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Abstract—Even with the recent proliferation of in-memory
computation in data-parallel frameworks (such as Spark), trans-
fers over the network are still time-consuming. Similar to compu-
tation, network transfers serve as main roadblocks as we try to
minimize job completion times. Existing schedulers were designed
as isolated solutions that focused on computation or network
performance only. Without any coordination, the utilization of
computation and network resources may become unbalanced,
leading to a reduced level of overall resource utilization. In this
paper, we design, implement, and evaluate Symbiosis, a network-
aware task scheduler designed to coordinate computation-bound
and network-bound tasks in a large cluster, so that resources
are utilized in a more balanced fashion. Symbiosis is an online
scheduler that predicts resource imbalance before launching
tasks, and correct such imbalance by co-locating computation-
bound and network-bound tasks in the same executor process. As
a guiding principle, it is engineered to be practically implemented
within and to complement existing data-parallel frameworks.
We have implemented Symbiosis within Spark, and carried out
our experiments on a 100-node cluster. We show convincing
evidence that Symbiosis reduces job completion times by 11.9%
in comparison to Spark’s current scheduler with little overhead.

I. INTRODUCTION

Traditional data-parallel computing frameworks, such as
MapReduce [1] and Pregel [2], serve as important foundations
for big data processing in cloud datacenters. They assist to
accelerate the processing of large datasets by dividing a job
into multiple tasks, and by distributing them to machines
(called worker nodes) across the cluster for parallel execution.
In addition, a job involves multiple computation stages [3],
and tasks in a downstream stage have to wait for intermediate
results to be produced from their upstream stages. In MapRe-
duce, for example, intermediate results need to be transferred
from mapper tasks to reducer tasks with large volumes of data
to be transmitted. Called a shuffle phase, such high-volume
data transfers affect job completion times substantially. On
average, MapReduce jobs spend about 33% of their runtime
in the shuffle phase [3].

With the recent proliferation of in-memory computing
frameworks, such as Spark [4] and Flink [5], Resilient Dis-
tributed Datasets (RDD) are introduced to allow in-memory
sharing across pipelined tasks, mitigating the volume of data
transfers. Still, for those tasks that are dependent upon a
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large number of other tasks in upstream stages, the shuffle
phase is indispensable: jobs running on Spark spend more
than 12% of their runtime during the shuffle phase [3]. A
typical production cluster hosts multiple types of data-parallel
frameworks, running a mix of background batch jobs and
interactive query jobs on a common dataset. In such production
environments, network transfer times are critical contributing
factors to job completion times.

Nevertheless, existing schedulers such as HFS [6], Sparrow
[7] and KMN [8], have only considered computation resources,
such as CPU and memory, when assigning tasks to worker
nodes. In contrast, existing bandwidth allocation schemes
in the research literature, such as Orchestra [3], Varys [9],
Baraat [10] and Aalo [11], have instead emphasized network
transfer times, with a sole focus on network resources. Without
coordination, these isolated resource allocation strategies may
lead to under-utilized resources, due to a lack of balance when
both computation and network resources are considered. For
example, if a network-intensive task is assigned to a CPU core
on which no other tasks are running, the CPU core may be
left mostly idle, since data transfers over the network is the
performance bottleneck.

At first glance, it may appear that multi-resource scheduling
policies proposed in the literature [12], [13], [14] may be
the best candidate to rectify such an imbalance in resource
utilization across multiple types. Unfortunately, in production
clusters and data-parallel frameworks, there are practical lim-
itations that make it difficult to apply existing multi-resource
scheduling policies. For example, it is difficult to have a priori
knowledge of the precise resource demand in a typical job,
background or interactive. Resource demands are not typically
specified in job descriptions, and even when they are, they are
ballpark estimates that can only serve as hints and guidelines.
At runtime, neither network transfer times nor computation
times are deterministic or predictable, as co-located tasks share
cluster resources. Further, existing multi-resource scheduling
policies are typically designed with a “clean-slate” approach,
engineered to replace current data-parallel frameworks, rather
than complementing them.

In this paper, we design, implement, and evaluate Sym-
biosis, a network-aware task scheduler that complements and
improves current scheduling policies in existing data-parallel
frameworks, with a coordinated emphasis on both computation
and network resources when scheduling decisions are made.
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Symbiosis is first and foremost designed to be practical: it
predicts and rectifies a lack of balance in utilizing compu-
tation and network resources at runtime, without any priori
knowledge or online estimation about resource demands.

As its name suggests, Symbiosis rectifies any resource
imbalance by scheduling computation-intensive tasks (with
data locality) on the same CPU core as network-intensive
tasks (without data locality), within the same executor process
managed by existing data-parallel frameworks, such as Spark.
When multiple computation-intensive tasks compete for the
same symbiotic opportunity on an idle CPU core hosting a
network-intensive task, we propose a priority-based strategy
to choose the best candidate. When multiple network-intensive
tasks compete for the same symbiotic chance on a worker node
without any network transmissions, we prefer the candidate
that is nearer to its upstream tasks to reduce cross-rack traffic.

As a new task scheduler, Symbiosis is designed as a plu-
gin to existing data-parallel frameworks, and co-exists well
with existing two-tier resource managers in traditional data-
parallel frameworks. It remains transparent to applications, and
requires no modifications to existing programming interfaces.
We have implemented it in Spark, and extensively evaluated
Symbiosis in testbeds with modest and large scales, ranging
from a few to over a hundred worker nodes on Linode [15],
with a diverse range of workloads. In comparison to Spark, we
have shown convincing evidence that Symbiosis improves CPU
utilization in the cluster, mitigates the lack of balance when
multiple resources are considered, and reduces the average job
completion time by 11.9% on average.

II. NETWORK-AWARE TASK SCHEDULING

In the era of big data processing, data-parallel computing
frameworks, such as MapReduce [1] and Spark [4], have
been widely adopted in datacenters. In these frameworks, it
is typical for a computation job to process datasets through a
sequence of stages [3], and each stage consists of multiple
tasks, running on their respective worker nodes across the
cluster. In input stages, tasks need to read input datasets from
the file system; with in-memory processing in Spark, data
locality in these stages are further improved. In intermediate
stages, task need to retrieve intermediate results from previous
stages for subsequent processing, leading to network transfers
across the network during the shuffle phase.

While existing schedulers in the literature focused only on
computation resources (e.g., Sparrow [7], [6], Mesos [16] and
YARN [17]) or network resources (e.g., Varys [9], Baraat
[10] and Aalo [11]), our design objective is to take both
computation and network resources into account, as jobs
require both resources to complete.

To be more general, we consider a cluster that simultane-
ously runs several different computing frameworks, or multi-
ple instances of the same framework with different resource
bounds. In such a cluster, a cluster resource manager, such as
Mesos [16], is responsible for offering computation resources
to different frameworks. Each worker node in the cluster
can launch multiple executor processes, and run tasks on
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Fig. 1. A motivating example: T11 and T12 have finished and released the
executors E1 and E2. T13 and T14 are then distributed to E1 and E2. Without
network-aware scheduling, the scheduler would only launch two tasks of Job2,
T23 and T24, for now since it believes that no other executor is idle.

these executors through multithreading. Whenever an executor
becomes idle, the cluster manager will select and inform one
of the frameworks about the resources that has just become
available, referred to as a resources offer.

Upon receiving the resource offer, the selected framework
calls its own task scheduler to decide whether to accept such an
offer, and if so, which task should be distributed. Nevertheless,
the selected task might need to wait for its input data shuffled
from previous stages before it starts computing. The computa-
tion resources allocated to it are thus left idle, waiting for the
network transfer to complete. If we can discover and correct
such resource imbalance, more tasks can be accommodated,
and job performance will be improved as a result.

A. Network-Aware Task Scheduling: An Example

To understand the benefits of network-aware scheduling,
consider the scenario shown in Fig. 1. Each worker node
has one CPU core, stores one data block, and launches one
executor process. When Job2 is submitted to the system, the
map tasks of Job1, T11 and T12, have finished and written the
output to local disks. According to the first-in-first-out strategy,
the two reduce tasks of Job1 could first select the offers from
the executors. Therefore, the scheduler would distribute them
to E1 and E2 to reduce the volume of network transfer. Each
input task of Job2 needs to read one data block: T21 needs
Datablock1; T22 needs Datablock2; T23 needs Datablock3; T24

needs Datablock4. To achieve data locality, the scheduler first
launches T23 to E3 and T24 to E4 since the executors that T21

and T22 can achieve locality is currently occupied.
Without network-aware scheduling, a scheduler would be-

lieve that the cluster is already fully utilized, since every CPU
core is allocated with one task. T21 and T22 have to wait for
the tasks running on their existing executors to finish. More
specifically, they have to wait for the network-intensive tasks
if they would like to achieve data locality.

However, since T13 and T14 are network-bound, the CPUs
of their executors are mostly idle. Intuitively, if we assign the
network-free tasks T21 and T22 to E1 and E2 respectively, T21

and T22 can then utilize the computation resources on these
executors, while T13 and T14 receive their intermediate results
from the mappers. The cluster can thus run all six ready tasks
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in parallelg. On one hand, the system throughput and resource
utilization are improved. On the other hand, the completion
time of Job2 is reduced since its final result can be achieved
only after all its constituent tasks finish. At the same time, the
completion time of Job2 is not affected. Therefore, the overall
job completion performance has been improved.

B. Symbiosis: Objectives and Practical Considerations

It is our objective that Symbiosis should, first and fore-
most, be designed to be simple and practical. In the existing
literature, scheduling jobs with multiple resource constraints
is a classical problem in the domain of operation research
[18], with the objective of equal utilization of all the type
of resources. In the context of cluster computing, however,
the resource demands cannot be explicitly quantized. The
demand for network resources cannot be directly transferred
to bandwidth requirements, and the demand for computation
resources cannot be directly converted to CPU and memory
constraints. Without knowing the desired network transfer
times and computation times, we cannot apply existing multi-
resource scheduling heuristics in Symbiosis.

Even if we assume that cluster users could acquire accurate
information about the resource demands of each task before-
hand, the application interfaces have to be modified to embrace
such information into the task description. This is practically
undesirable, since it breaks backward compatibility with a vast
collection of existing applications. Ideally, our task scheduler
in Symbiosis should be network-aware while still keeping the
modifications transparent to the cluster users, without the need
of modifying their applications.

In a similar vein, it is not practically feasible to incorpo-
rate a “clean-slate” redesign, by replacing existing schedulers
with a new scheduling framework. The existing scheduling
framework in Spark, for example, has its own merits when
diversified workloads with batch and low-latency interactive
jobs coexist. It is a much better design philosophy to in-
crementally improve the current scheduling framework, and
keep the network-aware scheduler compatible to existing task
schedulers in different frameworks. Last but not the least, the
scheduling logic should be light-weight and highly efficient, in
order to make sure that the scheduler itself does not become
a performance bottleneck. An algorithm designed to require
too much information would incur a significant amount of
computation and control overhead, and may slow down the
jobs being scheduled in the worst case.

The critical challenge is: how should Symbiosis be designed
to be network-aware in the best possible way, while still main-
taining its practicality, efficiency, and backward compatibility?
In what follows, we will take a bottom-up approach, starting
by motivating and designing our main ideas on identifying and
correcting a lack of resource balance at runtime.

III. Symbiosis: DESIGN

A. Spotting Resource Imbalance

We focus on two types of resources: bandwidth on access
links and computing slots on CPU cores. The utilization of
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Fig. 2. In Symbiosis, we do not actively monitor the CPU and network
utilization. We predict that E1 and E2 may experience CPU under-utilization
by discovering T13 and T14 do not have any locality; we predict that E3 and
E4 do not utilize the network since T23 and T24 have achieved node locality.

links in the core network layers depends on routing strategies
[19] [20] and is beyond the scope of this paper.

A worker node is considered resource balanced, if its
utilization of all of its resources are the same [18]. According
to this definition, it seems straightforward to identify a lack
of resource balance by monitoring network and CPU usage at
runtime. However, we believe that the overhead of real-time
resource monitoring is not negligible, and must be seriously
considered. But more importantly, real-time monitoring can
only detect that resource usage is not balanced after the fact,
which may be too late for the purposes of scheduling. For
instance, after an under-utilized CPU core has been reported to
the scheduler, the network-intensive task may have completed
retrieving data and started computation already, with better
utilization of the CPU. If the scheduler still attempts to make
decisions to improve CPU utilization, it would now negatively
affect the resource balance.

Even if our runtime resource monitoring mechanism is
perfect and reports accurate real-time system states with no
overhead, how the resource balance is traditionally defined
is still impractical. On one hand, worker nodes possess het-
erogeneous resources: some nodes have more powerful CPUs,
whereas others have faster network access. Given the same
tasks, the resource utilization on these two type of nodes could
be very different. On the other hand, jobs running in a cluster
with multiple concurrent frameworks may have diversified and
dynamic demand for different types of resources. It is therefore
impractical to impose equal utilization as the standard for a
balanced use of multiple resource types.

Instead, Symbiosis is designed to predict a lack of resource
balance at runtime on a per-task basis. As a high-level
overview of our design, we show an example in Fig. 2, where
the jobs and tasks are the same as in Fig. 1. T13 and T14

need to retrieve a certain amount of input data from tasks in
the preceding stage before they can start processing the data.
Therefore, the access links of W1 and W2 are fully occupied,
whereas the CPU cores are under-utilized. In contrast, since
the input data of T23 and T24 are already on the corresponding
worker nodes, it is possible to cache entire data blocks in
their main memory, speeding up their access to the data.
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Therefore, these tasks can directly start processing and fully
utilize the CPUs. It is clear that a network-bound task always
incurs a lack of resource balance due to CPU under-utilization,
whereas a computation-bound task with data locality always
under-utilizes its network links. Based on these observations,
in Symbiosis, we simply predict that a worker node will be
unbalanced in its resource usage if a single network-bound or a
computation-bound (but network-free) task has been assigned
to an executor process on that worker node.

It now remains to be seen how a task can be correctly
identified to be network- or computation-bound. In practice,
Symbiosis takes advantage of the NameNode [21] in the
underlying file system, HDFS. The NameNode is a unique
central repository that manages the system metadata, including
the directory tree of all the files in the system, and tracks where
across the entire cluster the data is stored. A large number
of DataNodes in the system store the actual data blocks and
interact with the NameNode to respond to client requests.

Symbiosis first submits a query to the NameNode to locate
the input data blocks of the task in question. For an input task,
the NameNode returns a list of relevant DataNodes that store
or cache its input data blocks through the LocalityQuery

procedure. If the executor process that the task will be
launched to runs on one of the returned DataNodes, the task
achieves data locality. We then determine its locality level with
respect to this specific executor. If the executor caches the
data block in its main memory, the task is process-local. If
the corresponding worker node of the executor stores the data
block in local disks, the task is node-local. Process- or node-
local tasks are considered computation-bound (and network-
free). Otherwise, if a task does not exhibit either process- or
node-locality, it is considered to be network-bound. Depending
on the distance between the executor and a node storing the
data block, a network-bound task can be rack-local or without
any locality. With respect to those tasks in intermediate stages,
since they depend on multiple outputs from tasks in upstream
stages, it is impossible to achieve data locality for all the input.
Therefore, we can directly identify them as network-bound
tasks from the stages they belong to.

B. Correcting Resource Imbalance

Now that resource imbalance stems from running a network-
bound or a computation-bound task alone on an executor, it
is intuitive to co-locate these two types of tasks to correct
such imbalance. This intuition is conceptually simple; the key
question, however, is how it can be implemented in practice.

An application independently defines the number of cores
a task needs, and relies on the cluster manager to allocate
resources. Each worker node launches multiple executors to
run tasks from different frameworks. With modern container
techniques, such as Docker containers [22] supported by
Spark, the cluster manager is able to isolate co-located ex-
ecutors, and to limit the resources each of them can access.
Therefore, each executor essentially possesses a fixed number
of cores throughout its lifetime. Assigned to an executor,
each task can only access the resources of its own executor,

without the ability to utilize the idle resources allocated
to other executors. The aggregated resources of co-located
executors cannot exceed the worker node’s capacity, and the
total resources allocated to co-located tasks cannot surpass the
executor’s capacity.

To improve CPU utilization, one possible solution is to
devise a “forging” mechanism that makes a worker node
believe it has more cores than its physical capacity. As a
result, the worker node either launches more executors [23],
or launches executors with higher capacities [16]. Either way,
more tasks would be assigned to these worker nodes by the
scheduler. It is then possible that a network-bound task and a
computation-bound task may share the same CPU. However,
the forged information about the number of CPU cores must
be manually set by the operator across the entire cluster.
Such manual configurations do not have the flexiblity to
adapt to different worker states across the cluster. For workers
whose running tasks are all computation-bound, this method
would further exacerbate the burden on the CPUs, potentially
harming the computing performance.

To correct resource imbalance automatically under all cir-
cumstances, in Symbiosis, decisions are made at runtime
within the task scheduler within each framework, rather than
centrally within the cluster manager. Recall that as resources
become available, the cluster manager will selectively inform
one of the frameworks about the executor with the available
resources, called a resource offer. Traditionally, the task sched-
uler in the selected framework would determine which task is
to accept the offer. At this moment, Symbiosis steps in and
scrutinizes the description of the selected task, before it is
actually assigned to the executor in the resource offer.

By scrutinizing its description, Symbiosis attempts to deter-
mine if the selected task is a network-bound task, with the
hope that a computation-bound task can be found to co-locate
with it on the same executor, referred to as a symbiotic task
henceforth in this paper. To look for such computation-bound
symbiotic tasks, Symbiosis scans through all the pending tasks
in the same application to see if any of them can achieve data
locality on the executor in the resource offer. If so, these tasks
are considered network-free with respect to the executor in the
resource offer, and are good candidates as the symbiotic task.
It then assigns one of these network-free tasks to the same
executor, by accepting the same resource offer.

As shown in Fig. 3, after we discover T13 and T14 are
network-bound tasks, we scan the pending tasks of Job2

and find that T21’s input data is on W1, and T22’s input
is on W2. Therefore, we assign T21 to E1 and T22 to E2,
such that the corresponding cores are almost fully utilized.
The timelines shown in Fig. 4 have clearly shown that with
network-aware scheduling, job performance is improved since
Job2 is accelerated, while Job1 is not slowed down.

But what if an existing task running on the executor turns
out to be a computation-bound task? The instinctive reaction
may be to find a network-bound task as its symbiotic task,
sharing the same executor. However, a network-bound task
may not be computation-free, since it is able to process the
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Fig. 4. Job performance without (left) and with (right) network-awareness:
the completion time of Job1 remains 2 time units, whereas the completion
time of Job2 decreases since its map stage decreases from 3 to 1 time unit.

data it has received so far while receiving the remaining input
data. In addition, network bandwidth is usually shared across
all the executors in the same worker node, without the enforced
isolation that is adopted with CPU cores. For these reasons,
it is not always beneficial if a network-bound task is chosen
as a symbiotic task to a computation-bound one. We leave
this as a configurable option; once enabled, Symbiosis scans
through all existing tasks running on the same worker node
as the executor in the resource offer. If all these tasks are
found to incur no network transfer, it selects and assigns one
network-bound task to the executor in the resource offer.

C. Selecting Symbiotic Tasks

As we have discussed previously, for each executor pre-
dicted to be resource unbalanced, there might exist multiple
corresponding network-free tasks competing for the same
symbiotic opportunity on the executor. On the other hand,
since a framework might be offered multiple executors where
a task can achieve data locality, there might exist multiple
symbiotic opportunities for a single task on different executors.
It is thus necessary to coordinate among multiple candidate
tasks and multiple symbiotic opportunities to best improve the
system performance.

Given a set of resource unbalanced executors and a set of
candidate symbiotic tasks, the problem of selecting the best
symbiotic tasks to maximize the aggregated performance gain

can be formally formulated as below:

max
∑

j

∑
i
pi · xij (1)

subject to
∑

j
xij ≤ 1, (2)∑

i
pi · xij ≤ transferj ,∀j (3)

where xij ∈ {0, 1} indicates whether a candidate symbiotic
task ti with respect to the executor ej is distributed to ej ;
and pi is the processing time of ti on a CPU core. transferj
represents the time to transfer the input to the network-bound
task on ej . Since the network-bound task distributed to ej has a
higher priority over the candidate symbiotic tasks, Constraint
(3) regulates that all the symbiotic tasks must finish before
the network-bound task receives all its input data. This is a
Multiple Knapsack Problem [24], which can be solved through
an existing polynomial time approximation scheme [25] if we
have a priori knowledge of transferj and pi.

Nevertheless, estimating transfer times not only requires
monitoring the dynamic flow rates with extra overhead, but
also needs to modify application interfaces to reveal the
flow sizes in advance. Furthermore, accurately estimating task
processing times is almost impossible for online schedulers.

Instead of using such selection strategies that require addi-
tional monitoring and modifications to application interfaces,
in Symbiosis, we propose to select one task at a time based
on the predefined priorities (line 6-9 of Alg. 1). We prioritize
tasks belonging to a high priority job, and for tasks within
the same job, a process-local task is preferred. Symbiosis
continues to allocating network-free tasks to the executor until
the corresponding network-bound task is ready to compute
(line 16 of Alg. 1). In this way, as the network-bound task
starts its computation phase, at most one task would compete
with it for CPU cycles, without slowing it down significantly.

Algorithm 1 Network-aware task scheduling
1: procedure NETWORK-FREE TASKS(ej)
2: Initiate: Ωj = Φ, Σ = the set of pending tasks
3: for t ∈ Σ do
4: if ej ∈ LOCALITYQUERY(t) then
5: Ωj = Ωj + {t}
6: procedure PRIORITY-BASED SELECTION(ej)
7: Ωj = NETWORK-FREE TASKS(ej)
8: Π = SORTTASKS(Ωj)
9: Distribute tΠ(0) to ej and start processing tΠ(0)

10: procedure MAIN
11: Initiate: the newly received resource offer (ci, ej)

. the (number of cores, offering machine) pair
12: t0 = TASKSCHEDULER(ej)
13: if t0 is not empty then
14: Accept the offer and distribute t0 to ej

15: if ej /∈ LOCALITYQUERY(t0) then . network-bound
16: while t0 is receiving do . add symbiotic tasks
17: PRIORITY-BASED SELECTION(ej)
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Fig. 5. Symbiosis in a multi-framework cluster.

Whenever a task finishes, the executor will inform the
cluster manager of this event, which triggers a new resource
offer to a framework. The scheduler in the framework, unaware
of the existence of Symbiosis, will select a new task to be
launched on the executor. When a symbiotic task finishes, if
the cluster runs through the same procedure, it is possible that
the newly selected task is network-bound, which aggravates
the already busy network on the executor. To avoid such
situations, we block all the messages to the cluster man-
ager that indicate the completion of symbiotic tasks on their
corresponding executors. Instead, whenever a symbiotic task
finishes, a message is explicitly sent to Symbiosis to select
and launch another symbiotic task. We treat the original task
and the symbiotic task as a whole, and release their allocated
resources only after both of them finish. The logic of Symbiosis
is shown in Algorithm 1.

D. Symbiosis in a Multi-Framework Cluster

The design of Symbiosis is complementary to the function-
ality provided by per-framework task schedulers and cluster
resource managers, and can be easily deployed in a multi-
framework cluster, as shown in Fig. 5. Each framework has a
long-running front-end to receive high-level user requests such
as online search queries and data analytic requests. The cluster
manager offers available resources to a framework as resource
offers, using a strict priority or weighted fair sharing strategy.
The framework depends on its own scheduler to distribute
its ready tasks (whose upstream tasks have all finished) to
different executors in the resource offer.

Symbiosis incrementally improves such a hierarchical
scheduling design, by adding a plugin to each application
in different frameworks. Each application adopts its own
customized scheduling strategies to place tasks onto executors
in the resource offer. Symbiosis examines these placement
decisions to identify if there exists a lack of resource balance,
and adjusts these placement decisions by adding a symbiotic
task to each executor without resource balance. Symbiosis also
introduces an offer manager on each worker node, in order to
control when to send a message to the cluster manager to
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Fig. 6. Symbiosis on top of Spark: Symbiosis works as a scheduling plugin,
requiring no modifications to existing application interfaces.

claim that an executor is ready to accept new tasks. Symbiosis
is designed to be flexible and completely transparent, in that
it does not rely on the scheduling policies used in each
framework, or require any extra user input or modifications
to application interfaces. These design decisions have made it
more practical, readily deployable in production clusters.

IV. Symbiosis: SYSTEM IMPLEMENTATION

We have built Symbiosis on top of Spark 1.4.0 [26] as
a scheduling plugin in the Scala programming language, as
shown in Fig. 6.

When a user submits an application to Spark, a
SparkContext is generated for this application. An applica-
tion Client in SparkContext then registers the newly sub-
mitted application to the master, which then allocate executors
to this application. Once executors are allocated to the applica-
tion, a Driver program can directly exchange messages with
executors to acquire their up-to-date information.

After initiation, the application’s DAG scheduler first di-
vides jobs into different stages of tasks and then calls the task
scheduler to submit the tasks in the ready stage. Meanwhile,
submitting tasks invokes the makeOffers function to pass the
resource offers from executors to the application. For each
resource offer, the task scheduler sorts all the ready tasks
based on the their locality level on the corresponding executor.
Spark allocates a fixed number of cores on an executor to
each task. Tasks can continue to accept an offer if the relevant
executor still has enough available cores.

Symbiosis steps in when the task scheduler has selected
tasks to accept the resource offers. It examines whether there
exists a Shuffle task or an input task that is RACK_LOCAL or
ANY with respect to the corresponding executor. Once found, it
scans through all the pending input tasks with data blocks on
the offering executor, (i.e., PROCESS_LOCAL or NODE_LOCAL

tasks) in the addSymTasks module. It then finds executors
to submit these symbiotic tasks to, and asks the Driver to
launch both the symbiotic tasks and the original selected tasks
to the executors through the fillTaskToExecutors module.
Symbiosis only selects one symbiotic task for each network-
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Fig. 7. Average job completion times for different workloads under three cluster sizes: jobs are expedited by more than 6% in all the experiments.
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Fig. 8. The completion times of map and reduce stages for different workloads under all the three clusters. Compared with Spark, Symbiosis significantly
speeds up the map stages due to early launching symbiotic tasks. In contrast, reduce stages are slightly slowed down due to the potential competition between
a symbiotic task and the reduce task on the same executor.

bound task to share the same executor. In the worst case, the
symbiotic task may still be running and competes with the
network-bound task, after the latter enters the computation
phase. Though unfortunate and difficult to avoid, such com-
petition for CPU only lasts for the remaining duration of the
symbiotic task.

V. EVALUATION

We evaluate Symbiosis through a series of experiments
on the Linode[15] cloud hosting platform. We begin with
three different types of workloads that evaluate how Symbiosis
behaves under different settings and go on to analyze the four
key factors that determines the performance of Symbiosis.

A. Setup

The master of our cluster runs on an instance with 20 CPU
cores and 96 GB of memory. Each worker node in our cluster
is equipped with 8 cores, 16GB of memory and 384GB SSD
storage. The bandwidth limit for uplink is 2000Mbps whereas
downlink bandwidth is as large as 40Gbps.

We have designed a customized module based on the
deployment tool, Ansible [27], to launch our cluster and
uniformly configure the worker nodes. We run Spark 1.4.0
together with Hadoop 2.6 in the cluster. The size of each data
block is 128 MB as seen in the Facebook’s production cluster
[6]. Two executors are launched on each node to run tasks.

To comprehensively evaluate the performance of Symbiosis,
we run two types of popular analytics workloads, WordCount
and PageRank [28] on a 32 GB Wiki dump [29] that tracks
all internal links in the Wiki [30]. The jobs in the WordCount
workload computes the occurrence frequency of each word

in the input data file. Such a job is a typical network-light
MapReduce job which involves a small amount of network
transfer between its tasks in map and reduce stages. Each
WordCount job processes a 8 GB data file.

PageRank [28] is an iterative graph processing algorithm
that is designed for Google’s search engine. A job in the
PageRank workload usually incurs a large amount of network
traffic to transfer intermediate results among multiple stages.
The PageRank is thus marked as network-heavy in our exper-
iments. Each job in the PageRank workload processes a 1 GB
data file extracted from the original Wiki dump.

In all the following experiments, three applications registers
with the cluster manager and 30 jobs are submitted to each
application. The submission schedule is generated to ensure
the comparability among different rounds of experiments.
The distribution of inter-arrival times follows an exponential
distribution with a mean of 14 seconds as observed in the
Facebook cluster [6].

B. Benefits of Symbiosis

In Fig. 7, we present the job completion times of the
network-heavy PageRank workload, the network-light Word-
Count workload and the network-medium hybrid workload.
The performance gains in terms of average job completion
times vary from 6.87% to 16.93% in different clusters. More
specifically, WordCount jobs benefit most from Symbiosis with
the average performance gain equal to 15.56% on average.

By comparing the job completion times in Fig. 7 and the
stage completion time in Fig. 8, we find that the improve-
ment of job performance mainly stems from the shortened
completion time of input tasks in the map stages. Essentially,
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Fig. 9. (a) The ratio between symbiotic tasks and input tasks in each job; (b) the CPU utilization under the three clusters; (c) the scheduler delay under
Symbiosis and Spark.

symbiotic tasks are all input tasks that achieve data locality
and avoid network transmissions. Without Symbiosis, it is
possible that a candidate symbiotic task waits too long to be
offered with an executor that stores its data. Based on delay
scheduling, it has to be launched onto an executor without
its input data after a certain amount of time. In other words,
symbiotic tasks not only are scheduled earlier but also achieves
higher locality. As a result, the map stage is accelerated.

C. Does Symbiosis come into effect?

To validate that our scheduling policy contributes to Symbio-
sis’s performance gain, we first count the number of symbiotic
tasks that actually share the executor with a network-bound
task. In Fig. 9(a), we present the ratio between the number
of symbiotic tasks and the total number of input tasks in
a job. Symbiosis successfully schedules more than 90% of
input tasks in a WordCount job as symbiotic tasks and launch
them to executors. In contrast, PageRank jobs have relatively
fewer symbiotic tasks under all the clusters. Consequently,
the performance gain of PageRank is lower than WordCount
as shown in Fig. 7. This is due to the multiple intermediate
stages caused by iterations in PageRank jobs. Many tasks in
the intermediate stages are reduce tasks that involve network
transfers. However, by analyzing application logs we find that
there are some process-local tasks that are launched onto the
same executor immediately after the tasks in the previous
iteration finishes. As a result, the symbiotic opportunities are
not as many as in WordCount jobs.

D. Is the CPU utilization improved?

The motivation of Symbiosis is to maximally utilize the
computation and network resources at the same time. To
evaluate the influence of Symbiosis on CPU utilization, we
sample the utilization of each core on a worker node every
second. We can thus compute the average utilization of all the
CPU cores in the cluster. The utilization distribution shown in
Fig. 9(b) depicts the variation of the average cluster utilization
throughout the application runtime. Symbiosis significantly im-
proves CPU utilization in all the three clusters. In addition, we
find that the average utilization decreases with the increasing
number of workers in the cluster since the loads of the three
clusters are similar.

E. What is Symbiosis’s overhead?

Since a symbiotic task will share the computation resources
allocated to the corresponding network-intensive tasks, it is
possible that the symbiotic task and the network-intensive
task will compete for resources. We evaluate the influence of
symbitoic tasks over reduce tasks in Fig. 8, which are the main
network-intensive tasks in our workloads. From the results we
can see that although reduce tasks are indeed slowed down
under Symbiosis, such loss of performance is offset by the
faster map tasks.

We further evaluate the scheduler delay of Symbiosis, which
is the time period after a task is submitted to the system
and before it is launched to an executor. Using Symbiosis,
a symbiotic task that originally waits for executors can be
launched to the executor hosting a network-bound task in
advance. Its scheduler delay is thus shortened. We evaluate
the scheduler delay of all tasks belonging to a WordCount
job under different clusters in Fig. 9(c). It is clear to see
that Symbiosis does not incur extra delay in comparison with
Spark’s standard scheduler. Furthermore, Symbiosis reduces
the scheduler delay for tasks that wait for a long time in Spark.

VI. RELATED WORK

Task schedulers. Zaharia et al. designed a Hadoop fair
scheduler, HFS [6], to balance between inter-job fairness
and data locality. The delay scheduling algorithm used in
HFS makes jobs that should be scheduled next (according to
fairness) wait for a small amount of time before it can launch
a local task. Other jobs can thus launch tasks first and utilize
the computation resources. This strategy has been adopted
in the current version of Spark [26] due to its simplicity.
Nevertheless, since it only considered data locality for input
tasks, and neglected the influence of inevitable data shuffle, the
resource imbalance addressed in Symbiosis cannot be handled
efficiently.

To improve the scalability of a centralized scheduler, Ouster-
houd et al. designed Sparrow [7], a sampling-based scheduling
framework that randomly probes available worker nodes and
selects less loaded nodes to launch tasks. Leveraging late
binding, tasks can dynamically adjusts their initial choices and
thus experience the minimum amount of waiting time. In pro-
duction clusters, however, the per-application task scheduler
barely becomes the performance bottleneck: CPU is often the
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scarce resource [31]. Without network-awareness, Sparrow not
only failed to achieve data locality, but also cannot utilize the
idle CPU resources incurred by network transmission.

Venkataraman et al. further designed a data-aware schedul-
ing framework, KMN [8], to minimize the time taken by input
tasks to read datasets. KMN also reduced the time taken by the
data shuffle, by launching additional tasks that avoid congested
links and by co-locating upstream and downstream tasks. In
contrast, with Symbiosis, we have improved cluster utilization
regardless of the placement of tasks. As long as network
transmissions still exist between upstream and downstream
tasks, the CPU cores allocated to the reduce tasks are mostly
idle. By enabling network-free tasks to share the resource
offer of a network-intensive task, we have effectively improved
resource utilization, and shortened job completion times.

Cluster managers. Resource utilization in a cluster highly
depends on the inter-framework resource allocation policy
embraced in the cluster manager. Mesos [16] introduced a two-
level scheduling scheme to decide how many resources to offer
each framework. Schwarzkopf et al. [32] argued that Mesos
and other existing cluster managers [17] lacked sufficient
resource visibility. Instead, they designed a new scheduler
architecture using shared state and optimistic concurrency.
Although our task scheduler is built upon resource offers
in two-level cluster managers, it can be easily extended to
shared state managers. When a scheduler successfully claims
a resource combination for a network-intensive task, our
scheduler can immediately decides whether to select other
computation-intensive tasks to share the resources.

Multi-resource scheduling. Theoretical work in multi-
resource scheduling [12], [13], [18] only deals with offline
job scheduling through complicated graph or combinatoric
algorithms. Their approaches cannot be applied to our online
scheduling scenario since the demand for network and com-
putation resources cannot be quantized in advance.

VII. CONCLUSION

In this paper, we have designed, analyzed and evaluated
a network-aware task scheduler, Symbiosis, designed to im-
prove resource utilization and job performance at the same
time. The upshot of Symbiosis lies in its ability to identify
and correct unbalanced utilization of multiple resources at
runtime. By selecting computation-intensive tasks to share the
resource offered to a network-intensive task, computation and
network resources can be fully utilized simultaneously. Our
experiments on the Linode cluster demonstrate that Symbio-
sis effectively reduces job completion times and improves
resource utilization without incurring extra scheduling delay.
Furthermore, its compatibility with existing parallel computing
frameworks makes it ready to be deployed in production
datacenters.
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