
Tree-structured Data Regeneration in Distributed
Storage Systems with Regenerating Codes

Jun Li, Shuang Yang, Xin Wang
School of Computer Science

Fudan University, China
{0572222, 06300720227, xinw}@fudan.edu.cn

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada
bli@eecg.toronto.edu

Abstract—Distributed storage systems provide large-scale re-
liable data storage by storing a certain degree of redundancy
in a decentralized fashion on a group of storage nodes. To
recover from data losses due to the instability of these nodes,
whenever a node leaves the system, additional redundancy should
be regenerated to compensate such losses. In this context, the
general objective is to minimize the volume of actual network
traffic caused by such regenerations. A class of codes, called
regenerating codes, has been proposed to achieve an optimal trade-
off curve between the amount of storage space required for storing
redundancy and the network traffic during the regeneration. In
this paper, we jointly consider the choices of regeneratingcodes
and network topologies. We propose a new design, referred toas
RCTREE, that combines the advantage of regenerating codes with
a tree-structured regeneration topology. Our focus is the efficient
utilization of network links, in addition to the reduction o f the
regeneration traffic. With the extensive analysis and quantitative
evaluations, we show that RCTREE is able to achieve a both fast
and stable regeneration, even with departures of storage nodes
during the regeneration.

Index Terms—Distributed Storage System, Data Regeneration,
Regenerating Codes

I. I NTRODUCTION

Large-scale distributed storage systems are designed to pro-
vide reliable services of data storage, by storing a degree of data
redundancy in a decentralized manner, across a large number
of storage nodesin the system [1]. These storage nodes may
be off-the-shelf cluster nodes in large-scale data centers, disk
arrays in storage area networks, or even ordinary end hosts
across the Internet, organized in a peer-to-peer fashion.

Regardless of their reliability, however, storage nodes in
distributed storage systems may fail, leading to the data loss.
In fact, large data centers are designed to treat storage node
failures as therule, not theexception. With the presence of node
failures, it is desirable to maintain a degree of dataredundancy,
such that a subset of storage nodes is sufficient to recover the
original data. When a storage node does fail, it is necessaryto
regeneratedata in a replacement node, called anewcomer, in
order to restore the required degree of data redundancy. How
such regeneration is to be performed depends on the design
objectives of codes to achieve redundancy.

If the objective is to minimize the storage space needed
for redundancy, it has been shown that Maximum Distance
Separable (MDS) codes are optimal for such minimum-storage
regeneration [2]. It has been used in the literature to maintain

a much smaller degree of redundancy than simple replication
for the same reliability [3]. For example, a file of sizeM bits
can be divided intok blocks, each of sizeM/k, and then be
encoded inton coded blocks with an(n, k) MDS code, to be
stored inn distinct storage nodes, and anyk blocks can be
used to recover the original file.

However, if minimizing network bandwidth used to regener-
ate data on the newcomer becomes the objective instead, with
MDS codes, a newcomer needs a minimum ofk blocks, i.e. a
total ofM bits, to regenerate its new coded block of sizeM/k
bits; while onlyM/k bits are required if replication is used.
Dimakis et al. [2] and Wuet al. [4] have shown the surprising
result that, deterministic linear network coding (defined over a
sufficiently large finite field) can be used to design a class of
minimum-bandwidth regeneratingcodes to minimize bandwidth
required for the regeneration, as long as more thank storage
nodes, calledproviders, can be contacted by the newcomer
during the regeneration. Acedańskiet al. [5] has also evaluated
the role of random linear coding, rather than deterministiclinear
codes, in distributed storage systems.

Though it is encouraging to design minimum-bandwidth re-
generating codes to minimize bandwidth, the existing literature
has not focused on the role of thenetwork topology, within
which the regeneration process takes place. It has convention-
ally been assumed that the regeneration process is performed on
a simplestar-structuredtopology, i.e., the newcomer receives
coded blocks directly from each of providers. In the overlay
mesh connecting storage nodes, however, not all overlay links
enjoy the same available bandwidth. If we take into account the
heterogeneity of bandwidth on links between storage nodes,a
tree-structuredtopology naturally ensues, in which providers
are allowed torelay regeneration traffic to the newcomer. How
should we construct such a tree to efficiently utilize available
bandwidth on each link between storage nodes? How should
we jointly consider the construction of regeneration treesand
the design of regenerating codes?

In this paper, we consider the general case of constructing
such tree-structured regeneration topologies, with a variable
number of providers in a tree topology, as well as the use of
regenerating codes to achieve the storage-bandwidth optimal
trade-off curve. Our new design, referred to as RCTREE, is
able to work effectively with the bandwidth heterogeneity.
RCTREE even considers the case that the storage node may fail

2

V0

15Mbps

10Mbps50Mbps

35Mbps

20Mbps55Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

V0

15Mbps

10Mbps50Mbps

35Mbps

20Mbps55Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

V0

15Mbps

10Mbps50Mbps

35Mbps

20Mbps55Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

V0

15Mbps

10Mbps50Mbps

35Mbps

20Mbps55Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

V0

15Mbps

10Mbps50Mbps

35Mbps

20Mbps55Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

(b) STAR with V1,V3

and V4 as providers

(c) RCSTAR with V1,V2,V3

and V4 as providers

(d) TREE with V1,V3

and V4 as providers

(e) RCTREE with V1,V2,V3

and V4 as providers

(a) network model with one

newcomer and four storage nodes

Fig. 1: Examples of four regeneration schemes: STAR, RCSTAR, TREE and RCTREE.

during the regeneration process. With the extensive analysis and
quantitative evaluations based on statistical data in PlanetLab,
we are able to show that RCTREE helps to be one step closer
towards a practical repair of failed storage nodes in distributed
storage systems.

The remainder of the paper is organized as follows. Sec. II
shows the advantages of RCTREE with an illustrative example.
In Sec. III we introduce the network model, and present our
extensive analysis on the regeneration tree. Sec. IV proposes
RCTREE with detailed analysis. Sec. V analyzes the stability of
RCTREE in comparison with some existing schemes. Sec. VI
concludes this paper.

II. B EYOND REGENERATINGCODES:
A M OTIVATING EXAMPLE

We now introduce an illustrative example of data regener-
ation in the distributed storage system in Fig. 1. Fig. 1(a)
shows the network model. There are five storage nodes, denoted
by V0, V1, V2, V3, and V4. The bandwidth capacity of the
link between two providers is heterogeneous. We assume that
the redundancy is coded by a(5, 3) MDS code, stored in
V1, V2, V3, V4, and a departing storage node. Each storage node
stores a coded block ofM3 bits, if the size of the original data
is M bits. In order to regenerate the lost redundancy,V0 is
selected to be the newcomer. Since(5, 3) MDS code is used,
V0 needs to receive redundancy from at least three providers.

Fig. 1(b) — Fig. 1(e) show illustrations of four regenera-
tion schemes. For the conventional star-structured regeneration
(STAR) in Fig. 1(b), ifV0 selectsV1, V3, andV4 as providers,
it receives data directly from the three providers, illustrated by
the darkened edges. Considering the regeneration time,i.e., the
time that the newcomer spends on regenerating a new coded
block, STAR costs

M

3

25Mbps seconds to accomplish the regen-
eration, because the transmission is bottlenecked by the link
betweenV0 andV4. We ignored the encoding time of MDS code
because the processors usually perform encoding operations
much faster than the network transmission, and the encoding
can be performed simultaneously with the transmission.

On the other hand, if more than three providers, for example,
V1, V2, V3, andV4, are used as providers in the regeneration, re-
generating codes [2], [4] provide a way to reduce the bandwidth
usage in the regeneration. Apart fromminimum-bandwidth
regeneratingcodes, Wuet al. also proposeminimum-storage
regenerating(MSR) codes, which cost the same storage space
on storage nodes with MDS codes. For an(n, k) MSR code,

each storage node storesM
k

bits and only M
k(r−k+1) bits are

transmitted on each link in the regeneration, wherer is the
number of providers. Different from MDS codes, the original
file is divided into more thank blocks. The coded blocks are
their deterministic [4] or random [6] linear combinations and
each storage node stores more than one coded blocks.

Even though MSR codes are not able to reach the minimum
regeneration traffic of regenerating codes, they cost the least
amount of storage space in storage nodes. Other kinds of
regenerating codes can further reduce the regeneration traffic
with an increased storage cost, but MSR codes use the storage
space most effectively. Therefore, we consider MSR codes in
this paper. In Fig. 1(c), with the employment of MSR codes in
STAR (RCSTAR), there will be onlyhalf of M

3 bits transferred
on each darkened edge. Therefore, the regeneration time canbe
reduced to

M

6

20Mbps seconds.
STAR and RCSTAR, however, suffer from the bottleneck

links of (V0, V4) and (V0, V2), respectively. If we consider the
links between providers, we can utilize these links to bypass the
slow bottleneck link in STAR. In Fig. 1(d), we show an example
of the tree-structured regeneration (TREE), with three providers
of V1, V3, andV4. A spanning tree, calledregeneration tree, is
constructed overV0, V1, V2, andV4. V1 receives data fromV3

andV4, encodes the received data with the data it stores, and
sends the encoded data toV0. By streamlining the relay onV1,
i.e., V1 encodes the data byte-by-byte rather than after receiving
the whole block, the regeneration time will be bottleneckedby
the link betweenV1 andV4, and thus the regeneration time is

M

3

45Mbps seconds only.
In our previous work [7], we have analyzed the bottleneck

bandwidth that the tree-structured regeneration can achieve,
yet with the constraint of exactlyk providers, namely three
providers in Fig. 1(d). In fact, as shown by Fig. 1(c), if there
is only one storage node losing its data among a total of five
storage nodes, there are four storage nodes available to be used
as providers in the regeneration. In Fig. 1(e), we construct
a regeneration tree withV1, V2, V3, and V4 as providers, and
use MSR codes in the system. As a result, the regeneration
time can be further reduced to

M

6

30Mbps seconds. Compared with
STAR in Fig. 1(b), the regeneration time is reduced by 58.3%
in RCTREE.

In this paper, we present an in-depth analysis of the general
case that the number of providers is variable, and propose
RCTREE, a combined scheme of regenerating codes and TREE.

3

In addition, we also considers node failuresduring the regener-
ation. We compare the stability of STAR, TREE and RCTREE
from the perspective of lifetime of regeneration trees.

III. C ONSTRUCTINGREGENERATIONTREES

In this section, we present an in-depth analysis of TREE, the
tree-structured regeneration in the general case with a variable
number of providers. We first introduce our network model for
the regeneration process in distributed storage systems. Then
we validate Prim’s algorithm to obtain the optimal regeneration
tree, analyze its bottleneck bandwidth, and show the strategy
of deciding the number of providers.

A. Network Model

We assume that in a distributed storage system, redundant
data is produced by an(n, k) MDS code, which divides the
original file into k blocks,F1, F2, . . . , Fk, and encodes them
into n coded blocksB1, B2, . . . , Bn. In the network, with
respect to one file, there aren storage nodes,V1, V2, . . . , Vn,
storing then coded blocks. We assume thatBi is stored in
Vi, i = 1, 2, . . . , n, for this storage space allocation scheme will
lead to the optimal recovery rate [8]. Without loss of generality,
assume thatBn gets lost. Another coded block will then be
regenerated in a newcomerV0. Assumed storage nodes are
active in the regeneration,e.g.V1, V2, . . . , andVd. In order to
maintain the MDS property,V0 should receive data from at
leastk nodes of thed active storage nodes, called providers,
k ≤ d < n. Let (Vi, Vj) be the undirected edge connecting
Vi andVj , andω(Vi, Vj), the weight of(Vi, Vj), represent the
bandwidth capacity of(Vi, Vj).

In this paper, we present the network model in the re-
generation as an undirected complete graphG(d; n, k) =
{V (d + 1), E(d + 1), ω}, k ≤ d < n, where V (d + 1) =
{V0, V1, . . . , Vd}, and E(d + 1) = {(Vi, Vj)|0 ≤ i < j ≤ d}.
V0 is the newcomer and other nodes inV (d + 1) are storage
nodes, at leastk nodes of which should be selected as providers.
We assume that the weight of each edge inE(d + 1) is
different from other edges. In the wide-area network or Internet,
this holds with high probability. Fig. 1(a) is an example of
G(4; n, k), n > 4 ≥ k.

B. The(r, d)−Regeneration Tree

Given the network model, the following definition describes
the tree-structured regeneration.

Definition 1: In G(d; n, k) = {V (d + 1), E(d + 1), ω}, an
(r, d)−regeneration tree is a tree whose root isV0 and covers
r providers inV (d + 1), k ≤ r ≤ d.

In an(r, d)−regeneration tree, the non-leaf providers receive
data from their children nodes, encode the received data with
the data they store, and relay the encoded data to their parent
nodes byte-by-byte. By the relay of providers, the newcomer
will get a linear combination ofr coded blocks ofr providers,
though it may probably connect to fewer thanr providers
directly. On each edge in the regeneration tree,M

k
bits of data

are transmitted. The bottleneck edge is the least weighted edge
in the (r, d)−regeneration tree.

In order to get an optimal(r, d)−regeneration tree, which
has the maximum bottleneck bandwidth, we can use Prim’s
algorithm, which constructs a maximum spanning tree starting
from the root inductively. If the root has been selected, in the
rth step of Prim’s algorithm, there arer + 1 nodes in the
produced tree, whose bottleneck bandwidth is optimal among
all (r, d)−regeneration trees inG(d; n, k).

Theorem 1:After therth step, Prim’s algorithm can produce
an optimal(r, d)−regeneration tree inG(d; n, k).

Proof: When r = 1, the proof is clear. The Prim’s
algorithm will select the maximum edge incident toV0 at
the first step. Suppose this statement is true whenr = k0,
0 < k0 < d. After thekth

0 step, an optimal(k0, d)−regeneration
treeTk0 is produced. Assume that a(k0 + 1, d)−regeneration
treeTk0+1 is produced after the(k0 + 1)th step, ande is the
selected edge at the(k0 + 1)th step. Ifω(e) ≥ B(Tk0), Tk0+1

is an optimal(k0 + 1, d)−regeneration tree, otherwise it will
contradict with thatTk0 is an optimal(k0, d)−regeneration tree.

If ω(e) < B(Tk0), clearly B(Tk0) > B(Tk0+1). Assume
that there exists a treeT ′

k0+1 with root V0, and B(T ′
k0+1) >

B(Tk0+1). Removing one of the leaf nodes exceptV0 and the
edge incident to this node inT ′

k0+1, we obtain another treeT ′
k0

,
and thusB(Tk0) ≥ B(T ′

k0
) ≥ B(T ′

k0+1) > B(Tk0+1).
If the number of the nodes inTk0 ∪ T ′

k0
is more than

k0 + 1, then the weight of the bottleneck edge of the(k0 +
1, d)−regeneration tree constructed by Prim’s algorithm in
Tk0 ∪ T ′

k0
is no less thanB(T ′

k0+1), and thus must be more
thanB(Tk0+1). This contradicts with the fact thatB(Tk0+1) is
constructed by Prim’s algorithm.

If the number of the nodes inTk0 ∪ T ′
k0

is exactly k0 +
1, the node set ofTk0 is the same with that ofT ′

k0
. Since

the uniqueness of the edge weight leads to the uniqueness of
the maximum spanning tree, we haveTk0 = T ′

k0
. By Prim’s

algorithm, we thus haveB(T ′
k0+1) = B(Tk0+1). This leads to

the contradiction.
From the proof of Theorem 1, we can easily get the following

corollary, which reveals the strategy of deciding the number of
providers in TREE.

Corollary 1: Given G(d; n, k), the bottleneck bandwidth of
an optimal(r + 1, d)−regeneration tree is no better than an
optimal (r, d)−regeneration tree.

Fig. 2 shows the output of Prim’s algorithm on the network
model in Fig. 1(a). The four steps correspond to an optimal
(r, 4)−regeneration tree,r = 1, 2, 3, 4, whose bottleneck band-
width are 55Mbps, 50Mbps, 45Mbps, and 40Mbps, respec-
tively. We can see the employment of more providers will not
improve the bottleneck bandwidth in TREE.

C. Bottleneck Bandwidth of the(r, d)−Regeneration Tree

Since we have obtained the optimal(r, d)−regeneration tree
by Prim’s algorithm, we analyze its bottleneck bandwidth in
this section. We represent the bottleneck edge in the optimal
(r, d)−regeneration tree by its sequential index in the edge set.
Based on the probability of the sequential index and the ex-
pected bandwidth of the edge with the corresponding sequential
index, we can obtain the expected bottleneck bandwidth.

4

V0

15Mbps

50Mbps

35Mbps

20Mbps

30Mbps 25Mbps

45Mbps

40Mbps

V4V3

V2V1

15Mbps

50Mbps

35Mbps

20Mbps

30Mbps 25Mbps

45Mbps

40Mbps

15Mbps

50Mbps

35Mbps

20Mbps

30Mbps 25Mbps

45Mbps

40Mbps

15Mbps

50Mbps

35Mbps

20Mbps

30Mbps 25Mbps

45Mbps

40Mbps

(c) step 3 (d) step 4

(a) step 1 (b) step 2

55Mbps

55Mbps 55Mbps

55Mbps

10Mbps 10Mbps

10Mbps 10Mbps

V0

V0 V0

V4V3

V2V1

V4V3

V2V1

V4V3

V2V1

Fig. 2: Regeneration trees after1st — 4th steps of Prim’s
algorithm on the network model in Fig 1(a). The bottleneck
bandwidth decreases with the increased number of providers.

Definition 2: Let e be the bottleneck edge of an optimal
(r, d)−regeneration tree inG(d; n, k), produced by Prim’s
algorithm. If e is the ith maximum edge inE(d + 1),
σTREE(r, G(d; n, k)) = i.

The following property gives the upper and lower bounds of
σTREE(r, G(d; n, k)).

Property 1: r ≤ σTREE(r, G(d; n, k)) ≤Md+1−d+1, where
Md = d(d−1)

2 .
Proof: There arer edges in the(r, d)−regeneration tree,

so r ≤ σTREE(r, G(d; n, k). BecauseG(d; n, k) is a complete
graph, it isd-edge-connected.G(d; n, k) will still be connected
after removingd− 1 edges, soσTREE(r, G(d; n, k)) ≤Md+1−
d + 1.

The following lemma shows the probability of
σTREE(r, G(k; n, k)), a special case of the network model that
the number of providers is exactlyk.

Lemma 1: [7] Let Q(l, j) denote the number of the con-
nected graphs which containl labeled nodes andj edges, and
P (k+1, i) denote the probability thatσTREE(k, G(k; n, k)) = i.
Thus in G(k; n, k) = (V (k + 1), E(k + 1), ω), if k < i <
Mk+1 − k + 1,

P (k + 1, i) =

k
∑

l=1

Cl−1
k−1

i−1
∑

j=0

Q(l, j)Q(k + 1 − l, i − 1 − j)

Ci−1
Mk+1−1

, (1)

and

Q(l, j) =

0 j < l − 1;

C
j

Ml

j
∑

i=l−1

P (l, i) l − 1 ≤ j ≤ Ml;

0 j > Ml.

(2)

Based on Lemma 1, we show the probability ofσTREE in the
general model,G(d; n, k).

Theorem 2:Let p(d + 1, r + 1; i) be the probability that
σTREE(r, G(d; n, k)) = i. We havep(d, r; i) =

2
d

r−1
∑

l=1

Cl−1
d−2R(d, r, i, l) + 2(d−2)

d

r−1
∑

l=2

Cl−2
d−3R(d, r, i, l)

Ci−1
Md−1

, (3)

r − 1 ≤ i ≤Md − (d− 1) + 1, where

R(d, r, i, l) =

i−1
∑

i1=l−1

Q(l, i1)

d−l
∑

t=r−l

C
t−1
d−l−1

·

i−1−i1
∑

i2=t−1

Q(t, i2)C
i−1−i1−i2
Md−l−t

. (4)

Proof: In G(d − 1; n, k), given an optimal(r − 1, d −
1)−regeneration tree produced by Prim’s algorithm, we assume
that (Va, Vb) is its bottleneck edge and it is theith maximum
edge inE(d), 0 ≤ a < b < d. Removing all the edges in
E(d) whose weight is less than(Va, Vb), we can see that
p(d, r; i) equals the probability that anyi edges connecting
nodes inV (d) can form an(r − 1, d − 1)−regeneration tree.
If the position of(Va, Vb) has been determined, apparently the
number of ways to select otheri− 1 edges inE(d) is Ci−1

Md−1.

We now consider the number of regeneration trees. The
probability of a = 0 is 2

d
. Divide Vd into two groups,V(a)

andV(b). Let Va belong toV(a) andVb belong toV(b). Assume
V(a) containsl nodes,1 ≤ l ≤ r − 1. SinceV0 andVb belong
to V(a) and V(b), respectively, the number of ways to assign
other d − 2 nodes into the two groups isCl−1

d−2. On the other
hand, the probability ofa 6= 0 is d−2

d
. However, now there

are two possibilities thatVa can belongs to eitherV(a) or V(b).
Moreover, since nowVa 6= V0, we have2 ≤ l ≤ r − 1. As we
need to assign otherd− 3 nodes into the two groups, there are
Cl−2

d−3 ways to achieve this.

Since we have determined the nodes inV(a) and V(b), we
need to assign otheri− 1 edges except(Va, Vb) into V(a) and
V(b) to form an(r−1, d−1)−regeneration tree. Suppose there
areR(d, r, i, l) ways to achieve this, we get Eq. (3).

Now we considerR(d, r, i, l). Without loss of generality, we
assume thatV0 ∈ V(a). Assume there arei1 edges inV(a)

and i − 1 − i1 edges inV(b). The i1 edges inV(a) have to
construct a spanning tree onV(a). By Eq. (1), the number of
ways to achieve this isQ(l, i1). For the i − 1 − i1 edges in
V(b), an spanning tree has to be constructed overVb and at
least othert − 1 nodes inV(b), r − l ≤ t ≤ d − l, otherwise
the (r− 1, d− 1)−regeneration tree can not be constructed by
Prim’s algorithm. There areCt−1

d−l−1 ways to select the nodes
covered by the spanning tree, sinceVb has been selected. Assign
i2 edges into theset nodes,t− 1 ≤ i2 ≤ i− 1− i1, and there
areQ(t, i2) possibilities by Eq. (1). For the remainingd− l− t
nodes andi − 1 − i1 − i2 edges, just assign such number of
edges as the edges connecting thesed − l − t nodes. and the
number of ways isCi−1−i1−i2

Md−l−t
. In summary,R(d, r, i, l) =

i−1
∑

i1=l−1

Q(l, i1)
d−l
∑

t=r−l

Ct−1
d−l−1

i−1−i1
∑

i2=t−1

Q(t, i2)C
i−1−i1−i2
Md−l−t

.

Whend = r = k, Eq. (1) is a special case of Eq. (3).
Let E(i:Md+1) denote the expected bandwidth of theith

maximum edge inE(d). We can obtain the expected bottleneck
bandwidth of the optimal(r, d)−regeneration tree inG(d; n, k)

5

by Eq. (5):

ETREE(r,G(d; n, k)) =

Md+1−d+1
∑

i=r

p(d + 1, r + 1; i)E(i:Md+1). (5)

IV. REGENERATION WITH REGENERATINGCODES

A. Regenerating Codes

In Sec. III, we show a general analysis of the regeneration
tree using(n, k) MDS codes. Though the bottleneck band-
width can be improved if we have more storage nodes as
the candidates of providers, employing more providers does
not provide a substantial improvement. First, according to
Corollary 1, the increased number of providers does not relieve
the bottleneck further. Second, it incurs more network traffic
in the regeneration, because more edges are employed in the
(r, d)−regeneration tree and the traffic on each edge has not
been reduced. Therefore, we propose RCTREE, combining
minimum-storage regenerating(MSR) codes with the tree-
structured regeneration (TREE).

Compared with MDS codes, MSR codes can reduce the
regeneration traffic. Since the number of providers is variable
in this paper, the coding scheme of MSR codes should adapt
to this. For the regeneration withd providers, the file should
be divided into at leastk(d − k + 1) blocks to achieve the
lower bound of regeneration traffic [6]. Assume that the original
file are divided intoL blocks, andd is the maximum integer
that satisfiesk(d − k + 1) ≤ L. L should be large enough
so thatd ≥ k, i.e., there can be at leastk providers in the
regeneration. Each storage node stores

⌈

L
k

⌉

coded blocks. In
the regeneration withr providers,k ≤ r, for RCTREE, each
provider encodes its

⌈

L
k

⌉

coded blocks into
⌈

⌈L
k
⌉

r−k+1

⌉

blocks
and then sends them to its parent node. Then the newcomer
receives a total ofr

⌈

⌈L
k
⌉

r−k+1

⌉

blocks and finally encodes them

into
⌈

L
k

⌉

blocks, so the newcomer has to receive data directly
from at leastr − k + 1 providers. The traffic on each link is

M
k(r−k+1) bits approximately ifL is large enough.

Definition 3: An (r, d, k)−regeneration tree inG(d; n, k) is
a tree with rootV0 whose degree is at leastr − k + 1, and
coversr providers inV (d + 1), k ≤ r ≤ d.

Algorithm 1 shows how to get an optimal
(r, d, k)−regeneration tree. We first construct an optimal
(r, d)−regeneration tree by Prim’s algorithm (Line 1 – Line
5). If the degree of the(r, d)−regeneration tree is invalid,
we adjust the edges in the tree by adding the edge inEroot

inductively (Line 6 – Line 10).

B. Bottleneck Bandwidth of the Optimal(r, d, k)−regeneration
tree

In this section, we discuss the bottleneck bandwidth of the
optimal (r, d, k)−regeneration tree produced by Algorithm 1 .
Similar to Definition 2, we give the definition ofσRCTREE of
the optimal(r, d, k)−regeneration tree inG(d; n, k).

Algorithm 1 Find an optimal(r, d, k)−regeneration treeT
in G(d; n, k), k ≤ r ≤ d. Define Eroot = {(V0, Vi)|i =
1, 2, . . . , d}, andD(T) = |Eroot ∩ {edges inT}|.

1: T ← ∅
2: for i← 1 to r do
3: ei ← the largest edge makingT

⋃

{ei} a rooted tree
4: T ← T

⋃

{ei}
5: end for
6: for i← D(T) + 1 to r − k + 1 do
7: e1 ← the largest edge∈ Eroot − T
8: e2 ← any edge∈ T −Eroot makingT

⋃

{e1} − {e2} a
tree rooted byV0

9: T ← T
⋃

{e1} − {e2}
10: end for

Definition 4: Let e be the bottleneck edge of an optimal
(r, d, k)−regeneration tree inG(d; n, k), produced by Al-
gorithm 1. If e is the ith maximum edge inE(d + 1),
σRCTREE(r, G(d; n, k)) = i.

Notice that an (r, d, k)−regeneration tree is
still an (r, d)−regeneration tree. By Property 1,
r ≤ σRCTREE(r, G(d; n, k)) ≤Md+1 − d + 1.

Now we show the probability ofσRCTREE(r, G(d; n, k)). In
Algorithm 1, some edges may be added into the optimal
(r, d)−regeneration tree if the degree constraint of the root is
not satisfied (Line 6 — Line 10). We first discuss whether this
will decrease the bottleneck bandwidth of the regenerationtree.

Lemma 2:Let C
(k1,k2)
n = n!

k1!k2!
, 0 ≤ k1, k2 ≤ n. Let p(d+

1, r + 1, c; i) be the probability thatσRCTREE(r, G(d; n, k)) = i
and c edges inEroot have weights more than theith edge in
E(d + 1). p(d, r, c; i) =

2(d−2)
d

r−1
∑

l=2

Cl−2
d−3S(d, r, i, l, c) + 2

d

r−1
∑

l=1

Cl−1
d−2S(d, r, i, l, c − 1)

Ci−1
Md−1

, (6)

r − 1 ≤ i ≤Md − (d− 1) + 1, where

S(d, r, i, l, c) =

i−1
∑

i1=l−1

Q
′(l, i1, c)

d−l
∑

t=r−l

C
t−1
d−l−1

·

i−1−i1
∑

i2=t−1

Q(t, i2)C
i−1−i1−i2
Md−l−t

, (7)

and

Q
′(l, j, c) =

1 l = 1, j = c = 0;
j

∑

i−l−1

c
∑

c′=max{1,c+i−j}

p(l, l, c′, i)
C

(l−1−c,j)
Ml

Cc−c′

j−i

Cl−1−c′

Ml−i

1 ≤ c ≤ l − 1, l − 2 ≤ j − c ≤ Ml−1;
0 otherwise.

(8)

Proof: Eq. (6) can be proved similarly with the proof
of Eq. (3). In G(d − 1; n, k), given an optimal(r − 1, d −
1, k)−regeneration tree produced by Algorithm 1, its bottleneck
edge(Va, Vb) is the ith maximum edge inE(d), 0 ≤ a <
b < d. We remove all the edges inE(d) whose weight is
less than(Va, Vb). Divide Vd into two groups,V(a) and V(b).

6

Let Va belong toV(a) and Vb belong toV(b). AssumeV(a)

containsl nodes. LetS(d, r, i, l, c) represent the number of
ways of assigningi − 1 edges intoV(a) and V(b) to form an
(r− 1, d− 1, k)−regeneration tree. Thus replacingR(d, r, i, l)
by S(d, r, i, l, c) in Eq. (3), we can obtain the proof of Eq. (6).

Let V(a) and V(b) containVa and Vb, respectively. Without
loss of generality, we assume thatV(a) containsV0. Note thatVa

may equalV0. We defineQ′(l, j, c) as the number of connected
graphs onV(a) (l nodes with one given rootV0) with j edges in
which there arec edges inEroot having weights larger than the
ith edge inE(d). Thus Eq. (7) can be obtained from Eq. (4)
by replacingQ(l, i1) with Q′(l, i1, c).

Now we prove Eq. (8). We defineQ′(l, j, c) = 1 whenl = 1
and j = c = 0. OtherwiseQ′(l, j, c) > 0 if and only the
following two conditions are both satisfied:

1) Since there arel nodes inV(a), there should be at mostl−
1 edges with weights no less than theith maximum edge
in Ed. Meanwhile, in order to guarantee the connectivity
of the (r, d, k)−regeneration tree, there is at least one
edge inEroot with weight larger than theith maximum
edge inEd, i.e., 1 ≤ c ≤ l − 1.

2) Nodes inV(a) − V0 are connected. Thusl− 2 ≤ j − c ≤
Ml−1.

When the two conditions above are satisfied, all thel nodes
are connected, sol− 1 ≤ j ≤Ml. Assume that the bottleneck
edge of the maximum spanning tree in such a graph satisfying
the conditions above is theith largest edge among thej
edges, and the degree of the root in the maximum spanning
tree isc′. We havemax{1, c + i − j} ≤ c′ ≤ c. The number
of such kind of maximum spanning trees isCi

Ml
p(l, l, c′, i).

There are stillj − i edges to be assigned into the graph.
Among the j − i edges,c − c′ edges should be assigned
to connect the root (l − 1 − c candidates of positions), and
j − i − c + c′ edges to be assigned to connect the non-root
nodes (Ml − i − l + c′ + 1 candidates of positions). Thus the
number of graphs isCi

Ml
p(l, l, c′, i)Cc−c′

l−1−c′C
j−i−c+c′

Ml−i−l+c′+1.
Becausej − i − c + c′ ≥ 0, c′ ≥ c + i − j, Q′(l, j, c) =

j
∑

i=l−1

c
∑

max{1,c+i−j}

Ci
Ml

p(l, l, c′, i)Cc−c′

l−1−c′C
j−i−c+c′

Ml−i−l+c′+1 =

j
∑

i−l−1

c
∑

c′=max{1,c+i−j}

p(l, l, c′, i)
C

(l−1−c,j)

Ml
C

c−c′

j−i

C
l−1−c′

Ml−i

.

Based on Lemma 2, we can obtain the probability of
σRCTREE(r, G(d; n, k)), by simply checking whether there are
enough non-selected edges inEroot so that the bottleneck
bandwidth will not be affected.

Theorem 3:Let pRCTREE(k)(d+1, r+1; i) be the probability
that σRCTREE(r, G(d; n, k)) = i in G(d; n, k).

p
RCTREE(k)(d, r; i) =

r−1
∑

c=r−k

p(d, r, c; i)+

r−k−1
∑

c=1

∑

j<i

p(d, r, c; j)
Cr−k−c−1

i−1−j Cd−1−r+k
Md−i

Cd−1−c
Md−j

. (9)

Proof: In G(d − 1; n, k), according to Algorithm 1, if
the optimal (r − 1, d − 1)−regeneration tree produced by

Prim’s algorithm (Line 1 – Line 5) is also an(r − 1, d −
1, k)−regeneration tree, or there are enough non-selected edges
in Eroot with weights larger than theith edges inEd, the
bottleneck edge of the optimal(r−1, d−1)−regeneration tree
will still be the bottleneck edge of the optimal(r − 1, d −
1, k)−regeneration tree. These cases occur with probability

r−1
∑

c=(r−1)−k+1

p(d, r, c; i).

However, if the degree of the root of the(r − 1, d −
1)−regeneration tree produced by Prim’s algorithm is less than
r − k, and there is no enough non-selected edge to be added
into the tree (Line 7 — Line 9 in Algorithm 1), the bottleneck
bandwidth of the optimal(r− 1, d− 1, k)−regeneration tree is
less than that of the optimal(r − 1, d− 1)−regeneration tree.
Assume that there arec edges inEroot with weights larger than
theith maximum edge inEd, 1 ≤ c ≤ r−k−1. Because of the
degree constraint of the root,r−k− c edges with weights less
than theith maximum edge should be added into the optimal
(r − 1, d − 1)−regeneration tree. If the minimum edge added
is the jth edge inEd, j > i, this is equivalent to selecting
d − 1 − c edges, in which the(r − k − c− 1)th edge is the
jth edge inEroot, from a total number ofMd − j edges. This

probability is
C

r−k−c−1
i−1−j

C
d−1−r+k

Md−i

C
d−1−c

Md−j

. Thus, the probability of this

kind of cases is
r−k−1

∑

c=1

∑

j<i

p(d, r, c; j)
C

r−k−c−1
i−1−j

C
d−1−r+k

Md−i

C
d−1−c

Md−j

.

Similar to Eq. (5), we obtainERCTREE(r, G(d; n, k)),
the expected bottleneck bandwidth of the optimal
(r, d, k)−regeneration tree inG(d; n, k):

ERCTREE(r, G(d; n, k)) =
Md+1−d+1

∑

i=r

p
RCTREE(k)(d + 1, r + 1; i)E(i:Md+1). (10)

C. Quantitative Results

In this section, we compare the regeneration schemes of
STAR, TREE, and RCTREE by a quantitative evaluation. We
assume that inG(d; k, n) = (V (d + 1), E(d + 1), ω), ω, the
weight of the edge inE(d+1), satisfies a uniform distribution
U [0.3Mbps, 120Mbps], which reveals the bandwidth capacity
between nodes in PlanetLab [9].

By the theory of order statistics [10], we obtain the value
of E(i:Mk+1) under the distribution ofU [a, b], where a =
0.3Mbps, andb = 120Mbps:

E(i:Mk+1) =
(b − a)(Mk+1 − i + 1)

Mk+1 + 1
+ a. (11)

Since the bottleneck edge of STAR withr providers in
G(d; n, k) should be therth maximum edge inEroot, we obtain
its bottleneck bandwidth by Eq. (12):

ESTAR(r,G(d; n, k)) = (b − a)
d − r + 1

d + 1
+ a. (12)

We compare B(r, G(d; n, k)), the virtual bottleneck
bandwidth of STAR, TREE, RCSTAR (STAR with

7

3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

r (#used providers)

vi
rt

ua
l b

ot
tle

ne
ck

 b
an

dw
id

th
 (

M
bp

s)

B
RCTREE

(r,G(15;n,3))

B
RCSTAR

(r,G(15;n,3))

B
TREE

(r,G(15;n,3))

B
TREE

(r,G(r;n,3))

B
STAR

(r,G(15;n,3))

Fig. 3: Virtual bottleneck bandwidth of five regeneration
schemes.

regenerating codes), and RCTREE. The regeneration time is
M

k·B(r,G(d;n,k)) . For STAR and TREE,BSTAR(r, G(d; n, k)) =

ESTAR(r, G(d; n, k)) and BTREE(r, G(d; n, k)) =
ETREE(r, G(d; n, k)). For RCSTAR and RCTREE,
BRCSTAR(r, G(d; n, k)) = (r − k + 1)ESTAR(r, G(d; n, k)) and
BRCTREE(r, G(d; n, k)) = (r − k + 1)ERCTREE(r, G(d; n, k)),
because the amount of transferred data on each edge in
G(d; n, k) is 1

r−k+1 ·
M
k

bits.
Fig. 3 shows the evaluation result inG(15; n, 3), n ≥ 15. r is

the number of providers. With the power of regenerating codes,
the virtual bottleneck bandwidth of RCTREE and RCSTAR is
improved significantly, compared with TREE and STAR. On
the other hand, even though the network traffic on each edge is
reduced by regeneration codes, the virtual bottleneck bandwidth
of RCTREE and RCSTAR can not increase monotonically. For
RCTREE, its topology is constrained by the degree of the root.
For RCSTAR, moreover, its bottleneck bandwidth decreases
with the increased number of providers, since it is based on
STAR. Whenr = 10(9), the curve of the virtual bottleneck
bandwidth of RCTREE (RCSTAR) reaches its peak. When
r = 10, the virtual bottleneck bandwidth of RCSTAR, TREE,
and STAR are75%, 22%, and 9% of RCTREE, respectively.
RCTREE outperforms all other schemes by combining tree-
structured regeneration, which utilizes high-bandwidth links
more efficiently, with regenerating codes, which reduces the
regeneration traffic significantly.

V. L IFETIME OF REGENERATIONTREES

A. Regeneration with Node Departures

We have analyzed the tree-structured regeneration and its
combination with regenerating codes. However, we have not
considered that nodes may leave during the regeneration. Fig. 4
shows some examples of node departures during the regenera-
tion.

In Fig. 4, Case 1, 2, and 3 are three examples that a leaf
node, a non-leaf node, and the newcomer in a regeneration
tree leave the network, respectively. In Case 1, after the leaf
node leaves the network, a regeneration tree with3 providers
remains. In Case 2, after the non-leaf node leaves the network,
all its children nodes should be regarded as leaving the network,
because the data can not be transferred toV0 until another
regeneration tree has been constructed. In Case 3, the newcomer

(a) Case 1: a leaf node leaves

(c) Case 3: the newcomer leaves

(b) Case 2: a non-leaf node leaves

V0

V1

V3 V4

V2

V0

V1

V3 V4

V2

V0

V1

V3 V4

V2

V0

V1

V3 V4

V2

V0

V1

V3 V4

V2

V0

V1

V3 V4

V2

Fig. 4: Examples of node departures in a regeneration tree.

leaves the system. Apparently the regeneration fails, since no
data can be regenerated at the newcomer any more.

Since STAR can be regarded as a special form of TREE,
and RCTREE constructs a regeneration tree with the degree
constraint of the root, we discuss the continuous transmission
time in the regeneration tree with node departures. Assume
that in a regeneration tree withr providers,V0 is still con-
nected withr0 providers after a node leaves the network. The
connected component containingV0 is a subtree of the original
regeneration tree. For RCTREE, the subtree also satisfies the
degree constraint of the root because the degree ofV0 decreases
by one at most. Ifr0 ≥ k, the regeneration tree is still alive,
because the newcomer can still receive data from at leastk
providers.

Definition 5: The lifetime of a regeneration tree in
G(d; n, k) is the time between when the tree is constructed
and when less thank providers remain in the subtree.

We assume that nodes do not leave simultaneously in the
regeneration. In the regeneration tree, we assume that all the
nodes may leave the network with the same probability. All
the nodes are aware of the departures of their children nodes.
Specifically, when the parent node does not receive data from
one of its children nodes, it regards this node as a terminated
node and stops the data transmission. If the redundancy is
coded by regenerating codes, the encoding coefficients of the
regenerating codes may change with the departures of the
providers. Dividing coded blocks into generations with suitable
size may solve this problem.

B. Lifetime of STAR and TREE

Assume that in a regeneration tree withr nodes,t nodes
remain after one node leaves the network. This occurs with
probability Pr(r, t). The lifetime is the time the regeneration
tree keeps stable plus the lifetime of the remaining subtree
with t nodes. Then we obtain a recursion of lifetime. First we
consider the value ofPr(r, t).

Lemma 3:For STAR,

Pr
STAR(r, t) =

{ 1
r

t = 0;
0 0 < t < r − 1;
r−1

r
t = r − 1.

(13)

8

Proof: When the newcomer leaves the network,t = 0.
Since any node may leave the network with the same prob-
ability, PrSTAR(r, 0) = 1

r
. Otherwise, t can only become

t − 1, because any providers are leaf nodes in STAR. Thus
Pr(r, r − 1) = 1− 1

r
.

Lemma 4:For TREE,

Pr
TREE(r, t) =

{

1
r

t = 0;
r−1

r
·

C
r−t−1
r−2

tt−1(r−t)r−t−2

rr−2 0 < t < r.
(14)

Proof: When t = 0, the proof can be seen in Lemma 3.
When0 < t < r, let e be the edge connecting the leaving node
with its parent node. The departure of this node can be regarded
as removinge from the regeneration tree. Removinge will
divide the regeneration tree into two subtrees. There areCr−t−1

r−2

ways to selectt nodes in the subtree containing the newcomer
V0, becauseV0 and the leaving node have been selected. By
Cayley’s formula [11], the number of spanning trees onn
labeled nodes isnn−2. Thus the number of regeneration trees
which will have t providers remaining after removinge is
tt−2(r−t)r−t−2 ·t. Since the number of regeneration trees over

r nodes isrr−2, P rTREE(r, t) = r−1
r
·

C
r−2
r−t−1

tt−1(r−t)r−t−2

rr−2 .
Comparing Theorem 3 with Theorem 4, we can see STAR

can be more stable than TREE, because if the newcomer does
not leave, the regeneration tree will only lose at most one
provider in STAR, but it may lose more than one providers
in TREE, if a non-leaf provider leaves.

Now we give the recursion of lifetime for STAR and TREE.
Theorem 4:Let L(r) be the expected lifetime of a regener-

ation tree withr providers.E(r) is the expected time that all
the r nodes remain in the regeneration tree. InG(d; n, k), for
STAR,

L
STAR(k)(r − 1) = E(r) +

t=r−1
∑

t=k+1

Pr
STAR(r, t)LSTAR(k)(t − 1). (15)

For TREE, replaceLSTAR(k)(r − 1) and PrSTAR(r, t) with
LTREE(k)(r − 1) andPrTREE(r, t), respectively.

Proof: For a regeneration tree in STAR or TREE withr
nodes (r − 1 providers), the expected time that the tree keeps
stable isE(r). When a node leaves, the expected lifetime of
the subtree isL(t − 1) if t nodes remain,k + 1 ≤ t < r. We
get the expected lifetime by addingE(r) with the expected
lifetime of the remaining subtree.

C. Lifetime of RCTREE

Now we discuss the lifetime of RCTREE. We also find a
recursion of lifetime, by discussing how many providers remain
after the node departure. We first introduce a lemma as follows.

Lemma 5: [11] Overn labeled nodes in whichk node have
been designated as roots, the number of forests containingk
rooted trees isknn−k−1.

Corollary 2: Over n labeled nodes in which one node has
been designated as root, the number of spanning trees in which
the degree of the root isk, is T (n, k) = Ck−1

n−2(n − 1)n−k−1,
1 ≤ k < n.

Proof: Given a spanning tree in the statement, we can
remove the root node to make it become a forest withk trees.
Thus the number of spanning trees in the statement equals
the number of ways to selectk nodes fromn − 1 nodes,
multiplying the number of such forests by Lemma 5,i.e.,
Ck

n−1 · k(n− 1)
n−1−k−1

= Ck−1
n−2(n− 1)n−k−1.

Specifically, if n = 1, let T (n, k) = 1 when k = 0, and
T (n, k) = 0 otherwise.

Lemma 6: In G(d; n, k), given an(r−1, d, k)−regeneration
tree in which the degree ofV0 is c, after a node departure, a
subtree witht nodes remains. The degree ofV0 is still c with
probabilityPrRCTREE

0 (r, t, c), and becomec−1 with probability
PrRCTREE

1 (r, t, c). When0 < t < r,

Pr
RCTREE
0 (r, t, c) =

r − 1

r
·
Cr−t−1

r−2 (t − 1)T (t, c)(r − t)r−t−2

T (r, c)
. (16)

Pr
RCTREE
1 (r, t, c) =

r − 1

r
·

Cr−t−1
r−2 T (t, c − 1)(r − t)r−t−2

T (r, c)
(17)

whenc = t = 1 or 1 < c ≤ r − 1, and equals0 otherwise.
Proof: To prove this lemma, we refer to the proof of

Lemma 4. The proofs of Eq. (16) and Eq. (17) are the same
with the proof of Eq. (14) except for three points. First, since
V0 in the remaining subtree after removinge satisfies the
degree constraint, the numbers of such subtrees areT (t, c)
and T (t, c − 1), respectively. Second, forPrRCTREE

0 (r, t, c),
e can connect to anyt − 1 nodes in the subtree, but for
PrRCTREE

1 (r, t, c), e can only connect toV0. Third, over r
labeled nodes, there areT (r, c) regeneration trees where the
degree ofV0 is c.

Moreover, forPrRCTREE
1 (r, t, c), whenc = 1, it is impossible

that t > 1, because if the only node connectingV0 leaves, only
the newcomer will remain in the subtree.

Similar to Theorem 4, we obtain the following lemma.
Lemma 7:Let LRCTREE(k)(r, c) be the lifetime of an

(r, d, k)−regeneration tree in which the degree ofV0 is c, c ≥
r − k + 1.

L
RCTREE(k)(r − 1, c) = E(r)+

t=r−1
∑

t=k+1

[Pr
RCTREE
0 (r, t, c)LRCTREE(k)(t − 1, c)+

Pr
RCTREE
1 (r, t, c)LRCTREE(k)(t − 1, c − 1)]. (18)

Theorem 5:Given an optimal (r, d, k)−regeneration tree
produced by Algorithm 1 inG(d; n, k), its lifetime is

L
RCTREE(k)(r) =

r−k
∑

c=1

T (r + 1, c)

r
∑

c=1

T (r + 1, c)

L
RCTREE(k)(r, r − k + 1)

+

r
∑

d=r−k+1

T (r + 1, d)
r

∑

c=1

T (r + 1, c)

L
RCTREE(k)(r, d). (19)

Proof: In Algorithm 1, if the degree ofV0 in the optimal
(r, d)−regeneration tree produced by Prim’s algorithm (Line 1

9

– Line 5) is invalid, this happens with probability

r−k
∑

c=1

T (r+1,c)

r
∑

c=1

T (r+1,c)

.

Then the edges inEroot will be added to the tree until the
degree of the root isr−k+1, so the lifetime isLRCTREE(k)(r, r−
k+1). On the other hand, if the degree ofV0 is d, r−k+1 ≤
d ≤ r, which happens with probability T (r+1,d)

r
∑

c=1

T (r+1,c)

, the lifetime

is LRCTREE(k)(r, d).

D. Comparison

If the active time of a node in the network between one
join and one departure satisfies an exponential distribution
exp(1/λ), E(r) = λ

r
. We let λ = 690584.29149 seconds

according to the user behaviors in PlanetLab [12], and then
obtain the expected lifetime of STAR, TREE, and RCTREE in
G(15; n, 3), n ≥ 15, illustrated by Fig. 5.

4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

r (#used providers)

ex
pe

ct
ed

 li
fe

 ti
m

e
L(

r)
 (

se
c.

)

STAR(3)
TREE(3)
RCTREE(3)

Fig. 5: Expected lifetime of STAR, TREE, and RCTREE in
G(15; n, 3), n ≥ 15.

In Fig. 5, the lifetime of all three schemes increases with
r, because more providers can resist better towards node
departures. STAR has the best lifetime, because the departure
of one provider will not incur the loss of any other providers.
However, for TREE, since the departure of one provider usually
leads to the loss of some other providers in the regeneration
tree, its lifetime is less than60% of STAR whenr ≥ 7. Due to
the degree constraint ofV0, RCTREE is much more stable than
TREE. Whenr is large enough, RCTREE is quite similar to
STAR from the perspective of the degree ofV0. Whenr ≥ 8,
the lifetime of RCTREE is more than90% of STAR and still
continues approaching STAR. Since the curve of the virtual
bottleneck bandwidth of RCTREE reaches its peak in Fig. 3
whenr = 10, and the virtual bottleneck bandwidth is improved
significant by RCTREE compared with STAR, we can ignore
the minor improvement of lifetime of STAR in practice.

VI. CONCLUSION

In this paper, we address challenges in constructing the
regeneration tree in distributed storage systems with regener-
ating codes. We first analyze the constructive algorithm and

its bottleneck bandwidth of the tree-structured regeneration
with a variable number of providers (TREE). Based on this
analysis, we discuss the tree-structured regeneration combined
with regenerating codes (RCTREE) and analyze its bottleneck
bandwidth. Considering the node churn in distributed stor-
age systems, we make an analysis of the lifetime of TREE,
RCTREE, and the conventional star-structured regeneration
(STAR). Our analysis results show that RCTREE is not only
the fastest scheme, but also a very stable scheme. Therefore,
RCTREE is suitable for distributed storage systems, especially
for the system with a substantial degree of bandwidth hetero-
geneity. In our future work, we will validate the theoretical
advantage of RCTREE by real-platform based simulations and
experiments.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful ad-
vices. This work was supported in part by NSFC under Grant
No. 60702054, Shanghai Municipal R&D Foundation under
Grant No. 09511501200, the Shanghai Rising-Star Program
under Grant No. 08QA14009, NSERC Discovery Grant RGPIN
238994-06 and NSERC Strategic Grant STPGP 364910-08. Xin
Wang is the corresponding author.

REFERENCES

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: system support for automated availability management,” in Proc. of
the 1st Symposium on Networked Systems Design and Implementation
(NSDI). Berkeley, CA, USA: USENIX Association, 2004.

[2] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,”in Proc. of INFOCOM, pp. 2000–
2008, May 2007.

[3] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in Proc. of 4th International Workshop on Peer-to-Peer
Systems (IPTPS), 2005.

[4] Y. Wu, R. Dimakis, and K. Ramchandran, “Deterministic regenerating
codes for distributed storage,”Allerton Conference on Control, Comput-
ing, and Communication, 2007.

[5] S. Acedański, S. Deb, M. Médard, and R. Koetter, “How good is random
linear coding based distributed networked storage?”in Proc. of 1st
Workshop on Network Coding, WiOpt, Apr. 2005.

[6] A. Duminuco and E. W. Biersack, “A practical study of regenerating
codes for peer-to-peer backup systems,”in Proc. of IEEE International
Conference on Distributed Computing Systems (ICDCS), Jun. 2009.

[7] J. Li, S. Yang, X. Wang, X. Xue, and B. Li, “Tree-structured data regen-
eration with network coding in distributed storage systems,” in Proc. of
17th IEEE International Workshop on Quality of Service (IWQoS), 2009.

[8] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocation
problems,” in Proc. of Fifth Workshop on Network Coding, Theory and
Applications (NetCod), 2009.

[9] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, “Measur-
ing bandwidth between PlanetLab nodes,”Passive and Active Network
Measurement, pp. 292–305, 2005.

[10] H. A. David and H. N. Nagaraja,Order Statistics, 3rd ed. Wiley-
Interscience, Aug. 2003.

[11] A. Cayley, “A theorem on trees,”Quart. J. Math. 23 (1889), pp. 376–378.
[12] J. Stribling. Planetlab all pairs ping. [Online]. Available:

http://infospect.planet-lab.org/pings

