative Recovery of
Distributed Storage from Multiple Losses with Network Coding,” IEEE
Journal on Selected Areas in Communications, vol. 28, no. 2, pp. 268–
276, Feb. 2010.

[8] F. Oggier and A. Datta, “Self-repairing Homomorphic Codes for Dis-
tributed Storage Systems,” in Proc. IEEE INFOCOM, Apr. 2011.

[9] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple Regenerating Codes: Network Coding for Cloud Storage,” in
Proc. IEEE INFOCOM, 2012.

[10] H. Weatherspoon and J. Kubiatowicz, “Erasure Coding vs. Replication:
A Quantitative Comparison,” Peer-to-Peer Systems, vol. 2429/2002, pp.
328–337, 2002.

[11] S. Acedanski, S. Deb, M. Médard, and R. Koetter, “How Good is Ran-
dom Linear Coding based Distributed Networked Storage?” in Proc. 1st
Workshop on Network Coding, Theory, and Applications (NetCod), 2005.

[12] Y. Wu, A. Dimakis, and K. Ramchandran, “Deterministic Regenerating
Codes for Distributed Storage,” in Proc. 45th Annual Allerton Confer-
ence on Communication, Control, and Computing, 2007.

[13] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR Points
via a Product-Matrix Construction,” IEEE Trans. Inform. Theory, vol. 57,
no. 8, pp. 5227–5239, 2011.

[14] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “In-
terference Alignment in Regenerating Codes for Distributed Storage:
Necessity and Code Constructions,” IEEE Trans. Inform. Theory, vol. 58,
no. 4, pp. 2134–2158, 2012.

[15] V. R. Cadambe, S. A. Jafar, and H. Maleki, “Distributed Data Storage
with Minimum Storage Regenerating Codes - Exact and Functional
Repair are Asymptotically Equally Efficient,” CoRR, vol. abs/1004.4299,
2010.

[16] C. Suh and K. Ramchandran, “On the Existence of Optimal Exact-Repair
MDS Codes for Distributed Storage,” CoRR, vol. abs/1004.4663, 2010.

[17] K. W. Shum, “Cooperative Regenerating Codes for Distributed Storage
Systems,” in Proc. IEEE International Conference on Communications
(ICC), 2011.

[18] A.-M. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing Multi-
ple Failures with Coordinated and Adaptive Regenerating Codes,” in
Proc. IEEE International Symposium on Network Coding (NetCod),
2011.

[19] A. Duminuco and E. Biersack, “Hierarchical Codes: How to Make
Erasure Codes Attractive for Peer-to-Peer Storage Systems,” in Proc. 8th
International Conference on Peer-to-Peer Computing, 2008, pp. 89–98.

[20] F. Oggier and A. Datta, “Self-Repairing Codes for Distributed Storage
- A Projective Geometric Construction,” arXiv:1105.0379, May 2011.
[Online]. Available: http://arxiv.org/abs/1105.0379

[21] S. E. Rouayheb and K. Ramchandran, “Fractional Repetition Codes
for Repair in Distributed Storage Systems,” in 48th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
2010, pp. 1510–1517.

[22] J. Li, X. Wang, and B. Li, “Pipelined Regeneration with Regenerating
Codes for Distributed Storage Systems,” in Proc. IEEE International
Symposium on Network Coding (NetCod), 2011.

[23] D. Grolimund, “Wuala - A Distributed File System,” Google Tech Talk.
[Online]. Available: http://www.youtube.com/watch?v=3xKZ4KGkQY8

[24] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

