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Abstract—WiMAX with femto cells is a cost-effective next-
generation broadband wireless communication system. Cognitive
Radio (CR) has recently emerged as a promising technology
to improve spectrum utilization by allowing dynamic spectrum
access. There will be large potential benefits by applying the CR
technique to WiMAX with femto cells, which are barely explored
in the literature.

In this paper, we propose a novelcognitive WiMAX architecture
with femto cells, where the base station and users are equipped
with CRs and intelligently adjusts power, channel, and other
resources to accommodate the entire network ecosystem. In this
new design, we develop an optimization framework forlocation-
aware cooperative resource management, by jointly employing
multi-hop cooperative communication, power control, channel
assignment, primary user protection, buffer management, and fair-
ness, and incorporating user, channel, and cooperative diversities.
To achieve optimality, it is designed based on stochastic Lyapunov
optimization, aiming to take advantage of the radio flexibility and
fully utilize the spectrum. Evaluated by the rigorous analysis and
extensive simulations, our resource management protocol is near-
optimal with closed-form bounds, with which cognitive WiMAX
achieves substantial performance improvement.

I. I NTRODUCTION

WiMAX is an emerging technology to facilitate broadband
wireless mobile access in metropolitan area [1], and has been
commonly referred as 4G. In WiMAX, femto cells are a cost-
effective means of providing ubiquitous connectivity. Users that
reside in femto cells experience increased throughput due to
the shorter ranges. Fig. 1 shows a typical WiMAX network
consisting of one macro base station (BS) and six femto cells,
serving two classes of users: primary user (PU) and secondary
user (SU). PUs communicate with the corresponding femto BSs
with dedicated channels, enjoying guaranteed quality of services
(QoS). SUs are highly dynamic and communicate directly with
macro BS with best effort services.

As the power used by femto BSs is an order of magnitude
less than macro BS, the serving area of each femto cell is quite
limited (shown by shadow circle areas). The smaller size of
femto cells creates abundant opportunities for spatial reuse: the
transmissions outside the femto cells are able to be executed
over the same channels used inside femto cells. Thus, they work
in a completely distributed fashion, and the channel availability
in the network islocation-dependent anddynamic for SUs due
to the bursty channel use by PUs and SU mobility.
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However, traditional WiMAX architectures and MAC-layer
protocols are hobbled by the holdover from cellular networks:
they lack dynamic utilization of spectrum holes and are es-
sentially based onsingle-hop transmissions, requiringglobally
available channel resources. The existing state-of-the-art re-
source management protocols have to carefully coordinate the
transmissions of macro and femto cells in a time-sharing mode
[2], which have inherent weakness on overlooking the special
network characteristics and hence missing the bulk of channel
reuse opportunities. For example shown in Fig. 1, channel1
is used by PU1. Macro BS then can not use this channel to
transmit data to SU2 in order to avoid interference to PU1,
although SU2 resides outside the interference region of PU1.
This is due to the single-hop transmission schedule with a fixed
power, leading to resource under-utilization.
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Fig. 1. An illustrative example of cognitive WiMAX with femto cells.

Therefore, there is a compelling need to re-design the re-
source management scheme in WiMAX with femto cells in
order to tightly integrate with the network architecture and fully
utilize the spectrum. Cognitive radio (CR) [3] has emerged
as an important technology to exploit high-degree spectrum
reuse, by allowing spectrum sensing and dynamical spectrum
access. Such a technique brings much flexibility and potentially
generates benefits if employed in WiMAX femto cell networks,
especially with the proliferation of powerful cognitive wireless
devices as well as the surge of demand on service varieties and
qualities in WiMAX. However, the collaboration of WiMAX,
femto cells, and CRs is barely investigated in the literature.



In this paper, we propose a novel architecture ofcognitive
WiMAX with femto cells. Different from traditional archi-
tectures, wireless devices in cognitive WiMAX are equipped
with frequency-agile CRs that bring convenience for spectrum
sensing and adjusting the frequency, power, range, and other
variables to accommodate the entire wireless ecosystem accord-
ingly. With such a flexible radio, we further design a novel
resource management framework to optimize the performance
by efficiently utilizing the scarce network resources. Rather than
confining to a single-hop transmission, we advocate to perform
multi-hop cooperative communication, aiming to fully exploit
the spectrum holes. The key observation is that, the set of
accessible channels for different users are different depending
on their locations. With CRs and our specially designed resource
management scheme, the requirement forglobally available
channels is relaxed, and users uselocally accessible channels
within one hop to perform communication, providing abundant
transmission opportunities with channel reuse, and thus substan-
tially improving the channel utilization.

Such an architecture naturally fits WiMAX femto cell net-
works: PUs can use dedicated resources to enjoy guaranteed
QoS, while SUs opportunistically take advantage of spectrum
holes to get best effort services without generating interference
to PUs. The intuition is shown in Fig. 1, where the transmission
from macro BS to SU2 is not feasible if all channels are
occupied in femto cells. With CRs, the macro BS carefully
adjusts its transmission power. In the consequentially tuned
transmission range (the inner circle from macro BS in Fig. 1),
the macro BS sends data to SU1 via channel2 without
generating interference to PUs. In tandem, SU1 relays data
to SU 2 using cooperative transmissions performed on channel
3 which is commonly available for both the sender and receiver.
Similarly, the original infeasible communication from themacro
BS to SU4 can be performed in two-hop transmission with SU
3 as the relay. Essentially, we take advantage of thelocation-
dependent characteristics of WiMAX femto cell, and data issued
from BS are propagated via multiple paths and hops over
spectrum holes supported by CRs. Intuitively, wireless channels
are effectively utilized by incorporating user, channel, and
cooperative diversities.

The salient highlight of our design on cognitive WiMAX
and resource management is to jointly consider power control,
flow routing, cooperative scheduling, interference avoidance,
and buffer management. Our contributions are three fold:

⊲ We advocate a cognitive WiMAX architecture with femto
cells, and provide the corresponding system models.

⊲ We design a location-aware cooperative resource man-
agement protocol, including flow control policy, buffer
management strategy, and channel and power allocation
scheme. It is based on stochastic Lyapunov optimization
with performance guarantees.

⊲ We apply generalized expectation maximization algorithm
to efficiently solve the optimization problems required in
the resource management protocol, by fully exploiting the
unique problem structure and network characteristics.

To our knowledge, it is the first work studying cognitive
WiMAX with femto cells and resource management problems.
Our proposed protocol is analyzed theoretically and evaluated
via simulations. Corroborating our intuition, system perfor-
mance is substantially improved with our design.

The remainder of the paper is organized as follows. In Sec. II,
we present the design of the cognitive WiMAX with femto cells
and the corresponding network models. In Sec. III, we describe
the design of our resource management protocol, and analyze
its performance. In Sec. IV, the generalized EM algorithm to
solve the optimization problems is provided and discussed.We
conduct simulations to evaluate the performance in Sec. V. In
Sec. VI, we review the related work. We finally conclude our
paper in Sec. VII.

II. SYSTEM MODELS

A. Architecture of Cognitive WiMAX with Femto Cells

In cognitive WiMAX with femto cells, both macro BS
and SUs are equipped with ultra-sensitive cognitive radiosto
perform spectrum sensing and power and frequency adjustment.
The network consists of one macro BS andF femto cells with
A PUs andN SUs, sharingC orthogonal channels supported
by OFDMA. Each PU resides in a dedicated femto cell and
communicates with the corresponding femto BS over one pre-
allocated channel to support guaranteed QoS. SUs are fully
mobile and served opportunistically by the macro BS without
generating interference to PUs. The entire network operates
in a time-slotted fashion, where channel conditions and user
actions remain the same during a given time slot, and vary
independently from one time slot to another. Without loss of
generality, we set the time slot duration as1.

Let S(t) = {Sc
a(t)}A×C represent the channel states on

each time slott. Sc
a(t) = 0 means PUa is using channel

c. Otherwise,Sc
a(t) = 1. We assume the channel availability

state process evolves according to a finite state ergodic Markov
chain. Within a time slot, a SU can access a subset of the
channels, potentially depending on its current location and
channel stateS(t). This channel accessibility information is
concisely represented byH(t) = {hc

n(t)}N×C . hc
n(t) = 1 if

SU n can access channelc. Otherwise,hc
n(t) = 0.

Macro BS obtains the channel availability information in the
entire network via channel sensing with CRs, and the channel
state information can be expressed by a probability vector
Y(t) = {Y c

a (t)}A×C according to the sensing results. Each
element captures the probability that channelc is not occupied
by PU a at time slott. Intuitively, the closerY(t) is to S(t)
(better sensing techniques employed), the smaller interference
that can be potentially generated to PUs.

CRs make it possible for the macro BS and SUs to adaptively
use network resources. We denote the macro BS’s transmission
power on each channel asPBS(t) = {P c

BS(t)}C . UBS(t) =
{µc

n(t)}N×C represents the channel allocation to SUs in a
macro cell, whereµn(t) is the binary variable capturing the
assignment of channelc to SU n for the transmission from
macro BS. We denote SU power allocation usingPSU(t) =



{P c
n(t)}N×C , where P c

n(t) is the amount of power that SU
n uses on channelc. The cooperative transmission scheduling
is described byUSU(t) = {µc

mn(t)}NN×C , each element of
which is a0− 1 variable to capture the allocation of channelc
to the cooperative transmission from SUm to SU n.

B. Models of Resource Management

Spectrum and power resources can be finely tuned and
dynamically allocated to macro and cooperative transmissions,
in order to fully utilize the spectrum and take advantage of
channel reuse and diversity. According to the network model
given above, we have the following four groups of constraints
for resource management.

Power Constraints:
C

∑

c=1

P c
BS(t) ≤ Pmax (1)

C
∑

c=1

P c
n(t) ≤ Pmax

n ∀n (2)

P c
BS(t) · gc

a · Sc
a(t) ≤ β ∀a, c (3)

Inequality (1) shows that the total transmission power of the
macro BS has an upper boundPmax. The power constraints on
SUs are represented by (2). To avoid interference to PUs, the
power received by PUs on each channel should not exceed the
tolerable levelβ, if the corresponding channel is being used.
Inequality (3) describes this set of constraints, wheregc

a is the
propagation gain from macro BS to PUa at channelc and it
can be calculated bygc

a = d−j
a . da ≥ 1 is the distance between

BS and PUa, wherej is the path loss index [4].
Channel Constraints:

0 ≤
N

∑

n=1

µc
n(t) ≤ 1 ∀c (4)

µc
mn(t) ≤ hc

m(t), µc
mn(t) ≤ hc

n(t) ∀m,n, c (5)

µc
mn(t) ≤ lcm(t), µc

mn(t) ≤ lcn(t) ∀m,n, c (6)

Inequality (4) indicates that the macro BS can not use the
same channel to transmit data to multiple SUs. (5) shows that
cooperative communication is constrained by the channel acces-
sibility represented byH(t) with the dynamic spectrum access
technique. (6) shows the constraint imposed by the channel
availability on each SU with regards to the transmission from
macro BS to SUs. Similar toH(t), we useL(t) = {lcn(t)}N×C

to capture this information:

lcn(t) =

{

1 If P c
BS(t) · gc

n(t) ≤ γ
0 Otherwise

(7)

The definition ofL(t) indicates whenever the multicast power
received by a SU exceeds the thresholdγ on a channel, this
channel should be considered to be unavailable, and can not
be assigned for cooperative transmission.gc

n(t) in (7) is the
propagation gain from BS to SUn on channelc at time t.

Cooperative Constraints:

0 ≤
N

∑

m=1

µc
mn(t) ≤ 1 ∀c, n (8)

0 ≤ µc
n(t) +

N
∑

m=1

µc
nm(t) ≤ 1 ∀c, n (9)

0 ≤

C
∑

c=1

µc
mn(t) +

N
∑

m
′=1

µc
nm

′ (t) ≤ 1 ∀n,m (10)

Inequality (8) shows that one SU can not be helped by multiple
SUs via the same channel. (9) indicates the incoming and
outgoing transmissions on each SU can not be performed
on the same channel. With respect to the multi-hop mode
of transmission, we constrain it in two hops described by
(10). Cooperative communication is performed concurrently
via multiple channels, which is supported by multiple radios
equipped on SUs. Only a small number of radios are requires
which is practically feasible, as the distribution of SUs issparse
and dynamic, and the probability that multiple SUs are within
the interference region of each other is very low.

Flow Constraints:
With relays enabled, we performmulti-path transmission with

perfect flow splitting at the relays, due to its ability for load
balancing and flexibility. Denotefc

n[m](t) as the flow rate that
the macro BS transmits to SUn over channelc with the
data destined for SUm in time slot t, which means SUn
should relay the data to SUm. If m = n, SU n gets its own
data. Similarly, letfc

mn(t) be the flow rate of the cooperative
transmission from SUm to SU n at channelc in time period
t. Thus, we have the throughput on each SU as:

Un(t) =

C
∑

c=1

µc
n(t)fc

n[n](t) +

C
∑

c=1

N
∑

m=1

µc
mn(t)fc

mn(t) (11)

U = (U1, · · · , UN ) denotes the throughput vector.
The flow routing is subject to the following constraints:

C
∑

c=1

µc
nm(t)fc

nm(t) =

C
∑

c=1

µc
n(t)fc

n[m](t) ∀m 6= n (12)

N
∑

m=1

fc
n[m](t) ≤ µc

n(t)ωc
n(t) ∀n (13)

fc
nm(t) ≤ ωc

nm(t) ∀n,m, c (14)

Eq. (12) shows the flow balance requirement. The flow rate
should be scheduled and optimized at the macro BS, and be
guaranteed to be feasible. (13) and (14) indicates that the
aggregate flow rate on each link can not exceed the link capacity.
ωc

n(t) andωc
nm(t) denote the capacities of macro transmission

link (macro BS to SUn) and cooperative transmission link (SU
n to SU m) on channelc, respectively:

ωc
n(t) = B · log2(1 +

P c
BS(t)gc

n(t)

N0
) ∀n, c (15)

ωc
nm(t) = B · log2(1 +

P c
n(t)gc

nm(t)

N0
) ∀n,m, c (16)

wheregc
nm(t) is the propagation gain from SUn to SUm and

B is the channel bandwidth. We denote the upper bound of the
channel capacity asωmax due to the power constraint and noise
(denoted asN0).



It is easy to prove that the capacity of each channel is
achieved for macro transmissions. Otherwise, the macro BS can
transmit more data to SUs to increase the aggregate throughput.
Thus, the inequality in (13) can be turned to equality. In the
network, the relays fully utilize the cooperative links if channel
resources are allocated, and the cooperative link capacityis
much smaller than the transmission link from the macro BS
due to highly constrained power on SUs. Hence, the capacities
of cooperative links are achieved as well in (14).

C. Impact of Resource Management and Problem Hardness

The resource management protocol should be tightly inte-
grated with the architecture of cognitive WiMAX with femto
cells. The objective is to maximize the aggregate throughput on
all SUs under a fairness criteria while keeping the interference
to PUs within a tolerable level. Three design factors are taken
into consideration as follows.

Power Control. Essentially, the power control scheme is to
tune the transmission and interference ranges, making high-
degree spatial reuse and spectrum hole utilization in the
location-dependent WiMAX femto cells. In the absence of
adjustable power, there is hardly much we can do once we
encounter an infeasible transmission scenario in scheduling. In
our network, we seek the optimal power allocation for both the
macro BS and SUs that can be continually tuned.

Multi-hop Channel Allocation. Multi-hop transmission sig-
nificantly reduces the transmission requirement onglobal spec-
trum availability, making resource allocation feasible with lo-
cally available channel resources when direct single-hop trans-
mission is infeasible. In tandem, cooperative communication [5]
exploits user, channel, and cooperative diversities that benefit
the network performance.

Flow Routing. Multi-path transmission makes the problem
more challenging as the transmitter has to schedule which
packet is sent to which node via which relay. The allocation of
data flows should not cause channel overflow and packet loss,
and at the same time fully consider the efficiency of resource
utilization.

To achieve an optimal resource management, we first consider
a greedy centralized optimization framework to maximize the
aggregate throughput utilities at each time slot:

max
PBS(t),PSU(t),UBS(t),USU(t)

N
∑

n=1

θnUn(t)

subject to: (1) − (16).

whereθn > 0 describes the SU priority (fairness).
Derived from (13), we have the following fact:

N
∑

m=1

fc
n[m](t) = µc

n(t)ωc
n(t) ⇒

C
∑

c=1

N
∑

m=1

µc
n(t)fc

n[m](t) =

C
∑

c=1

µc
n(t)ωc

n(t) ⇒

∑

c,m

µc
nm(t)fc

nm(t) =
C

∑

c=1

µc
n(t)ωc

n(t) −
C

∑

c=1

µc
n(t)fc

n[n](t) ⇒

N
∑

n=1

Un =
N

∑

n=1

C
∑

c=1

ωc
n(t)µc

n(t) (17)

Thus, the greedy optimization can be rewritten to be:

max
PBS(t),PSU(t),UBS(t),USU(t)

N
∑

n=1

θnUn(t)

subject to: (17) andU ∈ Λ

whereΛ represents the achievable throughput region of SUs.
It is easy to solve the optimization problem if the setΛ is
known in advance. However, in practice, this region is unknown.
Blindly transmitting data will lead to channel overflow or under-
utilization, and flow routing for each SU will be out of control.
Moreover, greedy optimization can not guarantee the optimality
in the long term. To address these challenges, we next present
our online resource management protocol.

III. R ESOURCEMANAGEMENT WITH STOCHASTIC

LYAPUNOV OPTIMIZATION

In this section, we propose an online location-aware cooper-
ative resource management protocol, based on stochastic Lya-
punov optimization without the requirement of the knowledge
on SU throughput region. With rigorous proof, we show that
it is able to achieve near-optimal throughput performance over
time. We also provide deterministic worst case bounds of the
interference to PUs and the maximum data buffer backlog.

A. Stochastic Network Model

The macro BS maintains a data buffer for each SU, andBn(t)
denotes the buffer backlog. In each time slot, new packets are
admitted into the buffer with a rate ofRn(t) and the macro BS
transmits the data buffered to the corresponding SU (directly or
via relay) as long as channel resources are allocated. Essentially,
Rn(t) reflects the throughput performance if we carefully tune
this rate and manage resources to make the buffer backlog
bounded and stable.Rmax is the achievable maximum rate due
to the computation and bandwidth limit of SUs. Then, we have
the following data buffer dynamics:

Bn(t + 1) = max{Bn(t) − Un(t), 0} + Rn(t) (18)

Let rn denote the time average rate of SUn. We have,

rn = lim
t→∞

1

t

t−1
∑

τ=0

Rn(τ) (19)

r = (r1, · · · , rN ) denotes the rate vector on all SUs.
In cooperative communication, relays may generate interfer-

ence to PUs due to sensing errors. If one cooperative trans-
mission link causes interference to a PU, we count it as one
collision of the PU. We useEc

a(t) to capture the total number
of such collisions for PUs as defined:

Ec
a(t) =

N
∑

m=1

N
∑

n=1

µc
mn(t)Ia

m(t)
(

1 − Sc
a(t)

)

(20)

where Ia
m(t) is the binary variable indicating whether the

cooperative communication issued by SUm possibly generate



interference to PUa. This information can be captured accord-
ing to location information (if PUa is in the transmission
range of SUm, then Ia

m(t) = 1). It is intuitive that the
more interference incurred, the more severely PUs would suffer
from the packet losses. Letec

a denote the time average rate of
collisions:

ec
a = lim

t→∞

1

t

t−1
∑

τ=0

Ec
a(τ) (21)

In the network, this interference information of each PU
can be tracked using an interference buffer, and all SUs are
aware of it. The buffer backlog, denoted asXc

a(t), reflects
the interference level, which can not exceed a time average
tolerable rateρc

a. Thus, we have the following interference
buffer dynamics:

Xc
a(t + 1) = max{Xc

a(t) − ρc
a, 0} + Ec

a(t) (22)

Overall, we aim to maximize the aggregate throughput of
SUs under the fairness criteria (consistent with the centralized
greedy optimization problem):

max

N
∑

n=1

θnrn

subject to: (1) − (22). (23)

B. Resource Management Policies

We design the online resource management protocol based
on stochastic optimization to solve the problem (23). It includes
three policies stated as follows:

(i) Flow Control: At each time slott, the macro BS controls
the data rate admitted to the data buffer of each SU as the
solution to the following problem:

min Rn(t)
(

Bn(t) − V θn

)

subject to: 0 ≤ Rn(t) ≤ Rmax (24)

where V ≥ 0 is a constant parameter, which can be tuned
according to the system requirement. The above problem has
the threshold-based solution:

Rn(t) =

{

0, if Bn(t) > V θn,
Rmax, otherwise.

(ii) Macro Allocation: At each time slott, the power and
channel allocation for the macro transmissions issued by the
macro BS to SUs should follow the policy by solving the
following problem:

max

N
∑

n=1

C
∑

c=1

Bn(t)ωc
n(t)µc

n(t)

subject to: (1), (3), (4), (15) (25)

This allocation policy reflects two intuitive designs: (a) The
link with a higher capacity has a higher priority to get channel
resources, which is helpful to achieve higher aggregate through-
put (represented byωc

n(t)). (b) Resource allocation favors SUs
with a large data buffer backlog (represented byBn(t)). More

data in the buffer implies higher urgency to transmit the data to
avoid buffer overflow. From the fairness point of view, a larger
backlog also indicates the SUs have obtained a smaller share
of channel resources to transmit data in the previous time slots.
Thus, they should be given a higher priority to obtain channel
resources in the current time slot.

(iii) Cooperative Allocation: At each time slott, the power
and channel allocation for cooperative communication should
follow the policy by solving the following problem:

max
∑

a,m,n,c

µc
mn(t)

{(

Bn(t) − Bm(t)
)

ωc
mn(t) −

Xc
a(t)Ia

m(t)
(

1 − Y c
a (t)

)}

subject to: (2), (5) − (7), (16) (26)

Three factors are taken into account for cooperative allocation.
(a) Buffer backlog. More buffered data of SUn than SUm
implied higher urgency to transmit the data of SUn than
m, leading to a higher priority that SUm helps SUn via
cooperative communication (represented byBn(t) − Bm(t)).
(b) Channel rate. The higher rate a cooperative link is able
to achieve (represented byωc

mn(t)), the higher chance channel
resources are allocated on the link. (c)Interference level. The
channel allocation favors cooperative transmissions thatwill
not potentially generate interference to PUs (represented by
Ia
m(t)(1 − Y c

a (t))), especially the ones who already have high
interference levels (represented byXc

a(t)). Note that cooperative
allocation is performed after the macro allocation with a fixed
power and channel allocation for macro transmissions.

C. Performance Analysis

We now characterize the performance of our scheduling
policies with the following bounds.

(i) Backlog Performance. Initialize Bn(0) = 0. The data
buffer backlogs are bounded as:

Bn(t) ≤ Bmax , V θmax + Rmax ∀n, t (27)

Proof: Bn(0) = 0 < Bmax. Now, suppose thatBn(t) ≤
Bmax. We show the same holds forBn(t + 1). We have two
cases. (a) Bn(t) ≤ Bmax − Rmax. Obviously, Bn(t + 1) ≤
Bmax according to Eq. (18). (b) Bn(t) > Bmax − Rmax, then
Bn(t) > V θn − Rmax + Rmax = V θn. Thus, we will choose
Rn(t) = 0 according to ourmacro allocation policy, so that
Bn(t + 1) ≤ Bn(t) ≤ Bmax. Overall, (27) is proved.

(ii) Interference Performance. Initialize Xc
a(0) = 0. ∀t > 0,

if Y c
a (t) < 1, set0 < ε < 1 andY c

a (t) ≤ 1− ε. Then the worst
case of the interference buffer backlogs for all PUs is upper
bounded by:

Xc
a(t) ≤ Xmax ,

Bmaxωmax

ε
+ ⌊

N

2
⌋ ∀c, a, t (28)

Proof: Xc
a(0) = 0 < Xmax. Now, suppose thatXc

a(t) ≤
Xmax. We show the same holds forXc

a(t + 1). First, suppose
Y c

a (t) = 1. Then, there will be no interference to PUa as it
does not occupy channelc. Thus, we getXc

a(t + 1) ≤ Xmax

according to (22) withEc
a(t) = 0. Next, supposeY c

a (t) < 1,
and we have two cases. (a) Xc

a(t) ≤ Xmax − ⌊N
2 ⌋. Note that



⌊N
2 ⌋ represents the maximum number of cooperative trans-

mission links (SU pairs) in the network, which is also the
maximum value ofEc

a(t). Obviously,Xc
a(t+1) ≤ Xmax under

this case. (b) Xc
a(t) > Xmax − ⌊N

2 ⌋ = Bmaxωmax

ε
. Then,

Xc
a(t)ε > Bmaxωmax. Thus, we haveXc

a(t)(1 − Y c
a (t)) >

(Bn(t) − Bm(t))ωc
mn. If Ia

m(t) = 1, according to ourcooper-
ative allocation policy, chooseµc

mn(t) = 0, which means there
is no cooperative communication on channelc. If Ia

m(t) = 0,
the transmissions issued by all SUs can not reach PUa. Thus,
Xc

a(t + 1) ≤ Xc
a(t) ≤ Xmax. Overall, (28) is proved.

(iii) Utility performance . Initialize Bn(0) = 0,Xc
a(t) = 0.

The time average throughput utility achieved by our protocol is
within B̃/V of the optimal value:

lim
t→∞

inf
1

t

t−1
∑

τ=0

N
∑

n=1

θnE
{

Rn(τ)
}

≥
N

∑

n=1

θnr∗n −
B̃

V
(29)

wherer∗n is the optimal achievable rates of problem (23), and
V, B̃ > 0 are constants.

We use the technique ofStochastic Lyapunov Optimization
to prove it. Let Q(t) = (Q1(t), · · · , QK(t)) be a vector of
queue lengths for a discrete time stochastic queueing network.
Let W (Q) be any non-negative scalar valued function of the
queue lengths, called a Lyapunov function. Define theLyapunov
drift ∆(t) as follows:

∆(t) , E
{

W (Q(t + 1)) − W (Q(t))
}

(30)

The network accumulatesutility every time slot with bounded
value. We have the stochastic processf(t) to represent the
utility earning with over-time optimumf∗.

Theorem 1: Suppose there existV > 0, B̃ > 0, d > 0, and
a non-negative functionW (Q) such thatE{W (Q(d))} < ∞.
For t > d, if the Lyapunov drift satisfies:

∆(t) − V E{f(t)} ≤ B̃ − V f∗ (31)

then we have:

lim
t→∞

inf
1

t

t−1
∑

τ=0

E
{

f(τ)
}

≥ f∗ −
B̃

V
(32)

Proof: Refer to [6].
In our resource management problem, we setQ(t) =

(B1(t), · · · , BN (t),X1
1 (t), · · · ,XC

1 (t), · · · ,X1
A(1), · · · ,XC

A (t)).
Define f(t) ,

∑N

n=1 θnRn(t) as the aggregated throughput
utility earning at each time slot according to (23), and thus
f∗ ,

∑N

n=1 θnr∗n as the over-time optimal utility accordingly.
We further define the Lyapunov function as follows:

W (Q(t)) ,
1

2

A
∑

a=1

(

N
∑

n=1

(Bn(t))2 +

C
∑

c=1

(Xc
a(t))2

)

Now, we calculate the Lyapunov drift as follows:

∆(t) ≤ B − E

{

A
∑

a=1

N
∑

n=1

{

Bn(t)
(

Un(t) − Rn(t)
)}

}

− E

{

A
∑

a=1

C
∑

c=1

Xc
a(t)

(

ρc
a − Ec

a(t)
)

}

(33)

whereB , 1
2

(

A · N · (Bmax)2 +
∑A

a=1

∑C
c=1(ρ

c
a)2 + A · C

)

.
Now we subtractV E{

∑N
n=1 θnRn(t)} from both sides of

the drift inequality (33) and substitute (20) into (33). We have:

∆(t) − V E

{

N
∑

n=1

θnRn(t)
}

≤ B −
A

∑

a=1

C
∑

c=1

ρc
aE

{

Xc
a(t)

}

+A · E
{

N
∑

n=1

Rn(t)
(

Bn(t) − V θ
)

}

−E

{

A
∑

a=1

N
∑

n=1

Bn(t)Un(t) −

A
∑

a=1

C
∑

c=1

Xc
a(t)Ec

a(t)
}

(34)

We then derive the following equation by substituting (11),
(13), and (20) into the last term of (34).

E

{

A
∑

a=1

N
∑

n=1

Bn(t)Un(t) −
A

∑

a=1

C
∑

c=1

Xc
a(t)Ec

a(t)
}

=

E

{

∑

a,n,c

Bn(t)fc
n[n](t)µc

n(t)
}

+ E

{

∑

a,n,m,c

µc
mn(t)Bn(t)ωc

mn

}

− E

{

∑

a,n,m,c

µc
mn(t)Xc

a(t)Ia
m(t)(1 − Sc

a(t))
}

(35)

Further, we have the following fact (derived from Eq. (13)):
N

∑

m=1,m 6=n

fc
n[m](t) + fc

n[n](t) = ωc
n(t)µc

n(t) ⇒

fc
n[n](t)µc

n(t) = ωc
n(t)µc

n(t) −

N
∑

m=1,m 6=n

fc
n[m](t)µc

n(t) (36)

Using (36) and (12), we have:

E

{

∑

a,n,c

Bn(t)fc
n[n](t)µc

n(t)
}

=

E

{

∑

a,n,c

Bn(t)ωc
n(t)µc

n(t) +
∑

a,n,m,c

Bn(t)µc
nm(t)ωc

nm(t)
}

(37)

Substitute (37) into (35) and put (35) into (34). We have:

∆(t) − V E

{

N
∑

n=1

θnRn(t)
}

≤ B −

A
∑

a=1

C
∑

c=1

ρc
aE

{

Xc
a(t)

}

+A · E
{

N
∑

n=1

Rn(t)
(

Bn(t) − V θ
)

}

−A · E
{

N
∑

n=1

C
∑

c=1

Bn(t)ωc
n(t)µc

n(t)
}

−E

{

∑

a,m,n,c

µc
mn(t)

{(

Bn(t) − Bm(t)
)

ωc
mn(t) −

Xc
a(t)Ia

m(t)
(

1 − Sc
a(t)

)}

}

(38)

The last three terms in the right side of (38) are exactly
our resource management policies (replaceSc(t) as Yc(t) by
considering the sensing errors on the macro BS). Note that the
macro transmission is dominant in the aggregate throughputon
SUs according to (17). Thus, we can optimize the last two terms



separately although they have common constraints (7) and (9).
Then, it is clear to see that our management policies minimize
the right side of (38) over all alternate feasible scheduling
policies at each time slot.

We now define the stationary, randomized policySR, that
chooses a feasible resource allocation at every time slot asa
function of only the channel state informationS(t) andP(t),
which will yield the following steady state values [7]:

E{RSR
n (t)} = r∗n (39)

ec,SR
a , lim

t→∞

t−1
∑

τ=0

E{Ec,SR
a (τ)} ≤ ρc

a (40)

Note that our policies minimize the right side of (38) includ-
ing theSR policy [7]. Thus, we can show (from (33)):

∆(t) − V E{f(t)} ≤ B − E

{

A
∑

a=1

C
∑

c=1

Xc
a(t)

(

ρc
a − Ec,SR

a (t)
)

}

−A · E

{

N
∑

n=1

{

Bn(t)
(

Un(t) − RSR
n (t)

)}

− V f∗ (41)

Elaborated in the Appendix, we are finally able to obtain:

∆(t) − V E

{

N
∑

n=1

θnRn(t)
}

≤ B̃ − V
N

∑

n=1

θnr∗n (42)

The form fits (31). Thus, by applying Theorem 1, we are able
to prove (29).

IV. OPTIMIZATION SOLUTION

Macro and cooperative allocation policies in Sec. III-B
require us to solve optimization problems (25) and (26), which
are non-linear integer programming (NIP) and thus NP-hard.
We can use the traditionalbranch-and-bound algorithm to solve
these problems optimally. However, it does not exploit the
special structure of these optimization problems, and has a
high complexity due to LP relaxation and inefficient search.In
this section, we propose to apply the GeneralizedExpectation
Maximization (EM) algorithm [8] to our problems, which
specifically exploits special problem structures and cognitive
WiMAX network characteristics, and reduces the complexity.

A. Generalized EM Algorithm

Generalized EM is an iterative method to optimize two sets of
variables (λ, θ). We obtain the optimal solutions by iteratively
updating the variables via two steps:

E step: θ(k+1) = arg maxθ F(θ, λ(k))
M step: λ(k+1) = arg maxλ F(θ(k+1), λ(k))
Successive application of generalized EM maximizes the

lower bound ofF , i.e.,

F(θ(k+1), λ(k)) ≥ F(θ(k), λ(k))

F(θ(k+1), λ(k+1)) ≥ F(θ(k+1), λ(k))

Accordingly, in themacro allocation problem (25), we divide
the variables into two sets:PBS(t) andUBS(t). We iteratively
solve the problem with two steps. First, takePBS(t) as the
variable andUBS(t) as a fixed value (referred to as theBS
Power Optimization step). Then, takeUBS(t) as the variable

but UBS(t) as a fixed value (referred to as theMacro Channel
Assignment step). The optimal solution can be obtained by
repeating these two steps until convergence.

Surprisingly, by separating the problem into two steps, the
complexity of the optimization problem is largely reduced due
to the special problem structure. With a fixed channel allocation,
the BS Power Optimization step is actually a LP. Themacro
Channel Assignment step, with a fixed power allocation, can be
considered as a maximum weighted bipartite matching (WBM)
problem, which can be solved optimally withpolynomial time
complexity. Construct a bipartite graphA = (Φ × χ,E). The
vertices in Φ denote all SUs, and the vertices inχ denote
all channels. The edge setE corresponds to|Φ| × |χ| edges
connecting all possible pairs, with weightBn(t)ωc

n(t). Run
the WBM algorithm to obtain the matched pairs, providing
corresponding channel assignment. The WBM problem can be
solved in a centralized fashion using network flow algorithms
such as the cost scaling algorithm [9], and can also be solved
in distributed approximation algorithms [10].

In thecooperative allocation problem (26), we can also divide
the variables into two sets:PSU(t) and USU(t). Then, the
problem is separated into two steps: theSU Power Alloca-
tion step and theCooperative Channel Allocation step. The
SU Power Allocation step is a LP. TheCooperative Channel
Allocation step can be formulated into a similar WBM, where
Φ includes all cooperative links1 and χ contains all available
channels, excluding the ones that can not be used according
to the constraints. The weight of each edge inE carries
(

Bn(t) − Bm(t)
)

ωc
mn(t) − Xc

a(t)Ia
m(t)

(

1 − Y c
a (t)

)

. With this
graph setup, the problem can be solved optimally.

B. Complexity Analysis

The Generalized EM algorithm converges to a local maxi-
mum of the original optimization problem [8]. We can carefully
select the initial conditions, resulting in the global maximum.
One efficient approach to set the initial values is to solve the LP
relaxation of the original problem, and get the feasible solution
by randomized rounding. Running the algorithm several times
with different initial conditions is also helpful.

We perform a set of simulations to evaluate the Generalized
EM algorithm in our problems by comparing with the traditional
branch-and-bound algorithm, running over Intel Core Duo
machine at1.83 GHz and a memory of2 GB. The results are
listed in Table I. With respect to the performance of average
throughput over SUs, theGeneralized EM algorithm performs
very close to thebranch-and-bound algorithm, within a1%
difference on average. Further, we observe that theGeneralized
EM algorithm is able to converge within1 ms on average which
is much faster than thebranch-and-bound algorithm. Thus, it
is suitable for practical WiMAX systems.

V. PERFORMANCEEVALUATION

We are now ready to resort to extensive simulations to study
the performance of cognitive WiMAX with femto cells. To be

1For example,(1, 2) indicates the transmission link from SU1 to SU2. Note
that it is different from(2, 1) representing the link from SU2 to SU 1.



TABLE I
EVALUATION OF THE Generalized EM ALGORITHM .

Algorithm Ave. Throughput Ave. running time
generalized EM 1.74 Mbps 1 ms

branch-and-bound 1.75 Mbps 6 ms

TABLE II
SIMULATION PARAMETERS.

Channel Type Rayleigh fading and AWGN
Path loss Model COST-HATA-231

Transmitter Power (macro BS) 25 dBm
Transmitter Power (SU) 5 dBm

Noise Power -129.5 dBW
Adaptive Modulation used

realistic, the simulations are conducted over a long term, where
practical settings of WiMAX and CR configuration are adopted
according to [3]. In our simulations, there are a total of20
PUs located across8 femto cells sharing12 channels. Around
the service region, a number of SUs are randomly moving
with random initial locations. The channel availability state
evolves according to a Markov chain with symmetric transition
probabilities between the ON and OFF states given by0.5. The
simulation parameters are listed in Table II.

We simulate our proposed protocol with different numbers of
active SUs, denoted as “Coop-X” (“X” represents the number
of SUs). For comparison, we simulate the traditional resource
management protocol in cognitive WiMAX with power control
in a coarse granularity, by simply using the maximum feasible
power for macro transmission (follow the constraint (3)) without
cooperative communication and flow control, referred to as
“NOCoop.” Further, to specifically examine the advantages of
the cognitive WiMAX architecture, we simulate the resource
management protocol in traditional WiMAX networks without
the CR technique, referred to as “Trad,” where the transmission
is only performed when feasible channels exist across the entire
macro area and is provisioned under maximum power.

We first examine the throughput performance. Fig. 2 shows
the results on average throughput over SUs via a 15000-
second simulation. We observe that “Trad” performs worst,
indicating the advantage of the new architecture by apply-
ing CR technique. Even “NOCoop” outperforms “Trad” with
a substantial gain (21%) by exploiting spectrum reuse in a
higher degree. Further, “Coop-30,” “Coop-40,” and “Coop-50”
defeat “NOCoop” by36%, 50%, and 63% respectively, and
of course outperform “Trad” with much higher margins. It
coincides with our intuition that resource management with
cooperative communication, power control, flow routing, and
other important cross-layer designs naturally fits in the design
of cognitive WiMAX with femto cells, and is able to achieve
significant throughput improvement due to its effective useof
the wireless spectrum. Another trend to notice is that the margin
that “Coop” outperforms “NOCoop” and “Trad” becomes more
substantial with an increasing number of SUs. This observation
indicates that a larger number of SUs create a higher degree of
cooperation, which is beneficial for throughput performance.

Regarding the fairness performance, we capture the variance
on the average throughput over SUs. At each time slott, we
calculate, for each SU, the average throughput over time horizon
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Fig. 2. Average throughput perfor-
mance of all protocols.
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[1, t], and then compute the throughput variance as the ratio
between the standard deviation of the average throughput over
time and the time average throughput itself. Fig. 3 plots theCDF
of this throughput variance for all protocols. Not surprisingly,
“Coop”s outperform “NOCoop,” which shows the improvement
of our protocol on fairness performance.

To obtain a deeper understanding of the advantages of our
proposed protocol, we investigate the channel utilizationper-
formance, which is calculated as the sum throughput of all SUs
over the aggregate throughput in the network including both
SUs and PUs. This value accurately reflects the improvement
on the spectrum utilization. Evident from the results shownin
Fig. 4, the increase of the channel utilization reaches30% in
the best case (“Coop-60”). It demonstrates that the spectrum
can be more efficiently utilized with our protocol. Another
observation from the results is that the performance will degrade
when the number of SUs is overly large (“Coop-80”), since the
interference effect begins to dominate. Asweet spot may exist
with respect to the number of SUs in cognitive WiMAX. We
will further study it in our future work.

Finally, we track the buffer backlogs of both data and
collision queues. The results are shown in Fig. 5, and the curves
capture the normalized buffer backlog, calculated by the ratio
between the backlogs and the bounds (obtained in (27) and
(28)). The results show that the buffer remains bounded over
the long term, which is desirable in the system design.

VI. RELATED WORK

During the past decade, broadband wireless mobile ser-
vices have been the most remarkable growth areas in the
communication industry. WiMAX is considered as the next
generation technology to provide ubiquitous broadband wireless
connections, and the IEEE 802.16 family of standards are the
state-of-the-art wireless communication standards accordingly
[1]. Further, WiMAX adopts OFDMA and the femto-cell ar-
chitecture, providing a rich set of features and a high degree



of flexibility. Cognitive radio (CR) is a revolution in radio
technology to efficiently utilize spectrum resources in wireless
networks. IEEE 802.22 [3] is the first standardization effort to
define CR and so far has drawn much research attention in both
academia and industry. Dynamic spectrum access (DSA) [11] is
one of the key issues and has driven most of the CR research.
[6] develops an opportunistic spectrum access framework that
maximizes the throughput utility of the SUs. [4] and [12] study
the dynamic access issues in the ad hoc mode of CR networks,
where scheduling and routing are jointly considered.

In our work, we take advantage of the favorable properties of
both WiMAX and CR techniques, and investigate the benefits
of their collaboration. The concept ofCognitive WiMAX was
proposed in [13]. However, our work radically differs from it
in a number of aspects. First, we study cognitive WiMAX with
femto cells employed, which provide potentials on spectrum
reuse and represent the direction that WiMAX evolves to [1].
[13] only studies regular WiMAX scenarios. Second, we advo-
cate cooperative and multi-path multi-channel communication,
which is more efficient and hence works in a substantially
different architecture. Third, we propose a novel location-aware
resource management protocol with cross-layer designs, while
[13] just uses CRs to perform channel sensing without DSA.
Last but not least, we specifically provide a rigorous analysis
on network performance, which is not discussed in [13].

VII. C ONCLUDING REMARKS

In this paper, we propose cognitive WiMAX with femto cells
and study the resource management problem in the network.
Tightly integrated with the novel cognitive WiMAX architec-
ture, our cross-layer resource management protocol is designed
to apply power control, multi-hop cooperative communica-
tion and flow management techniques, achieving near-optimal
performance. It is based on a sound theoretical foundation
using stochastic Lyapunov optimization, but not without careful
considerations of the practicality, feasibility, and efficiency of
implementing these solutions. With this paper, we are convinced
that it is a win-win approach by applying the CR technique
to WiMAX with the employment of our resource management
protocol by fully exploiting spectrum reuse and incorporating
user, channel, and cooperative diversities.

APPENDIX

We aim to prove of inequality (42) from (41), by getting
the constant lower bounds of the second and third last terms
in (41). First, asBn(t) ≥ 0 and Un(t) ≥ 0, we have
E

{
∑N

n=1 Bn(t)Un(t)
}

≥ 0. Further,0 ≤ Bn(t) ≤ Bmax and
0 ≤ RSR

n ≤ Rmax. Thus, (41) turns to be:

∆(t) − V E{f(t)} ≤ B + A · N · BmaxRmax − V f∗

−E

{

A
∑

a=1

C
∑

c=1

Xc
a(t)

(

ρc
a − Ec,SR

a (t)
)

}

(43)

We then use “delayed” queue backlogs to formulate it.
Clearly, for t > d, we have:

Xc
a(t − d) + d · ⌊

N

2
⌋ ≥ Xc

a(t) ≥ Xc
a(t − d) − dρc

a (44)

Now, we substituteXc
a(t) in (41) with (44):

∆(t) − V E{f(t)} ≤ B + A · N · BmaxRmax + Z − V f∗

−E
{

∑A

a=1

∑C

c=1 Xc
a(t − d)(ρc − Ec,SR

a (t))
}

(45)

whereZ , d
∑A

a=1

∑C
c=1

(

⌊N
2 ⌋ + (ρc

a)2
)

.
Using iterative expectations, we have the following:

E
{

C
∑

c=1

Xc
a(t − d)Ec,SR

a (t)
}

=

E
{

C
∑

c=1

Xc
a(t − d) · E{Ec,SR

a (t)|T(t − d)}
}

(46)

T represents the system state at time slott on the primary
channel availabilityH(t) and Y(t), which can be considered
as a Markov process. By the property of Markov processes, any
functions of these statesH(t) andY(t) converge exponentially
fast to their steady state values. Recall that the stationary,
randomized policy is only based on the system states. Thus,
there existsα > 0, 0 < σ < 1 such that (using (39) and (40)):

E
{

Ec,SR
a (t)|T(t − d)

}

≤ ec,SR
a + ασd ≤ ρc

a + ασd (47)

Now, substitute (47) into (45), then (41) finally can be
expressed as follows, which fits to the form of (31):

∆(t) − V E{f(t)} ≤ B̃ − V f∗

B̃ = B + A · N · BmaxRmax + Z + A · C · Xmaxασd.
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