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Abstract—WiMAX with femto cells is a cost-effective next- However, traditional WIMAX architectures and MAC-layer
generation broadband wireless communication system. Cognitiveprotocols are hobbled by the holdover from cellular network
Radio (CR) has recently emerged as a promising technologyipey |ack dynamic utilization of spectrum holes and are es-

to improve spectrum utilization by allowing dynamic spectrum tiallv b d osinale-hop t s irinaloball
access. There will be large potential benefits by applying the crSentally based oisingle-nop transmissions, requiringiobally

technique to WiMAX with femto cells, which are barely explored available channel resources. The existing state-oftheea

in the literature. source management protocols have to carefully coordirnete t
In this paper, we propose a novetognitive WIMAX architecture  transmissions of macro and femto cells in a time-sharingemod

with femto cells, where the base station and users are equippeo[z], which have inherent weakness on overlooking the specia

with CRs and intelligently adjusts power, channel, and other s -
resources to accommodate the entire network ecosystem. Inith network characteristics and hence missing the bulk of otlann

new design, we develop an optimization framework forlocation- €uUse opportunities. For example shown in Fig. 1, charnel
aware cooperative resource management, by jointly employing iS used by PUL. Macro BS then can not use this channel to
multi-hop cooperative communication, power control, channel transmit data to S\ in order to avoid interference to PU,
assignment, primary user protection, buffer management, anddir- - 51though SU2 resides outside the interference region of PU

ness, and incorporating user, channel, and cooperative diveitgs. .. . ] .. . .
To achieve optimality, it is designed based on stochastic LyapunovThIS is due to the single-hop transmission schedule withealfix

optimization, aiming to take advantage of the radio flexibility and POWer, leading to resource under-utilization.
fully utilize the spectrum. Evaluated by the rigorous analysisand ~ ____-—-__ -

extensive simulations, our resource management protocol is nea T 3

optimal with closed-form bounds, with which cognitive WiMAX o -

achieves substantial performance improvement. o 0 A
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WIMAX is an emerging technology to facilitate broadband =  / L2572 7] W/ s \
wireless mobile access in metropolitan area [1], and has bee ™% | ez [ J |
commonly referred as 4G. In WiMAX, femto cells are a cost- %) ! W Sk S ,'
effective means of providing ubiquitous connectivity. tisthat ng;y voen \.\,.'Y'_?f:w Bsé 2N JC;‘ i
reside in femto cells experience increased throughput due t SecondaryUse\ﬁ C \<9‘*\ A %\g\ -
the shorter ranges. Fig. 1 shows a typical WiMAX network N /:»\,’ h ,‘»—;—’;‘I:x"
consisting of one macro base station (BS) and six femto,cells N Y /yC3 ) “\Femmce"s
serving two classes of users: primary user (PU) and secgnda fo Cell i ".@’%
user (SU). PUs communicate with the corresponding femto BS L2}

S~ Femto Cell _-7

with dedicated channels, enjoying guaranteed quality nices Tee et -
(QoS). SUs are highly dynamic and communicate directly WlthFig. 1. Anillustrative example of cognitive WIMAX with femtoedis.

macro BS with best effort services. ) ) .
As the power used by femto BSs is an order of magnitudeTherefore, there is a compelling need to re-design the re-

less than macro BS, the serving area of each femto cell ig g8RUTCe Management scheme in WIMAX with femto cells in
limited (shown by shadow circle areas). The smaller size Bfler {0 tightly integrate with the network architectureldally

femto cells creates abundant opportunities for spatiaeethe Utilize the spectrum. Cognitive radio (CR) [3] has emerged
transmissions outside the femto cells are able to be ex¢ce @ important technology to exploit high-degree spectrum

over the same channels used inside femto cells. Thus, they WBUSe: by allowing spectrum sensing and dynamical spectrum
in a completely distributed fashion, and the channel algiitp 2CCeSS- Such a technique brings much flexibility and patinti

in the network islocation-dependent and dynamic for SUs due generates benefits if employed in WiIMAX femto cell networks,

to the bursty channel use by PUs and SU mobility. esp_ecially with the proliferation of powerful cogqitive nqle;s
devices as well as the surge of demand on service varietiées an

This work is supported by NSERC Discovery, CRD and Stratégjiants qualities in WIMAX. H_O\Neverv t_he co_IIabora_tlon Of_W'MAX’
(RGPIN 238994-06, CRDPJ 379623-08, STPGP 364910-08). femto cells, and CRs is barely investigated in the litematur



In this paper, we propose a novel architecturecagnitive  To our knowledge, it is the first work studying cognitive
WIMAX with femto cells. Different from traditional archi-WiMAX with femto cells and resource management problems.
tectures, wireless devices in cognitive WIMAX are equipp€&lr proposed protocol is analyzed theoretically and evatlia
with frequency-agile CRs that bring convenience for spewtrvia simulations. Corroborating our intuition, system perf
sensing and adjusting the frequency, power, range, and othance is substantially improved with our design.
variables to accommodate the entire wireless ecosysteandicc The remainder of the paper is organized as follows. In Sec. Il
ingly. With such a flexible radio, we further design a novele present the design of the cognitive WiMAX with femto cells
resource management framework to optimize the performaand the corresponding network models. In Sec. I, we descri
by efficiently utilizing the scarce network resources. Rathan the design of our resource management protocol, and analyze
confining to a single-hop transmission, we advocate to parfats performance. In Sec. IV, the generalized EM algorithm to
multi-hop cooperative communication, aiming to fully exploiolve the optimization problems is provided and discus®ésl.
the spectrum holes. The key observation is that, the settafiduct simulations to evaluate the performance in SecnV. |
accessible channels for different users are different mitipg Sec. VI, we review the related work. We finally conclude our
on their locations. With CRs and our specially designedusso paper in Sec. VII.
management scheme, the requirement dtobally available
channels is relaxed, and users useally accessible channels Il. SYSTEM MODELS

within one hop to perform communication, providing aburtdaR architecture of Cognitive WIMAX with Femto Cells
transmission opportunities with channel reuse, and thiastan- . i .
In cognitive WIMAX with femto cells, both macro BS

tially improving the channel utilization.
S)l/.ICh pan arghitecture naturally fits WiMAX femto cell nefe-lnd SUs are equipped with ultra-sensitive cognitive radips
i . y . erfé)rm spectrum sensing and power and frequency adjustmen
works: PUs can use dedicated resources to enjoy guaran%l% network consists of one macro BS afidemto cells with
: , o % PUs andN SUs sharing”' orthogonal channels supported
holes to get best effort services without generating ieterice by OFDMA. Each PU resides in a dedicated femto cell and

to PUs. The intuition is shown in Fig. 1, where the transmiss'communicates with the corresponding femto BS over one pre-
from macro BS to SU2 is not feasible if all channels are P 9 b

S . llocated channel to support guaranteed QoS. SUs are fully
occupied in femto cells. With CRs, the macro BS carefuﬁ{ob"e and served opportunistically by the macro BS without

adjusts its transmission power. In the consequentiallyedun nerating interference to PUs. The entire network operate

transmission range (the inner circle from macro BS in Fig. ?rfa time-slotted fashion, where channel conditions and use

the macro BS sends data to SU via channel2 without ) : . . .
actions remain the same during a given time slot, and vary

generatlng_ mterference_ to PUs. _In _tandem, Suelays data independently from one time slot to another. Without loss of
to SU 2 using cooperative transmissions performed on channel

3 which is commonly available for both the sender and receiv%?feragty’ w_e se;cthe time slot durat|onhhs h |

Similarly, the original infeasible communication from thmacro Et .(t) I_ { agt)}AXC represent t € channe s;ates Ion
BS to SU4 can be performed in two-hop transmission with St tlmg SOtﬁ' Sa(t) = 0 means PUa is using c anne

3 as the relay. Essentially, we take advantage ofldeation- c. Otherwise, 5;(t) = 1. We assume '_[h_e channel ava_|lab|I|ty
dependent characteristics of WiMAX femto cell, and data issueséLat.e process evo_lves according to a finite state ergodikdvar
from BS are propagated via multiple paths and hops oGaain. Within a time slot, a SU can access a subset of the

spectrum holes supported by CRs. Intuitively, wirelesanclets channels, potentially _dependmg on |ts_c_grre_nt Iocan_omi an
: - ; ; channel stateS(t). This channel accessibility information is
are effectively utilized by incorporating user, channehda

cooperative diversities. concisely represented B (t) = {hﬁ(t)}]vxc. he(t) =1 if
h lient highliaht of desi . _ SUn can access channel Otherwise ¢ (t) = 0.
The salient highlight of our design on cognitive WIMAX  \y.r B3 optains the channel availability information i th

and resource management Is to jq|ntly'con5|der power .Cbmé%tire network via channel sensing with CRs, and the channel
flow routing, cooperative schedullrjg, _mterference avoity state information can be expressed by a probability vector
and buffer management. Our contributions are three fold: Y(t) = {Y°(t)}axc according to the sensing results. Each
> We advocate a cognitive WiIMAX architecture with femtelement captures the probability that channé not occupied
cells, and provide the corresponding system models. by PU a at time slott. Intuitively, the closerY (t) is to S(t)
> We design a location-aware cooperative resource méretter sensing techniques employed), the smaller imeavée
agement protocol, including flow control policy, buffethat can be potentially generated to PUs.
management strategy, and channel and power allocatioBRs make it possible for the macro BS and SUs to adaptively
scheme. It is based on stochastic Lyapunov optimizatisse network resources. We denote the macro BS’s transmissio
with performance guarantees. power on each channel &ps(t) = {Pgg(t)}c. Uns(t) =
> We apply generalized expectation maximization algorithinS (¢t)} nxc represents the channel allocation to SUs in a
to efficiently solve the optimization problems required imacro cell, whereu,(¢) is the binary variable capturing the
the resource management protocol, by fully exploiting thesignment of channel to SU n for the transmission from
unique problem structure and network characteristics. macro BS. We denote SU power allocation usiPgy(t) =



{P:(t)} nxc, Where PS(t) is the amount of power that SU

N
n uses on channel. The cooperative transmission scheduling 0 < pp(t) + Z Ham (1) < 1 ve,n (9)
is described byUsu(t) = {47, (t)}nvxc, each element of m=1
which is a0 — 1 variable to capture the allocation of channel c . N .
to the cooperative transmission from SkJto SU n. 0< X;an(t) + Z pe () <1 Vn,m  (10)
= m’ =1

B. Models of Resource Management ] Inequality (8) shows that one SU can not be helped by multiple
Spectrum and power resources can be finely tuned &gk via the same channel. (9) indicates the incoming and

dynamically allocated to macro and cooperative transonssi outgoing transmissions on each SU can not be performed
in order to fully utilize the spectrum and take advantage §f the same channel. With respect to the multi-hop mode
channel reuse and diversity. According to the network mog@elransmission, we constrain it in two hops described by
given above, we have the following four groups of const&ini ) cooperative communication is performed concuryentl
for resource management. via multiple channels, which is supported by multiple radio
Power Constraints: equipped on SUs. Only a small number of radios are requires
c . s which is practically feasible, as the distribution of SUsmrse
ZPBS(t) <P (1) and dynamic, and the probability that multiple SUs are withi
":1 the interference region of each other is very low.
c maz Flow Constraints:
; Pa(t) = Py vn 2) With relays enabled, we performulti-path transmission with
e ¢ qc perfect flow splitting at the relays, due to its ability forath
Phs(t) - g~ Salt) < 8 va,¢ ®) balancing and flexibility. Denotg<[m/](t) as the flow rate that
Inequality (1) shows that the total transmission power & tthe macro BS transmits to Sk over channelc with the
macro BS has an upper boutt**”. The power constraints orjata destined for SUn in time slot ¢, which means SUn
SUs are represented by (2). To avoid interference to PUs,dRguld relay the data to Skh. If m = n, SU n gets its own
power received by PUs on each channel should not exceedjth. Similarly, letf¢, (¢) be the flow rate of the cooperative
tolerable levels, if the corresponding channel is being useglansmission from SUn to SU n at channek in time period

Inequality (3) describes this set of constraints, Wf‘ﬁ[es the t. Thus, we have the throughput on each SU as:
propagation gain from macro BS to PdJat channelc and it

. c C N

can be calculated by = d_7. d, > 1 is the distance between c c c c

a a a4 = U,(t) = t t t t 11

BS and PUa, wherej is the path loss index [4]. ®) ;“”( Jalnl(®) + Z Z i (8) Fran (1) (11)
Channel Constraints:

c=1m=1

U = (Uy,---,Un) denotes the throughput vector.

0< iv: pe(t) < 1 Ve (4) The flow routing is subject to the following constraints:
n=1 c c
Mo (8) < B (8), 5 (1) S BG(E) Vmynye (5) D Hom O i) =Y pn(Of5 () ¥m#n (12)
Homn (8) S L5 (8), pi (£) < 15 (2) vm,n,c  (6) N !
Inequality (4) indicates that the macro BS can not use the Z Feim)(t) < us (t)we (t) Vn (13)
same channel to transmit data to multiple SUs. (5) shows that .=
cooperative communication is constrained by the chanregsac en(t) <ws (1) Vn,m,c (14)

sibility represented b (t) with the dynamic spectrum access
y rep H(t) y P gq. (12) shows the flow balance requirement. The flow rate

technique. (6) shows the constraint imposed by the chan I
availability on each SU with regards to the transmissiormfrosri!]OUId be scheduled and optimized at the macro BS, and be

macro BS to SUs. Similar t6I(t), we useL(t) = {1 (t)} yxc guarantee(:I to be feasiblﬁ.l' (IiS) and (14) igdihcaﬁ( that the
to capture this information: aggregate flow rate on each link can not exceed the link cgpaci

we(t) andws, (t) denote the capacities of macro transmission

() = { (1) '(‘;tﬁés(_t) g (t) <~ ) link (macro BS to SUn) and cooperative transmission link (SU
erwise n to SUm) on channek, respectively:

The definition ofL(t) indicates whenever the multicast power ‘ P& o()gC (1)
received by a SU exceeds the threshgldn a channel, this wy(t) = B -logy(1 + BSTH) Vn,c  (15)
channel should be considered to be unavailable, and can not Pc(t;)gc (t)
be assigned for cooperative transmissigfi(¢) in (7) is the WS, (t) = B -logy(1 + %) VYn,m,c (16)
propagation gain from BS to SW on channek at timet. 0

Cooperative Constraints: wheregs, (t) is the propagation gain from SkJto SUm and

N B is the channel bandwidth. We denote the upper bound of the
0< Z pl,, () <1 Ve, n @8 channel capacity as,,,, due to the power constraint and noise
m=1 (denoted asVy).



It is easy to prove that the capacity of each channel is N N C
achieved for macro transmissions. Otherwise, the macroaBS ¢ DU =D whtus(t) (17)
transmit more data to SUs to increase the aggregate thratighp n=1 n=1c=1

Thus, the inequality in (13) can be turned to equality. In theThys, the greedy optimization can be rewritten to be:
network, the relays fully utilize the cooperative links fiannel

N
resources are allocated, and the cooperative link capagity max > 0,Un(t)
much smaller than the transmission link from the macro BS F=s(*) SU(f)’UBS(t)’USU(t) n=1

due to highly constrained power on SUs. Hence, the capscitie subject to: (17) andU € A

of cooperative links are achieved as well in (14). where A represents the achievable throughput region of SUs.

C. Impact of Resource Management and Problem Hardness It is easy to solve the optimization problem if the getis

The resource management protocol should be tightly iff8oWn in advance. However, in practice, this region is umkmo
grated with the architecture of cognitive WIMAX with femtdindly transmitting data will lead to channel overflow order-
cells. The objective is to maximize the aggregate througbpu Utilization, and flow routing for each SU will be out of coritro
all SUs under a fairmess criteria while keeping the interiee MOreover, greedy optimization can not guarantee the ofityna

to PUs within a tolerable level. Three design factors arena the long term. To address these challenges, we next firesen
into consideration as follows. our online resource management protocol.

Power Control. Essentially, the power control scheme ist0  ||]|. RESOURCEMANAGEMENT WITH STOCHASTIC
tune the transmission and interference ranges, making- high LYAPUNOV OPTIMIZATION
degree spatial reuse and spectrum hole utilization in th
location-dependent WIMAX femto cells. In the absence 9
adjustable power, there is hardly much we can do once
encounter an infeasible transmission scenario in scheglulin
our network, we seek the optimal power allocation for both tﬁ
macro BS and SUs that can be continually tuned.

Multi-hop Channel Allocation. Multi-hop transmission sig-
nificantly reduces the transmission requiremengtafal spec-
trum availability, making resource allocation feasiblethwio- A. Stochastic Network Model

cally available channel resources when direct single-hop transfhe macro BS maintains a data buffer for each SU, Apft)
mission is infeasible. In tandem, cooperative commuroegh] denotes the buffer backlog. In each time slot, new packets ar
exploits user, channel, and cooperative diversities tleaefit jdmitted into the buffer with a rate @, (t) and the macro BS
the network performance. o transmits the data buffered to the corresponding SU (dyrect
Flow Routing. Multi-path transmission makes the probleRja relay) as long as channel resources are allocated. fizden
more challenging as the transmitter has to schedule whigh) reflects the throughput performance if we carefully tune
paCket IS sent to Wh|Ch node Vvia Wh|Ch relay. The a”ocaﬂbntﬁis rate and manage resources to make the buffer back|og
data flows should not cause channel overflow and packet l18g%inded and stable,,, .., is the achievable maximum rate due
and at the same time fully consider the efficiency of resouggahe computation and bandwidth limit of SUs. Then, we have

§n this section, we propose an online location-aware ceoper
ive resource management protocol, based on stochastic Ly
ov optimization without the requirement of the knowledg
n SU throughput region. With rigorous proof, we show that

is able to achieve near-optimal throughput performanegsr o
time. We also provide deterministic worst case bounds of the
interference to PUs and the maximum data buffer backlog.

utilization. _ _ the following data buffer dynamics:
To achieve an optimal resource management, we first consider
a greedy centralized optimization framework to maximize th By (t+1) = max{By(t) — Un(t),0} + Rn(t)  (18)
aggregate throughput utilities at each time slot: Let r,, denote the time average rate of SUWe have,
N t—1
max 0,U,(t — % 1
Pgs(t),Psyu(t),Uss(t),Usu(t) ; ( ) Tn = tli?;lo t — Rn(T) (19)
subject to: 1) — (16). N
) (1) - (16) r = (r1,---,rn) denotes the rate vector on all SUs.
where#,, > 0 describes the SU priority (fairness). In cooperative communication, relays may generate interfe
Derived from (13), we have the following fact: ence to PUs due to sensing errors. If one cooperative trans-
N mission link causes interference to a PU, we count it as one
FeIm](t) = pl (t)ws (t) = collision of the PU. We usé&¢(t) to capture the total number
oo of such collisions for PUs as defined:
C N c N N
Zl ZI;@(t)fz[m] (t) = Zluww;z(t) = Et) = 3 3 uG, (0IL (0 (1- S5(1)  (20)
c=1m= €= m=1n=1

c c
Z#iwrz(t)fﬁm(t) = Zﬂfb(t)wi(f) - Zﬂfz(t)fﬁ [n](t) = Where I} (t) is the binary variable indicating whether the
pl — —1 cooperative communication issued by StJpossibly generate



interference to PW. This information can be captured accordtata in the buffer implies higher urgency to transmit theadat

ing to location information (if PUa is in the transmissionavoid buffer overflow. From the fairness point of view, a krg
range of SUm, then I%(¢) = 1). It is intuitive that the backlog also indicates the SUs have obtained a smaller share
more interference incurred, the more severely PUs wouligisubf channel resources to transmit data in the previous timis.sl
from the packet losses. Lef denote the time average rate dfhus, they should be given a higher priority to obtain channe

collisions: "y resources in the current time slot.
¢ _ 1 — ES(7) 21) (iif) Cooperative Allocation: At each time slot, the power
= M7 . alT and channel allocation for cooperative communication khou
—

follow the policy by solving the following problem:
In the network, this interference information of each PU

can be tracked using an interference buffer, and all SUs argax Z Hrin () { (Br (t) = B (£))wip () —
aware of it. The buffer backlog, denoted a5:(t), reflects a,m,n,c

the interference level, which can not exceed a time average XSOIL®)(1-vew)}

tolerable ratep;. Thus, we have the following interference sypject to: (2), (5) — (7), (16) (26)

buffer dynamics: ) )
Three factors are taken into account for cooperative diloca

Xa(t+1) = max{X;(t) — pg, 0} + E(t) (22) (a) Buffer backlog. More buffered data of SU: than SUm
ig}plied higher urgency to transmit the data of Sbthan
m, leading to a higher priority that Slh helps SUn via
cooperative communication (represented By(t) — B,,.(t)).
(b) Channel rate. The higher rate a cooperative link is able

Overall, we aim to maximize the aggregate throughput
SUs under the fairness criteria (consistent with the cénéigh
greedy optimization problem):

N to achieve (represented hy,,,(¢)), the higher chance channel
max Z Onn resources are allocated on the link. (ojerference level. The

n=1 channel allocation favors cooperative transmissions it
subject to: (1) — (22). (23) not potentially generate interference to PUs (represented by

I8 (6)(1 = Y£(t))), especially the ones who already have high
interference levels (represented ly(¢)). Note that cooperative
We design the online resource management protocol basgkstation is performed after the macro allocation with a@dix
on stochastic optimization to solve the problem (23). [tudes power and channel allocation for macro transmissions.
three policies stated as follows: .
(i) Flow Control: At each time slot, the macro BS controlsC: Performance Analysis

the data rate admitted to the data buffer of each SU as thé/e now characterize the performance of our scheduling

B. Resource Management Policies

solution to the following problem: policies with the following bounds.
] (i) Backlog Performance Initialize B,,(0) = 0. The data
min Ry () (Bn(t) = Vn) buffer backlogs are bounded as:
subject to: 0 < R, (t) < Rimax 24
’ = Rald) < @9 Ba() < Buas 2 Vinas + Bnaw ¥t (27)

where V' > 0 is a constant parameter, which can be tuned

according to the system requirement. The above problem has Proof: Bh"(O) : 0< B"F]axl'dN?W’ Suppose thaf"(t) =
the threshold-based solution: Biraz- We show the same holds fd8,, (¢t + 1). We have two

cases. & B, (t) < Bmaz — Rmaz. Obviously, B, (t + 1) <

Ru(t) = {9{ 1 2nl8) > Vo, B according 1o Eq. (18)) By (t) > Buaz — Rmaa, then
maz, Otherwise. B,(t) > V0, — Runaz + Rmaz = V0,. Thus, we will choose

R, (t) = 0 according to oumacro allocation policy, so that

(i) Macro Allocation: At each time slott, the power and B(t+1) < Bp(t) < Bmas. Overall, (27) is proved. u

channel allocation for the macro transmissions issued By th(ji) Interference Performance Initialize X¢(0) = 0.Vt >0,
macro BS to SUs should follow the policy by solving thig Ye(t) < 1, setd < e < 1 andY“(t) < 1 —e. Then the worst

following problem: case of the interference buffer backlogs for all PUs is upper
N C
bounded by:
max B, (t)wy, (t) s, (¢ )
;; ettt XE(t) € Xas & D19 | D) Vot (29)
[3)
subject to:  (1),(3), (4), (15) (25)

Proof: X2(0) = 0 < X,n4.- NOw, suppose thaK¢(t) <
This allocation policy reflects two intuitive designs: (ahel X,,... We show the same holds fdf(¢ + 1). First, suppose
link with a higher capacity has a higher priority to get chanr,¢(¢) = 1. Then, there will be no interference to RtJas it
resources, which is helpful to achieve higher aggregataigii- does not occupy channel Thus, we getX¢(t + 1) < X0
put (represented by¢ (t)). (b) Resource allocation favors SUaccording to (22) withES(¢) = 0. Next, suppos&’“(t) < 1,
with a large data buffer backlog (representedBy(t)). More and we have two casesa)(X¢(t) < Xonas — |5 ]. Note that



| %] represents the maximum number of cooperative trantereB = 1(A-N - (B maz) +Za S (0P AC).
mission links (SU pairs) in the network, which is also the Now we subtractVIE{Z R,(t)} from both sides of
maximum value off3(¢). Obviously, X¢(t+1) < Xy, under the drift inequality (33) and substltute (20) into (33). Wav:

this case. lf) XS(t) > Xpmaw — L%J w Then,

XE(t)e > B,,Ww,,m Thus, we haveX¢(t)(1 — Y2(t)) > Alt E <B_ cpd xe
(Bn(t) — By (t))w5,,- If 12,(t) = 1, according to ourcooper- H-v {; On o (8 } - ;;p“ { “(t)}

m

ative allocation policy, chooseu$,,, (t) = 0, which means there

N
is no cooperative communication on channelf 1% (¢) = 0, {Z }
the transmissions issued by all SUs can not reachuPThus, 1
Xe(t+1) < Xe(t) < Xpmas- Overall, (28) is proved. [ | A N A C
(iii) Utility performance. Initialize B,,(0) = 0, X¢(t) = 0. —E{ Z Z ZZXg } (34)
The time average throughput utility achieved by our prota&o a=1n—1 a=1c=1

within B/V of the optimal value: _ _ _ o
1 N We then derive the following equation by substituting (11),

hj{}o inf + ZZQ IEJ{R } Za rr V 29) (13), and (20) into the last term of (34).

7=0n=1

wherer} is the optimal achievable rates of problem (23), an@{ Z ZB ZZXg(t)Eg(t)} =
V, B > 0 are constants. a=ln=1 a=le=1

We use the technique @tochastic Lyapunov Optimization ]E{ > Bu(t)fSnl(t)us (t) } + ]E{ > ufnn(t)Bn(t)wfnn}
to prove it. LetQ(t) = (Q1(¢), - ,Qxk(t)) be a vector of ~anc a,n,m,c
gueue lengths for a discrete time stochastic queueing mietwo _ E{ Z e, (X0 (£)(1 — SC(t))} (35)
Let W(Q) be any non-negative scalar valued function of the ol e ¢
queue lengths, called a Lyapunov function. Defineltyapunov ’ . , _
drift A(¢) as follows: Further, we have the following fact (derived from Eq. (13)):

N
A() 2 E{W(Q(t + 1)) - W(Q(1))} (30) S ) + L)) = Wi s ) =

The network accumulatagility every time slot with bounded m=1,mz#n

value. We have the stochastic proce&3) to represent the FERIORE () = W (Dl (¢ Z FElm (). ( (36)

utility earning with over-time optimuny™*.
Theorem 1. Suppose there exidt > 0,B > 0,d > 0, and .
a non-negative functiof?’(Q) such thatE{IW (Q(d))} < co.  Using (36) and (12), we have:

m=1,m#n

For ¢t > d, if the Lyapunov drift satisfies: . ‘
Y i e{ Y B n<t>} =
A(t) - VE{f(t)} <B-Vf* (31) anc
then we have: E{ > Bu(t)wi(t) + > Bu®pgn (D, (t)} (37)
. . . B a,n,c a,n,m,c
Jim inf > 2}E{f My == (32)  supstitute (37) into (35) and put (35) into (34). We have:
= N A ©
Proof: Refer to [6]. ] Al — VE 0 A <p_ crd xet
In our resource management problem, we €@ft) = ®) {E nfn( )} - ;;p“ { al )}
(Bl(t)’ T 7BN(t>7NX11(t)7 e >ch(t)7 e 7X}x(1)a T 7Xg(t)) N
Define f(t) 2 Y., 0, R,(t) as the aggregated throughput +A-E{ 3" Ra(t)(Balt) - Vg)}
utility earning at each time slot according to (23), and thus ne1
& Zﬁ;l 6,7} as the over-time optimal utility accordingly. N C
We further define the Lyapunov function as follows: —-A- E{ Z ZBn(t)w'(t)un(t)}
A N C n=1c=1
1 .
WQE) 2 53 (Y (Bat)? + Y (Xe1)?) “E{ Yt (Ba(t) = Bun()) w5 () -
a=1 n=1 c=1 a,m,n,c
Now, we calculate the Lyapunov drift as follows: XE()I% (¢ )(1 _ Sg(t))}} (38)
A N
A(t)< B—-E B, () (Un(t) — Ry(t) The last three terms in the right side of (38) are exactly
{;;{ ( )}} our resource management policies (repl&cét) as Y.(t) by
considering the sensing errors on the macro BS). Note tleat th
_ ]E{ ZZXC(t) (pc _ EC(t))} (33) macro transmission is dominant in the aggregate througtmput

11 SUs according to (17). Thus, we can optimize the last twogerm



separately although they have common constraints (7) andi§9t Ugs(t) as a fixed value (referred to as thtacro Channel

Then, it is clear to see that our management policies migmissignment step). The optimal solution can be obtained by

the right side of (38) over all alternate feasible schedyulirepeating these two steps until convergence.

policies at each time slot. Surprisingly, by separating the problem into two steps, the
We now define the stationary, randomized poli&y, that complexity of the optimization problem is largely reducasked

chooses a feasible resource allocation at every time sla ds the special problem structure. With a fixed channel atlooa

function of only the channel state informati&{t) andP(t), the BS Power Optimization step is actually a LP. Thenacro

which will yield the following steady state values [7]: Channel Assignment step, with a fixed power allocation, can be
E{R;?R(t)} =t (39 considered as a maximum weighted bipartite matching (WBM)
) —1 problem, which can be solved optimally wigolynomial time
S 2 i ZE{EE’SR(T)} < p° (40) complexity. Construct a bipartite graph = (® x x, E). The
t—oo T8 vertices in® denote all SUs, and the vertices jn denote

Note that our policies minimize the right side of (38) includll channels. The edge sét corresponds td®| x |x| edges
ing the SR policy [7]. Thus, we can show (from (33)): connecting all possible pairs, with weiglt, (¢)wr;;(¢). Run
A C the WBM algorithm to obtain the matched pairs, providing
A(t) - VE{f(t)} < B - E{ Z ZXg(t) (pS — EE’SR(t))} corresponding channel assignment. The WBM problem can be

a=1c=1 solved in a centralized fashion using network flow algorishm
N SR i such as the cost scaling algorithm [9], and can also be solved
—4- E{ D AB)(Unlt) = RIF(W))} —V S (41) in distributed approximation algorithms [10].
n=1

In the cooperative allocation problem (26), we can also divide
Elaborated in the Appendix, we are finally able to obtain:the variables into two setPgy(t) and Usy(t). Then, the
N . N problem is separated into two steps: t8d Power Alloca-
A(t) - VE{ > Gan(t)} <B-VY O (42) tion step and theCooperative Channel Allocation step. The
n=1 n=1 U Power Allocation step is a LP. TheCooperative Channel
The form fits (31). Thus, by applying Theorem 1, we are a#ocation step can be formulated into a similar WBM, where
to prove (29). ® includes all cooperative links and y contains all available
channels, excluding the ones that can not be used according
IV. OPTIMIZATION SOLUTION to the constraints. The weight of each edge Eh carries
Macro and cooperative allocation policies in Sec. IlI-B (B, (t) — By, (t))ws,, (t) — XE(6) 12 (t) (1 — Y,E(t)). With this
require us to solve optimization problems (25) and (26),clvhigraph setup, the problem can be solved optimally.
are non-linear integer programming (NIP) and thus NP-hatd. . .
We can use the traditionatanch-and-bound algorithm to solveaé' Complexity Analysis
these problems optimally. However, it does not exploit theThe Generalized EM algorithm converges to a local maxi-
special structure of these optimization problems, and ha8m of the original optimization problem [8]. We can caréful
high complexity due to LP relaxation and inefficient seatch. Select the initial conditions, resulting in the global nmaxim.
this Section’ we propose to app'y the Genera'ia‘jectation One efficient appl’oach to set the initial values is to soleecliR
Maximization (EM) algorithm [8] to our problems, whichrelaxation of the original problem, and get the feasibleisoh
specifically exploits special problem structures and cigni bY randomized rounding. Running the algorithm several sime

WIMAX network characteristics, and reduces the complexityvith different initial conditions is also helpful. _
We perform a set of simulations to evaluate the Generalized

A. Generalized EM Algorithm EM algorithm in our problems by comparing with the traditibn
Generalized EM is an iterative method to optimize two setslwénch-and-bound algorithm, running over Intel Core Duo
variables 4, 6). We obtain the optimal solutions by iterativelynachine atl.83 GHz and a memory o2 GB. The results are

updating the variables via two steps: listed in Table I. With respect to the performance of average
E step: 8t = argmaxy F (6, \*)) throughput over SUs, th&eneralized EM algorithm performs
M step: A+ = arg maxy F(HF+1) \(R) very close to thebranch-and-bound algorithm, within a1%
Successive application of generalized EM maximizes théference on average. Further, we observe thatGheeralized
lower bound ofF, i.e, EM algorithm is able to converge withinms on average which
];-(0(143+1)’)\(k)) > ]_—(0(1@)7)\(1@)) is much faster than thbranch-and-bound algorithm. Thus, it

is suitable for practical WIMAX systems.
f(g(k-&-l)’)\(k-s-l)) > _7:(9(k'+1)7)\(k'))

Accordingly, in themacro allocation problem (25), we divide
the variables into two set®pg(t) andUgg(t). We iteratively
solve the problem with two steps. First, taRgs(t) as the
variable a_nd_UB_S(t) as a fixed value (referred to as tlﬁiS IFor example(1, 2) indicates the transmission link from Sto SU2. Note
Power Optimization step). Then, takdJggs(t) as the variable that it is different from(2, 1) representing the link from SU to SU 1.

V. PERFORMANCEEVALUATION

We are now ready to resort to extensive simulations to study
the performance of cognitive WIMAX with femto cells. To be



TABLE | _ 1 &
EVALUATION OF THE Generalized EM ALGORITHM. §1-8 f
s & 08
Algorithm Ave. Throughput| Ave. running time < 1.6 T
generalized EM 1.74 Mbps 1ms %1 . i, T R 06
branch-and-bound 1.75 Mbps 6 ms 3 e Coop—3g:v Coop-50 it
: ===Coop-40
TABLE Il & 1 ; 02 — Coop-50
SIMULATION PARAMETERS. S LAaM AR _.‘,-". Ly ° NOCoop
Channel Type Rayleigh fading and AWGN Y XA B A v gLt ok
0 100 _200 300 400 500 A 0.2 03 0.4
TransmPit?g: :g;:v;\f(zgqealcro 5S COSZT;—LABT;:—ZH Time (rounds) Throughput Variance
Transmitter Power (SU) 5 dBm Fig. 2.  Average throughput perfonFig_. 3._ C_:DF of th_roughput variance,
Noise Power 1295 dBW mance of all protocols. which indicates fairness performance.
Adaptive Modulation used < o Ol ]
o o
= 30 = v 7\
g $0.25
realistic, the simulations are conducted over a long terheres £ = Coop—40 @
. . . - . (o}
practical settings of WiMAX and CR configuration are adoptegl2s :gggﬁ:gg s 02 T
according to [3]. In our simulations, there are a total20f £ |5 go.15 M| fadld | 7|}
PUs located acros$ femto cells sharind2 channels. Around %20 Y )
the service region, a number of SUs are randomly movigg 2
with random initial locations. The channel availabilityag ' 100 1220 1,200, 400 500 0-0% 00 120,300 400 500
. . . . .. Ime (rounas, Ime (rounas
evolves according to a Markov chain with symmetric trapsiti _.
i . Fig. 4. Performance on the channiglg. 5. Performance on the buffer
probabilities between the ON and OFF states givel.by The iization improvement. backlog.

simulation parameters are listed in Table II. [1,#], and then compute the throughput variance as the ratio
We simulate our proposed protocol with different numbersidiween the standard deviation of the average throughprt ov

active SUs, denoted as “Coop-X" (“X" represents the numhghe and the time average throughput itself. Fig. 3 plotsBE

of SUs). For comparison, we simulate the traditional reseupg this throughput variance for all protocols. Not surpry,

management protocol in cognitive WiIMAX with power controboopns outperform “NOCoop,” which shows the improvement

in a coarse granularity, by simply using the maximum feasi} o, protocol on fairness performance.

power for macro transmission (follow the constraint (3))wut 14 optain a deeper understanding of the advantages of our

cooperative communication and flow control, referred to S®posed protocol, we investigate the channel utilizatien

“NOCoop.” Further, to specifically examine the advantagesigrmance, which is calculated as the sum throughput of a SU

the cognitive WIMAX architecture, we simulate the resourgger the aggregate throughput in the network including both

management protocol in traditional WIMAX networks withowys and PUs. This value accurately reflects the improvement

the CR technique, referred to as “Trad,” where the transomssyn the spectrum utilization. Evident from the results shomn

is only performed when feasible channels exist across th&aerp:ig_ 4, the increase of the channel utilization reach@ in

macro area and is provisioned under maximum power. the best case (“Coop-607). It demonstrates that the spactru
We first examine the throughput performance. Fig. 2 shows be more efficiently utilized with our protocol. Another

the results on average throughput over SUs via a 1508fservation from the results is that the performance wilrede

_seqonql simulation. We observe that Trad_ performs Worglen the number of SUs is overly large (“Coop-80"), since the

indicating the advantage of the new architecture by appierference effect begins to dominate.sieet spot may exist

ing CR technique. Even “NOCoop” outperforms “Trad” witjith respect to the number of SUs in cognitive WiMAX. We

a substantial gain2(%) by exploiting spectrum reuse in ;| further study it in our future work.

higher ?egree. F’L’thher, “Coop-30,” “Coop-40,” and “CodP-5  Finally, we track the buffer backlogs of both data and

defeat “NOCoop” by36%, 50%, and 63% respectively, andcollision queues. The results are shown in Fig. 5, and theesur

of course outperform “Trad” with much higher margins. {aptyre the normalized buffer backlog, calculated by thi ra

commde; with our intuition that resource management WHBtween the backlogs and the bounds (obtained in (27) and

cooperative communication, power control, flow routingdafpg)). The results show that the buffer remains bounded over

other important cross-layer designs naturally fits in thsigte e long term, which is desirable in the system design.
of cognitive WIMAX with femto cells, and is able to achieve

significant throughput improvement due to its effective ne VI. RELATED WORK

the wireless spectrum. Another trend to notice is that thegma During the past decade, broadband wireless mobile ser-

that “Coop” outperforms “NOCoop” and “Trad” becomes mordces have been the most remarkable growth areas in the

substantial with an increasing number of SUs. This obsienwvattommunication industry. WIMAX is considered as the next

indicates that a larger number of SUs create a higher dedregemeration technology to provide ubiquitous broadbaneless

cooperation, which is beneficial for throughput perform@anc connections, and the IEEE 802.16 family of standards are the
Regarding the fairness performance, we capture the varissiate-of-the-art wireless communication standards aaogly

on the average throughput over SUs. At each time slate [1]. Further, WiMAX adopts OFDMA and the femto-cell ar-

calculate, for each SU, the average throughput over timiedror chitecture, providing a rich set of features and a high degre



of flexibility. Cognitive radio (CR) is a revolution in radio XS(t—d)+d- LﬁJ > X6(t) > X(t — d) — dpS (44)
technology to efficiently utilize spectrum resources inel@ss 2

networks. IEEE 802.22 [3] is the first standardization éffor ~ Now, we substituteX7(¢) in (41) with (44):

define CR and so far has drawn much research attention in botR ) — VE{f(t)} < B+ A- N - BiawRmas + Z — V f*
academia and industry. Dynamic spectrum access (DSA) §11] i —IE{ ZA Ec Xt — d)(pe — Ec,SR(t))} (45)
one of the key issues and has driven most of the CR research. a=l fuc=1""a Pe a

[6] Qeyelops an opportunistig_spectrum access framewak thyhere 7 2 dzle Zf—l LX)+ (05)?).

maximizes the throughput utility of the SUs. [4] and [12]du  sing jterative expectations, we have the following:

the dynamic access issues in the ad hoc mode of CR networks, c

where scheduling and routing are jointly considered. E{ Z Xt — d)EjﬁSR(t)} =

In our work, we take advantage of the favorable properties of e=1
both WIMAX and CR techniques, and investigate the benefits ¢
of their collaboration. The concept @ognitive WIMAX was E{> Xi(t—d)-E{ESS"(®t)|T(t—d)}}  (46)
proposed in [13]. However, our work radically differs from i e=1 ) )
in a number of aspects. First, we study cognitive WiMAX with | represents the system state at time slon the primary
femto cells employed, which provide potentials on spectr@ynne! availabilityH(t) andY (), which can be considered
reuse and represent the direction that WiMAX evolves to [ & Markov process. By the property of Markov processes, any
[13] only studies regular WIMAX scenarios. Second, we adyynctions of these statdd(t) andY (t) converge exponentially
cate cooperative and multi-path multi-channel commuitcat fast to .the|r stgady state values. Recall that the statpnar
which is more efficient and hence works in a substantiaigdomized policy is only based on the system states. Thus,
different architecture. Third, we propose a novel locatiorare 11ere existsx > 0,0 < o <1 such that (using (39) and (40)):
resource management protocol with cross-layer designie wh E{EgvsR(t)\T(t —d)} < SR 4ot < p¢ 4+ act  (47)

[13] just uses CRs to perform channel sensing without DSA . . .
Last but not least, we specifically provide a rigorous ansalys Now, substitute (47) ||_’1to .(45)' then (41) f|nall>/ can be
on network performance, which is not discussed in [13]. expressed as follows, W["Ch fits to the form of (31):
A(t) = VE{f()} < B-V [~
VIl. CONCLUDING REMARKS B=B+A-N-BpuwRmaw+7Z+A-C- Xpanero?

In this paper, we propose cognitive WiIMAX with femto cells
and study the resource management problem in the network.
Tightly integrated with the novel cognitive WiIMAX architec [1] C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, “IEEBrSiard
ture, our cross-layer resource management protocol igriesi 862.16: A’Telchrl1ical Ov’erv.iev.v of The Wi’relessMKNl A% Interface for
to apply power control, multi-hop cooperative communica- Broadband Wireless AccessiEEE Communications Magzine, vol. 40,
tion and flow management techniques, achieving near_obtimza IQO.SGU’n%%rgSa; 161% gool‘\%éngara'an “Efficient Resourcealglement in
performance. It is based on a sound theoretical foundatith OFDMA Femto Cells.” inProc. ofJAci\n Mobihoc, 2009
using stochastic Lyapunov optimization, but not withouteal [3] C. Cordeiro, K. Challapali, D. Birru, and N. S. ShankaEEE 802.22:
considerations of the practicality, feasibility, and aéfitcy of ;?:c FggsltsthgngV\fr?t:r nW(;tfiifaSJS ;rigggiﬁ ;a;‘;‘ljv gpoﬁifgg:ﬂvgiﬁr'n :2
|mple_m_ent|ng.thes_e solutions. With this paper, we are (mmd aoecirum Access Networks (DySPAN 05), 2005. g
that it is a win-win approach by applying the CR techniqug] Y. shi and Y. T. Hou, “Optimal Power Control for Multi-hopaBware
to WIMAX with the employment of our resource management Defined Radio Networks,” ifProc. of IEEE INFOCOM, 2007. _
protocol by fully exploiting spectrum reuse and incorpigt [5] V. Mahinthan, L. Cai, L. W. Mark, and X. Shen, “MaximizingdOperative
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