
1

oEvolve: Towards Evolutionary Overlay Topologies
for High Bandwidth Data Dissemination

Ying Zhu, Jiang Guo, and Baochun Li, Member, IEEE

Abstract— In this paper, we consider the problem of data dis-
semination from a source to multiple receivers over application-
layer overlay networks, and seek to significantly improve end-to-
end throughput of data dissemination sessions by constructing
topologies of high quality. We propose oEvolve, a distributed
algorithm that uses the strategy of progressively and adaptively
evolving the overlay topology over time towards high-quality
topologies, especially with respect to end-to-end throughput of
data dissemination. To validate the effectiveness and efficiency
of oEvolve, we present a fully distributed real-world oEvolve
implementation over PlanetLab, a global-scale wide-area overlay
network testbed. Our implementation consists of a framework of
components that involves a high-performance data forwarding
engine and a centralized performance monitoring facility.

Index Terms— Application-layer overlay networks,
application-layer multicast.

I. INTRODUCTION

Application-layer data dissemination on overlay networks
has received enormous interest from the research community
in the past few years, and has proven to be an attractive and
viable alternative to IP multicast. The high hopes originally
held for IP multicast — namely, its wide deployment in the
Internet — have thus far failed to be realized, despite that
it has been implemented and is available on most routers.
IP multicast has serious inherent problems that are obviated
in application-layer overlay networks. Transmission of data
between end-systems does not require infrastructure change,
as is the case for IP multicast. Scalability and complexity are
a problem in IP multicast because a router must keep group
state information for many groups, whereas an end-system
only needs to maintain group state for the group(s) to which it
belongs. Data transmission by unicast also means that we can
exploit all existing security, flow control and reliable delivery
mechanisms that are readily available and mature. Finally, the
application layer offers unprecedented flexibility and freedom
to design algorithms that incorporate a variety of Quality-
of-Service considerations, including bandwidth, latency, and
robustness.

Instead of working on the IP-layer network consisting of
routers and physical network links, data dissemination is
carried out on the application-layer overlay network, which
comprises end-systems as nodes and unicast connections as
links. It is assumed that this higher layer overlay network
resides on top of a densely connected IP network. A link
in the overlay network is a unicast connection between two

The authors are affiliated with the Department of Electrical and Com-
puter Engineering, University of Toronto. Their email addresses are
{yz,jguo,bli}@eecg.toronto.edu.

end-systems; it is a virtual link corresponding to a path in
the physical network that is invisible or unknown on the
application layer. Data is transmitted from source to receivers
by traversing on these virtual links between end-systems. The
problem thus becomes: How should the routing be done by
the end-systems to accomplish optimal or near-optimal data
dissemination according to a particular metric or set of metrics,
such as delay and bandwidth?

Application-layer overlay networks have two unique prop-
erties that both provide flexibility and introduce impediments
when designing overlay algorithms. First, topological vari-
ability. The topologies of overlay networks have the potential
to be variable in nature, since every pair of overlay nodes
(end-systems) can establish an overlay (virtual) connection via
the underlying transport protocol such as TCP. Further, these
overlay nodes are mostly transient when participating in the
overlay network, influenced by its own dynamics of joining,
leaving and failures. Second, link correlation. We define this
term precisely in Sec. II. In short, overlay links that share one
or more physical links are naturally correlated. Since these
correlations are not known by the application-layer algorithms,
an overlay link chosen for its high bandwidth may not yield
the expected throughput due to a hidden link correlation —
a physical link shared with other overlay links, unknowingly.
The properties of topological variability and link correlation
are not hard to observe, but have rarely been explicitly taken
into consideration when designing new algorithms in previous
literature.

The problem we study in this paper is that of disseminat-
ing large volumes of data from a data source to multiple
receivers. Such data may be either elastic or multimedia
traffic. Our objective is to design an algorithm to achieve
high end-to-end bandwidth from the source to each receiver.
We present oEvolve, a distributed overlay algorithm that
seeks to maximize bandwidth by constructing an overlay data
dissemination topology that progressively evolves and adapts,
based on on-the-fly measurement of performance metrics. The
topology begins from a tree spanning all receivers; thereafter,
oEvolve commences sending data on the current topology
while continually growing the topology by adding successive
trees spanning only those receivers with sufficient remaining
bandwidth. The topology is variable and evolves based on
inferred knowledge of the network, by continuous observation
of performance in the current topology and technique of
estimating residual last-mile bandwidth.

We have designed and completed a real-world implementa-
tion of oEvolve that consists of several non-trivial components
at the application layer. In order to implement the oEvolve

2

algorithm for realistic delivery of data, we have designed and
implemented a high-performance message forwarding engine
entirely in the application layer, as well as a centralized
monitoring facility for illustration and debugging purposes.
In order to evaluate the performance of oEvolve, we deploy
the oEvolve framework in PlanetLab [1], a wide-area overlay
network testbed that spans over 100 nodes1.

The contribution of this paper lies in three constituents.
The first is the explicit mechanisms used in the algorithm
which estimate last-mile bandwidth, and detect hidden bot-
tlenecks and changing conditions in the network that cause
declination in bandwidth. The second is the variability and
evolutionary nature of the topology construction. Lastly, our
implementation in a real-world wide-area network shows that
the algorithm achieves our objective of high bandwidth overlay
data dissemination.

The remainder of this paper is organized as follows. In
Sec. II, we present salient properties of overlay data dissem-
ination and provide theoretical insights. oEvolve, the main
algorithm, is presented in Sec. III and IV, along with an
analysis of its complexity and applicability. We proceed to
evaluate our oEvolve implementation in PlanetLab. The design
and implementation of underlying components of oEvolve are
presented in Sec. V, and evaluation results of oEvolve are
presented in Sec. VI. Finally, Sec. VII evaluates our proposal
in the context of related work, and Sec. VIII concludes the
paper.

II. INSIGHTS ON HIGH BANDWIDTH

OVERLAY DATA DISSEMINATION

In its general form, a data dissemination session may be
modeled by a graph representing its overlay topology, where
the vertices are overlay nodes, and the edges are overlay
connections between the nodes. In the Internet, it is generally
the case that data packets between end-systems in a unicast
connection follow the same path on the IP layer, due to the
slow (relative to data session time) changing nature of IP
routing. Hence, we assume that each virtual overlay link maps
to a unique path in the underlying IP network.

We perceive and elaborate on three essential inherent prop-
erties of application-layer overlay networks: link correlation,
topological variability, and heterogeneous bandwidth avail-
ability of overlay nodes.

A. Link Correlation

The single most vexing difficulty in constructing any kind
of high quality overlay topologies is the lack of knowledge of
the underlying physical network. Virtual links in the overlay
network may and often share common physical links, thus
becoming what we call correlated. When the mapping from
virtual to physical is unknown, the capacities of shared links
induce unforeseen constraints on the flow rates (or bandwidth)
on the overlay links. More precisely, when we say two overlay
links are correlated, we mean the flows on these links are
correlated; the definition is given below.

1At the time of our experiments and deployment on PlanetLab in October,
2003, there were approximately 100 active participating nodes in PlanetLab.

Definition 1 (link correlation) The flows f(P1) and f(P2)
on virtual overlay links P1 and P2, respectively, are correlated,
if P1 and P2 map to paths in the physical network that share
a common edge e. f(P1) and f(P2) are correlated by the
linear constraint: f(P1) + f(P2) ≤ c(e), where c(e) denotes
the capacity of e.

The definition naturally extends to multiple overlay links of
arbitrary number, e.g., if P1, P2, P3 share a common physical
edge e, f(P1) + f(P2) + f(P3) ≤ c(e). We use a simple
example to illustrate how hidden link correlation may sub-
stantially reduce achievable bandwidth. Consider the network
in Fig. 1: A, B, C are overlay nodes, d, e, f are IP routers, and
the edges are physical network links. The unique mapping
of the overlay links to the paths in the physical network
is as follows. AB maps to (A, d, e,B), AC to (A, d, f, C),
BC to (B, e, f, C). The physical link bandwidths are as
labeled in Fig. 1. The measured bandwidths of overlay links
AB,AC,BC are 10, 10, 9, respectively. Suppose A is the
source, and B,C are the receivers. The multicast tree with
the highest receiver throughput, based only on knowledge of
the overlay link bandwidths, would consist of A → B and
A → C. Due to the unknown sharing of Ad by AB and
AC, the throughput for both B and C is only 5. However,
given knowledge of the mapping of the overlay to the physical
network, it is easy to see that the multicast tree with the highest
throughput for B,C consists of the edges A→ B and B → C,
yielding a throughput of 9 for both B and C.

A

B C

e

d

f

10

18

18

10

109

An overlay network laid on top
of physical network. Nodes A, B,
are overlay nodes; nodes d, e, f are
IP routers. Physical links are shown
in thin lines; overlay links are shown
in bold lines. All physical links are
labeled with their capacity.

Fig. 1. An example of link correlation in an overlay network.

Complete information of the overlay-to-physical mapping
leads to optimal-bandwidth overlay topologies. Unfortunately,
obtaining complete or even non-trivial knowledge of such
mappings usually involves much complexity and incurs high
network costs. Existing research results of topology discovery
[2] have estimated that the number of IP layer backbone
routers may be in the proximity of 50, 000. It is therefore
not feasible to obtain the complete mapping information or to
explicitly compute the optimum based on such information.
Low complexity in both communication and computation
being a concern, we must find lightweight methods to handle
link correlations.

B. Topological variability

The topology of overlay networks is variable in nature for
two reasons. First, an overlay node is able to establish an
overlay connection with any other overlay node (whose IP
address is known). The topology of any overlay network can
potentially be a complete graph. Thus, overlay networks can
be constructed to be any topology by dynamically adding and

3

removing overlay links. Second, the presence of a particular
overlay node is transient in nature since it may accidentally
fail, or voluntarily leave and join the overlay topology at any
time.

The variability of overlay topologies has further declared
the infeasibility of using any knowledge of the underlying
physical topology to optimize the end-to-end bandwidth of
a data dissemination session. Even if such knowledge may
be obtained with costs, it is highly likely that the topology
has already changed to a different configuration by the time
such knowledge becomes available for computations. Such
variability makes it hard to justify high costs of obtaining
knowledge of the IP topology.

C. Heterogeneous bandwidth availability

Heterogeneity in last-mile bandwidths of different access
technologies (e.g., DSL or cable modem access) is clear
evidence that overlay nodes vary significantly in their band-
width availability. However, in an overlay data dissemination
topology, due to limited buffering capabilities at overlay nodes,
it is not trivial to keep track of the different sets of data
received by the nodes with different receiving rates. In a tree
topology, due to the constraints of per-node buffer capacities,
the effective end-to-end throughput from the source to all the
receiving nodes converges to the same value, which is that
of the node with the lowest available last-mile bandwidth.
Moreover, even if the tree had different receiver throughput
values, nodes are still restricted to the receiving throughput of
their upstream nodes.

Due to the high bandwidth of many end-systems and the
Internet backbone, it is almost certain that there is bandwidth
available in the network aside from that used by a single
data dissemination tree. Our aim is to utilize the residual
bandwidth to increase throughput for at least some of the nodes
that have more bandwidth available to them. With established
mechanisms such as source coding, heterogeneous receiver
throughput is entirely feasible.

D. Last-mile bandwidth heuristic

We make the observation that last-mile links are most
likely bottleneck links for paths between overlay nodes. Even
though the Internet backbones use optical fiber extensively for
superior transmission speeds, such high-bandwidth technology
is still unavailable to users in the last-mile links, [3], [4], [5].
In [4], IBM research reports data (courtesy of Internet Society)
that shows a factor of 8 per year of increase in World Wide
Web demand from users in the 1990’s. Clearly, the capacity
of links must increase at more than this rate to provide higher
available bandwidth to users. This level of communication
infrastructure overhaul has not taken place for the vast majority
of last-mile links; nor is it feasible for it to occur in the near
future. Hence, we design a lightweight algorithm that does
not attempt to discover full knowledge of the underlying IP
topologies, but only localized knowledge of flow constraints
on the last-mile links.

E. Max-min Fairness

Because of our aim of heterogeneous receiver throughput,
the concept of fairness must be considered. We adopt the
principle behind max-min fairness, a well-known and widely-
recognized definition of fairness, [6].

The general idea of max-min fairness is to allocate flows
to receivers in such a way as to maximize the allocation of
each receiver i, subject to the constraint that any increase
in i’s allocation does not lead to a decrease in another
receiver’s allocation that is already as small as or smaller
than i’s. In other words, the receiver with the lowest available
bandwidth is given the greatest possible allocation, and the
same allocation is given to all the other receivers. From the
remaining flows, the greatest possible allocation is given to
the receiver with the lowest available bandwidth among the
remaining receivers, and the same allocation given equally
to the other receivers. This continues until all the flows are
allocated.

Our design of oEvolve is based on the principle of max-
min fairness. We start by constructing an initial tree of high
quality spanning the source and all the receivers, on which data
dissemination commences. When the flows have stabilized, the
throughput for all the receivers converges to the same value —
the bottleneck bandwidth. It is very likely that such bottleneck
bandwidth is limited by the minimum last-mile bandwidth,
since it is highly probable that some receivers have limited
available last-mile bandwidth, especially as the number of
participating nodes scales higher. The next step is to construct
another tree using the residual available bandwidth for those
receivers that have available last-mile bandwidth remaining.
The topology grows as more trees are added until there is
insufficient bandwidth for another source-rooted tree.

III. OEVOLVE: DISTRIBUTED ALGORITHM

The gist of the oEvolve algorithm is to first construct
a basic multicast tree including all receivers, rooted at the
source. After the initial tree has been constructed, the data
dissemination topology is further evolved to add new trees that
include different sets of receivers, until the residual bandwidth
of the receivers are saturated. The procedure for forming the
second and subsequent trees is different from that for the
first tree. It involves steps in which if a receiver detects a
degradation in its throughput when it joins the new tree, then
the receiver withdraws from the new tree.

As the topology evolves to include new trees, data continues
to be disseminated on existing and new trees simultaneously.
Disparate sets of data streams are disseminated on different
trees in the topology. All the trees in the topology are dynam-
ically constructed — as well as destructed — over time: the
construction occurs when there is available residual bandwidth,
and the destruction occurs when all nodes in one particular
tree have resigned from the tree, in which case the source
automatically terminates disseminating on the destructed tree.

We now formally present the details of the oEvolve algo-
rithm.

4

A. Node state maintenance and dissemination

In oEvolve, every overlay node stores a group list, which
is a list of the addresses of all the nodes it knows about in
the data dissemination group, which is defined as the set
of all receivers that are currently participating in the data
dissemination session. With a locally maintained group list,
an overlay node periodically and randomly selects a subset
of nodes from its group list, exchanges local group lists with
them, and updates accordingly upon receiving their group lists.

The oEvolve algorithm makes use of two types of metrics
that each overlay node u stores:

1. Link metrics: The link from u to v, (u, v), on the overlay
network has associated with it two metrics, β(u, v) and
λ(u, v), where β is link bandwidth and λ is link delay.

2. Node metrics: Once the first multicast tree is constructed,
the topology is initialized. As it evolves to include new
trees, for a node u, its node degree δ(u) is defined as
the degree of u in the current tree being constructed. In
addition, its node residual bandwidth γ(u) is defined to
be the remaining last-mile bandwidth, with the presence
of existing data traffic on the current topology.

The total degree of a node in a data dissemination topology
is the number of its neighbors in the topology serving live
traffic, including all its upstream and downstream nodes.

B. Constructing the initial oEvolve topology

The initial oEvolve topology is constructed from a con-
nected graph of all the overlay receivers in the group and
the source. Such a graph is referred to as the basis graph. To
maintain the basis graph, in addition to the group list, each
overlay node u also keeps a neighbor list, which contains a
list of adjacent nodes in the basis graph. Nodes in the group
list are randomly probed by u to measure the bandwidth of
overlay links; those with the highest-bandwidth links to u are
selected to be neighbors. The selection process continues until
the maximum number of neighbors is reached.

Then, the initial oEvolve topology is constructed on the
basis graph, using the distributed all shortest-widest2 paths
algorithm based on distance vectors, proposed in [7]. With this
algorithm, the widest path (highest end-to-end bandwidth) is
selected; and if there is more than one widest path, the shortest
(lowest end-to-end latency) is then selected. As such, when the
construction completes, the initial data dissemination topology
is a tree, on which data dissemination begins immediately.

C. Convergence to a uniform throughput: the “throttling ef-
fect”

As data is disseminated from the source to all the receivers
in the initial topology, we argue that the TCP flow control
will ensure that the flow in the topology will stabilize to
one rate. This is due to the limited buffering capabilities of
overlay receivers. The uniform receiver rate after convergence

2Following convention, we henceforth use the terms width and length as
informal ways to refer to bandwidth and latency, respectively. In particular,
a shortest widest link refers to that with the smallest latency of all the links
with the highest bandwidth.

is the lowest last-mile bandwidth or the capacity of the
bottleneck link in the network. We refer to this conjecture
as the “throttling effect” in overlay networks.

We show our experimental results verifying the above
conjecture using a wide-area software infrastructure that we
have developed for real-world experiments (implementation
details deferred to Sec. V). In the topology we constructed, as
shown in Fig. 2(a), the source A sends back-to-back traffic
as rapidly as possible to the receivers. Identical copies of
messages are sent to downstream nodes. When there exist
multiple upstream nodes, no merging is performed. Buffers
of all nodes were set to size of 5 messages and available
bandwidth of node A was specified to be 400 KBps.

We observed that the throughput values on all the links
have converged to correct values, as shown in Fig. 2(a). Then
we proceeded to decrease the uplink available bandwidth of
node D to only 30 KBps. In a few seconds, the throughput
values of all the links except EF and EG have converged to
those shown in Fig. 2(b). At node D, both incoming links
have converged to 15 KBps due to the flow conservation
property (no merging performed); while at node B, since BD
is currently the bottleneck and messages have to be copied to
both downstreams, both AB and BF are therefore throttled to
the same throughput as BD.

A [per-node: 400 KBps]

B C

D

E

GF

(a) The traffic topology. A is the appli-
cation data source, with a per-node total
available bandwidth of 400 KBps, and
copies are made when forwarding
to multiple downstream nodes. The
measured throughput values are marked
at the edges, in KBytes per second.

200.3 199.2

201.5

199.3

198.6

200.5401.3

398.9 399.0

A [per-node: 400 KBps]

B C

D

E

GF

(b) When the uplink available bandwidth
of D is updated to 30 KBps, throughput
of all links decrease to 15 KBps, except
EF and EG which converge to 30 KBps.
All the links are affected, rather than
downstreams only, due to the back
pressure from full buffers.

14.5 15.8

15.3

15.4

15.0

15.630.2

30.3 29.7

[uplink: 30 KBps]

Fig. 2. Realistic testbed experiments that verify the “throttling effect” in
overlay topologies. All flows in the topology stabilize to the same as or smaller
than the bottleneck bandwidth capacity.

D. Estimating last-mile residual bandwidth

All flows into a receiver are correlated because they share
its last-mile link. The linear constraint for flows on a last-mile
link l is simply that the sum of all the flows on l be less than
or equal to the bandwidth of l. With live data dissemination on
the initial topology, one flow already exists on each l. Further
allocation of flows into and out of each receiver must be
constrained by the residual bandwidth of the overlay receiver.

There exist a variety of ways to measure the residual
bandwidth on each of the receivers. We briefly describe one
such mechanism from previous work (Jain et al. [8]). In this
mechanism, we take advantage of the observation that one-way
delays of a periodic packet stream may show an increasing

5

trend when the stream’s rate is higher than the available
bandwidth. This mechanism is shown to be accurate and does
not cause any significant increases in network utilization.

Alternatively, we may also use active probes to measure
the residual bandwidth of a node. The proposal is to ask
a particular overlay node to send back-to-back traffic to all
its neighbors as much as possible for a very short period of
time, while the existing data session is ongoing on the existing
topology. The period of time should be less than 10 seconds,
which is sufficient for TCP to saturate the residual bandwidth.
The measured total throughput is an estimate of the residual
last-mile bandwidth. This mechanism injects new traffic into
the network; however, the overall costs are small since it does
not need to be activated frequently.

The actual measurements may be performed sequentially
from the source to downstream nodes. The source first per-
forms the active probing, and when it has completed its
probing process, it notifies all its downstream nodes, who are
able to start the same procedure simultaneously to estimate
their residual bandwidth. Alternatively, the measurements may
also be performed randomly, such that each node decides
the timing of the probing process independently. Since these
measurements are not activated frequently, the probability of
probes interfering with each other is small. Even if they do
interfere, the smaller estimates which will result in a more
conservative oEvolve algorithm in evolving the topology, and
can be remedied in the next round of probing.

E. oEvolve core algorithm: evolving the data dissemination
topology

Once the initial oEvolve topology is constructed, oEvolve
enters the evolutionary phase, which lasts till the end of the
data dissemination session. The key problem is to construct
new trees for receivers who have residual bandwidth. To
minimize fluctuations of constructing and destructing trees in
the topology, in the implementation of oEvolve, a receiver joins
a new tree only if its residual bandwidth is at least on the same
order as its current data throughput, i.e., the residual bandwidth
is greater than 1/10 of the existing aggregate data throughput.

Let the subset of receivers with sufficient residual bandwidth
be referred to as the non-saturated receiver set. Each non-
saturated receiver stores a list of all known non-saturated
receivers (along with their residual bandwidths), and this list
is propagated and updated similarly as the group list, by all
group members. Eventually, all non-saturated receivers know
of each other, essentially forming a complete graph, referred
to as the residual basis graph, GB . The link bandwidths in
GB are bandwidth resources that remain from that used for
the live data transmission in the existing topology.

We present the core of the oEvolve algorithm that constructs
a tree in GB , referred to as the residual tree, to be added to
the current data dissemination topology. For the nodes that are
already in the residual tree, their node metrics are maintained
in a particular set, denoted as T . Each element of T is of
the form (u, β(u), λ(u), δ(u), γ(u)), where β, λ are the path
bandwidth and latency from the source s, respectively, δ is the
degree of u in the current residual tree, and γ is the residual
bandwidth of u.

For u �= s, the node metrics are initialized to β(u) =
β(s, u), λ(u) = λ(s, u), δ(u) = 0. For s, initially, β(s) =
∞, λ(s) = 0, δ(s) = 0. The set T is initialized to
{s, β(s), λ(s), δ(s), γ(s)}. Let v denote the newest overlay
node that is added to the residual tree and added to T (e.g.,
initially, v = s). Once v joins the tree, v chooses an overlay
node u that is in GB but not in the current residual tree, using
the following criterion:

u = arg min
x

{
λ(v, x) : x ∈ arg max

y∈GB−T
β(v, y)

}
. (1)

That is, (v, u) is the shortest widest link in GB , where u is
not already in the tree.

Upon receiving the set T from v, u joins the residual tree
by selecting w as its upstream node (parent) such that

w = arg min
y

{
λ(y, u) + λ(y) : y ∈ arg max

x∈T

{

min
{

β(x), β(x, u),
γ(x)

δ(x) + 1
, β(u)

}}}
. (2)

Essentially, the width of a path from s to u through x —
for some x already in the residual tree — is the minimum of
the following four bandwidth values:

– path bandwidth from s to x in the residual tree;
– link bandwidth (x, u) in GB ;
– share of residual bandwidth of x that u would get if u

joins the tree by choosing x to be its upstream node;
– residual bandwidth of u.

Node u simply chooses a node w in the current residual
tree to be its upstream node, such that the tree path from s to
u is the shortest widest.

After u is added to the residual tree, its upstream node w
updates its node degree and path metrics:

δ(w)← δ(w) + 1;
β(w)← min{β(w), γ(w)/δ(w)}.

If w’s path bandwidth changes, it is also made known to
its descendants in the tree, since their path bandwidths may
change due to the update. In oEvolve, w’s updates are sent to
its children in the residual tree. If a node z receives an updated
β(w), z computes β(z) ← min{β(z), β(w)} and forwards
β(z) to its own downstreams. Similar updates are performed
by u:

δ(u)← 1;
β(u)← min{β(w), β(w, u), γ(u)/δ(u)}.

Now that u is the newest node to join the residual tree,
u adds itself and its appropriate metrics to T , and the above
procedure repeats until T contains all the nodes in GB . At this
point, data is disseminated on the new tree, the latest addition
in the evolving topology.

The above process of constructing residual trees continues,
until the residual basis graph GB , formed after a tree is
constructed, does not include the source (i.e., the source
bandwidth is saturated); or the source is disconnected from the
other nodes; or it is empty (i.e., all the receiver bandwidths are

6

saturated). In other words, the evolutionary phase is suspended
under any of the following conditions:

(1) the source has no residual bandwidth;
(2) no overlay receiver nodes has residual bandwidth;
(3) the network cannot sustain additional data flows, i.e., one

or more physical links have reached their capacity, and
to add more data flow would cause network congestion.

Beyond our baseline algorithm, the third condition above is
vitally important. In Sec. III-F, we present mechanisms in the
algorithm to detect potential network congestion and to vary
existing topologies to avoid congestion.

A

B
C220

130

 400400

90
10D

E

F

A

B
C

220
130

90

10

D

E
F

90

220

130 130

10
10

A

B
C

190

120
70

D

E
70

190

120

120

A

B
C

50

D

50

50
50

A

B D E

F

A

B

C D

E

A

B

C D

A

B
C

D

E
F

70

50

50 50

70 70

10
10

10

10 10

130

120

13080

10

C

(a) An overlay network.

 400

380

17050

10

(b)

(c)

(d)

(e)

A: 220
B: 400
C: 400
D: 130
E: 90
F: 10

A: 190
B: 380
C: 390
D: 120
E: 70
F: 0

A: 50
B: 170
C: 320
D: 50
E: 0
F: 0

70

Fig. 3. The oEvolve core algorithm: an example. (a) An overlay network
with last-mile bandwidths shown. (b)-(d) Successive iterations of the while
loop. The leftmost column gives the residual bandwidth for each node at the
start of each iteration. The left side of each pair of graphs shows the residual
basis graphs (residual bandwidth labeled on edges) after a tree is built. The
right side of each pair shows the new tree built based on the residual basis
graph on the left. (e) Final data dissemination topology, combining all the
trees. The bolder the line, the higher the number of tree links amalgamated.
Each link is labeled with its aggregate throughput.

We now present an example, shown in Fig. 3, to illustrate
the steps of the oEvolve core algorithm during the evolutionary
phase. In Fig. 3(a), the last-mile bandwidths of the nodes
in the overlay network are labeled, and the cloud represents
the Internet. For simplicity of illustration, we make the (rea-

sonable) assumption3 that the Internet backbone has high
enough capacity such that the last-mile bandwidths are the
constraint on data flow into and out of nodes. It follows that
the bandwidth of an overlay link between two nodes is the
minimum of their last-mile bandwidths, as labeled in the initial
basis graph — the graph on the left in Fig. 3(b). Successive
iterations of the algorithm are shown in Fig. 3(b)-(d). The
residual bandwidth of each node at the beginning of each
iteration is shown in the leftmost column. Each pair of graphs
give the residual basis graph on the left and the resulting
residual tree on the right.

Suppose node A is the source and the other five nodes are all
receivers. The initial topology produced by all shortest-widest
paths algorithm — the tree on the right in Fig. 3(b) — yields
a throughput of 10.

Now the evolutionary phase commences. Using the heuris-
tics in the algorithm to estimate the last-mile bandwidth, F
will deduce that it has depleted its last-mile bandwidth and
refrain from joining further trees. Thus, the current residual
basis graph is the graph on the left in Fig. 3(c).

The second tree, the graph on the right in Fig. 3(c), is
constructed incrementally based on residual bandwidth. As
an example, we look at node D when it joins the tree with
T = {A,B,E} (nodes already in the tree). D obtains T from
one of its neighbors, and uses Eq. 2 to select a node from T
to be the parent. The bandwidth of a path from A to D in the
existing tree via B is 70, while via E it is 0 and directly from
A it is 50. Similarly, C does not choose A, D or E to be its
parent because the path from A to C via B has the highest
bandwidth.

Again, heuristics are utilized by nodes to measure their
residual bandwidth: E now detects that it has saturated its last-
mile link and stops joining new trees. The residual basis graph
after the first two trees is the graph on the left in Fig. 3(d). The
third tree constructed is the graph on the right in Fig. 3(d),
and the data dissemination topology (by amalgamating the
three trees) with the aggregate heterogeneous throughput for
each receiver is shown in Fig. 3(e). Henceforth, the topology
evolves further in response to node dynamics and changing
network conditions.

Note that in implementing the algorithm, it is desirable to
maintain one connection between a pair of nodes, regardless of
how many links there are between them from different trees.
In our implementation, each tree has an identification number,
which is stored in a field in the header of each message to
facilitate routing.

F. Evolving the topology with the presence of varying network
conditions

Generally, the dynamics of adverse overlay network condi-
tions, such as significantly deteriorated throughput, are caused
by bottleneck physical links reaching their capacity, since TCP
will adjust its sending rates as bottleneck routers drop IP
packets. A noticeable deterioration in receiving throughput is a

3The last-mile link is frequently the bottleneck, and even if that is not the
case, the network congestion detection and avoidance component of oEvolve
will prevent deterioration in performance.

7

clear indication of adverse network conditions. A receiver may
passively, non-intrusively monitor its aggregate throughput and
detect such adverse conditions.

oEvolve passively and continuously measures per-node ag-
gregate TCP throughput. This modification to the basic oE-
volve is made: the source always aggressively starts to send
data as soon as possible. Such data dissemination continues
as the tree is constructed. When u joins a tree, an active
connection is established from its upstream to itself, and
it starts to receive data from the source immediately. After
an initial period of settling into a more stable flow rate of
TCP (usually less than 10 seconds), u measures the new
instantaneous aggregate throughput. When u joins a residual
tree, two cases may arise:

Case 1: If the new throughput is greater than the through-
put before u joins the new tree, u remains in the tree;
Case 2: If the throughput decreases, u immediately
resigns from the new tree, and removes itself from the
current residual basis graph.

If all of the nodes within a particular residual tree have
resigned, the tree is destructed automatically. When a node u
resigns from a tree, its downstream nodes would be forced to
also resign. To address this problem, we propose to locally
repair the residual tree in oEvolve: Upon resignation, u sends
a notification message to all its immediate downstream nodes,
encapsulating the information about its upstream (parent) v.
As all downstream nodes receive the message, they proceed
to contact v to reconnect into the residual tree.

G. Node joins and departures

When a node A joins the data session, it is given a list of
group members that are currently participating in the session.
Node A updates its group list by randomly contacting known
members and obtaining their group lists. Node A also obtains
the non-saturated receiver set by randomly contacting nodes
until reaching one that stores this set. Receivers with high
residual bandwidths are probed to measure the bandwidth
of their unicast links to A. A join message is sent by A
to those with both high link bandwidth and high residual
bandwidth. A receiver, v, upon receiving the message, will
return min{β(v), γ(v)}, where β(v) is the aggregate receiving
throughput of v and γ(v) is the residual bandwidth of v. That
is, A collects from each v the highest possible throughput v
can relay to A. The v with the highest value is selected to be
its parent in all the trees to which v belongs. While A and the
network both have sufficient residual bandwidth, A continues
to find another upstream node and join more trees.

The procedure just described is incremental in nature. The
incremental joining and the local repair after departure involve
mainly locally attaching nodes to existing trees, and will
potentially cause the dissemination topology to deteriorate in
performance as more nodes join and leave. Therefore, after a
certain number of nodes have joined or departed, the algorithm
will reconstruct the topology from the beginning — the initial
oEvolve topology and all subsequent residual trees.

A node sends notification to its neighbors when it leaves the
group. The periodic exchanges of information between nodes

ensure that eventually every node will be informed. If a node
leaves without being able to notify others, then some node
attempting to exchange lists with this node will discover its
lack of response and send out notifications that this node is
no longer in the group.

Previous measures to address the problem of a node leaving
one residual tree is also effective when nodes depart from
data dissemination sessions voluntarily. When a node leaves
the session, it just needs to inform its immediate downstream
nodes of information about its upstream nodes in all the
residual trees in which it has participated, in order for the
downstreams to repair the trees locally.

Finally, for the convenience of the reader, we present the
oEvolve core algorithm in Table I and Table II.

TABLE I

SKELETON OF oEvolve CORE ALGORITHM

Let GB be the current residual basis graph.
Let i denote the current new residual tree that node u is joining.
i← 2; // initial topology is tree 1
Let fu be the current aggregate throughput.
Estimate u’s last-mile residual bandwidth γ(u).
while γ(u) > 1/d · fu

Update GB .
Let T = {a, β(a), λ(a), δ(a), γ(a)} be nodes already in tree i.

// β, λ = bandwidth & latency of path from s in tree i, resp.
// δ = degree in tree i, γ = residual last-mile bandwidth

Upon receiving T from a node v:
if maxx∈T {min{β(x), β(x, u), γ(x)

δ(x)+1
, β(u)}} < 1/d · fu

// No residual bandwidth connecting s to u, do not join
break;

w ← arg miny { λ(y, u) + λ(y) :

y ∈ arg maxx∈T {min {β(x), β(x, u), γ(x)
δ(x)+1

, β(u)} } };
Send <join tree i> message to w.
Receive w’s updated node metrics from w.
// Update u’s own node metrics:
δ(u)← 1;
β(u)← min{β(w), β(w, u), γ(u)/δ(u)};
λ(u)← λ(y, u) + λ(y);
T ← T ∪ {u, β(u), λ(u), δ(u), γ(u)};

After data dissemination begins on tree i:
Estimate residual bandwidth, γ(u), and update it in T .

i← i + 1;
Continual heuristics to detect deterioration in network conditions.

H. Analysis

We now discuss a few important properties of the algorithm.
We analyze two types of complexity for our algorithm: com-
munication and time complexity. The communication complex-
ity is the number of control messages required for constructing
the data dissemination topology; the time complexity is the
time that the oEvolve algorithm takes to finish. Here, we
consider oEvolve to be finished when all the residual trees have
first completed their construction, assuming stable network
conditions. After that, the data dissemination topology may
likely vary as network conditions change and nodes withdraw
or join various residual trees. However, this ongoing process
should have complexity of the same order.

First, we note that the oEvolve algorithm terminates after
a finite time. The algorithm uses distance vectors for routing

8

TABLE II

UPDATING AND PROPAGATING METRICS AFTER A NODE JOINS TREE i

Node w upon receiving <join tree i> message:
// Update node degree
δ(w)← δ(w) + 1;
if min{β(w), γ(w)/δ(w)} < β(w)

// Update path bandwidth and notify children
β(w)← min{β(w), γ(w)/δ(w)};
Send <update node bandwidth, β(w) > to children

else do nothing

Propagation: Node z, downstream of w, upon receiving
<update node bandwidth, β(w) > from parent:

if min{β(z), γ(z)/δ(z)} < β(z)
// Update path bandwidth and notify children
β(z)← min{β(z), γ(z)/δ(z)};
Send <update node bandwidth, β(z) > to children

else do nothing

(among overlay nodes) and the convergence of distance-vector
routing algorithm has been proven; the reader is referred to the
proof in [9]. The algorithm always terminates because there is
finite bandwidth, particularly at the source. Every time a tree
is added, more residual bandwidth of the source is utilized;
all residual bandwidth are eventually used in a finite time.

The initial stage of exchanging group lists is considered
to have converged when every node has obtained a list of all
nodes in the group. This is achieved by having nodes exchange
their current group lists with some randomly selected nodes
and update lists accordingly. It is easy to see that this proce-
dure is exactly the same as distance vectors routing protocol,
where group lists replace distance vectors. Therefore, its time
complexity (or convergence time) is O(n) and communication
complexity is O(n2) (see [9]).

The traditional all-shortest paths algorithm based on dis-
tance vectors is known to have communication complexity
of O(n2) and time complexity of O(n) [10]. All shortest-
widest paths algorithm is only different from all shortest
paths algorithm in comparing widths first and then comparing
the distances, and taking the minimum of widths in addition
to summing the distances. Thus, the two algorithms clearly
have the same communication and time complexity; hence the
initial tree takes time O(n) and control messages overhead
O(n2).

We now analyze the complexity of the procedure for con-
structing subsequent residual trees. When a new residual tree
is being constructed, for every node that joins, a constant
number of messages are exchanged to obtain node metrics for
comparison. Also, the updated node degree is propagated in
the tree to all the descendants, which requires O(n) messages
and O(log n) time. Since at most n nodes are part of the new
residual tree, the communication complexity is O(n2) and the
time complexity is O(n log n).

It remains only to obtain an upper bound of the possible
number of residual trees. Note that the algorithm enforces that
the (i + 1)-th tree has bandwidth to be at least 1/d of the
sum of bandwidths of all previous i trees. The worst case is
when each tree i + 1 has bandwidth that is 1/d of aggregate

bandwidth of the previous i trees. Let b0 be the bandwidth of
the first tree and k be the total number of trees. Then the total
bandwidth of all k trees is (d+1

d)k · b0. Let l and u denote the
lowest and highest possible last-mile bandwidth, respectively.
Since b0 is greater than l and (d+1

d)k · b0 is less than u, k is
bounded by log d+1

d
(u/l).

It is interesting to note the relation between the upper
bound of k and the lower bound of the new tree’s bandwidth,
1/d, which is a parameter set in the algorithm. With 1/d
being 1/10, k is O(log 11

10
(u/l)). While if it is 1/2, k is

O(log 3
2
(u/l)). In practical terms, we observe that the lower

bound for node bandwidth is about 56 Kbps for a dial-up
modem, and the upper bound is approximately 1 Gbps. The
number of trees, k, is hence bounded by log d+1

d
(20, 000),

which is around 104 for 1/d = 1/10 and 24 for 1/d = 1/2.
This presents a trade-off between throughput and efficiency.
Using 1/2 may result in lower throughput for some nodes
because new trees giving a smaller fraction of throughput
improvement would not be built. On the flip side, more
trees will slow down the algorithm and add communication
overhead.

Therefore, the total communication complexity for construc-
tion of the topology is O(n2) and the total time complexity
is O(n log n), with a coefficient of log d+1

d
(u/l), which is

independent of n, but dependent on d, l and u.
Thus far we have covered the complexity of the algorithm

for constructing an entire data dissemination topology. The
incremental joining procedure of a node involves transmission
of a constant number of messages between the new node
and potentially every other node, hence the communication
complexity is O(n), as is the time complexity. Local repairing
upon a node departure requires in worst case O(n) nodes to
carry out an incremental join. Since the joins are in parallel,
the time complexity is O(n); however, the number of control
messages is clearly O(n2).

I. Optimal solution

We briefly discuss the issue of a theoretical optimal so-
lution. We have not theoretically derived the optimality of
oEvolve due to the inherent difficulty of doing so for any
such heuristics-driven, distributed network protocols, such as
distance vector or link state. To the best of our knowledge, we
are not aware of any result on the theoretical optimal solution
that gives a flow assignment such that receiver throughput is
maximized according to max-min fairness, for the input of an
overlay network and the mapping from overlay to physical
network. In [11], Garg et al. gave a linear programming
formulation of maximizing equal receiver throughput in an
overlay network with perfect knowledge of overlay-to-physical
mapping and showed it to be polynomial-time solvable. How-
ever, this only gives a topology in which each receiver has the
same throughput; we refer to this as maximum uniform flow.

The max-min fair optimal flow for heterogeneous receiver
throughput is one in which for any receiver i with throughput
ri, ri cannot be increased without decreasing some rj < ri.
An algorithm can be conceived for such a max-min flow, using
one for maximum uniform flow (MUF) that returns all possible

9

MUFs for the given graph and mapping. There may be more
than one MUF with equal maximum flow value. The outline of
the max-min flow algorithm is as follows. The network graph
G and overlay-to-physical mapping M are the input. For each
F1,i ∈ F1 — set of flows given by MUF(G,M), obtain the
residual network graph R by subtracting F1,i; let {fj} be the
set of MUFs returned by MUF(R,M); and add F1,i+fj to the
set F2. Keep only the maximum valued flows in F2 (initially
empty). For each F2,i in F2, repeat as for F1. Repeat this for
Fk until MUF returns zero flow.

The algorithm given above is potentially exponential be-
cause there may be multiple MUFs at each step. We present an
example with a small overlay network that compares oEvolve
with the optimum, shown in Fig. 4. An overlay network with
overlay nodes A,B,C,D,E is given in Fig. 4(a); A is the
source and the rest are receivers. Fig. 4(b) shows the oEolve
solution (note E is a child of D in the first tree because E
did not know A at first). The trees are combined to yield
the data dissemination topology, in which B,C,D,E have
throughput 51, 10, 39, 49, respectively. The two flow graphs
shown in Fig. 4(c) amalgamate to yield the optimal max-
min fair throughput for each receiver — B,C,D,E have
throughput 48, 10, 48, 48, respectively. The largest discrepancy
is for D, where oEvolve is unfair to D in allocating 81% of
the optimal bandwidth.

A B

C

E
D

100 100

10

50 50

1k

1k

1k

1k

A

BCD

E

A

B

E

D

A

B

E

A

B

CDE

10

3010
10

(a) Overlay network

(b) oEvolve trees

(c) Optimal solution

A

B

E D
10

105

 5

37.5
18.75 18.75

18.75
18.75

Fig. 4. An example comparing oEvolve with the optimum.

IV. HETEROGENEOUS-THROUGHPUT OVERLAY DATA

DISSEMINATION: CASE STUDIES

We argue that heterogeneous-throughput data dissemination
is most helpful in the cases of multimedia streaming and
content distribution. For both cases, data can be encoded at
the source and sent to the receivers. There are a number
of source coding schemes that could be employed for the
purpose of streaming media content (e.g., video streams) to
receivers at different rates. One approach is layered coding
[12], in which a signal is encoded into a number of layers
that can be incrementally combined to yield ever increasing
quality. This is completely natural to the topology generated
by oEvolve, since any receiver has a path in each of the first i
trees and hence receives the first i layers (i is the number of
trees the receiver is in). Layered coding incurs only a slight
performance penalty.

With content distribution applications such as file transfers,
which must distribute the entire contents of a file to all the

receivers, it is also feasible to use the oEvolve topology. Every
receiver is in at least one oEvolve tree, and if it is not in all the
current oEvolve trees, then some of its ancestors (in at least one
of the trees it has joined) must participate in larger topologies
(amalgamation of a higher number of trees). Receivers can
recover the missing data from one or more of these upstream
nodes in the data dissemination topology.

It should be noted that content distribution using oEvolve
has two advantageous and desirable properties. First, robust-
ness. In oEvolve, a new residual tree is only constructed if the
residual bandwidth of the nodes is on the same order as the
highest receiver aggregate throughput in the current topology.
We may slightly revise this condition such that a new tree is
constructed only if the residual bandwidth is greater than the
current topology throughput. Hence, oEvolve trees have coarse
grades of monotonically non-decreasing bandwidth and it is
highly probable that the receivers that join all the current trees
are not few. These receivers are the safeguard against node or
link failures, since they receive all the contents and can in
fact be viewed as multiple “sources”, effectively mirroring the
original source. There is not a single point of failure, and
recovery of missing data has a higher level of parallelism and
therefore is more efficient. Second, ease of locating missing
data. Consider a receiver wishing to search for nodes with
data that it does not have. It simply needs to send a query
upstream in the last oEvolve tree that it has joined, and
will be guaranteed to find an upstream node that has its
missing data due to its participation in a larger topology. For
better load balancing, it may choose to find another node,
which can be efficiently accomplished by traversing upstream
in a direct path in oEvolve trees. Furthermore, there is no
complexity incurred by comparing disparate data sets and
computing differences, since the data is already known to be
exactly divided in segments corresponding to the bandwidth
of oEvolve trees.

V. OEVOLVE: IMPLEMENTATION

We have designed and implemented oEvolve in the real-
world PlanetLab wide-area overlay network testbed. For this
purpose, we have designed and implemented two supporting
components from scratch: (1) the engine, a high-performance
application-layer message processing facility in UNIX, that
is used to support live data dissemination sessions from
the source to the receivers; (2) the observer, a centralized
graphical monitoring facility in Windows, used to monitor and
control various aspects of the oEvolve deployment over wide-
area networks. The observer in action is shown in Fig. 5.
We now present the salient capabilities of the engine and
the observer as follows. Those readers who are interested in
the design and implementation details of the engine or the
observer are referred to [13].

Message processing. The engine is designed to smoothly
support multiple groups of traffic belonging to different ap-
plications, or different data dissemination sessions. It also has
the capability to concurrently process both application data and
oEvolve-specific control messages. The design of the engine
resembles an application-layer message switch, switching data
from upstreams to downstreams.

10

Table III shows the skeleton of the core engine implementa-
tion. In this implementation, the Algorithm class is defined
as a base class that the oEvolve implementation inherits. The
switch() function switches messages from the receiver
buffers to the sender buffers in a round-robin fashion.

TABLE III

DESIGN OF THE ENGINE THREAD

start the TCP server on the publicized port;
bootstrap from observer;
while not terminated

if there are incoming messages on the port detected
using non-blocking select()

if the message is engine-related
call Engine::process();

else
call Algorithm::process();

call Engine::switch();
stop the TCP server.

Measurements of performance metrics. Important perfor-
mance metrics such as per-link throughput and latency are
measured by the engine. Both the oEvolve algorithm and the
observer will be notified of the results of such measurements,
as part of the ongoing status reports of the overlay node. For
implementation detail on how the engine obtains measure-
ments of these metrics, the reader is referred to [13].

Emulation of bandwidth availability. For verification pur-
poses, we elect to perform preliminary tests of oEvolve under
controlled environments, in which node characteristics are
more predictable. The engine explicitly supports the emula-
tion of bandwidth availability in three categories: (1) per-
node bandwidth: the total incoming and outgoing bandwidth
available; (2) per-link bandwidth: the bandwidth available on
a certain point-to-point virtual link; and (3) per-node incom-
ing and outgoing bandwidth: the engine is able to emulate
asymmetric nodes (such as nodes on DSL or cable modem
connections) featuring disparate outgoing and incoming band-
width availability.

To use the engine, the oEvolve algorithm that we have
implemented only needs to call one function of the engine:
the send function. The oEvolve implementation is designed
as a message handler, in the form of a switch statement on
different types of messages. While processing each incoming
message, internal states of oEvolve may be modified. The
message handler resides in the process() function. The
skeleton of the oEvolve implementation is shown in Table IV.

In such a skeleton, it is not necessary for oEvolve to handle
all the known message types from the engine or the observer.
If a message type is not handled in the oEvolve implemen-
tation, the default process() function provided by a base
Algorithm class from the engine takes this responsibility.

VI. OEVOLVE: EVALUATION

In order to evaluate various aspects of the oEvolve algo-
rithm and its wide-area implementation, we have conducted
experiments with different sets of sites on PlanetLab, with
the data source deployed at various sites. In this section,

TABLE IV

SKELETON OF THE oEvolve IMPLEMENTATION

oEvolve::process(Msg * m)
switch (m -> type())
case sDeploy: (from observer)

deploy an application source;
case request: (from observer)

send oEvolve status updates to observer;
case sTerminate: (from observer)

terminate an application source;
case BrokenSource: (from upstream)

clear up internal states corresponding to the
application source at upstream, since it has failed;

case data: (from the engine)
process, consume or forward the message using
send(Msg * m, Node dest);

case UpThroughput: (from the engine)
record and process the throughput from an upstream;

. . . (process other engine or oEvolve-specific types)
default: (use the default behavior from the base
Algorithm class)
Algorithm::process(m);

Fig. 5. oEvolve in action with an ongoing topology construction process,
with 79 PlanetLab nodes deployed across the Internet.

we present a representative set of our experiments, from our
deployment of oEvolve on 10, 50 and 79 sites on PlanetLab.
For each experiment, we employ nodes with varying available
bandwidth. Fig. 5 illustrates oEvolve in action in the observer,
with 79 PlanetLab nodes across the Internet.

First, to illustrate the evolutionary nature of the topology,
we show the data dissemination topology at four progressive
stages in the oEvolve evolutionary phase for the deployment
of 10 nodes, presented as four directed graphs in Fig. 6. The
nodes are labeled with their IP addresses. The four graphs
show the varying topology at each stage of its construction
over time. It can clearly be seen from the figure that the
source node has the highest degree at each step and in the
final topology. This is explained by our having chosen a host
that has a high-speed Internet connection to be the source for
that experiment.

Next, we present results in an experiment with 50 nodes.
The graphs in Fig. 7 represent the evolving topology at four
progressive stages. As can be observed in Fig. 7, there are
approximately three classes of nodes with various levels of

11

131.215.45.71

128.59.67.200 204.123.28.52

150.135.65.2

128.59.67.202 128.197.13.31 128.84.154.49

152.3.136.2 128.2.198.188 199.77.128.193

131.215.45.71

128.59.67.200 128.2.198.188

204.123.28.52

128.197.13.31

128.84.154.49 152.3.136.2 128.59.67.202 199.77.128.193

150.135.65.2

131.215.45.71

128.59.67.200 128.2.198.188 128.59.67.202 128.84.154.49

204.123.28.52

152.3.136.2

199.77.128.193

128.197.13.31

150.135.65.2

131.215.45.71

128.59.67.200128.2.198.188

199.77.128.193

128.59.67.202

128.84.154.49204.123.28.52 152.3.136.2

128.197.13.31

150.135.65.2

Fig. 6. Evolution of the data dissemination topology for 10 nodes on
PlanetLab.

participation in the trees, indicating that the nodes have various
levels of bandwidth. We executed ping on each of the 50
nodes and noted a variation of round-trip time — which gives
a reasonable indication of bandwidth — that corresponds to
the observed variation in the number of trees joined. This
demonstrates that the number of trees to which a node belongs
is proportional to its bandwidth, conforming to the aim of the
algorithm. Once again, we selected a node with known high
bandwidth to be the source, which is indeed reflected in the
generated topology by the apparent high degree of the source
node.

We proceed to illustrate, in Fig. 8, the end-to-end throughput
for the nodes at each stage of the evolving topology. The
bottommost curve is the throughput in the first tree, the
second bottommost curve is the aggregate throughput in the

first two trees, and so on. The corresponding cumulative
distribution of throughput is presented in Fig. 9. A significant
improvement in throughput clearly exists in the last topology
compared with the initial topology (the first tree); even from
the second last topology (second curve from the top) to the
last topology (topmost curve), there is a noticeable increase in
aggregate throughput for many nodes. In Fig. 8, heterogeneity
of throughput is obvious: throughput varies greatly from
node to node; those nodes at the top of the spikes of the
topmost curve have the highest throughput. It is evident in
both Fig. 8 and Fig. 9 that all the nodes gain a substantial
improvement in throughput beyond the first tree. This is a
sure indication that frequently there is residual bandwidth, both
in the network and from the last-mile bandwidth of nodes,
available to be utilized beyond a single multicast tree. We
observe a noticeable increase in throughput even going from
the second last topology to the last topology, it is a convincing
indication that there is often residual available bandwidth after
building multiple multicast trees, that may be further used to
improve throughput for certain nodes. The slight fluctuation
in throughput for nodes in the first tree, in Fig. 8, can be
explained by changing network conditions and imprecision in
throughput measurements.

128.100.241.68

216.165.109.81 216.165.109.82 128.84.154.49 192.197.121.2 128.59.67.202 128.84.154.71 192.197.121.3 128.59.67.201 192.58.208.3 192.17.239.251 198.133.224.146 128.151.65.101 128.151.65.102 18.31.0.190 128.83.143.153 192.17.239.250 128.42.6.143 128.59.67.200 128.42.6.144 128.42.6.145 192.58.208.5 128.112.152.122 128.112.152.123 128.143.137.249

128.197.13.31 165.91.36.5 18.31.0.192 155.98.35.2 128.2.198.196 128.83.143.154 192.58.208.4 128.8.126.12 152.2.130.66 128.2.198.188 199.77.128.194 128.83.143.152 199.77.128.193 152.3.136.3 150.135.65.3 128.197.13.32 155.98.35.3 152.3.136.1 128.2.198.199 208.216.119.20 155.98.35.4 18.31.0.191 152.3.136.2 160.36.57.172 150.135.65.2

128.100.241.68

216.165.109.81216.165.109.82

192.58.208.5

192.197.121.2

128.83.143.154

192.197.121.3

199.77.128.194

128.59.67.201

128.151.65.101 199.77.128.193192.58.208.3 198.133.224.146 128.83.143.152

18.31.0.190

128.151.65.10218.31.0.192 128.83.143.153

192.17.239.250 128.59.67.200

128.42.6.143152.3.136.2 128.42.6.144128.42.6.145

128.59.67.202

192.58.208.4128.84.154.49

192.17.239.251

160.36.57.172

128.112.152.122

128.84.154.71

128.112.152.123

128.8.126.12128.197.13.31 152.3.136.3

128.143.137.249

152.2.130.66 165.91.36.5155.98.35.2155.98.35.3

150.135.65.2 150.135.65.3 128.2.198.188 128.2.198.199152.3.136.1 208.216.119.20155.98.35.4

128.197.13.3218.31.0.191

128.2.198.196

128.100.241.68

216.165.109.81 216.165.109.82

192.58.208.5

192.197.121.2

128.83.143.154

128.59.67.201

128.112.152.123 128.151.65.102

192.197.121.3

199.77.128.194128.151.65.101199.77.128.193192.58.208.3 198.133.224.146128.83.143.152 18.31.0.190 18.31.0.191

192.17.239.250

18.31.0.192 128.83.143.153

128.59.67.200

128.42.6.143152.3.136.2 128.42.6.144128.42.6.145

128.59.67.202

128.112.152.122128.84.154.49 128.197.13.32192.58.208.4

192.17.239.251

160.36.57.172 128.84.154.71128.8.126.12128.197.13.31 152.3.136.3 128.143.137.249165.91.36.5152.2.130.66 155.98.35.2 155.98.35.3

208.216.119.20150.135.65.2150.135.65.3 152.3.136.1 128.2.198.188128.2.198.199 155.98.35.4128.2.198.196

192.197.121.2

128.83.143.154

18.31.0.190 18.31.0.192

128.42.6.145

128.84.154.49192.58.208.4

128.59.67.201

128.112.152.123 128.151.65.101199.77.128.193

128.42.6.143 152.3.136.3

128.151.65.102

150.135.65.2 152.3.136.1208.216.119.20128.2.198.188 128.2.198.199 128.197.13.31

128.100.241.68

192.58.208.3 199.77.128.194

150.135.65.3

198.133.224.146

192.197.121.3

128.83.143.152

18.31.0.191

192.17.239.250

155.98.35.2 155.98.35.3

155.98.35.4 160.36.57.172

128.83.143.153

128.42.6.144

128.59.67.202

128.84.154.71

128.2.198.196

192.17.239.251 128.59.67.200216.165.109.82 216.165.109.81

165.91.36.5 152.2.130.66 192.58.208.5

128.8.126.12

128.143.137.249

152.3.136.2

128.197.13.32 128.112.152.122

Fig. 7. Evolution of data dissemination topology for 50 nodes on PlanetLab.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

 Overlay receiver nodes

 E
nd

to
en

d
th

ro
ug

hp
ut

 (
K

B
ps

)

 1 tree
 2 trees
 3 trees
 4 trees

Fig. 8. End-to-end throughput for 50 node experiment for each stage of the
evolving topology.

In the case of the 79-node experiment that we have con-
ducted across the Internet, we present the constructed data
dissemination topology in Fig. 10 (we choose not to show

12

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Endtoend throughput (kBytes per second)

 F
ra

ct
io

n
of

 m
em

be
rs

 Cumulative distribution of throughput

1 tree
2 trees
3 trees
4 trees

Fig. 9. Cumulative distribution of end-to-end throughput for 50 node
experiment for each stage of the evolving topology.

the intermediate topologies due to space constraints). For this
deployment, we did not choose a source node that has higher
bandwidth than all the other nodes. Instead, the source is only
one among a number of nodes with (approximately) equally
high bandwidth. The topology in the graph verifies this: the
source does not have a noticeably higher degree than all other
nodes.

216.165.109.82

131.179.112.70 131.179.112.71

208.216.119.20

128.84.154.49

128.111.52.62

192.17.239.250

131.243.254.36

192.17.239.251

160.36.57.172

199.77.128.194

200.19.159.34200.19.159.35

199.77.128.193

138.96.250.222171.64.64.217150.135.65.2 150.135.65.3132.239.17.225 128.8.126.12

132.65.240.100 132.65.240.101

12.46.129.21130.37.198.243 130.149.49.28

128.2.198.199

141.213.4.202

169.229.51.251169.229.51.252 169.229.51.250

152.3.136.1

128.59.67.201

128.59.67.200

128.59.67.202

192.58.208.3

128.111.52.61 128.151.65.102

192.197.121.2

128.2.198.196

192.58.208.5

132.239.17.224132.239.17.226

128.2.198.188155.98.35.3

192.58.208.4

155.98.35.2

12.17.136.13618.31.0.192131.243.254.35 128.197.13.31 18.31.0.190

165.91.36.5128.42.6.143128.42.6.144 152.2.130.66128.83.143.153152.3.136.2 155.98.35.4128.83.143.152152.3.136.3

192.197.121.3

216.165.109.81

198.133.224.146128.84.154.71

128.95.219.194 204.123.28.52

12.17.136.137 131.215.45.71128.42.6.145

128.143.137.249 128.112.152.123128.112.152.122

128.151.65.101

128.100.241.68

128.95.219.192

128.83.143.154

18.31.0.191128.197.13.32

Fig. 10. Data dissemination topology in the 79-node experiment in Planet-
Lab, before the transitional event introducing cross traffic.

To illustrate the adaptive and evolutionary nature of oEvolve
topologies when there are deteriorating network conditions due
to external cross traffic, our 79-node experiment consists of a
transitional event. As 79 oEvolve nodes are deployed on the
Internet and the initial construction of the data dissemination
topology has been completed (as in Fig. 10), we deploy
another multicast tree of 40 nodes as competing cross traffic.
The nodes in the competing tree constitute a subset of the
original set of 79 nodes. We illustrate the aggregate end-to-
end throughput before and after the transition for all the 79
nodes in Fig. 11 and Fig. 13, respectively. Two curves are
plotted in each figure — one for the throughput in the data
dissemination topology generated by oEvolve, and the other for
the throughput in a static 79-node multicast tree constructed by
all shortest widest paths on the basis graph. In both cases, the
topology generated by oEvolve enjoys much better throughput
performance than the multicast tree. Most of the nodes achieve
significantly higher throughput than they do in a multicast tree.

The heterogeneity of throughput for the nodes is obvious in
both figures.

After the transitional event in our 79-node experiment, the
nodes with low bandwidths are evident in Fig. 13. On average,
the throughput in Fig. 11 is higher than in Fig. 13, and
the latter figure also has more nodes with low throughput,
approaching that in the multicast tree. This shows the ef-
fects of oEvolve with respect to withdrawing from residual
trees when deteriorating network conditions are detected with
passive measurements. However, these results have confirmed
our previous theoretical analysis that the higher bandwidth
nodes are not affected by the low bandwidth nodes that are
constrained by the competing traffic. The higher bandwidth
nodes achieve consistently high throughput even while some
of the other nodes have very low throughput. We also note that
even though many nodes achieve much higher throughput, they
do not do this at the expense of lower bandwidth nodes, which
still perform better than in a multicast tree. This demonstrates
that oEvolve has achieved max-min fairness with respect to
end-to-end bandwidth of all the receivers.

The cumulative distributions of end-to-end throughput for
nodes from both before and after the transition in our 79-node
experiment are presented in Fig. 12 and Fig. 14, respectively.
Comparing with the case of a static multicast tree, it can
be seen that the throughput of all the nodes are higher than
in a tree. This could be baffling at first glance; however,
it may very well be that a node does not utilize all its
available bandwidth in a single tree, since a sub-optimal
tree link may be chosen (which is likely due to the lack of
knowledge of underlying network conditions and topology), or
the network may become congested along the links in the tree.
By dynamically monitoring and actively probing the network
while disseminating data, a better performing topology may
be progressively constructed. The experimental results confirm
such conjectures that led to the design of oEvolve.

A further observation from our experimental results is the
greater heterogeneity in the 79-node experiment compared to
the 50-node experiment. By comparing Fig. 9 with Fig. 12, it is
clear that with 79 nodes, there are more nodes achieving higher
throughput than with 50 nodes. We believe that this may be
because there are proportionately more high-bandwidth nodes
that find each other to form high-bandwidth trees. These are
encouraging results, since it indicates that with more nodes,
oEvolve will generate topologies with better performance.

In summary, we have conducted a number of experi-
ments over PlanetLab, a wide-area network testbed. Such
experiments are not possible without our implementation of
the message processing engine, and performance monitoring
is not feasible without the implementation of the observer.
Our algorithm, oEvolve, significantly improves the end-to-
end throughput for all receivers, and are adaptive to varying
network conditions caused by competing cross traffic. For
those receivers with high available bandwidth, they are able
to achieve proportionately high throughput, without adversely
and unfairly affecting the throughput of lower bandwidth
nodes.

13

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

1000

 Overlay receiver nodes

 E
nd

-t
o-

en
d

th
ro

ug
hp

ut
 (

K
B

ps
)

 multicast tree
 data dissemination topology

Fig. 11. Aggregate end-to-end throughput in the 79-node experiment in
PlanetLab before the transitional event introducing cross traffic: (1) Multicast
tree; (2) Data dissemination topology constructed by oEvolve.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Endtoend throughput (kBytes per second)

 F
ra

ct
io

n
of

 m
em

be
rs

 Cumulative distribution of throughput

 multicast tree
 data dissemination topology

Fig. 12. Cumulative distribution of end-to-end throughput in the 79-node
experiment in PlanetLab before the transitional event introducing cross traffic:
(1) Multicast tree; (2) Data dissemination topology constructed by oEvolve.

VII. RELATED WORK

Due to the difficulty of deployment of IP multicast, al-
gorithms promoting application-layer overlay multicast have
been proposed as remedial solutions, focusing on constructing
a multicast tree. The common objective is to perform multicast
with only unicasts between end hosts, and to maximize overlay
performance. Narada [14], for example, first constructs an
efficient mesh among members, and then construct a spanning
tree of the mesh. More recently, there have been proposals
of overlay multicast tree construction algorithms that aim to
scale well to large group sizes, using tools including Delaunay
Triangulations [15] and organizing members into hierarchies
of clusters [16]. Algorithms have also been designed based on
structured overlay networks (imposing data on specific nodes
based on hash functions), examples include overlay multicast
[17] based on CAN [18], as well as Scribe [19] based on
Pastry [20]. These approaches may incur performance penalty,
and may not be adaptive to dynamic network metrics, which
is shown to be critical in overlay multicast routing, [21], [22].

oEvolve is more akin to two recent research papers that seek
to utilize residual bandwidth availability by building multiple
overlay multicast trees: CoopNet [23] and SplitStream [24].
CoopNet and SplitStream have proposed to utilize multiple
trees to deliver striped data, using multiple description coding

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

 Overlay receiver nodes

 E
nd

-t
o-

en
d

th
ro

ug
hp

ut
 (

K
B

ps
)

 multicast tree
 data dissemination topology

Fig. 13. Aggregate end-to-end throughput in the 79-node experiment in
PlanetLab after the transitional event introducing cross traffic: (1) Multicast
tree; (2) Data dissemination topology evolved by oEvolve after convergence.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Endtoend throughput (kBytes per second)

 F
ra

ct
io

n
of

 m
em

be
rs

 Cumulative distribution of throughput

 multicast tree
 data dissemination topology

Fig. 14. Cumulative distribution of end-to-end throughput in the 79-node
experiment in PlanetLab after the transitional event introducing cross traffic:
(1) Multicast tree; (2) Data dissemination topology evolved by oEvolve after
convergence.

or source erasure codes. CoopNet proposes a centralized
algorithm to facilitate using multiple multicast trees from
different sources, and does not have explicit mechanisms to
maximize bandwidth. In contrast, SplitStream has proposed
a decentralized algorithm to construct a forest of multicast
trees from a single source. The main idea is to build multiple
interior-node-disjoint trees, which guarantee that each node
serves as internal forwarding nodes in only one of the trees.
SplitStream is developed based on Scribe, a tree-based multi-
cast algorithm based on structured overlay networks.

oEvolve distinguishes from these previous work in many
important aspects. oEvolve, as its name suggests, is designed
from the ground up to evolve the data dissemination topologies
beyond a single tree, by carefully evaluating the feasibility via
available bandwidth measurements. The evolutionary nature
also manifests itself when the network condition varies, as
nodes join and withdraw from residual trees. In contrast,
there are no provisions in both CoopNet and SplitStream
regarding such evolutionary topologies based on performance
measurements. In addition, oEvolve focuses on mechanisms
and heuristics to address issues such as interference of flow
constraints, measurements of residual bandwidth, and the
detection and avoidance of deteriorating network conditions,
none of which has been covered in any of the previous papers.

14

Compared to oEvolve, there also exist noteworthy disad-
vantages in both CoopNet and SplitStream. CoopNet is a
centralized algorithm and thus introduces a central point of
bottleneck and failures. SplitStream, on the other hand, is a
distributed algorithm; but it is based on structured overlay
multicast, which is generally not as generic as unstructured
overlays that oEvolve assumes. In structured overlays, neigh-
bor mappings are dictated by addresses from certain abstract
coordinate spaces, which may incur performance penalties,
and may not be versatile adapting to dynamic metrics such
as available bandwidth.

Finally, Kostic et al. [25] and Byers et al. [26] have both
proposed to construct an overlay mesh of concurrent data
dissemination connections, each sending a (hopefully) disjoint
set of data. As a node receives data from these connections
and merges incoming data, throughput may be significantly
improved due to the larger number of concurrent connections.
Byers et al. has discussed the algorithmic details of merging
differences from different downloading sources, while Kostic
et al. has proposed an elaborate algorithm that allows nodes
to send data to different points in the overlay, as well as to
locate and recover missing data items. Both work had similar
objectives to oEvolve, in the sense that they all seek to improve
the bandwidth of data dissemination.

There are, however, significant differences comparing oE-
volve to these approaches. First, while both [25] and [26] need
to assume large or unlimited buffers at each overlay node in
order to store elements of data to potentially serve others, oE-
volve does not make this assumption. While this assumption is
certainly valid when file-based rather than in-memory buffers
are used, it unavoidably lacks the support for delay-sensitive
data dissemination, such as real-time streaming of multimedia
or stock quotes. Second, oEvolve shares the advantage of
these approaches that the end-system available bandwidth is
saturated, without the complexity of locating missing data
items from a potentially large number of possible hosts —
data may only arrive from upstream nodes in oEvolve residual
trees. Finally, oEvolve enjoys its unique evolutionary nature
with respect to the data dissemination topology. While [25]
has briefly discussed heuristics such as pruning low-quality
senders or receivers of data, such heuristics are optimizations
in nature, and have not reached the maturity of step-by-step
evolutionary mechanisms to achieve both fair and bandwidth-
saturated data dissemination.

VIII. CONCLUDING REMARKS

In this paper, we have presented oEvolve, a distributed
algorithm to significantly improve end-to-end bandwidth of
data dissemination sessions. Due to the evolutionary nature of
oEvolve, oEvolve is able to deliver a topology that is most
suitable to the underlying network conditions, with respect to
fairness, high end-to-end bandwidth, as well as fluctuating net-
work conditions due to unknown physical topologies or cross
traffic. With respect to the effectiveness and performance of
our algorithm, we have undertaken both analytical studies and
implementation on the PlanetLab wide-area overlay network
testbed, and the evaluation results agree with our objective of
high-bandwidth data dissemination in overlay networks.

REFERENCES

[1] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint
for Introducing Disruptive Technology into the Internet,” in Proc. of
HotNets-I, 2002.

[2] R. Siamwalla, R. Sharma, and S. Keshav, “Discovering
Internet Topology,” in Technical Report, Cornell University,
http://www.cs.cornell.edu/skeshav/papers/discovery.pdf, July 1998.

[3] News.com technology news, http://news.com.com/2009-1033-
269131.html?legacy=cnet.

[4] IBM research, http://www.research.ibm.com/wdm/motive/reason.html.
[5] Agilent, http://www.agilent.com/Feature/English/archive/C009.html.
[6] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1987.
[7] Z. Wang and J. Crowcroft, “Quality of Service Routing for Supporting

Multimedia Applications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 14, no. 7, pp. 1228–1234, September 1996.

[8] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput,” in
Proc. of ACM SIGCOMM, 2002.

[9] J.J. Garcia-Luna-Aceves, “A Distributed Loop-Free, Shortest-Path
Routing Algorithm,” in Proc. of IEEE INFOCOM, 1988.

[10] M. Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
1986.

[11] N. Garg, R. Khandekar, K. Kunal, and V. Pandit, “Bandwidth Maximiza-
tion in Multicasting,” in Proc. of the 11th Annual European Symposium
on Algorithms, September 2003.

[12] S. McCanne and V. Jacobson, “Receiver-driven Layered Multicast,” in
Proc. of ACM SIGCOMM, 1996.

[13] “iOverlay: A Generic and High-Performance Substrate for Overlay
Algorithm Implementations,” in Technical Report, University of Toronto,
October 2003.

[14] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End System
Multicast,” IEEE Journal on Selected Areas in Communications, pp.
1456–1471, October 2002.

[15] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multicasting
With Delaunay Triangulation Overlays,” IEEE Journal on Selected Areas
in Communications, pp. 1472–1488, 2002.

[16] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” in Proc. of ACM SIGCOMM, August 2002.

[17] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
level Multicast Using Content-addressable Networks,” in Proc. 3rd Int.
Workshop on Networked Group Communication (NGC ’01), London,
UK, 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A Scalable
Content-Addressable Network,” in Proc. of ACM SIGCOMM, August
2001, pp. 149–160.

[19] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: A
Large-Scale and Decentralized Application-Level Multicast Infrastruc-
ture,” IEEE Journal on Selected Areas in Communications, pp. 1489–
1499, October 2002.

[20] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-peer Systems,” in Proc.
IFIP/ACM Middleware 2001, November 2001.

[21] S. Shi and S. Turner, “Multicast Routing and Bandwidth Dimensioning
in Overlay Networks,” IEEE Journal on Selected Areas in Communica-
tions, pp. 1444–1455, October 2002.

[22] M. Faloutsos, A. Banerjea, and R. Pankaj, “QoSMIC: Quality of Service
sensitive Multicast Internet protoCol,” in Proc. of ACM SIGCOMM,
August 1998.

[23] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing Streaming Media Content Using Cooperative Networking,” in Proc.
of the 12th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2002), Miami Beach,
Florida, May 2002.

[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” in Proc. of the 19th ACM Symposium on Operating
Systems Principles (SOSP 2003), October 2003.

[25] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” in Proc. of
ACM SOSP, 2003.

[26] J. Byers and J. Considine, “Informed Content Delivery Across Adaptive
Overlay Networks,” in Proc. of ACM SIGCOMM, August 2002.

