
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 1

Multicast with Network Coding
in Application-Layer Overlay Networks

Ying Zhu, Baochun Li, Member, IEEE, and Jiang Guo

Abstract— All of the advantages of application-layer overlay
networks arise from two fundamental properties: (1) The network
nodes in an overlay network, as opposed to lower-layer network
elements such as routers and switches, are end systems and
have capabilities far beyond basic operations of storing and for-
warding; and (2) The overlay topology, residing above a densely
connected IP-layer wide-area network, can be constructed and
manipulated to suit one’s purposes.

In this paper, we seek to significantly improve end-to-end
throughput in application-layer multicast by taking full advan-
tage of these unique characteristics. This objective is achieved
with two novel insights. First, we depart from the conventional
view that data can only be replicated and forwarded by overlay
nodes. Rather, as end systems, these overlay nodes also have the
full capability of encoding and decoding data at the message level
using efficient linear codes. Second, we depart from traditional
wisdom that the multicast topology from source to receivers needs
to be a tree, and propose a novel and distributed algorithm
to construct a 2-redundant multicast graph (a directed acyclic
graph) as the multicast topology, on which network coding is
applied. We design our algorithm such that the costs of link
stress and stretch are explicitly considered as constraints and
minimized. We extensively evaluate our algorithm by provable
analytical and experimental results, which show that the intro-
duction of 2-redundant multicast graph and network coding may
indeed bring significant benefits, essentially doubling the end-to-
end throughput in most cases.

Index Terms— Application-layer overlay networks, network
coding, application-layer multicast.

I. INTRODUCTION

Due to the lack of a widely available IP multicast service at
the network layer in backbone networks, recent research (e.g.,
[1], [2], [3], [4]) has examined the feasibility and trade-offs of
implementing multicast services in the application layer. The
general approach common to all existing proposals is to have
applications self organize into a logical overlay network, and
to transfer data along the edges of such an overlay network
using unicast transport services. Each application-layer node
communicates only with its neighbors in the overlay network.
Multicasting is implemented by forwarding messages along
overlay multicast trees that are constructed and embedded in
the virtual overlay network.

Application-layer multicast, in general, enjoys two attractive
advantages over traditional IP multicast: (1) Multicast support
in the network layer is not required; (2) Data is transmitted
between nodes via unicast, effectively exploiting all existing
security, flow control and reliable delivery mechanisms that are

Ying Zhu, Baochun Li and Jiang Guo are with the Department of Electrical
and Computer Engineering, University of Toronto. Their email addresses are
{yz, bli, jguo}@eecg.toronto.edu.

readily available and mature. However, an overlay multicast
approach, however efficient, cannot perform as well as IP
multicast. It is impossible to completely prevent multiple
overlay edges from traversing the same physical link, causing
unavoidable redundant traffic (identical copies of application-
layer messages) on the same link, referred to as link stress [1].
Further, unicast communication between end systems involves
traversing other end systems, potentially increasing latency.
It is therefore critical to evaluate and seek to minimize both
the relative increase of end-to-end latencies (caused by link
stretch1) and the increase in per-link bandwidth requirements
as compared with network-layer multicast.

Beyond what has been extensively studied in previous work,
we emphasize that the advantages of deploying application-
layer overlay networks arise from two fundamental properties.
(1) Network nodes in an overlay network, as opposed to lower-
layer network elements such as routers, are end systems and
have capabilities far beyond basic operations of storing and
forwarding. (2) The topology of an overlay network can be
manipulated willfully to suit one’s purposes since it resides
on top of a densely connected IP-layer network. The links
between nodes can be dynamically created or torn down
to construct topologies that are conducive to better network
performance. Recent research in application layer multicast
(e.g., [1], [2]) has shown that it may well be worth the incurred
cost of topology construction and maintenance to profit in
increased robustness, flexibility and efficiency.

In this paper, we seek to improve end-to-end session
throughput in an application-layer overlay multicast topology
by taking full advantage of both of these unique characteristics.
We deviate from the conventional view that data can only be
replicated and forwarded by overlay routing nodes. Rather, as
end systems, these overlay nodes also have the full capability
of encoding and decoding data. We apply the mechanism of
network coding [5], [6], [7] on intermediate overlay nodes.
In addition, we also depart from the traditional wisdom that
the multicast topology needs to be a tree from source to
receivers; rather, we seek to construct a 2-redundant multicast
graph (a directed acyclic graph to be defined in Sec. III) as
the multicast topology, on which network coding is applied.
Based on these insights, our main contribution is to propose
a set of distributed algorithms to construct such multicast
graphs and to subsequently assign linear codes and apply
network coding, such that as a provable property, the end-
to-end throughput may be significantly increased (doubled in

1Formally, stretch is defined as the ratio of path length from the source
to the multicast group member along the overlay to the length of the direct
unicast path [3].

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 2

many cases) for all members of the multicast group. Since
overlay multicasts come with the cost of link stress and
stretch, we design our algorithm such that these costs are
explicitly considered as constraints and optimized. Achieving
the objective of increasing end-to-end multicast throughput
is particularly important when applications such as content
distribution services demand the highest capacity possible in
overlay networks. We extensively evaluate our algorithm by
using both analytical and simulation-based experimental tools.
We show that our algorithm is indeed able to bring significant
benefits with respect to increasing end-to-end session through-
put.

The remainder of this paper is organized as follows. Sec. II
motivates the case for application-layer coded multicast, by
presenting concepts, advantages and requirements of network
coding. Sec. III presents formal definitions of terms, leading
to the main theorem with respect to the maximally achievable
throughput with network coding. Our algorithm is formally
presented in Sec. IV, along with its provable properties and
relevant discussions. Sec. V presents experimental results
using simulations. Finally, Sec. VI evaluates our proposal in
the context of related work, and Sec. VII concludes the paper.

II. A CASE FOR APPLICATION-LAYER

CODED MULTICAST

The main contributions of this paper are: (1) constructing
multiple data paths from source to multicast group members,
and (2) applying the concept of network coding in application-
layer multicasts, motivating the case for application-layer
coded multicast. The objective is to take advantage of alternate
paths and excess capacity in the IP-layer network topology,
and to significantly increase end-to-end multicast capacity.

The information-theoretic aspects of network coding was
first proposed and studied by Ahlswede et al. [5]. With
network coding, nodes have the capability of encoding and
decoding data at the per-message level using efficient linear
codes; the aim is to use bandwidth more efficiently and thereby
increase network capacity.

We briefly review the concepts of network coding with an
example shown in Fig. 1(c). The example shows how the
session throughput of an 1-to-2 multicast session may be
improved. In the figure, a and b represent two independent
information flows originating from the source S. Node u3

transmits the coded flow a ⊕ b along the “bottleneck” link
u3 − u4 to node u4, which then forwards the coded flow to
both destinations t1 and t2. Receivers t1 and t2 can recover
{a, b} from {a, a ⊕ b} and {b, a ⊕ b}, respectively. The
session achieves a throughput of 2C, assuming each link has
capacity C. Without network coding, it can be verified that
the achievable throughput is only 3C/2.

However, network coding is not the panacea when it comes
to increasing multicast session throughput. There exist many
topologies — including all forms of multicast trees — where
network coding fails to be more effective with respect to
improving throughput. It helps to increase throughput only in
network graphs that conform to special patterns. It is extremely
difficult to manipulate nodes in the IP layer to construct

multicast graphs that conform to specific patterns, and it is
infeasible to modify all IP routers and switches to support
coding. Overlay networks, on the other hand, have exactly
the properties that could be leveraged to employ network
coding for higher throughput in application-layer multicast:
flexibility in topology construction, and capability of encoding
and decoding.

Traditionally, the fundamental topological structure of mul-
ticast, whether it be IP-layer or application-layer, is a tree.
Hence, every multicast group member in the tree has only
one path from the source root; its throughput is limited by
this path. To increase throughput by adding another path from
the source to each receiver, one is faced with two problems: (a)
The gain may be overshadowed by the cost2 of the additional
links and nodes in the alternative paths. (b) One must ensure
that the alternative paths do not conflict with the original paths
in order to avoid throughput-limiting bottlenecks.

(a) Example with two receivers, t1, t2. (b) Shortest path multicast tree.

(c) Throughput is doubled with network
coding and alternative paths (dark
edges form second path for t1, second
path for t2 is the mirror image).

(d) Throughput is doubled
using alternative paths, but
not using network coding.

s

W

t1 t2

u4

u3

u2u1

s

t1 t2

u2u1

s

t1 t2

a+b

a b
s

W

t1 t2u4

u3

u2u1a b

ba

u3

u4

u1
u2

Fig. 1. The effects of network coding: an example.

We propose a new application-layer multicast strategy that,
by appropriate use of network coding, will resolve these prob-
lems and achieve the higher throughput without commensurate
cost or complexity. We use the previous example to illustrate
how we apply network coding advantageously. The overlay
network is represented by the graph in Fig. 1(a), in which t1
and t2 are the two receivers in the multicast group, and s is the
source. Each edge has the same bandwidth of 1 except that the
bandwidth available on edge (s, u3) is w � 1. This is the case
when, for example, s can not sustain an outgoing bandwidth
of much more than 2. The usual all-widest-paths multicast tree
is shown in Fig. 1(b); the widest alternative paths are added
in Fig. 1(c), while the other choice of (narrower) alternative
paths are shown in Fig. 1(d).

Without network coding, it is impossible to double through-
put in Fig. 1(c), since the alternative paths to t1 and t2
interfere with each other’s widest paths such that they cannot

2The cost of a link embodies critical metrics of concern, such as bandwidth,
latency and loss rate.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 3

both double their throughput. The conflict can be eliminated
by choosing the paths in Fig. 1(d), but the bandwidth of
the alternative paths is much less (narrower) than that of
the original tree, again making it not feasible to double
the throughput. This example exemplifies the two concerns
specified previously. With network coding, however, the graph
in Fig. 1(a) can be safely used in the multicast to double
the throughput to both receivers, as shown in Fig. 1(c). The
tremendous power of network coding lies in the fact that any
conflicts resulting from interfering paths in the multicast graph
can be resolved to obtain the same throughput for each receiver
as if it was the only receiver.

III. PRELIMINARIES

We consider a network graph with a source node s and a
set of multicast group members as receiver nodes (or simply
receivers). We define two notions of maximum flow and k-
redundant multicast graph.

Definition 1 (individual maxflow). Given any single re-
ceiver t, we say that the individual maximum flow (or simply
“individual maxflow”) of t is the maximum flow from s to t
when data flows from s only to t, and the other receivers are
not considered except as part of the subgraph serving the data
flow from s to t.

Definition 2 (simultaneous maxflow). When all multicast
group members receive data flowing from s simultaneously,
i.e., a multicast, the maximum flow that a receiver t achieves
is the simultaneous maximum flow of t.

Definition 3 (k-redundant multicast graph). A k-
redundant multicast graph for single-source multicast is a
directed acyclic graph (DAG) which has the following two
properties:

1) The set of all nodes, A, is the union of three disjoint
subsets {s} ∪ AI ∪ AT : {s}, the source,
indegree(s) = 0 and outdegree(s) > 0; AI , the
intermediate nodes (who are not members of the
multicast group), denoted by ui, 1 ≤ i ≤ nI , 1 ≤
indegree(ui) ≤ k and outdegree(ui) > 0; AT , the
receiver nodes (i.e., multicast group members), denoted
by ti, 1 ≤ i ≤ nT , indegree(ti) = k and
outdegree(ti) ≥ 0;

2) If each edge in the graph has unit bandwidth, then for
any node whose indegree is k, its individual maxflow
is k.

In particular, since the indegree of all receivers is k, the
individual maxflow of each receiver t is k, if the graph has
unit-bandwidth edges. If edges have different bandwidths,
then the individual maxflow of t is clearly k times the
bandwidth of the bottleneck edge between s and t. Without
loss of generality, we can assume that all the edges have the
same bandwidth (that of the bottleneck). This assumption will
be made throughout this section to simplify presentation of
proofs.

Let n = 1 + nI + nT be the total number of nodes. In
this paper, we only consider the case of 2-redundant multicast
graphs. The justifications are two-fold: (1) As k increases, both

the sustainable physical link stress leading to overlay nodes
and the limited number of intermediate nodes and receivers
significantly decrease the probability of finding multiple good
paths from the source to each receiver. In the example of
Fig. 1(a), when the sustainable stress on all nodes is no
greater than 3 incoming and outgoing flows, it is infeasible
to construct a k-redundant multicast graph if k > 2. (2) As k
increases, the code assignment algorithm (Sec. IV-F) becomes
more complex and averse to the dynamics of node joins and
departures.

We now establish the sufficiency of a maximum indegree of
2 in a 2-redundant multicast graph. It is not immediately clear
why no node in the graph needs more than two incoming edges
to ensure individual maxflow of 2 to each receiver. We prove
that a maximum indegree of 2 is sufficient by first proving the
following observations (Proposition 1 and 2) about disjoint
paths.

Definition 4 (disjoint paths). We say two paths from s to
t are disjoint if they do not share any common edges.

Proposition 1: Given a node t with indegree 2 in a 2-
redundant multicast graph with source s and unit-bandwidth
edges, t has two disjoint paths from s if and only if t has
individual maxflow of 2.

Proof: (⇒) This direction is straightforward. It is obvious
that if there are two disjoint paths to t, then it has maxflow
of 2. (⇐) A maxflow of 2 implies (in this case where edges
have unit bandwidth) that there are two flows, f1, f2, each of
bandwidth 1. Each flow clearly must define a path from s to
t, let p1, p2 denote the paths for f1, f2, respectively. If p1 and
p2 share a common edge e, then f1 and f2 must share the
bandwidth of e, which is only 1. So the value of each flow is
1/2, this is a contradiction. Therefore, p1 and p2 do not share
any common edges and are two disjoint paths to t from s. �	

Proposition 2: It is not necessary for any node in a 2-
redundant multicast graph to have indegree of greater than 2
to obtain two disjoint paths for each receiver from s.

Proof: We only need to show that by constructing two
disjoint data paths for a receiver t, it is not necessary for
adding a third incoming edge to any node in the existing
multicast graph. When constructing the first path p1, suppose,
by contradiction, that a third incoming edge is to be added to
a node u. This clearly is not necessary, since a path must exist
from u to t, u → t, and a path must already exist from s to
u (due to connectedness), s → u, and so p1 can be simply a
concatenation of s → u and that from u → t. This contradicts
the necessity of adding the third incoming edge to u.

When constructing the second path p2, suppose, again by
contradiction, that a third incoming edge is to be added to
a node u. Since u has an indegree of 2, by property 2 in
Definition 3 and Proposition 1, u must have two disjoint paths
from s, denote them by su1, su2, respectively. There are two
cases. Case 1: First path for t, p1, is disjoint from at least
one of su1 and su2. Without loss of generality, suppose p1 is
disjoint from su1, then p2 can be constructed by concatenating
su2 and u → t. It is clear that p2 thus formed is disjoint from
p1. Case 2: Both su1 and su2 share common edges with p1.
Without loss of generality, suppose the common edge closest
to t is shared by su1 and p1. Let v → w denote this common

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 4

edge, and also let s → v denote the segment of su1 until v and
w → t denote the segment of p1 from w to t. A new first path
for t, p′1, can then be constructed from concatenating s → v
and w → t; and p2 is formed by su2 followed by u → t. It
is easy to see that p′1 and p2 are disjoint. �	

The property of 2-redundant multicast graphs that the max-
imum indegree of a node is 2 not only reduces complexity in
the algorithm to construct the graph, but moreover contributes
significantly towards minimizing stress.

Towards the objective of constructing a 2-redundant multi-
cast graph, Proposition 1 shows the importance of constructing
two disjoint paths from the source s to a receiver t. Further,
directed acyclicity must be preserved in the construction of
the multicast graph, i.e., there must be no directed cycles
in the graph. Directed cycles in the network introduce great
complexity and difficulty in determining the linear codes used
for multicast [5], [6]. In fact, Koetter et al. [6] have not
presented any solution for the case of general networks with
cycles. We next show that, in order to construct a 2-redundant
acyclic multicast graph, the set of intermediate nodes, AI ,
needs to be non-empty.

Proposition 3: A 2-redundant multicast graph with only
receivers, i.e., every node beside s has two disjoint directed
paths from s, contains a directed cycle.

Proof: Let t1 be any node that has a directed edge from
s. Since it has two disjoint paths from s, there is a second
directed edge pointing to it from another node, say, t2, denoted
by t2 → t1. Similarly, t2 has at least one incident directed edge
from a node that is not s, say, t3. A chain of nodes may be
built with t2 → t1, t3 → t2, and so forth. Since there exists a
finite number of nodes, eventually ti becomes the same node
as tj with j < i, i.e., tj is in the chain before ti, thus forming
a directed cycle. �	

Obviously, there may not exist two disjoint paths from
s to each ui, which leads to the conclusion that multicast
group members may not serve as intermediate nodes. We need
to recruit dedicated high-degree relay nodes in the overlay
network as intermediate nodes, who do not belong to the
multicast group. For this purpose, we may deploy a pool
of end hosts or proxy servers connected to high-bandwidth
physical links. Naturally, the number of required intermediate
nodes must be minimized, and scalable to large-scale multicast
groups. Such a pool of dedicated nodes is the price we pay to
exploit the power of network coding to significantly increase
throughput. These intermediate nodes do not place much
additional stress on the network, since they do not require
multiple data delivery paths from the source. Facilitated by
intermediate nodes, we seek to construct 2-redundant multicast
graphs with no directed cycles (a DAG).

As an example, the multicast graph in Fig. 1(c) is 2-
redundant, with receivers t1 and t2 both having two disjoint
paths from s (as explained in Sec. II).

We now proceed to illustrate the essence of linear codes.
Definition 5 (linear coding multicast). Linear coding

multicast views a block of data flowing over an edge as a
vector and assigns a linear transformation for each node u in
the multicast graph such that:

– for each outgoing edge e of u, the vector sent out on e

is a linear combination of the vectors of the incoming
edges;

– for source s, any vectors can be sent out on its outgoing
edges;

– all the vectors are in the same infinite-dimensional vector
space over a base field.

Linear codes are the coefficients that determine the linear
transformations. For example, in Fig. 1(c), the data sent by
u3 on the outgoing edge is a linear combination of {a, b}:
1 · a + 1 · b = a + b, where + is defined in a finite field, e.g.,
GF(256). Such a linear combination is represented as (1, 1).

The main result of network coding, first proposed in [7] (a
slightly weaker version was proposed earlier in [5]), is stated
in the following theorem. It essentially states that in an acyclic
network with a source and multiple receivers, the maximum
individual throughput of each receiver can always be achieved
as if there was no interference at all from data flowing in the
network to the other receivers, by using only linear coding.

Theorem 1 (Li and Koetter). For every multicast graph,
there exists a set of linear codes that could be used for
multicast (linear coding multicast) such that simultaneous
maxflow of ti is equal to individual maxflow of ti.

Proof: The interested reader is referred to [6] or [7] for
detailed proofs using different methodologies. �	

IV. ALGORITHM AND ANALYSIS

The ultimate goal of our algorithm is to build and maintain
a 2-redundant multicast graph as defined in Sec. III. There are
several non-trivial challenges. Our algorithm addresses each of
these challenges, and much of the complexity lies in tackling
all of them in conjunction. (1) In order to subsequently apply
network coding, we need to correctly construct a 2-redundant
acyclic multicast graph from the source to all members of
the multicast group3. During the construction process, data
delivery paths should be optimized in the multicast graph to
the receivers. Each receiver essentially has two paths from the
source; both paths should be carefully chosen to maximize the
aggregated throughput to the receiver. (2) We need to minimize
the number of intermediate nodes with a given number of
receivers while preserving good performance. (3) Minimizing
stress is paramount since it directly determines how much
actual bandwidth a virtual link has and high stress can severely
diminish end-to-end throughput. These problems embody the
fundamental objective of maximizing multicast performance
(end-to-end throughput and latency) while minimizing the
penalty incurred by elevating the functionality of multicast
from the IP layer to the application layer and by using
a multicast graph instead of a multicast tree. In particular,
minimizing stretch is an integral part of optimizing the paths
and minimizing stress is covered by imposing a maximum
node degree in the multicast graph.

The algorithms we developed for our multicast scheme
are fully distributed. Our scheme mainly consists of three
steps. The first step is building a relatively densely connected
graph of the set of all nodes in the group, A, referred to

3Henceforth, the terms multicast group members and receivers will be used
interchangeably.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 5

as the rudimentary graph. Fig. 2(a) shows a simple example
of a rudimentary graph of a small multicast group with 7
nodes; the intermediate nodes, AI , consist of {u1, u2, u3}.
The second and third steps are carried out for data delivery.
In the second step, a spanning tree of only the intermediate
nodes with source s as the root is constructed, referred to
as rudimentary tree. With node r1 being the source s, the
rudimentary tree is shown, as darkened edges with incident
nodes, in Fig. 2(a). Using the rudimentary graph and tree,
the third step constructs the 2-redundant multicast graph by
carefully selecting two paths through intermediate nodes from
the source for each leaf receiver. In our simple example, the
leaf receivers AT = {r2, r3, r4} each has two disjoint paths
from s, as shown in Fig. 2(b).

Both the rudimentary tree and the multicast graph have the
degree constraint: every node has degree ≤ ∆; i.e., ∆ is the
maximum node degree.

s

u1
u2 u3

r4r3r2

u1 u2
u3

r4r3
r2

(a) rudimentary graph; ui's are intermediate
nodes; darkened edges form rudimentary
tree, r1 is source s.

r1

(b) 2-redundant multicast graph;
ri's are leaf receivers

a a+b b

Fig. 2. A simple example of a multicast group, with rudimentary graph,
rudimentary tree, and the resulting 2-redundant multicast graph.

A. Rudimentary graph

When a node joins the group, it is given a set of nodes
already in the group, these are its initial neighbors in the rudi-
mentary graph. The new node contacts its neighbors so they
are made aware of it. Every node maintains a set of neighbors
with which it periodically exchanges group information. That
is, each node stores a list of the addresses of all the nodes
it knows about in the group and periodically exchanges it
with its neighbors’ lists, and updates accordingly. After a node
joins, the information will eventually propagate through the
rudimentary graph.

Each edge (or link), e, in the rudimentary graph has as-
sociated with it a 2-tuple weight, w(e) = (β, λ), where β
is the link bandwidth and λ is the link latency. Each path,
p = (e1, e2, . . . , em), also has an associated weight, w(p) =
(β, λ), and β = min(βi, i = 1, . . . ,m), λ =

∑m
i=1 λi, where

w(ei) = (βi, λi). As usual, path bandwidth is the minimum
of the link bandwidths and path latency is the sum of the
link latencies. Let w(p1) = (β1, λ1), w(p2) = (β2, λ2) be the
weights of p1, p2, respectively. p1 is better than p2 if β1 > β2,
or β1 = β2 and λ1 < λ2.

Also, periodically, each node u chooses randomly another
node v in the group that is not a neighbor and by sending
a probing message, estimates the bandwidth and latency of
the direct overlay link, (u, v). If the direct link is better than
most of its (direct) links to its current neighbors, then v is
added as a neighbor of u and the edge (u, v) is added to the
rudimentary graph. The goal is to have overlay links (edges)

that have good performance in the rudimentary graph. Let x
be a current neighbor of u. From the same motivation, if (u, x)
is much worse than the links u has to its other neighbors, and
both u and x use this link rarely (i.e., use it to reach very few
nodes), then u drops x as its neighbor and (u, x) is removed
from the rudimentary graph.

The dynamics of adding high-quality edges and dropping
poor-quality edges is vital to the performance of the entire
multicast scheme. Because, ultimately, the edges in the rudi-
mentary graph are used to construct the data delivery paths,
whose performance depends directly on the property (i.e.,
weight) of these edges.

The graph resembles the Narada mesh [1], with the follow-
ing important differences: (1) For every intermediate node, the
number of its neighbors that are intermediate nodes must be no
larger than ∆. This is necessary to ensure that the maximum
degree of nodes in the rudimentary tree (of intermediate nodes)
constructed from this graph is limited by ∆. (2) For every node
(intermediate or not), the total number of its neighbors may be
larger than ∆. The algorithm for building the multicast graph
later explicitly enforces the ∆ degree constraint, so nodes in
the rudimentary graph can have more than ∆ neighbors. Since
these extra links are for control messages and not for data
transmission, more of them can be allowed without raising
concerns about performance degradation. (3) The subgraph
of intermediate nodes with their incident edges must be
connected.

Definition 6 (core graph). The core graph is the subgraph
of the rudimentary graph with the set of vertices AI and all
the incident edges.

The core graph is kept connected by the same heuristics
used for keeping the entire graph connected.

B. Rudimentary tree

The rudimentary tree is built from the subgraph consisting
of the core graph and s (with its ≤ ∆ edges incident with the
core). We adopt the distributed algorithm proposed by Wang et
al. [8] based on distance vectors that finds the shortest widest
paths. The widest path, or the path with the highest end-to-end
bandwidth, is selected; and if there is more than one widest
path, the shortest, one with the lowest end-to-end latency, is
selected.

C. Multicast graph

The basic idea of building the multicast graph is to use the
rudimentary tree as a basis and add edges, when necessary,
from the rudimentary graph. Construction of the 2-redundant
multicast graph G2r adheres to the following rules for source
node s and every intermediate node u:

1) s has k intermediate nodes as children and
2 ≤ k ≤ ∆ − 1 (outdegree(s) = k);

2) total degree of u = indegree(u) + outdegree(u) ≤ ∆;
3) 1 ≤ indegree(u) ≤ 2;
4) number of children of u that are leaf receivers

≤ ∆ − 1− indegree(u).

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 6

The fourth rule forces an intermediate node to leave at
least one outdegree available for adding an edge to another
intermediate node. This ensures that the search for a path is
always successful as long as there are enough intermediate
nodes in the rudimentary graph, without resorting to expensive
exhaustive search.

We shall use a running example throughout the description
of the algorithm to help illustrate how the algorithm works.
The core graph of the rudimentary graph and the rudimentary
tree of the example are shown in Fig. 3. Note that the
maximum degree, ∆, is 4 in our example.

s

u1 u2

u3

u4

u5

u6

u7

u8

u9

u10 u11

s

u1
u2

u3

u4

u5

u6
u7

u8
u9 u10

u11

(a) core graph of rudimentary graph (b) rudimentary tree

Fig. 3. The core graph of rudimentary graph and the rudimentary tree for
an example set of intermediate nodes, with ∆ = 4.

We now need to define two additional terms.
Definition 7 (leaf intermediate). An intermediate node v is

called a leaf intermediate if v does not have any downstream
intermediate nodes in G2r, i.e., none of v’s children in G2r is
an intermediate node.

Definition 8 (saturation). We say v is saturated if either
degree(v) = ∆, or v is a leaf intermediate and degree(v) =
∆ − 1.

For instance, in the G2r in Fig. 4(b), u7 is a leaf intermediate
node while u3 is not. If we assume ∆ = 4 for the graph
in Fig. 4(b), then u1 will be saturated if one leaf receiver is
connected to it. While u7 will be saturated if two leaf receivers
are connected to it. Even when a leaf intermediate node is
saturated, there is an outdegree preserved from leaf receiver
to allow possibility of adding at least one child intermediate
node.

The 2-redundant multicast graph G2r is initialized to the
rudimentary tree, so initially it has no leaf receivers. Adding
each leaf receiver t entails constructing two disjoint data de-
livery paths for t. Edges not in the tree (but in the rudimentary
graph) may be added to G2r in the process. We now describe
procedures for obtaining two disjoint paths, pf and ps, for a
leaf receiver t. The distributed algorithms are formulated in
Table I and Table II.

We seek to create, for t, two data delivery paths from s,
denoted by pf and ps, denoting the first path and the second
path, respectively. Moreover, pf and ps do not share any edges
in common.

To find pf , t first contacts all its neighbors in the rudimen-
tary graph that are intermediate nodes and finds out which are
unsaturated. If t has unsaturated neighbors, then t compares
their tree paths appended with the edge from them to t, and
selects node u with the best path. Let uf denote the node
that is parent of t in pf , then uf is assigned u. If all of t’s
neighbors are saturated, t initiates a breadth-first search of the

TABLE I

PROCEDURE FOR CONSTRUCTING pf FOR t

Leaf receiver t:
if not all t’s intermediate node neighbors are saturated (ui’s)

u = Find best path(t, {ui})
uf = u and pf = p ∪ (u, t)

else if all neighbors of t are saturated
Breadth-first search of tree,

halt when k unsaturated nodes {ui} found
u = Find best path(t, {ui})
uf = u and pf = p ∪ (u, t)

Find best path(t, {u1, . . . , um}):
request ui’s for weights {w(pi) = (βi, λi)} of their paths

in tree
for each (unsaturated) ui

β = bandwidth of edge (ui, t)
compute w(pi ∪ (ui, t)) = (min(βi, β), α + αi)

choose the best (shortest widest) path, p
return u that corresponds to p

TABLE II

PROCEDURE FOR CONSTRUCTING ps FOR t
Leaf receiver t:

find k unsaturated intermediate nodes {ui}, which are
not in pf , from its neighbors and/or random probing.

send pf to each ui and request best path pi from s to ui

that does not intersect with pf and its weight w(pi)
u = Find best path(t, {ui}, {pi}, {w(pi)})

Find best path(t, {ui}, {pi}, {w(pi)}):
for each ui

β = bandwidth of edge (ui, t)
compute w(pi ∪ (ui, t)) = (min(βi, β), α + αi)

choose the best (shortest widest) path, p
return u that corresponds to p

Intermediate node ui:
Upon receiving pf and request for paths from s to ui disjoint

from pf

if ui’s tree path P (s, ui) does not intersect with pf then
return p = P (s, ui) and w(p)

else if ui’s tree path intersects pf then
if ui has an alternative path p from s then

return p and w(p)
else if ui has indegree 1 then

contact a different child c of s than the one whose
subtree ui is in.

c conducts breadth-first search of its subtree and returns
to ui first unsaturated or leaf intermediate node v.

return p = P (s, v) ∪ (v, u) and w(p)

tree to find the first k unsaturated nodes. Comparison of the
k tree paths appended by respective edges from these nodes
to t yields node u with the best path. As above, uf is set to
u. In either case, pf = P (s, uf) ∪ (uf , t), where P (s, uf) is
the tree path from s to uf .

The primitive of the breadth-first search of the tree used
in the procedure will recur in later procedures. The details of
its implementation are presented in Sec. IV-D. The number k
represents a trade-off between efficiency of the algorithm and
optimality of the path constructed. It should not be too high
to avoid near-exhaustive search of the tree for an unsaturated
node, when there are many leaf receivers saturating many
nodes.

Suppose we want to construct pf , ps for t with the rudi-
mentary graph and tree in Fig. 3, and the existing 2-redundant
multicast graph is as shown in Fig. 4(a). Nodes u1, u2, u3 are
saturated.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 7

s

u1 u2 u3

t1 t2 t3

... ...

(a) Existing 2-redundant multicast graph

... u7

(c) Adding the first data path pf = (s,u1,u4,t)
for new leaf receiver t; uf = u4, dark edges are pf.

t

u1 u2 u3

... ... u7
uf = u4

u8

t

s

u1

u4

s

u1

u4

u8

(b) u4,u8 are unsaturated neighbours
 of t; t will choose the best path from
these two paths

s

t

t1 t2 t3

Fig. 4. Examples of 2-redundant multicast graphs. Ellipsis indicates part of
graph there is not shown.

In our example, the unsaturated nodes t considers are u4, u8.
t chooses the best path from the directed paths (s, u1, u4, t)
and (s, u1, u4, u8, t), as shown in Fig. 4(b). If the better path
is the first one, then pf for t is shown in Fig. 4(c). To keep
the figures clean, the directions on the edges in the multicast
graphs in later figures are omitted. The directions of the edges
are uniformly downward.

For reference, the procedure for determining ps is presented
in Table II. The leaf receiver t first finds k unsaturated nodes
{ui}, which are not in pf , from its neighbors. If there are
fewer than k such neighbors, t randomly probes intermediate
nodes. Now each ui is requested by t to give the best path,
pi, from s to ui. After t receives pi’s and w(pi)’s from all the
ui’s, t simply selects the best path among {pi ∪ (ui, t)}. Let
us denote the parent intermediate node of the best path p that
t selects. The second data delivery path to t is ps = p∪(us, t).

Each ui, when requested by t, first checks if its tree path
P (s, ui) intersects with pf . If not, then P (s, ui) is returned.
If it does intersect, then ui finds an alternative path from s.
An alternative path may already exist (if ui has indegree 2), in
which case, ui replies with that. Otherwise, ui sends a message
to a child node c of s that is different from the child s who
is upstream from ui. It is a request for c to do a breadth-first
search of its own subtree and reply to ui the first unsaturated
or leaf intermediate node found. Let v denote this node. ui

replies to t with P (s, v) ∪ (v, u).
Note that the search will always be successful, since a

breadth-first search will always eventually find a leaf inter-
mediate node. This is not true if the search was only for
unsaturated nodes. Moreover, the algorithm requires for each
leaf intermediate node to leave one outdegree free for an edge
to another intermediate node (recall the definition of node
saturation). This is the reason that we allow adding a second
incoming edge to ui. The rationale behind the allowance is
quite intuitive: we are trying to find two best paths from s to
t which must be disjoint, it is entirely possible that they do
not both belong to the rudimentary tree.

Returning to our example, we let k = 2. For constructing
ps, t first finds two unsaturated nodes that are not in pf : u7

and u8. t then sends requests to u7, u8 for their best paths
from s. The tree path of u7 from s does not intersect with
pf , so u7 will return its tree path p = (s, u3, u7). If t chooses
p ∪ (u7, t) as the best path, then ps is shown in Fig. 5(a).
Since u8 is in the same subtree as u4, it will need to find an
alternative path from s, p = (s, u2, u6, u8). If p ∪ (u8, t) is
a better path than {(s, u3, u7)} ∪(u7, t), then ps is shown in
Fig. 5(b).

(a) Second data path ps = (s,u3,u7,t)
if t chooses us = u7; dark edges form ps.

...

(b) Second data path ps = (s,u2,u6,u8,t)
if t chooses us = u8; dark edges form ps.

t

s

u1 u2 u3

...
u7u4

t

s

u1

u2
u3

u7

u4

u5

...
u6

...
u8

...

Fig. 5. Two examples of adding a second data path, ps; darkened lines
represent ps.

D. Breadth-first search primitive

Breadth-first search of a tree to find unsaturated nodes can
be made much more efficient than blind and exhaustive search.
Keeping record of the states of saturation of the subtrees of
children is not hard. When a node first becomes saturated, it
simply sends that information upstream in the multicast graph.
Recursively, a node, which is the root of subtree R, knows R is
saturated when all its children have sent saturation notification
to it. In this case, the breadth-first search takes guidance from
the indicators of subtree saturation at the roots of subtrees. If
the subtree is saturated, then no node in the subtree is searched
henceforth.

E. Analysis

We prove the correctness of the algorithm, show some
bounds on the number of intermediate nodes required, and
discuss scalability.

Theorem 2. The graph constructed by the algorithm is
indeed a 2-redundant multicast graph.

Proof: The graph is 2-redundant by construction, i.e., it is
constructed to be such that each leaf receiver has two disjoint
paths from the source. We only need to show that the graph
constructed is acyclic. We show by induction that this holds.
The initialization of the graph is the rudimentary tree with
directed edges from parent to child, which is certainly acyclic.
Suppose an existing multicast graph is acyclic. We now prove
that after adding a new leaf receiver t, the multicast graph
remains acyclic. Let pf , ps be the two paths chosen for t.
If pf , ps were already in the multicast graph, then only two
directed edges to t are added, and the resulting graph is clearly
still acyclic.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 8

Suppose new edges are added to the graph for pf and ps.
For pf , only an edge directed to t is added, so no cycle is
introduced.

For ps, there are two cases. The first case is when the parent
node of t in ps, us, is not in the same subtree as the nodes
in pf . ps is the path P (s, us) in the rudimentary tree plus the
added edge from us to t, which is the same scenario as for
pf above, hence no cycle exists.

The second case is when us is in the same child-subtree
of s as nodes in pf . So a directed edge (w, us) not in the
rudimentary tree is added (in addition to (us, t)), where w
is in a different subtree. We prove by contradiction that the
directed edge (w, us) cannot be part of a cycle. Suppose that
a cycle containing (w, us) indeed exists. Since w and us are
in different child-subtrees of s, there must be a directed edge
(u, v) in the cycle such that u is in the same child-subtree of s
as us, while v is in a different child-subtree. Moreover, u is a
descendant of us. The edge (u, v) was added before and when
it was added, us was unsaturated. But (u, v) exists only if a
breadth-first search from the top yielded that us was saturated,
otherwise, (us, v) would have been chosen instead. This is a
contradiction. �	

With the restriction of maximum degree, ∆, on the nodes
in the multicast graph, the number of intermediate nodes
needed increases with the number of leaf receivers. For nT

leaf receivers, we would like to determine the maximum
and minimum number of intermediate nodes possible. It may
be easier to consider the contrapositives of these: (1) the
maximum number of leaf receivers possible, in a 2-redundant
multicast graph, nT max, for a given number of intermediate
nodes, and (2) the minimum number of leaf receivers that
can saturate a 2-redundant multicast graph using the above
algorithm, nT min.

Theorem 3. Given nI intermediate nodes,

nT max = �((∆ − 2)nI + 1)/2�, (1)

nT min = �((∆ − 4)nI + 1)/2�. (2)

Proof: It is easy to see that to prove Equation (1) is
equivalent to finding the number of leaves in a (∆−1)-regular
tree. (An m-regular tree is a tree in which every non-leaf (i.e.,
intermediate) node has exactly m children.) The total number
of children in tree = (∆ − 1)nI = number of non-leaf nodes
+ number of leaf nodes + root = nI +nT +1, and the claim
follows directly.

Now we prove Equation (2). As above, consider the (∆−1)-
regular tree. Starting with this tree, the number of leaf nodes
decreases every time the algorithm adds a second incoming
edge to a non-leaf (intermediate) node. There are two incident
nodes of this additional edge and the degree of each decreases
by 1, which means that the number of children of each
decreases by 1. So each such second incoming edge added
decreases the total number of children by 2. The worst case
is when every non-leaf node has a second incoming edge.
Therefore, the least number of total children is (∆ − 1)nI −
2nI = nI + nT + 1, and the claim follows. �	

Now we discuss the issue of scalability, by first noting that
each node only exchanges control messages with a constant

number of neighbors. The steps of building the rudimentary
graph and the rudimentary tree is a variant of the distance-
vector algorithm (also known as the distributed Bellman-Ford
algorithm), which has been proven to converge and has time
complexity of O(V E), where V is the number of nodes and
E is the number of links. Since the number of neighbors is
constant for each node, the complexity for n nodes O(n2).
Similarly, the overhead of control messages for constructing
the rudimentary graph and tree is the same as that for the
distance-vector algorithm, variants of which are commonly
used in realistic networks (e.g., Border Gateway Protocol).
Hence, our protocol is clearly scalable, in terms of both time
complexity and control overhead, to high numbers of group
nodes. It is easy to see that all the procedures in the last
step are dominated, in time complexity and control overhead,
by the procedure of finding k unsaturated nodes. All other
operations are constant time with respect to n (the number of
nodes). To find k unsaturated nodes, it takes constant time if a
constant number of random probes are successful; otherwise, a
special version of a breadth-first search, described in Sec. IV-
D, is executed. A node needs to exchange control messages
with at worst O(log n) other nodes, since our breadth-first
search primitive includes record-keeping at the nodes. Thus
the control overhead in the worst case is O(log n). Overall,
it is clear that our graph-construction algorithm is scalable to
large multicast group sizes.

To handle discrepancy in bandwidths or rates of two in-
coming flows, we resort to existing flow control mechanisms
(e.g., TCP) to synchronize the incoming flow rates, as it is
traditionally done for matching incoming and outgoing rates
in a flow-controlled reliable connection. We know that the
end-to-end throughput in a multicast tree is determined by
the minimum bandwidth link in the tree. Since two incoming
flows synchronize rates in a 2-redundant multicast graph, the
end-to-end throughput is twice the minimum bandwidth in
the two (disjoint) paths. To resolve a difference in latency
of two incoming signals, buffer is needed; the buffer size is
proportional to the latency difference and is finite. Since the
nodes in the overlay network are end systems (with abundant
memory space), the issue of available memory for buffering
is not likely to be significant. It is also possible and not hard
to add optimization techniques to the existing algorithm to
minimize the latency difference when finding a pair of disjoint
paths during graph construction.

F. Linear coding multicast

Once a multicast graph is constructed, a set of linear codes
must be found to realize linear coding multicast. Both Koetter
et al. [6] and Li et al. [7] give algorithms for constructing the
linear codes. However, because both papers are theoretical in
nature, Li et al. [7] with an information-theoretic perspective
while Koetter et al. [6] has an algebraic-geometric formulation,
their briefly described algorithms have been included mainly
for completeness. The algorithms are moreover centralized,
difficult to implement in a distributed manner, and intended for
general multicast scenarios. Since the graphs constructed by
our algorithm are of a specific structure, a more light-weight

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 9

algorithm tailored for this specific type of multicast graphs
can be devised.

We propose a distributed algorithm that is easy to implement
for obtaining the linear codes for the 2-redundant multicast
graph. We observe that coding is only needed at the source
s and the intermediate nodes, and that an intermediate node
has either one or two incoming edges (by construction).
Furthermore, since each leaf receiver has exactly two paths
from the source s, s sends the data vector (a, b) and both a
and b should be obtained by each receiver. We assume that
there is a function gen(m) that generates a sequence of m
transformation vectors {(p1, q1)T , (p2, q2)T , . . . , (pm, qm)T }
such that

– pi, qi are elements in a field;
– (pi, qi) and (pj , qj) are linearly independent, ∀i �= j;
– (pi, qi)T defines a linear transformation of data vector

(a, b): ci = (a, b)(pi, qi)T = pi · a + qi · b (pi, qi are
coefficients of a linear combination of a, b), i.e., (pi, qi)T

determines a vector ci, ∀i.

Hence ci and cj are linearly independent, ∀i �= j. Let
C = {c1, . . . , cm}. Essentially, gen(m) generates codes
for m linear transformations. For example, gen(5) could
be {(1, 0)T , (0, 1)T , (1, 1)T , (2, 1)T , (1, 2)T }, then the corre-
sponding C would be {a, b, a + b, 2a + b, a + 2b}. Any two
elements from C are linearly independent and therefore, a and
b can be obtained from them. It follows that a leaf receiver
is able to get both a and b as long as it receives any two
distinct elements from the set C. We assign only one linear
transformation to every intermediate node u, so u sends out
the same data over all its outgoing edges.

• u has 1 incoming edge: the identity transformation is
assigned, i.e., data on the incoming edge is forwarded,
with no encoding, on all the outgoing edges;

• u has 2 incoming edges: a transformation vector vu =
(v1, v2)T is assigned by the algorithm, so if x is re-
ceived on one incoming edge and y on the other, then
(x, y)(v1, v2)T = v1x+v2y is sent on all of u’s outgoing
edges.

We will now describe how the vu’s are obtained for those
u with indegree 2. The distributed algorithm has two phases,
AssignCodes and DisseminateCodes. Due to the special topol-
ogy of the 2-redundant multicast graph, we can assume that
the source s is multicasting a 2-dimensional data vector (a, b)
to every leaf receiver. Every node u ∈ AI will determine a
vector wu = (pu, qu)T such that the data sent on its outgoing
edges is (a, b)(pu, qu)T . This way, a node u with indegree 2
can obtain these from its two parent nodes and together with
its own wu, it can easily obtain vu, as will be shown later.

In the AssignCodes phase, s first multicasts a message
through the rudimentary tree to initiate the AssignCodes phase.
If an intermediate node u has 2 incoming edges, then it sends
a message containing its address to s requesting a code. When
enough time has passed for all the nodes to have a chance to
send requests, suppose m requests were received and s has j
children, then s generates m+j linear codes using gen(m+j)
and sends to each requesting node one of the first m codes.
This vector will be the wu vector of u. The pseudocode is

given in Table IV.
The wi for nodes i with indegree 1 are determined in the

DisseminateCodes phase (summarized in Table V), followed
by obtaining vu for every u, The last j vectors generated by
gen(m + j) are sent by s to its children, one to each child. A
child i of s assigns the received vector to its wi. Each node
u with one incoming edge simply sets its wu to the vector
received and forwards it on all its outgoing edges. (Also, u
has the identity transformation.)

Each node u with two incoming edges already has wu =
(pu, qu)T from the AssignCodes phase and passes it onto
its outgoing edges. Node u also receives (p1, q1), (p2, q2) on
its incoming edges, respectively. Now u needs to determine
vu = (v1, v2)T . Let α, β denote the data received on the two
incoming edges, respectively, then (α, β)(v1, v2)T is the data
u sends out on its outgoing edges.

We know u should send out (a, b)(pu, qu)T , but we also
know

(a b)
(

p1 p2

q1 q2

)
= (α β)

We have

(a b)
(

pu

qu

)
= (α β)

(
p1 p2

q1 q2

)−1 (
pu

qu

)

So the product of the matrix and vector on the right of (α, β)
is the vector vu. This is correct only if the matrix in the
equation is invertible, i.e., (p1, q1) and (p2, q2) are linearly
independent. Two edges carry the same (p, q) only when
they come out of the same intermediate node. But since the
construction algorithm ensures that the paths containing one
upstream node of u do not intersect with any path containing
the other upstream node of u, except at s. Therefore (p1, q1)
and (p2, q2) are linearly independent. The same logic applies
to the leaf receivers, so the data on one incoming edge and
the data on the other incoming edge are linearly independent.
This, in fact, proves the correctness of the algorithm. Encoding
at any intermediate node u is completely defined by the
transformation vector vu if u has indegree 2 and no encoding
is done at intermediate nodes with indegree 1. Decoding at
the leaf receivers is simple, because in the DisseminateCodes
phase, each leaf receiver gets the codes from its two upstream
nodes and can use these to decode the data they receive.

It only remains to find gen(m). We define gen(m) to be a
set such that every (p, q) in the set is distinct and p, q are two
prime numbers with p �= q. It is clear that any two vectors are
linearly independent, because they are only linearly dependent
if one is a multiple of the other, which is impossible when they
are not equal and are vectors of prime numbers. A function
for generating primes in increasing order starting from 2 is
used. It is straightforward to code such a function or find an
existing efficient function. We give the algorithm in Table III.

Complexity analysis of linear codes algorithm

In the AssignCodes phase, one initiate-session message
is multicast through a tree, i.e., O(n) transmissions of the
message occur, where n is the number of nodes; then O(m)
messages are unicast between the source and intermediate
nodes, where m is the number of intermediate nodes. The
DisseminateCodes phase involves only each node sending one

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 10

TABLE III

Vector sequence generation ALGORITHM

Algorithm gen(m)
i← 1, j ← 1
primes[i]← 2, vectors[m]← (2, 2)
Iteration:

Find the next prime p, smallest p > primes[i]
for k = 1 to i

j ← j + 1
vectors[j]← (primes[k], p)
if j = m then halt
j ← j + 1
vectors[j]← (p, primes[k])

i← i + 1
primes[i]← p

TABLE IV

AssignCodes PHASE

The source s:
multicast message 〈start AssignCodes〉 in the rudimentary tree
set T = (largest RTT) ·2
set timer t = 0, initialize m = 0
while t < T do

Upon receiving 〈request code, address of u〉:
m = m + 1
node addr[m] = address of u

j = number of children of s
obtain gen(m + j)

= {(p1, q1)T , (p2, q2)T , . . . , (pm+j , qm+j)
T }

for i = 1 to m
send 〈code, (pi, qi)

T 〉 to node at
address node addr[i]

Upon receiving 〈start AssignCodes〉, each node u ∈ AI :
if u has 1 incoming edge then

do nothing
else if u has 2 incoming edges then

send message 〈request code, address of u〉 to s
Upon receiving 〈new code, (p, q)〉, each node u ∈ AI :

u sets its wu: pu = p and qu = q

message, including the codes assigned to it, to each of its
downstream nodes. So the number of messages transmitted is
exactly the number of edges in the multicast graph, the upper
bound of which is 2n. Hence, the total number of control
messages transmitted for the two phases is O(n). Let T denote
the largest round-trip time or delay from the source to any
node via the paths in the multicast graph. The largest round-
trip time between any two nodes via unicast, let it be denoted
by t, is obviously dominated by T . The AssignCodes phase
requires at most time 3T for exchanging messages. While
the DisseminateCodes phase requires only time t, since all
the transmissions are done in parallel and no forwarding of
messages is necessary. As such, the overall time complexity
is O(T).

V. PERFORMANCE EVALUATION

The primary objective of our evaluation process is to reveal
the strengths and performance of our proposed algorithm with
respect to network level metrics, and to compare with pre-
viously proposed representative multicast algorithms at both
the application and the IP layer. At the application layer, we
choose the Narada protocol [1] to evaluate the merits of our
algorithm, since as one of the first algorithms proposed in the
application layer, it uses a two-step mesh-based process that
is similar to our work (a detailed discussion is postponed to
Sec. VI). At the IP layer, we assume that IP multicast involves
constructing classical shortest-paths trees (e.g., using DVMRP

TABLE V

DisseminateCodes PHASE
The source s (has j children and has gen(m + j) from last
phase):

for i = 1 to j
send 〈code, gen(m + i)〉 to its ith child

Each node u ∈ AI with indegree 1:
Upon receiving 〈code, (p, q)T 〉 from its parent:

set its wu: pu = p, qu = q
send 〈code, (pu, qu)T 〉 out on all its outgoing edges,

i.e., to all its downstream nodes
set linear transformation for all outgoing edges to

the identity
Each node u ∈ AI with indegree 2:

send 〈code, (pu, qu)T 〉 out on all its outgoing edges
Upon receiving 〈code, (p1, q1)T 〉, 〈code, (p2, q2)T 〉,

respectively, from its two upstream nodes:

vu =

(
v1

v2

)
=

(
p1 p2

q1 q2

)−1 (
pu

qu

)

[9]), composed of the reverse paths from the source to each
receiver.

For the purpose of performance evaluation, we have resorted
to simulation experiments, conducted using a locally written,
message-level, event-based simulator. In accordance with the
goal of simulating a realistic IP-based wide-area network, we
have chosen the INET topology generator from the University
of Michigan [10], which is fully capable of generating large-
scale topologies that conform to the power-law characteristics
[11]. Other topology generators may also be used, but we
do not expect material deviations if the resulting topology
maintains power-law properties.

With such a generated IP-based network topology as an
underlying foundation, we selectively connect application-
layer end hosts (i.e., overlay nodes) to a subset of IP-layer
nodes in the IP topology. We require that the IP-layer nodes
in such a subset have very few links (usually just a single link)
to other IP-layer nodes, such that they represent edge nodes
in the wide-area network with a high probability, rather than
core routers. For the purpose of application-layer multicast,
each virtual link in the overlay topology represent an unicast
path between two end hosts in the IP topology. With respect
to network-level metrics, we use a similar simulation envi-
ronment as Narada to facilitate more accurate comparisons:
we assume identical availability of residual bandwidth on
all physical links in the backbone IP topology, as well as
randomly assigned link delays in the range of 8 – 12 ms.

Given IP-layer physical link delays and available bandwidth,
it is straightforward to derive the delays and bandwidth of
virtual links in the overlay. The delay of a virtual link is,
obviously, the sum of physical link delays that the virtual
link traverses. Calculating the bandwidth of a virtual link is
more involved, however, since there may exist multiple virtual
links sharing the same physical link (stress). In this case,
the physical link bandwidth is equally divided among all the
virtual links passing through. Finally, the available bandwidth
on a certain virtual link is the minimum available bandwidth
of all the physical links (i.e., the physical link with the most
stress) that it traverses. With the knowledge of delay and
bandwidth of a virtual link, the 2-tuple weight of the link,
detailed in Sec. IV, may be obtained.

We consider the following performance metrics in our

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 11

simulation:

– Multicast session throughput. We measure application-
layer throughput at each of the receivers.

– End-to-end delay. We measure end-to-end latency from
the source to the receivers, as perceived at the application
layer, which naturally incorporates stretch.

– Stress. We measure stress on the physical links leading
to overlay nodes, and also compute the normalized stress
(the ratio of stress over the achievable session through-
put).

– Resource usage. We measure the number of physical
links, L, that are actively in service for a multicast ses-
sion. The resource usage may be defined as

∑L
i=1 di · si,

where di is the delay of link i, and si is its stress. The
resource usage is a metric that corresponds to the con-
sumed network resources for data delivery to all receivers
in a multicast session. The resource usage should also be
normalized over session throughput.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

 # of receivers

 a
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
ps

)

DVMRP
Narada
Coded Multicast

Fig. 6. Multicast session throughput at the receivers in (1) DVMRP; (2)
Narada; (3) Coded Multicast.

We plot session throughput at the receivers as a function
of the number of receivers. Our Coded Multicast scheme
does not perform as well as DVMRP, as expected. The end-
system nodes in overlay networks are often at the boundaries
of the IP network, where there are fewer underlying physical
links. Inevitably, a number of virtual links will map to the
same physical link near an end-system, introducing stress on
those few physical links around the end-systems. Stress creates
bottleneck links that decrease session throughput. This is an in-
herent problem of application-layer multicast. Thus the figure
shows that Narada has much lower throughput than DVMRP.
Coded Multicast performs significantly better than Narada,
consistently achieving at least doubled throughput for groups
of almost all sizes; at times, even achieving more than twice
Narada’s throughput. This confirms our previous theoretical
results that throughput in the multicast graph constructed by
our algorithms can be twice as high as in a multicast tree.

In Fig. 7, the average end-to-end delay is plotted as a
function of the number of receivers. It is expected that the
end-to-end delay in our multicast scheme would be higher
than the end-to-end delay for Narada and DVMRP. Because
in our scheme, we use alternate paths which are likely not

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

 # of receivers

 a
ve

ra
ge

 d
el

ay
 (

m
s)

DVMRP
Narada
Coded Multicast

Fig. 7. End-to-end delay averaged over all receivers in (1) DVMRP; (2)
Narada; (3) Coded Multicast.

as good as the shortest widest paths in the multicast tree, so
they will certainly have higher delays. The delay for Coded
Multicast is only slightly higher than the delay for Narada
when both are compared to DVMRP. We observe that on
average, the difference between Coded Multicast and Narada
is only less than 1/4 of the difference between Narada and
DVMRP. Especially for groups of size less than 50 and greater
than 150, the increase in delay is very small. Narada and
Coded Multicast have end-to-end delay on the same order with
both being higher than DVMRP. The increase in delay is slight
and not proportional to the increase in throughput.

In the top graph in Fig. 8, the horizontal axis is the link
stress and the vertical axis is the number of physical links for
a given stress. The number of virtual overlay links for Coded
Multicast is higher, so stress on physical links in proximity of
the end-systems (overlay nodes) is bound to be higher. That
is why there are more physical links with higher stress for
Coded Multicast than for Narada. The difference in normalized
link stress is not as pronounced, as can be seen from the
bottom graph in Fig. 8 which plots normalized link stress as
a function of the number of receivers. For groups of size less
than 100, normalized link stress of Coded Multicast is actually
roughly equal to that of Narada. Furthermore, as group size
increases, Coded Multicast has the tendency of approaching
Narada, which is grounds for optimism for Coded Multicast.

The normalized resource usage as a function of the number
of receivers is plotted in Fig. 9. We observe that for groups
of size less than 150, the normalized resource usage of Coded
Multicast and that of Narada are comparable. For groups of
sizes 150 to 250, the normalized resource usage of Coded
Multicast is roughly 1/3 higher than that of Narada. Both are
high, in the order of a few thousands, as compared to DVMRP,
which is in the order of a few hundreds.

Since the resource usage is defined to be a sum of products
of delay and stress, it is a direct result of the data in Fig. 7
and Fig. 8 that resource usage will be higher for Coded
Multicast. However, it can be seen from Fig. 9 that normalized
resource usage for Coded Multicast has the same slope as
that for Narada, only shifted up by a constant that is small in
proportion to the absolute values of the resource usage. The

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 12

0 5 10 15
1

2

4

8

16

32

64

128

256

 stress of physical link

 #
 o

f p
hy

si
ca

l l
in

ks
(lo

gs
ca

le
)

 Group size = 200, # of receivers = 100
DVMRP
Narada
Coded Multicast

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

 # of receivers

 n
or

m
al

iz
ed

 li
nk

 s
tr

es
s

DVMRP
Narada
Coded Multicast

Fig. 8. Top figure: Link stress in (1) DVMRP; (2) Narada; (3) Coded
Multicast. Bottom figure: Normalized link stress in (1) DVMRP; (2) Narada;
(3) Coded Multicast.

trend is that as group size increases, the resource usage of
Narada and Coded Multicast are in the same order, and the
constant difference will approach negligible.

In summary, the multicast scheme we propose, Coded
Multicast, achieves twice the end-to-end throughput of Narada.
The penalty incurred by Coded Multicast in end-to-end delay
is not proportional to the significant increase in throughput.
In all three metrics of delay, stress and resource usage, Coded
Multicast performs worse than Narada by a small percentage.
We believe that the slight additional penalty of using Coded
Multicast is not commensurate with the considerable gain in
throughput.

VI. RELATED WORK

This work was mainly inspired by previous work on network
coding, first proposed by Ahlswede et al. [5], and then
developed in [7], [6], from information-theoretic and algebraic
approach, respectively. It is shown that per-receiver max-flow
throughput can be achieved (details summarized previously
in Theorem 1) by applying network coding in a multicast
(IP-layer) network. Although exciting insights are provided,
the existing studies on network coding have remained largely
theoretical, and we are not aware of any published work that
studies the feasibility of applying the theoretical insights in
network coding to increase throughput in actual multicast

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

 # of receivers

 n
or

m
al

iz
ed

 r
es

ou
rc

e
us

ag
e

DVMRP
Narada
Coded Multicast

Fig. 9. Normalized resource usage in (1) DVMRP; (2) Narada; (3) Coded
Multicast.

sessions over wide-area networks. In this paper, we give
algorithms to achieve such a goal in application-layer overlay
networks, supported by analytical and simulation results.

There exists an extensive body of research work in the area
of multicast routing in wide-area IP networks [9], [12], [13],
[14]. Because it has been shown that IP-based multicast lacks
flexibility and is difficult to deploy in general, algorithms
promoting application-layer overlay multicast have recently
been proposed as remedial solutions, [1], [15], [16], [17],
[18]. They focus on the issue of constructing and maintaining
a multicast tree, with only unicasts between end hosts, and
of minimizing the inefficiency brought forth by link stress
and stretch. Researchers have recently focused on designing
overlay multicast tree construction algorithms that are scal-
able, using tools including Delaunay Triangulations [4] and
hierarchical clusters [3]. It is also possible to design overlay
multicast algorithms based on structured overlay networks
(ones that impose data on specific nodes based on hash
functions), examples include overlay multicast [19] based on
CAN [20], as well as Scribe [2] based on Pastry [21]. These
approaches may incur performance penalty, and may not be
adaptive to dynamic network metrics, which is shown to be
critical in overlay multicast routing, [22], [23].

Inspired by two-step algorithms such as Narada [1], our
algorithm begins with the construction of the rudimentary
graph followed by the rudimentary tree. Our approach is also
similar to most of the existing proposals in the sense that
it is a distributed algorithm. However, our proposal distin-
guishes from all previous work in the following fundamental
aspect: we construct a multicast graph, rather than a tree.
Although the idea of multiple paths has been studied in the
area of distributed Quality-of-Service routing ([8], [23], [24],
[25]), none of the previous work had sought to utilize the
path diversity concurrently to increase end-to-end throughput.
Among all previous work, perhaps the work on CoopNet [26]
and the position proposal on SplitStream [27] are most similar
to our work. Both papers have proposed to utilize multiple
multicast trees to deliver striped data, using either multiple
description coding or source erasure codes to split content to
be multicast. CoopNet proposes a centralized algorithm which
does not feature support of optimizing link stress and stretch.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 13

SplitStream proposes a decentralized algorithm to construct
a forest of multicast trees, with a focus on per-node load
balancing. In both work, the inherent concerns of through-
put limitations caused by conflicting paths have not been
addressed. In comparison, our algorithm constructs an acyclic
multicast graph from one multicast source, which, combined
with coding, introduces a smaller degree of stress on overlay
nodes compared with a forest. Further, our algorithm seeks a
well-balanced trade-off between the constraints on link stress
and the selection of good paths to achieve high throughput.
Network coding, while essential to the performance of our
algorithm, has not been incorporated in either CoopNet or
SplitStream.

There has been research conducted on parallel downloads
in peer-to-peer or overlay networks from mirror sites, i.e.,
multiple sources, in [28], [29], [30]. These papers investigate a
different problem than that of overlay multicast that we study
in this paper. Parallel downloads consider multiple servers
containing replicated content (sometimes in encoded form),
and clients obtain desired content by connecting to these
servers. In our work, we only have one source holding the
data. Instead of parallel unicasts from sources to clients, we
construct a topology so that clients do not only receive by
unicast from the source. Our approach does not assume that
multiple sources are available, and provides more flexibility
in efficiently distributing data to receivers by providing a
multicast topology that includes multiple hops and store-and-
forward routing actions in the nodes.

VII. CONCLUDING REMARKS

In this paper, we have proposed a set of distributed al-
gorithms to significantly improve end-to-end multicast ses-
sion throughput. Such results are achieved by the application
of network coding when exploiting path diversity with two
disjoint paths to each multicast group receiver. To the best
of our knowledge, there do not exist similar proposals in
previous literature. With respect to the effectiveness and per-
formance of our algorithm, we have undertaken both analytical
and simulation-based studies, which agree with our original
claims. We are currently in the process of implementing our
algorithms as an application-layer protocol on the wide-area
overlay network testbed PlanetLab [31].

REFERENCES

[1] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End System
Multicast,” IEEE Journal on Selected Areas in Communications, pp.
1456–1471, October 2002.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: A
Large-Scale and Decentralized Application-Level Multicast Infrastruc-
ture,” IEEE Journal on Selected Areas in Communications, pp. 1489–
1499, October 2002.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” in Proc. of ACM SIGCOMM, August 2002.

[4] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multicasting
With Delaunay Triangulation Overlays,” IEEE Journal on Selected Areas
in Communications, pp. 1472–1488, October 2002.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow,” IEEE Transactions on Information Theory, vol. IT-
46, pp. 1204–1216, 2000.

[6] R. Koetter and M. Medard, “Beyond Routing: An Algebraic Approach
to Network Coding,” in Proc. of IEEE INFOCOM, 2002.

[7] S.-Y. R. Li and R. W. Yeung, “Linear Network Coding,” IEEE Trans.
on Information Theory, to appear, 2002.

[8] Z. Wang and J. Crowcroft, “Quality of Service Routing for Supporting
Multimedia Applications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 14, no. 7, pp. 1228–1234, September 1996.

[9] S. Deering, “Multicast Routing in Internetworks and Extended LANs,”
in Proc. ACM SIGCOMM, August 1988.

[10] J. Winick, C. Jin, Q. Chen, and S. Jamin, “INET: an Autonomous
System (AS) level Internet Topology Generator, version 3.0,” available
online at http://topology.eecs.umich.edu/inet/, June 2002.

[11] C. Faloutsos, M. Faloutsos, and P. Faloutsos, “On Power-Law Relation-
ships of the Internet Topology,” in Proc. ACM SIGCOMM, 1999.

[12] A. J. Ballardie, P. F. Francis, and J. Crowcroft, “Core Based Trees,” in
Proc. ACM SIGCOMM, August 1993.

[13] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,
“An Architecture for Wide-Area Multicast Routing,” in Proc. ACM
SIGCOMM, August 1994.

[14] S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D. Estrin, and
M. Handley, “The MASC/BGMP Architecture for Interdomain Multicast
Routing,” in Proc. ACM SIGCOMM, August 1998.

[15] Y. Chawathe, “Scattercast: An Architecture for Internet Broadcast
Distribution as an Infrastructure Service,” Ph.D. Dissertation, Univ.
California, Berkeley, CA, 2000.

[16] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, “Overcast: Reliable Multicasting with an Overlay Network,”
in Proc. 4th Symposium Operating System Design and Implementation
(OSDI), October 2000, pp. 197–212.

[17] P. Francis, “Yoid: Your Own Internet Distribution,” available online at
http://www.aciri.org/yoid/, April 2000.

[18] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An
Application Level Multicast Infrastructure,” in Proc. of the 3rd USNIX
Symposium on Internet Technologies and Systems (USITS ’01), San
Francisco, CA, March 2001, pp. 49–60.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
level Multicast Using Content-addressable Networks,” in Proc. 3rd Int.
Workshop on Networked Group Communication (NGC ’01), London,
UK, 2001.

[20] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A Scalable
Content-Addressable Network,” in Proc. ACM SIGCOMM, 2001, pp.
149–160.

[21] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-peer Systems,” in Proc.
IFIP/ACM Middleware 2001, November 2001.

[22] S. Shi and S. Turner, “Multicast Routing and Bandwidth Dimensioning
in Overlay Networks,” IEEE Journal on Selected Areas in Communica-
tions, pp. 1444–1455, October 2002.

[23] M. Faloutsos, A. Banerjea, and R. Pankaj, “QoSMIC: Quality of Service
sensitive Multicast Internet protoCol,” in Proc. ACM SIGCOMM, 1998.

[24] P. Baccichet, E. Pagani, and G. P. Rossi, “Quality of Service Multipath
Multicast Protocol,” in Proceedings of the Fourth International Work-
shop on Networked Group Communication, Boston, Massachussetts,
2002.

[25] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing
for the Next Generation High-Speed Networks: Problems and Solutions,”
IEEE Network, Special Issue on Transmission and Distribution of Digital
Video, vol. 12, no. 6, pp. 64–79, November/December 1998.

[26] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing Streaming Media Content Using Cooperative Networking,” in Proc.
of the 12th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2002), Florida, 2002.

[27] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Content Distribution in
a Cooperative Environment,” in Proc. of the Second International
Workshop on Peer-to-Peer Systems (IPTPS 2003), Berkeley, California,
February 2003.

[28] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing Multiple Mirror
Sites in Parallel: Using Tornado Codes to Speed Up Downloads,” in
Proc. of IEEE INFOCOM, 1999.

[29] P. Rodriguez and E. W. Biersack, “Dynamic Parallel-Access to Repli-
cated Content in the Internet,” IEEE/ACM Transactions on Networking,
vol. 10, no. 4, pp. 455–465, August 2002.

[30] P. Maymounkov and D. Mazieres, “Rateless Codes and Big Downloads,”
in Proc. of the 2nd International Workshop on Peer-to-Peer Systems,
2003.

[31] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for
Introducing Disruptive Technology into the Internet,” in Proc. of the
First Workshop on Hot Topics in Networks (HotNets-I), 2002.

