
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 1

oStream: Asynchronous Streaming Multicast in
Application-Layer Overlay Networks

Yi Cui, Baochun Li, Member, IEEE, and Klara Nahrstedt, Member, IEEE

Abstract— Although initially proposed as the deployable alter-
native to IP multicast, application-layer overlay network actually
revolutionizes the way network applications can be built, since
each overlay node is an end host, which is able to carry out
more functionalities than simply forwarding packets. This paper
addresses the on-demand media distribution problem in the
context of overlay network. We take advantage of the strong
buffering capabilities of end hosts, and propose a novel overlay
multicast strategy, oStream. We have performed extensive anal-
ysis and performance evaluation with respect to the scalability
and the efficiency of oStream. With respect to the required server
bandwidth, we show that oStream defeats the theoretical lower
bound of traditional multicast-based approaches, under both
sequential and non-sequential stream access patterns. oStream is
also robust against bursty requests. With respect to bandwidth
consumption on the backbone network, we show that the benefit
introduced by oStream overshadows the topological inefficiency
(e.g., link stress and stretch) introduced by using application-
layer multicast.

Index Terms— overlay, multicast, streaming

I. INTRODUCTION

Application-layer multicast, or overlay multicast, was ini-
tially proposed to facilitate the deployment of multicast-based
applications in the absence of IP multicast [1]. By organizing
end hosts into an overlay network, multicast can be achieved
through data relay among overlay members via unicast. Al-
though seemingly it just elevates the multicast functionality
into application layer, this approach actually revolutionizes
the way network applications can be built. In IP multicast,
except for nodes at the edge, the network is composed of
routers, whose task is no more than forwarding packets. In
contrast, each node in overlay network is an intelligent one
that can contribute various resources (CPU, storage, etc.). Such
great flexibilities have soon been utilized in the latest network
and application designs, such as data/service indirection [2],
resilient routing [3], and peer-to-peer streaming [4], etc.

This paper explores the feasibility of using an overlay-
based approach to address the problem of on-demand media
distribution. The fundamental challenge of this problem is
the unpredictability of user requests in the following aspects:
(1) asynchrony, where users may request the same media
object at different times; (2) non-sequentiality, where users’

Yi Cui and Klara Nahrstedt are with the Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign. Their email addresses are
{yicui, klara}@cs.uiuc.edu. Baochun Li is with the Department of Electrical
and Computer Engineering, University of Toronto. His email address is
bli@eecg.toronto.edu. This work was supported by NSF CISE Infrastructure
grant under contract number NSF EIA 99-72884, and NSF ITR grant under
contract number NSF CCR 00-86094. Views and conclusions of this paper are
those of authors, which should not be interpreted as representing the official
policies, either expressed or implied, of the funding agencies.

t0

t0

t0

t0

t0

t0

t2

t4

t1

t3

t1t2

t3t4

(a) IP Multicast (b) Asynchronous Multicast

Fig. 1. Conceptual Comparison of IP Multicast and Asynchronous Multicast

stream access pattern is VCR-type, instead of sequential (from
beginning to end); and (3) burstiness, where the request rate
for a certain media object is highly unstable over time. The
basic approach of traditional IP-multicast-based solutions [5],
[6], [7], [8] is to repeat the same media content on different
multicast channels over time. Clients are either enforced to
be synchronized at the price of service delay, or required to
participate in several multicast sessions simultaneously.

We argue that this is not necessarily the case in the context
of overlay networks. In fact, we should leverage the temporal
correlation of asynchronous requests and the buffering capa-
bilities of overlay nodes to address the above challenges. As
shown in Fig. 1, by enabling data buffering on the relaying
nodes in an application-layer multicast tree, requests at differ-
ent times can be satisfied by the same stream, thus achiev-
ing efficient media delivery. Based on this foundation, we
propose oStream, an application-layer asynchronous streaming
multicast mechanism. The main contributions of introducing
oStream include the following favorable properties, supported
and verified by extensive analytical and experimental results:

(1) Scalability: We derive the required server bandwidth
in oStream, which defeats the theoretical lower bound of
traditional multicast-based approaches, under both sequential
and non-sequential access patterns. This may be achieved
when we allow each relaying node in the multicast tree
to buffer at most 10% of the media streams. Furthermore,
over a certain threshold, the required server bandwidth no
longer increases as the request rate grows, which suggests the
robustness of oStream against “flash crowds”.

(2) Efficiency: In previous works, server bandwidth has been
used as the sole metric to evaluate system scalability and per-
formance. However, bandwidth consumption on the backbone
network for any streaming scheme has not been evaluated. This
issue is of particular interest due to the following conjecture:
although overlay networks inevitably introduce topological
inefficiency (link stress and stretch) compared to IP multicast,
the benefit introduced by asynchronous streaming multicast in

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 2

oStream may overshadow such inefficiency. Towards analyz-
ing the efficiency of oStream, we investigate this conjecture
analytically, the results of which have been confirmed by our
experiments.

The remainder of the paper is organized as follows. Sec. II
presents the temporal dependency model. Sec. III presents
the asynchronous multicast algorithm. We extensively analyze
the scalability and efficiency of oStream in Sec. IV and V,
respectively. Sec. VI evaluates the performance of oStream
and verify our analytical results. Sec. VII discusses the related
work. Finally, Sec. VIII concludes the paper.

II. OSTREAM: PRELIMINARIES

A. Temporal Dependency Model

In this paper, we consider true on-demand services, i.e., the
client request is immediately processed, instead of being wait-
listed. Consider two asynchronous requests Ri and Rj for the
same media object. The object is played back at a constant bit
rate of one byte per unit time. Ri starts at time si from the
offset oi. Rj starts at time sj from the offset oj . With respect
to these offsets, the unit is bytes. Since the playback rate is one
byte per unit time, the unit is equivalently time unit as well.
This is convenient to compare these offsets with time instants
(e.g., si and sj). The time lengths of Ri and Rj are li and lj .
We define Ri as the predecessor of Rj , Rj as the successor
of Ri (denoted as Ri ≺ Rj), if the following requirements are
met: {

oi + li > oj if oi ≤ oj

oj + lj > oi if oi > oj
(1)

sj − oj > si − oi (2)

Inequality (1) demands that the media data requested by Ri

and Rj must (partially) overlap. Inequality (2) means that Ri

must retrieve the data before Rj does. Note that these are two
parallel requirements, when both of which are met can Ri be
the predecessor of Rj . Also, they only apply to the common
piece of data requested by Ri and Rj .

times1 s3 s2

o3

o1

o2

R1 R2 R3

s1 s3s2 time

R1
R2

R3

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

(a) Sequential Access (b) Non-sequential Access

Fig. 2. Temporal Dependency Model

Fig. 2 (a) and (b) show examples of temporal dependencies
under sequential and non-sequential access patterns. In both
figures, R1 ≺ R2 ≺ R3. Notice that in case of sequential
access, o1 = o2 = o3 = 0. From the definition, we may
observe that R1 has the potential to benefit R2 in that,
R2 could (partially) reuse the stream from R1 rather than
obtaining it directly from the server. Note that in Fig. 2(b),
R2 is the predecessor of R3, even though R3 starts earlier

than R2. This case will not occur when all requests observe
sequential access patterns (Fig. 2(a)).

We claim that all on-demand media streaming algorithms
could be described based on the temporal dependency model.
In all algorithms, R2 utilizes its predecessor/successor relation
with R1 to conserve server bandwidth, only with different
ways of reusing the stream from R1.

Notation Definition
Ri ≺ Rj Request Ri is the Predecessor of Request Rj

Rj is the Successor of Ri.
si Starting Time of Ri

oi Starting Offset of Ri

li Time Length (Duration) of Ri

TABLE I

NOTATIONS USED IN SEC. II

B. Hierarchical Stream Merging: a Review

We first review the hierarchical stream merging (HSM)
algorithm. In [5], Eager et al. point out that HSM can achieve
the theoretical lower bound of server bandwidth consumption
for all multicast-based on-demand streaming algorithms, if
the client has unlimited receiving bandwidth and buffering
space. Therefore, the algorithm presented here does not belong
to any particular implementation of the HSM family, but
rather an ideal case, in which the theoretical lower bound
in [5] can be achieved. Our purpose here is to establish a
theoretical baseline, against which our proposed algorithm can
be evaluated and compared.

time

R3 joins R2

R2 joins R1

R3 joins R1

s1 s3 s2

R3

R1
R2

R3

Server

Multicast

Request

R1 R2 R3

s1 s3s2 time

R2 joins R1

R3 joins R1

R3 joins R2

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

o3

o1

o2

(a) Sequential Access (b) Non-sequential Access

Fig. 3. Examples of Hierarchical Stream Merging

We illustrate the algorithm using the requests shown in
Fig. 2(a) and (b) as examples. In Fig. 3(a), since R1 has
no predecessor, it opens a multicast session from the server
to retrieve the requested data. R2 initiates another multicast
session upon its arrival. Meanwhile, it also listens to the
session of R1 to prefetch data from R1. R2 stays in both
sessions until the point when the prefetched data starts to get
played. From this point on, R2 continues to prefetch data from
R1’s session and withdraws from its own session. We claim
that R2 “joins” R1 at this point. Similarly, R3 initially opens
its own multicast session and retrieves data from sessions of
both R1 and R2 at the same time. It then withdraws from its
own session and joins R2 at the point when the data prefetched
from R2 may be used. Finally, R3 joins R1. Within the
algorithm, each request repeatedly joins the ongoing multicast

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 3

session of its closest predecessor until it catches up with the
earliest one. The initial missing portion is offered by opening a
“make-up” session from the server. Similar results are obtained
in the non-sequential case, illustrated in Fig. 3(b).

As shown in the figures, the multicast sessions initially
opened by R2 and R3 are terminated once all their members
are merged into R1’s session. The requirement on server
bandwidth is thus significantly reduced, compared to opening
three separate unicast sessions to accommodate each request.
Obviously, to reuse the stream from Ri, Rj must satisfy
si + li > sj , in addition to Inequality (1) and (2).

C. Asynchronous Multicast

We proceed to propose and illustrate the concept of Asyn-
chronous Multicast (AM), again using the example in Fig. 2.
We assume that each request is able to buffer the streamed
data for a certain amount of time after playback. This can
be achieved by using a circular buffer to cache the stream.
For example, as shown in Fig. 4(a), R1 has a buffer capable
of storing data for time length W1. In other words, any data
cached in the buffer is kept for a time length of W1, after
which it is replaced by new data. Obviously, all requests that
fall within this window may potentially be served by R1. In
this case, R2 directly retrieves its stream from the buffer of
R1. R3 is unable to stream from R1 since it falls outside the
buffer window of R1. Instead, it streams from the buffer of
R2. The only difference in the case of non-sequential access
(Fig. 4(b)) is that, R3 needs to stream from the server for the
initial portion, which is not available at R2.

This mechanism is referred to as asynchronous multicast,
mainly because it needs only one server stream to serve a
group of requests, if any request has a predecessor in the same
group, except for the earliest one. However, the difference is
that members within the group receive data asynchronously.
An important feature of asynchronous multicast is that it is
purely end-host based. For example, in Fig. 4(a), R1 streams
from the server via unicast. R2 also uses unicast connection
to retrieve data from R1. Another major difference is that in
our approach, although a request may have multiple sources,
the streaming from different sources is sequentialized. For
example, in Fig. 4(b), R3 first streams from the server, then
switches to R2. It keeps only one live connection throughout
its entire session. In HSM, a request needs to stream from
multiple sources in parallel.

times3 s2s1

W 1

W 2

R1
R2

R3R3R1 R2 R3

s1 s3s2 time

W 1

W 2

Server

Transmission

Request

R2 streams from R1

R3 streams from R2

R2 streams from R1

R3 streams from R2

o3

o1

o2

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

(a) Sequential Access (b) Non-sequential Access

Fig. 4. Asynchronous Multicast

To summarize, in our algorithm, in order to reuse stream
from Ri, Rj must meet the following requirement besides

those listed in Inequality (1) and (2):

(sj − oj) − (si − oi) < Wi (3)

(sj −oj)−(si−oi) is also referred to as the buffer distance
between Ri and Rj . If Inequality (3) is satisfied, we further
define Ri as the buffer-constrained predecessor of Rj , Rj

as the buffer-constrained successor of Ri, denoted as Ri

Wi≺
Rj . Henceforth in this paper, we simply refer to Ri as the
predecessor of Rj , and Rj as the successor of Ri.

III. OSTREAM: ALGORITHMS

In this section, we present algorithms of asynchronous
multicast. The algorithms are fully distributed and operate on
the application-layer overlay.

Notation Definition
R Request Set

Ri

Wi≺ Rj Ri is the Buffer-Constrained Predecessor
of Rj

MDGR = (R, E) Media Distribution Graph for R

MDTR = (R, ET) Media Distribution Tree for MDGR

(ET ∈ E)
c(Ri, Rj) Edge Weight of (Ri, Rj) ∈ E, Hop Count

Between Two Hosts Carrying Ri and Rj

MDGins = Resulting Graph after Rins is Added
(R ∪Rins, Eins) To MDGR

MDTins = Media Distribution Tree for MDGins

(R ∪Rins, ET
ins) (ET

ins ∈ Eins)
MDGdel = Resulting Graph after Rdel is Deleted
(R−Rdel, Edel) From MDGR

MDTdel = Media Distribution Tree for MDGdel

(R−Rdel, E
T
del) (ET

del ∈ Edel)

TABLE II

NOTATIONS USED IN SEC. III

A. Problem Formulation

Definition 1 (Media Distribution Graph). Let
R be a set of asynchronous requests. We define
the Media Distribution Graph (MDG) for R as a
directed weighted graph MDGR = (R, E), such that

E = {(Ri, Rj) | Ri

Wi≺ Rj , Ri, Rj ∈ R}. Each edge (Ri, Rj)
has the weight c(Ri, Rj), which is the transmission cost,
i.e., hop count, between two end hosts carrying Ri and Rj ,
respectively.

We use an example to illustrate the concept of MDG.
Consider a set of requests R = {R1, R2, R3, R4}. We have

R1

W1≺ R2, R1

W1≺ R3 and R2

W2≺ R3. The MDG for R is
shown in Fig. 5(a). Each MDG node represents a request1.
A special node S represents the server. Since the server can
serve any request, it can be regarded as the predecessor of all
members in R. Thus, S has directed edges to all other nodes
in the graph.

The media distribution graph changes dynamically: (1)
when a new request arrives, a new node is inserted into the

1We use terms request and node interchangeably in the remainder of this
section, depending on the context.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 4

graph; (2) when a request is terminated, its corresponding
node is removed from the graph. As such, MDG represents the
dependencies among all asynchronous requests, which forms
a virtual overlay on top of the physical network.

R4 R2

R3S

R1

S

R4

R2 R3

Media
Distribution
Graph

Physical
Network

R1

Router

End host

Request

MDG edge

MDT edge

(a) Media Distribution Graph (b) Media Distribution
Tree

Fig. 5. Illustration of the Media Distribution Graph

Given the definition of MDG, now we can formulate the
problem of on-demand media distribution as the issue of
constructing and maintaining a spanning tree on MDG, defined
as the Media Distribution Tree.

Definition 2 (Media Distribution Tree). For a request set
R and its MDG MDGR = (R, E), the corresponding MDT is
denoted as MDTR = (R, ET)(ET ∈ E), and it is a spanning
tree on MDG. For two nodes Ri, Rj ∈ R, if (Ri, Rj) ∈ ET ,
then Ri is the parent of Rj , Rj is the child of Ri.

Given a MDG, the optimal solution for MDT, i.e., to
minimize the overall transmission cost of media distribution,
is to find the Minimal Spanning Tree (MST) on MDG. An
example is shown in Fig. 5(b). In this figure, (S,R1), (S,R4),
(R1, R2) and (R1, R3) are MDT edges.

B. Basic Algorithm: MDT Operations

We proceed to present our basic algorithm on MDT con-
struction and maintenance. Our algorithm is fully distributed
and incremental. First, we do not assume the existence of a
centralized manager to control the tree construction. Second,
each new request joins the tree based on its local decision,
which only needs partial knowledge of the existing tree. Third,
upon request departure, the tree is quickly recovered since no
global reorganization is required.

The algorithm is executed each time when a new request
joins the graph, or when an existing request departs. To
tackle problems in both cases, our algorithm is split into two
operations: MDT-Insert and MDT-Delete.

We first present MDT-Insert. Let MDGins = (R ∪
Rins, Eins) be the resulting graph after the request Rins is
added to MDGR, MDT-Insert is able to return MDTins =
(R ∪ Rins, E

T
ins) as the new MDT for MDGins.

Second, we present MDT-Delete. Let MDGdel = (R −
Rdel, Edel) be the resulting graph after Rdel is removed from
MDGR, MDT-Delete is able to return MDTdel = (R −
Rdel, E

T
del) as the new MDT for MDGdel.

We use an example to illustrate these two algorithms. In
Fig. 6 (a), when R3 leaves, it first deletes itself from the MDT
(Lines 1 to 2 in MDT-Delete), then notifies its children R4

and R5 to find their new parents as S and R4, respectively
(Lines 3 to 5 in MDT-Delete). In Fig. 6 (b), when a new

MDT-Insert(Rins, Eins, ET , ET
ins)

/∗ From all its predecessors, Rins finds parent Rmin,
whose transmission cost to Rins is minimal ∗/

1 Rmin ← arg min{c(Rpre, Rins) | (Rpre, Rins) ∈ Eins}
2 ET

ins ← ET ∪ (Rmin, Rins)

/∗ For all its successors Rsuc, Rins compares if the
transmission cost from itself to Rsuc is less than from
Rsuc’s current parent Rpar . If so, Rsuc is asked to
switch parent to Rins. ∗/

3 for each Rsuc ∈ {Rsuc | (Rins, Rsuc) ∈ Eins}
4 if c(Rins, Rsuc) < c(Rpar, Rsuc) | (Rpar, Rsuc) ∈ ET

ins
5 do ET

ins ← (ET
ins − (Rpar, Rsuc)) ∪ {(Rins, Rsuc)}

MDT-Delete(Rdel, Edel, E
T , ET

del)
/∗ Rdel deletes the tree edge from its parent Rpar ∗/

1 ET
del ← ET − {(Rpar, Rdel) | (Rpar, Rdel) ∈ ET }

2 for each Rchi ∈ {Rchi | (Rdel, Rchi) ∈ ET }
do
/∗ Rdel deletes tree edge to each of its children Rchi ∗/

3 ET
del ← ET

del − (Rdel, Rchi)

/∗ From all its predecessors, Rchi finds the new parent
Rmin, whose transmission cost to Rchi is minimal ∗/

4 Rmin ← arg min{c(Rpre, Rchi) | (Rpre, Rchi) ∈ Edel}
5 ET

del ← ET
del ∪ (Rmin, Rchi)

request R6 joins, it first finds S as its parent (Lines 1 to 2 in
MDT-Insert), then notifies its successor R4 to switch parent
from S to R6, since c(R6, R4) < c(S,R4) (Lines 3 to 5 in
MDT-Insert).

R2

R3

R4

S

R1

R5

5

2

4

6

3

4

5

1

3
R2 R4

R1

R5

5

2

4

6

5

R2

R6

R4

S

R1

R5

5

2

4

6

3

6

5

2

6
R2

R6

R4

S

R1

R5

5

2

4

6

3

6

5

2

6

3

S

MDT Edge

MDG Edge

Request

(a) Before R3 (b) After R3 (c) Before R5 (d) After R5

is Deleted is Deleted is Inserted is Inserted

Fig. 6. Illustration of the Media Distribution Graph

Theorem 1 (Correctness): Both MDT-Insert and MDT-
Delete generate loop-free spanning trees.

Theorem 2 (Optimality): The trees returned by MDT-
Insert and MDT-Delete are minimum spanning trees (MSTs).

The reader is referred to [25] for the details of the proofs.

C. Practical Issues

1) Content Discovery Service: The MDT algorithms re-
quire that each request must have knowledge of all its prede-
cessors and successors. Therefore, a publish/subscribe service
needs to be in place for the purpose of information exchange
and update. We have designed a distributed content discovery
service to address this issue. In this approach, a number of
overlay nodes are employed as discovery servers, each with
a unique ID. A set of hashing functions are designed to map
the timing information of a request Ri (its starting time si

and offset oi) to a subset of discovery servers. In this way,
the registration and query operations with regard to Ri can

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 5

be directed to a subset of servers, which are responsible to
keep Ri’s record, until Ri leaves. Due to space constraints,
the reader is referred to [25] for a the detailed presentation of
the content discovery service.

2) Simplifying Session Switching: A request may have to
switch its streaming session in several cases as illustrated in
Fig. 7. In the figure, R0 initially receives stream from R1.
When R1 finishes before R0 does, R0 has to find a new
predecessor to retrieve data from2. This case is unavoidable
since R0 cannot know when R1 will finish beforehand. If no
predecessor is found, R0 directly streams data from the server
S, until a new predecessor R2 appears3. At this point, R0

switches from the server to R2. This is consistent with the
primary goal of our algorithm: to maximally save the server
bandwidth, i.e., R0 streams from the server only when it has no
predecessor. Finally, if a new predecessor R3 appears and the
transmission cost between R0 and R3 is smaller than the cost
between R0 and R2 (c(R0, R3) < c(R0, R2)), R0 switches
from R2 to R3 to save network cost. However, to achieve
this goal, R0 has to keep updated of newly arrived requests
and compares if they are closer than its current predecessor
(lines 3 to 5 in MDT-Insert). It also increases the number of
session switching times. To save session switching overhead,
we simplify the basic algorithm as shown in Fig. 7(b): R0

continues to stream from R2, without considering to switch to
a closer predecessor, namely R3. However, the price is that the
basic algorithm’s optimality at saving link cost is sacrificed.

time

R0

R2

time

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

R3

R1 R
1

R
2

R
3

S R0

R2

R3

R1 R
1

R
2

S

(a) Basic Algorithm (b) Simplified Algorithm

Fig. 7. Simplifying Session Switching

3) Degree Constrained MDT: In the basic algorithm on
MDT operations, we did not constrain the outbound degree
of a tree node. Our assumption here is that each end host has
unlimited outbound bandwidth to have as many children as
possible. However, when we limit the outbound degree of a
tree node, then regarding Definition 2, the MDT problem has
to be modified as follows.

For a request set R and its MDG MDGR = (R, E), find
the MDT MDTR = (R, ET)(ET ∈ E), which is the minimal
degree-constrained spanning tree on MDGR.

This problem is NP-complete [19]. Our heuristic is as
follows: for each newly arrived request, it finds one among

2Notice that there is a time delay from the termination of R1 until R0 starts
streaming from its new predecessor, which is the buffer distance between R0

and R1. During this period, R1 flushes the data remained in its buffer to R0.
3Although R2 arrives later than R0, it can still be R0’s predecessor. A

similar example is illustrated in Fig. 2(b)

its candidate predecessors with smallest transmission cost,
whose outbound degree has not reached the constraint yet.
Obviously, the heuristic algorithm is not optimal at reducing
link cost. However, its optimality at conserving server
bandwidth remains intact.

Theorem 3: Degree-constrained MDT algorithm consumes
the same amount of server bandwidth as the basic MDT
algorithm.

The reader is referred to [25] for a detailed proof of this
theorem.

IV. SCALABILITY: SERVER BANDWIDTH SAVINGS

In this section, we analyze the scalability of HSM and
asynchronous multicast with respect to conserving server
bandwidth. We first introduce the analytical methodology, then
derive the required server bandwidth of each approach under
different stream access patterns.

A. Analytical Methodology

We consider the distribution of a single media object. The
size of the object is T bytes. The object is played out at
a constant bit rate of one byte per unit time. Therefore the
playback time of the object is T time units. Client requests
follow a Poisson process with arrival rate λ. We consider an
arbitrarily small portion of the object, say, a byte. This byte
is located at the offset x of the object. This byte is denoted
as x.

Let us assume that x is multicast by the server at time 0, we
need to know till when x needs to be multicast again. Let X be
the event of x being requested, ΛX is the average arrival rate
of X . We use a random variable w to denote the interarrival
time of events in {X}. Let Z be the event of server multicast of
x. Clearly events in {Z} are a subset of events in {X}, since
not every request for x will trigger the sever multicast. We
further use a random variable τ to denote the interarrival time
of events in {Z}. If we know the expected value of τ , denoted
as E(τ |x) (the expected value is conditional, depending on
x’s location in the media object, i.e., x), then with respect
to the above raised question, x will be multicast again after
time length E(τ |x). It means that on average, x is multicast
for 1

E(τ |x) times per unit time. Therefore, the required server
bandwidth for x is 1

E(τ |x) per unit time. Summarizing the
bandwidth for all bytes in the object, the total required server
bandwidth B is given by

B =
∫ T

0

dx

E(τ |x)
(4)

Therefore, the main goal of our analysis is to acquire
E(τ |x).

B. Hierarchical Stream Merging

We start with the HSM algorithm. Analytical results in this
subsection have appeared in related works [5] and [9]. We
therefore omit the detailed derivations. Assume that a request
R1 requests the x at time 0 and triggers a server multicast. x

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 6

Notation Definition
T Object Size in Bytes
λ Average Request Rate
x A Byte of the Object
x x’s Location in the Object
{X} Events of Request for x
{Z} Events of Server Multicast of x
ΛX Average Arrival Rates of Events in {X}
ΛZ Average Arrival Rates of Events in {Z}
w Interarrival Time of Events X
τ Interarrival Time of Events Z
E(τ |x) Expected Value of τ
B Required Server Bandwidth
S Request Duration in Simple Access Model
W Buffer Size in Asynchronous Multicast

TABLE III

NOTATIONS USED IN SEC. IV

is requested later by R2 at time t. As outlined in Sec. II-B,
if R2 starts before time 0, it can catch up the multicast of x.
Otherwise, it misses the multicast at time 0, and x needs to
be multicast again at time t.

The answer to whether R2 starts before time 0 varies
depending on the stream access models we assume. In our
analysis, we choose two models: simple access and sequential
access. They are studied respectively as follows.

0 Tx

SS S

position in media object

Fig. 8. Simple Access Model

1) Simple Access Model: Under simple access model, each
request lasts for time length S (S < T). The request starts
from an arbitrary offset of the object. For simplicity, we as-
sume that the object is cyclic, which means that the access may
proceed past the end of the object by cycling to the beginning
of the object. As shown in Fig. 8, a request would contain x
only if its starting offset is ranged within (x−S, x). Assuming
the starting offset of a request is uniformly distributed within
(0, T), then the probability that this request contains x is S/T .
Consequently, the arrival rate of event X is

ΛX = λS/T (5)

R2’s starting time s2 is ranged within the time interval (t−
S, t). R2 will trigger a new multicast of x if s2 > 0. As shown

time

x

0 ts2
time

x

0 ts2

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

R1

R2

R1

R2

S S

(a) t ≤ S (b) t > S

Fig. 9. Server Bandwidth Analysis of Hierarchical Stream Merging under
Simple Access Model

time

R1

x

R2

0 ts2
time

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

R1

x

R2

0 ts2

(a) t ≤ x (b) t > x

Fig. 10. Server Bandwidth Analysis of Hierarchical Stream Merging under
Sequential Access Model

in Fig. 9 (a), if t ≤ S, then s2 > 0 with probability t/S. In
this case, with probability t/S, an event X will trigger an
event Z. If t > S (Fig. 9 (b)), s2 > 0 is always true. In this
case, an event X will definitely trigger an event Z. Now we
can derive the arrival rate of event Z as follows

ΛZ =
{

ΛXt/S if t ≤ S
ΛX if t > S

With ΛZ , we can derive that E(τ |x) =
√

πT
2λ . Based on

Eq. (4), the required server bandwidth is

Bsim
HSM =

∫ T

0

dx

E(τ |x)
≈

√
2λT

π
(6)

The detailed derivation can be found in [9].

2) Sequential Access Model: Under the sequential access
model, every request contains the entire object. Then it is
obvious that

ΛX = λ (7)

As shown in Fig. 10 (a), if t ≤ x, R2 will definitely arrive
no later than time 0. If t > x (Fig. 10 (b)), then R2 will never
arrive before time 0. Therefore, we have

ΛZ =
{

0 if t ≤ x
λ if t > x

With ΛZ , we have

Bseq
HSM =

∫ T

0

dx

E(τ |x)
=

∫ T

0

dx

x + 1/λ
= ln(λT + 1) (8)

The detailed derivation can be found in [5].

C. Asynchronous Multicast

We use the same analytical model to derive the required
server bandwidth for asynchronous multicast. However, we
rephrase event Z as the server transmission (unicast) of x.
For simplicity, we assume that all requests have a unified
buffer size W . Suppose R1 requested x at time 0, which
triggered the server transmission of x. Then x will stay in
the buffer of R1 for time W . Thus, if R2 requests x within
interval (0,W) (Fig. 11(a)), x can be retrieved from the R1

and further buffered at R2 for time W . Otherwise (Fig. 11(b)),
x has to be retransmitted by the server. In other words, a
“chain” is formed among consecutive requests (X event) if

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 7

time

R1

x

R2

0 t time

R1

x

R2

0 t

W
Wp

o
si

ti
o

n
 i

n

m
ed

ia
 o

b
je

ct

p
o

si
ti

o
n

 i
n

m
ed

ia
 o

b
je

ct

(a) t ≤ W (b) t > W

Fig. 11. Server Bandwidth Analysis of Asynchronous Multicast

their interarrival times are within W . The head request at each
chain triggers the server transmission of x. Therefore, E(τ |x)
is the average time length of the chain. To derive E(τ |x), we
first calculate the expected value of w, the interarrival time
of events X . If we know ΛX , then the expected number of
events X during interval (0, t) is

NX =
∫ t

0

ΛXdt = tΛX

Then the probability of no arrival of X during interval (0, t)
is P (w > t) = e−NX , since events in {X} are independent.
Hence, the conditional distribution function of w is

Fw(t|x) = P (w ≤ t) = 1 − eNX = 1 − e−tΛX

Then the conditional density function can be derived as

fw(t|x) =
dFw(t|x)

dt
= ΛXe−tΛX

We then calculate the expected value of w when w ≤ W .
In this case, the “chain” is prolonged.

Ew≤W (w|x) =

∫ W

0
tfw(t|x)dt

P{w ≤ W} =
ΛX

1 − e−ΛXW

∫ W

0

te−tΛX dt

Similarly, the expected value of w when w > W is derived
as follows. In this case, the “chain” is broken.

Ew>W (w|x) =

∫ ∞
W

tfw(t|x)dt

P{w > W} =
ΛX

e−ΛXW

∫ ∞

W

te−tΛX dt

Let p = P{w ≤ W}, we can derive E(τ |x) as

E(τ |x) =
∞∑

i=0

pi(1 − p)(iEw≤W (w|x) + Ew>W (w|x))

Based on Eq. (4), we now have the unified form of B for
asynchronous multicast.

BAM =
∫ T

0

dx

E(τ |x)
=

∫ T

0

ΛX(eΛXW − 1)
e2ΛXW − ΛXW − 1

dx (9)

When we substitute ΛX with Eq. (5), and (7), we can
obtain the required server bandwidth under simple access and
sequential access models as follows.

Bsim
AM =

λS(e
λSW

T − 1)

e
2λSW

T − λSW
T − 1

(10)

Bseq
AM =

λT (eλW − 1)
e2λW − λW − 1

(11)

D. Comparison

We plot Eq. (8) and (11) in Fig. 12(a), Eq. (6) and (10) in
Fig. 12(b), as functions of the average value of ΛX , which is
calculated as

Λavg
X =

1
T

∫ T

0

ΛXdx

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

se
rv

er
 b

an
dw

id
th

 (
T

)

request rate (req.s/T)

HSM
AM (W=0.2T)
AM (W=0.1T)

AM (W=0.05T)

0

2

4

6

8

10

12

0 20 40 60 80 100

se
rv

er
 b

an
dw

id
th

 (
T

)

request rate (req.s/T)

HSM
AM (W=0.2T)
AM (W=0.1T)

AM (W=0.05T)

(a) Sequential Model (b) Simple Model (S = T
4

)

Fig. 12. Server Bandwidth Analysis Results

For sequential access and simple access models, Λavg
X is

λ and λ S
T , respectively. In both figures, request rate is the

number of requests issued per T time units, the object’s
playback duration. Server bandwidth indicates how many T
bytes of data are streamed from the server during this time.
As Λavg

X grows, the cost of HSM is asymptotically increasing
at different speeds (logarithm growth for sequential model
and square root growth for non-sequential model). The cost
of asynchronous multicast is identical under both models
because of its unified form in Eq. (9). The cost reaches
its maximum value when ΛX = 1/W (the point where
dB

dΛX
= 0). The reason is that the time length of the “request

chain” (E(τ |x)) increases exponentially, which overcomes
the linear growth of Λavg

X after this threshold. This means
that B can be finite in the face of unpredictable client request
rate. The maximum of B is further controllable by tuning W .

We also consider a Random Access Model, where the
request starts and ends at arbitrary offset of the object[10].
We found it difficult to analytically derive the closed forms
of B for both HSM and asynchronous multicast under this
model. However, experimental results suggest that the curves
of random access model are very closed to their counterparts
in Fig. 12(b) (simple access model). We briefly introduce the
random access model in Appendix I.

V. EFFICIENCY: LINK BANDWIDTH REDUCTION

Besides server scalability, multicast also offers network
efficiency at reducing link cost. It is well observed that
the network overhead increases sublinearly as the multicast
group size grows [16][17], which implies that the optimal
network efficiency can be achieved by maximally enlarging
the multicast group. In this section, we analyze the network
efficiency of HSM and asynchronous multicast. The layout of
this section is the same with Sec. IV.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 8

A. Analytical Methodology

We again use the analytical model in Sec. IV. Consider an
arbitrary byte x located at offset x of the object. Suppose x is
multicast at time 0, then according to our analysis in Sec. IV,
x will be multicast again after E(τ |x). Therefore, all requests
for x that fall within the interval (0, E(τ |x)) are served by the
server multicast at time 0. In other words, they are aggregated
into one multicast group. We use G(x) to denote the number
of receivers in this group. Clearly, G(x) = E(τ |x) · ΛX . We
further use L(n) to denote the link cost of a multicast group
with n receivers, i.e., number of physical links this multicast
group contains. Then the average per-member link cost is L(n)

n .
Substituting n with G(x), the average link cost per request for
x is L(G(x))

G(x) . Summarizing for all bytes in the object, the total
link cost per request C can be formulated as

C =
∫ T

0

L(G(x))
G(x)

dx (12)

Since we already know E(τ |x), G(x) can be easily derived.
The main goal of our analysis in this section is to acquire L(n).

Notation Definition
G(x) Number of Receivers Getting the Multicast of x
L(n) Link Cost of a Multicast Group of n Receivers
C Link Cost per Request
U(s) Reachability Function Denoting Number of Nodes

s Hops Away From the Server (HSM)
F (s) Probability Distribution Function of Distance s

between Two Clients (Asynchronous Multicast)
D Depth of k-ary tree

TABLE IV

NOTATIONS USED IN SEC. V

B. Hierarchical Stream Merging

The derivation of L(n) varies depending on the network
topology. Even within the same topology model, L(n) still
takes different forms, since HSM depends on IP multicast, and
asynchronous multicast is end-host based. In our analysis, we
use the k-ary tree model, which was also adopted in [16] and
[17]. Consider a k-ary tree of depth D. Each tree node is a
router. The server is attached to the root node, while clients
are attached to the leaf nodes. Since we mainly care about link
cost on the backbone, the cost from client to the leaf node is
ignored. Therefore, only data traveled within the k-ary tree is
counted.

We first derive L(n) for IP multicast. For this purpose, we
introduce the reachability function U(s), which denotes the
number of tree nodes that are exactly s hops away from the
source. In k-ary tree topology, U(s) = ks, which is the number
of nodes at tree level s. As shown in Fig. 13(a), consider a
client H0 attached to a random leaf node. The multicast path
from the server to H0 passes tree nodes of all levels. Then
for an arbitrary node Ns at level s, the probability that the
path goes through Ns is 1

U(s) = 1
ks . If there are n clients,

then the probability that none of their paths goes through Ns

is (1 − 1
U(s))

n. Therefore, the probability that Ns belongs to

the multicast delivery tree is (1− (1− 1
U(s))

n). L(n) (the size
of the multicast tree) is thus given by

LIP (n) =
D∑

s=1

U(s)(1− (1− 1
U(s)

)n) ≈ n(
1

ln k
+ D− ln n

ln k
)

(13)
The detailed derivation of Eq. (13) can be found at [16].

Based on Eq. (12) and (13), we can derive the unified form
of link cost for HSM as follows

CHSM =
∫ T

0

(
1

ln k
+ D − ln(GHSM (x))

ln k
)dx (14)

Under sequential access model, Gseq
HSM (x) = λx + 1

(derived from Eq. (8) and (7)). Under simple access model,

Gsim
HSM (x) = S

√
πλ
2T (derived from Eq. (6) and (5)). Now we

can derive the link cost of HSM under these two models.

Cseq
HSM = T (

1
ln k

+ D) +
λT − (λT + 1) ln(λT + 1)

λ ln k
(15)

Csim
HSM = T (

1
ln k

+ D −
ln(S

√
πλ
2T)

ln k
) (16)

server

H0 H1

N0 N1

H1

N1

server

H0

Ns

(a) IP Multicast (b) Asynchronous Multicast

Fig. 13. k-ary Tree Topology Model

C. Asynchronous Multicast

Now we derive L(n) for asynchronous multicast. Since this
approach is end-host based, we need to derive the average
unicast path length s between two clients. As shown in
Fig. 13(b), for a given client H0 attached to leaf router N0,
let s be the distance between H0 and another client H1. s is 0
if H1 is also attached to N0 (ignoring local link cost), which
happens with probability 1/kD. If the router of H1 shares the
same parent with N0 (probability k/kD), s is either 2 or 0.
In general, s is no more than 2h if C0 and C1 reside in the
same subtree of height h. Therefore, we can summarize the
probability distribution of s as

F (s) = ks/2−D (17)

If C0 could receive data from m other clients, then the
probability that none of them is within distance s to C0 is
(1 − F (s))n. Then the distribution function of the distance
from C0 to the nearest one of these clients is given by

Fm(s) = 1 − (1 − F (s))m

We can further acquire the probability density function
fm(s) = dFm(s)

ds . Then the expected value of s can be derived
as

Em(s) =
∫ 2D

0

s · fm(s)ds ≈ 2(D − ln m

ln k
) (18)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 9

We illustrate the detailed derivation of Eq. (18) in Appendix
II. As mentioned in Sec. IV-C, in asynchronous multicast, a
“chain” is formed among consecutive requests, whose inter-
arrival times are within the buffer size W . All requests on
this chain form a multicast group. The header request unicasts
data from the server. The link cost of this path is D. Each
following request streams from one of its predecessors, whose
buffer distance to itself is no more than W . The number of
such candidate predecessors is m = WΛX . Then the link cost
for a multicast group of n requests is given by

LAM (n) = D + (n − 1)Em(s) = D + 2(n − 1)(D − ln m

ln k
)

(19)
Based on Eq. (12) and (19), the unified form of link cost

for asynchronous multicast is

CAM =
∫ T

0

D + 2(GAM (x) − 1)(D − ln m
ln k)

GAM (x)
dx (20)

GAM (x) is derived from Eq. (9) as follows.

GAM (x) =
e2ΛXW − ΛXW − 1

eΛXW − 1
Substituting ΛX with Eq. (7) and (5), we obtain the link

cost under sequential and simple access model as follows.

Cseq
AM = T

[eλW − 1
e2λW − λW − 1

(
2 ln λW

ln k
−D)+2(D− ln λW

ln k
)
]

(21)

Csim
AM = T

[e
λSW

T − 1

e
2λSW

T − λSW
T − 1

(
2 ln λSW

T

ln k
−D)+2(D− ln λSW

T

ln k
)
]

(22)

D. Comparison

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000 100000

lin
k

co
st

 p
er

 r
eq

ue
st

 (
T

)

request rate (req.s/T)

HSM
AM (W=T)

AM (W=0.2T)
AM (W=0.04T)

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000 100000

lin
k

co
st

 p
er

 r
eq

ue
st

 (
T

)

request rate (req.s/T)

HSM
AM (W=T)

AM (W=0.2T)
AM (W=0.04T)

(a) Sequential Model (b) Simple Model (S = T
4

)

Fig. 14. Analysis of Multicast Link Cost per Request in k-ary Tree
Network(k = 4, D = 5)

We plot Eq. (15) and (21) in Fig. 14 (a). As shown in
the figure, the first terms of Eq. (21) is negligible unless the
buffer size is small (e.g., W = 0.04T). Furthermore, this term
exponentially approaches zero as the request rate λ increases.
Therefore, Eq. (21) can be simplified to 2T (D − ln λW

ln k). The
scale factor here is the minus term (−2T ln λ

ln k). The remaining
part of the equation is constant. Similarly, the first term of
Eq. (15) is also negligible. Then its scale factor is (−T ln(λ)

ln k).
The remaining part is constant. Reflected in the figure, the
slope of asynchronous multicast is steeper than HSM since
the scale factor of Eq. (21) is two times the scale factor of
Eq. (15). Although decreasing more slowly, the cost of HSM

is still the smallest, unless the buffer size W of asynchronous
multicast becomes very large. Also note that increasing W
for asynchronous multicast can help move down the curve,
but has nothing to do with the scale factor. Furthermore, the
diminishing return of increasing W is logarithmic. This is
determined by the minus term (−T ln W

ln k) in Eq. (21). Finally,
we note that the above equations become inaccurate as they
approach 0. This is because L(n) (Eq. (13) and (19)) is invalid
when the group size n reaches its saturation point [16], i.e.,
the number of clients exceeds the number of leaf routers
(n ≥ kD).

Fig. 14(b) plots Eq. (16) and (22). The costs of asyn-
chronous multicast are the same in Fig. 14 (a) and (b) because
of their unified form in Eq. (20). However, the scale factor
of HSM (Eq. (16)) reduces to (− ln

√
λ

ln k). Reflected in the
figure, the curve of HSM decreases more slowly. This gives
asynchronous multicast a better chance to outperform HSM.

The intuitive explanation for such phenomenon is that,
when the stream access pattern is switched from sequential
to non-sequential, HSM can aggregate fewer number of client
requests into one group, while the multicast group size of asyn-
chronous multicast stays unchanged. This observation implies
the universality of cost link reduction gain of asynchronous
multicast to HSM on various network topologies with the
following property: the per-member link cost monotonically
decreases as the multicast group grows. We reach the same
conclusion for power-law topology[26], whose analysis can
be found in our technical report[25].

VI. PERFORMANCE EVALUATION

In this section, we compare the performance of asyn-
chronous multicast and HSM at saving server bandwidth and
link cost. Note that in our experiment, asynchronous multicast
is end-host based, while HSM assumes the existence of IP
multicast. Furthermore, in HSM experiments, we assume that
each client is able to simultaneously join unlimited number
of multicast groups and calculate joining sequences offline.
Therefore, the performance results of HSM is optimal but
impractical. Our purpose here is to make it the theoretical
baseline, along which the performance of end-host based
asynchronous multicast can be evaluated.

A. Experimental Setup

We consider the case of a single CBR video distribution.
The video file is one-hour long, i.e., T = 1 hour. We do
not specify the streaming rate. Instead, we use playback time
to indicate the server and link bandwidth consumption. Each
12-hour run is repeated under sequential, simple and random
access models. Since the results obtained from simple and
random models are very closed, we only show results from
the random model for space constraints. A brief introduction
of the random model can be found in Appendix I.

To study the impact of network topology on link cost,
we run experiments on a diversified set of synthetic and
real network topologies. Our selection largely falls into three
categories:

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 10

1) k-ary Tree Topology: We choose this topology to
confirm our analysis in Sec. V-D, which was conducted
on the same topology. We set k = 4, D = 5, as was
specified in Fig. 14. The topology size is 1365. We
first experiment the case in which receivers are only
located on leaf routers. In the second experiment, we
allow receivers to be located on non-leaf routers as well.

2) Router-level Topology: We choose an Internet map
(Lucent, November, 1999) [20] to represent the router-
level topology. The topology size is 112969. We also use
GT-ITM topology generator [21] to create a topology of
500 nodes based on transit-stub model. In this set of
experiments, receivers can be located on any nodes in
the topology.

3) AS-level Topology: We use a real AS map (March,
1997) obtained from NLANR [23]. The topology size
is 6474. We also use the Inet topology generator [22] to
create a topology of 6000 nodes. In both topologies, the
distribution function of network distance between two
nodes follows the power-law. In this set of experiments,
we also allow receivers to be located on any nodes
within the topology.

We assume that the IP unicast routing uses delay as its
routing metric. IP multicast routing is based on shortest path
tree algorithm (DVMRP [24]).

B. Server Bandwidth Consumption

We first evaluate the server bandwidth consumption (av-
erage amount of data streamed per hour). Since network
topology has no impact on this metric, we only show results
obtained on NLANR topology. Note that under random access
model, the request rate is normalized the same way the
analysis does in Sec. IV-D. The curves in Fig. 15(a) show the
same growing trend as those analyzed in Fig. 12(a). The curves
of both figures do not match exactly. This is mainly caused
by the fact that for each specific request rate, the number of
requests generated in our simulation cannot be the same as
the statistical average number of requests, upon which curves
in Fig. 12(a) are calculated. With regard to such statistical
error, we believe that it is convincing enough that our results
confirm our analysis in Sec. IV. When comparing Fig. 15(b)
and Fig. 12(b), we draw the same conclusion.

0

2

4

6

8

10

12

0 20 40 60 80 100

se
rv

er
 c

os
t (

hr
)

normalized request rate (reqs/hr)

AM (W=0.05T)
AM (W=0.1T)
AM (W=0.2T)

HSM

0

2

4

6

8

10

12

0 20 40 60 80 100

se
rv

er
 c

os
t (

hr
)

normalized request rate (reqs/hr)

AM (W=0.05T)
AM (W=0.1T)
AM (W=0.2T)

HSM

(a) Sequential Model (b) Random Model

Fig. 15. Server Bandwidth Consumption

C. Link Cost

In order to validate the analysis of link bandwidth con-
sumption in Sec. V-D, we first show the experimental results

obtained from the same k-ary tree topology . The curves
in Fig. 16 are nearly identical with those in Fig. 14. This
experiment confirms our observation that if the stream access
pattern is non-sequential, asynchronous multicast’s ability of
reducing link cost is stronger than HSM.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 100 1000 10000

lin
k

co
st

 (
hr

)

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
HSM

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000

lin
k

co
st

 (
hr

)

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
HSM

(a) Sequential Model (b) Random Model

Fig. 16. Link Cost per Request in k-ary Tree Topology(k = 4, D = 5)

To simplify our illustration, we define a new metric Link
Cost Ratio, which is the ratio of link cost of asynchronous
multicast to HSM. With this metric, what we are mainly
concerned about is the growing trend of the curves: if the link
cost ratio drops as we increase the request rate. If the answer
to this question is affirmative, our next question is when the
“crossing point” (the point at which link cost ratio equals to
1) is reached.

1

1.2

1.4

1.6

1.8

2

2.2

10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

1

1.2

1.4

1.6

1.8

2

2.2

10 100 1000
lin

k
co

st
 r

at
io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

(a) k-ary Tree (leaf) (b) k-ary Tree (non-leaf)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

(c) Lucent (d) GT-ITM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

(e) NLANR (f) Inet

Fig. 17. Link Cost Ratio under Random Model

Fig. 17 shows the experimental results on link cost ratio
under the random access model. From the results, we have
the following observations. First, the link cost ratio heavily
depends on the network topology. However, all curves have

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 11

negative slopes, which suggests the universality of link cost re-
duction gain of asynchronous multicast to HSM. The location
of “crossing point” also greatly varies for different topologies.
For example, in case W = T , the location of the point ranges
from 20 reqs/hr (Fig. 17 (d)) to 300 reqs/hr (Fig. 17 (f)).
Several factors may play important roles here, such as the
network size, its topological properties and location of the
server. Second, when we exponentially increase the buffer size
(in the experiment, we set W = 0.04T , 0.2T , T , respectively),
the link cost reduction gain is almost linear, which confirms
the same observation in our analysis (Sec. V-D). This finding
suggests that small to medium sized buffers can be greatly
helpful at saving link cost. Further increases with respect to
the buffer size may be less beneficial. Third, the simplified
algorithm (presented in Sec. III-C) increases the link cost by
a fixed fraction. This impact can be offset by increasing the
buffer size.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

(a) k-ary Tree (leaf) (b) k-ary Tree (non-leaf)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

(c) Lucent (d) GT-ITM

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 10 100 1000

lin
k

co
st

 r
at

io

normalized request rate (reqs/hr)

AM (W=0.2T)
AM (W=T)

AM (Constraint = 2, W=0.2T)
AM (Constraint = 2, W=T)

AM (Constraint = 4, W=0.2T)
AM (Constraint = 4, W=T)

(e) NLANR (f) Inet

Fig. 18. Link Cost Ratio under Sequential Model

Fig. 18 shows the experimental results on link cost ratio
under the sequential access model. A common observation is
that all curves become less steep than their counterparts in
Fig. 17. Plus, the “crossing point” can be hardly reached, un-
less the buffer size becomes large (W = T), or the request rate
gets extremely high. Also, constraining the outbound degree
of each end host does not greatly degrade the performance.
When we set the constraint to 4, the curve is very similar
to the one with no constraint. To summarize, this set of
experiments reveal that under the sequential access model, the
link cost reduction gain of asynchronous multicast to HSM
is minor. The main reason is — as revealed in Sec. V-D —

under the sequential access pattern, HSM is able to aggregate
more requests into one multicast group than under the non-
sequential access pattern.

D. Operation Complexity

Now we evaluate the operation complexity of asynchronous
mulicast under non-sequential access model. Fig. 19 (a) shows
the average number of predecessors a request needs to retrieve
data from during its entire session. For the basic algorithm,
this number is larger than 3. The simplified algorithm reduces
this number to 2, which means that on average a request only
needs to switch its predecessor once. Fig. 19 (b) shows the
cumulative distribution of requests with different number of
predecessors.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 100 1000

av
er

ag
e

nu
m

be
r

of
 p

re
de

ce
ss

or
s

rate

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

ac
cu

m
ul

at
iv

e
pe

rc
en

ta
ge

 o
f r

eq
ue

st
s

number of predecessors

AM (W=0.04T)
AM (W=0.2T)

AM (W=T)
Simple AM (W=0.04T)

Simple AM (W=0.2T)
Simple AM (W=T)

(a) Average Number of (b) Cumulative Distribution
Predecessors per Request of Predecessor Number

Fig. 19. Operation Complexity of Asynchronous Multicast

VII. RELATED WORK

A. Application-Layer Overlay

We have briefly reviewed related works [1], [2], [3], [4] in
application-layer overlay at the beginning of this paper. While
most current works focus on the efficient construction of an
overlay network, it still remains a great challenge of how to
manage the overlay members. In contrast to multicast, where
relaying nodes are routers, which are assumed to be reliable
and dedicated, overlay nodes are autonomous end hosts, which
can easily crash, leave without notice, or refuse to share its
own resources. Like most of the related works, we assume
that all overlay nodes are well-behaved. However, a practical
solution must be robust against unpredictable behaviors of end
hosts, which constitutes possible direction of our future work.

B. Multicast-based On-Demand Media Distribution

The problem of delivering high-quality multimedia stream
to asynchronous clients have been well studied. To achieve
system scalability especially on the server side, IP multicast
is widely adopted to serve multiple clients with one single
server stream. However, the asynchrony of client requests
is in conflict with the nature of multicast, which was orig-
inally designed to support applications of synchronous data
transmission, such as conferencing. Various solutions have
been proposed to address this conflict. In batching [6], client
requests from different times are aggregated into one multicast
session. However, users have to suffer long playback delay
since their requests are enforced to be synchronized. The

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 12

approaching of patching [7] attempts to address this problem
by allowing clients to “catch up” with an ongoing multicast
session and patch the missing starting portion via server
unicast. With merging [5], a client repeatedly merge into larger
and larger multicast sessions. In periodic broadcasting [8], the
server separates a media stream into segments and periodically
broadcasts them through different multicast channels, from
which a client chooses to join.

These solutions largely fall into two categories: true on-
demand or immediate services, and near on-demand services.
Solutions in the first category (patching and merging) serves
the client immediately once the request is issued. For solutions
in the second category (batching and periodic broadcasting), a
client has to wait for a bounded delay time. In this paper, we
only consider the true on-demand media distribution solutions.
However, it is worth pointing out that the near on-demand
solutions are in fact not superior than on-demand solutions
at saving system cost. Eager et al. [5] reveal that using the
approach of merging, the server bandwidth consumption grows
at least logarithmically as the request rate increases. They
also reveal that in periodic broadcasting, the server bandwidth
requirement grows at least logarithmically as one tries to
shorten the service delay bound. Therefore, the scale factors
of both approaches are the same. Jin et al. [9] and Tan et
al. [10] further confirm that this conclusion holds when the
clients’ media access pattern is non-sequential.

C. Media Caching and Buffering

Besides multicast, an orthogonal technique for reducing
server loads is media caching. A large body of work in this
area includes proxy caching. These works are similar to the
proxy-based web caching in that they both use proxies to serve
clients on behalf of the server, if the requested data is cached
locally. However, since the media objects tend to be of large
sizes, a proxy usually caches only a portion of the object.
There are different ways of partial caching, such as prefix-
based caching [11], [12], and segment-based caching [13].
Besides proxy caching, client-side caching is also proposed,
such as chaining [14] and interval caching [15].

It is well observed that multicast and caching can help re-
duce the server load in media distribution. However, their per-
formance at reducing link cost largely remains uninvestigated.
The only work we are aware of is by Jin et al. [18], which
analyzes the link cost of a client-based caching approach
and shows its scalability. In this paper, we have evaluated
the performance of multicast-based and cache-based solutions
with respect to reducing link cost via in-depth analysis and
extensive experiments. We have also investigated the impact
of user access patterns (sequential or non-sequential) on the
performance of both approaches.

VIII. CONCLUDING REMARKS

In this paper, we propose the concept of asynchronous mul-
ticast. This approach takes advantage of the strong buffering
capabilities of end hosts in application-layer overlay networks.
Based on the concept, we propose a novel overlay multicast
strategy, oStream, to address the on-demand media distribution

problem. Through in-depth analysis and extensive performance
evaluation, we are able to draw the following conclusions.
First, the required server bandwidth of oStream defeats the the-
oretical lower bound of traditional multicast-based solutions.
Second, with respect to bandwidth consumption on the back-
bone network, the benefit introduced by oStream overshadows
the topological inefficiency of application overlay.

REFERENCES

[1] Y. Chu, S. Rao and H. Zhang, A Case for End System Multicast, ACM
SIGMETRICS, 2000.

[2] I. Stoica, D. Adkins, S. Zhaung, S. Shenker and S. Surana, Internet
Indirection Infrastructure, ACM SIGCOMM, 2002.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek and R. Morris, Resilient
Overlay Network, ACM SOSP, 2001.

[4] V. Padmanabhan, H. Wang, P. Chou and K. Sripanidkulchai, Distributing
Streaming Media Content Using Cooperative Networking, NOSSDAV,
2002.

[5] D. Eager, M. Vernon and J. Zahorjan, Minimizing Bandwidth Require-
ments for On-Demand Data Delivery, IEEE Transactions on Knowledge
and Data Engineering, Vol. 13, No. 5, 2001.

[6] L. Gao and D. Towsley, Supplying Instantaneous Video-on-Demand
Services Using Controlled Multicast, Proceedings of IEEE Multimedia,
1999.

[7] K. Hua, Y. Cai and S. Sheu, Patching: A Multicast Technique for True
On-Demand Services, ACM Multimedia, 1998.

[8] K. Hua and S. Sheu, Skyscraper Broadcasting: A New Broadcasting
Scheme for Metropolitan VoD Systems, ACM SIGCOMM, 1997.

[9] S. Jin and A. Bestavros, Scalability of Multicast Delivery for Non-
sequential Streaming Access, ACM SIGMETRICS, 2002.

[10] H. Tan, D. Eager and M. Vernon, Delimiting the Effectiveness of
Scalable Streaming Protocols, International Symposium on Computer
Performance Modeling and Evaluation, 2002.

[11] S. Sen, J. Rexford and D. Towsley, Proxy Prefix Caching for Multimedia
Streams, IEEE INFOCOM, 1999.

[12] S. Ramesh, I. Rhee and K. Guo, Multicast with Cache (MCache): An
Adaptive Zero-Delay Video-on-Demand Service, IEEE INFOCOM, 2001.

[13] Y. Chae, K. Guo, M. Buddhikot, S. Suri and E. Zegura, Silo, Tokens,
and Rainbow: Schemes for Fault Tolerant Stream Caching, IEEE Journal
of Selected Areas on Communications, Special Issue on Internet Proxy
Services, 2002.

[14] S. Sheu, K. Hua and W. Tavanapong, Chaining: a Generalized Batching
Technique for Video-on-Demand Systems, IEEE ICMCS, 1997.

[15] A. Dan and D. Sitaram, A Generalized Interval Caching Policy for
Mixed Interval and Long Video Environments, SPIE MMCN, 1996.

[16] G. Philips and S. Shenker, Scaling of Multicast Trees: Comments on
the Chuang-Sirbu Scaling Law, ACM SIGCOMM, 1999.

[17] C. Adjih, L. Georgiadis, P. Jacquet and W. Szpankowski, Multicast
Tree Structure and the Power law, ACM-SIAM Symposium on Discrete
Algorithms, 2002.

[18] S. Jin and A.Bestavros, Cache-and-Relay Streaming Media Delivery for
Asynchronous Clients, NGC, 2002.

[19] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1979.

[20] USC Information Sciences Insititute, Internet maps,
http://www.isi.edu/div7/scan/mercator/maps.html, 1999.

[21] E. Zegura, K. Calvert and S. Bhattacharjee, How to Model an Internet-
work, IEEE INFOCOM, 1996.

[22] C. Jin, Q. Chen and S. Jamin, Inet: Internet Topology Generator,
Technical Report CSE-TR-443-00, University of Michigan, 2000.

[23] National Laboratory for Applied Network Research,
http://moat.nlanr.net/Routing/rawdata, 1997.

[24] S. Deering and D. Cheriton, Multicast Routing in Datagram Internet-
works and Extended LANs, ACM Transactions on Computer Systems,
vol. 8, no. 2, 1990.

[25] Y. Cui, B. Li and K. Nahrstedt, oStream: Asynchronous Streaming
Multicast in Application-Layer Overlay Networks, Technical Report
UIUCDCS-2002-2289/UILU-ENG-2002-1733, Department of Computer
Science, Univeristy of Illinois at Urbana-Champaign, 2003.

[26] M. Faloutsos, P. Faloutsos and C. Faloutsos, On Power-Law Relation-
ships of the Internet Topology, ACM SIGCOMM, 1999.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 13

0 To ex o eo e

position in media object

Fig. 20. Random access model

APPENDIX I

We briefly introduce the random access model, where a
request starts and ends at arbitrary offsets. [10] has a detailed
illustration of this model. Corresponding notations can be
found at Tab. III. Suppose both the starting offset o and ending
offset e of the request are uniformly distributed (o < e), as
shown in Fig. 20. Consider an arbitrary byte x of the object
located at offset x. If o ≤ x, then in order to contain x, e must
satisfy that x < e. The probability is T−x

T−o . If o > x, then by
no means x can be contained in (o, e). Therefore, we have

ΛX =

∫ x

0
λT−x

T−o do +
∫ T

x
λ · 0do

T
= λ

T − x

T
ln

T

T − x
(23)

Similar to the analysis with simple access model in Sec. IV-
B.1, we first derive ΛZ . Similar to Fig. 10, if t > x, then R2

can never arrive before time 0, thus will trigger the multicast
of x. Otherwise, the probability that R2 arrives after time 0
is derived as follows.∫ x

x−t
λT−x

T−o do

T
= λ

T − x

T
ln

T − x + t

T − x

Therefore, the arrival rate of Z becomes

ΛZ =
{

λT−x
T ln T−x+t

T−x if t ≤ x

ΛX if t > x

With ΛX and ΛZ , following the same procedure in
Sec. IV-B and IV-C, we can get the server bandwidth for
HSM and asynchronous multicast, which is hard to derive
analytically. Instead, we showed our experimental results
under this model in Sec. VI.

APPENDIX II

In this appendix, we derive Em(s) (Eq. (18)) in Sec. V-C.

Em(s) =
∫ 2D

0

s · fm(s)ds =
∫ 2D

0

s · m(1 − ks/2−D)m−1 ln k

2kD
ds

(24)
Let y = 1 − ks/2−D, then Eq. (24) becomes

∫ 1− 1
kD

0
2 ln[(1−y)kD]

ln k · mym−1dy

= 2 ln(kD)
ln k

∫ 1− 1
kD

0 mym−1dy + 2
ln k

∫ 1− 1
kD

0
ln(1−y)

ln k mym−1dy

= [2D + 2
ln k ln(1

kD)](1 − 1
kD)m + 2

ln k

∫ 1− 1
kD

0
ym

1−y dy

Now the only unsolved integral form is
∫ 1− 1

kD

0
ym

1−y dy. We
define it as N(m). then we have

N(m) − N(m − 1) = − ∫ 1− 1
kD

0 ym−1dy = − (1− 1
kD)m

m

N(0) =
∫ 1− 1

kD

0
1

1−y dy = − ln(1
kD)

Then we derive N(m) as follows

N(m) = − ln(
1

kD
) −

m∑
i=1

(1 − 1
kD)i

i
(25)

Since kD (total number of leaf nodes) is usually large, we
can approximate (1 − 1

kD) as 1. Finally, we have

Em(s) ≈ 2D − 2
ln k

m∑
i=1

1
i

(26)

Since
∑m

i=1
1
i is asymptotically close to ln m, we can

simplify Eq. (26) as 2(D − ln m
ln k).

