
Rally: Device-to-Device Content Sharing in LTE
Networks as a Game

Jingjie Jiang∗, Yifei Zhu∗, Bo Li∗ and Baochun Li†
∗Hong Kong University of Science and Technology, †University of Toronto

Abstract—Even with modern physical-layer technologies in
LTE networks, the capacity of cellular networks is still far
from sufficient to satisfy the insatiable bandwidth demand of
mobile applications. Owing to common interests among mobile
users, Device-to-Device (D2D) communication has emerged as a
viable alternative to offload cellular traffic, with the promise of
substantially alleviating the need for cellular network bandwidth.
In this paper, we first carry out an extensive theoretical analysis
based on a game theoretic approach, and show that the objective
of maximized cellular offloading is equivalent to maximizing
the social welfare in a trading network, where the content to
be shared is the commodity, and mobile users are buyers or
sellers. We next design Rally, a set of distributed strategies
that can converge to a subgame perfect Nash equilibrium in
the content sharing game. Both our theoretical analyses and
simulation results have shown the effectiveness of Rally, in that
it can indeed maximize cellular traffic offloading through D2D
communication.

I. INTRODUCTION

Monthly global cellular traffic is predicted to surpass 24.3
exabytes by 2019 [1]. Traditional ways of improving cellu-
lar capacity to meet such a surging demand confront two
major challenges. First, increasing the capacity of cellular
links becomes difficult, not only due to the scarcity of
spectrum, but also since the physical-layer technologies in
LTE networks (such as MIMO-OFDM with capacity-achieving
codes, multiple-antennas, and interference coordination) have
approached the theoretical limits of spectral efficiency. Second,
decreasing the cell size by deploying femto-cells is a feasible,
yet costly, approach for improving the throughput of cellular
networks, due to the cost of high-speed backhaul connectivity
across femto-cell base stations.

With the looming possibility of a fundamental mismatch be-
tween bandwidth demand and supply, Device-to-Device (D2D)
communication has recently attracted extensive research at-
tention, due to its unique ability to offload cellular traffic,
improve network throughput and energy efficiency. In essence,
cellular traffic may be offloaded by D2D communication when
mobile devices request different pieces of content, referred to
as messages in this paper, over cellular networks. Through
D2D communication, the traffic to transmit messages no
longer traverse base stations and other components in LTE
networks. Relieving an LTE network from some of its traffic-
carrying responsibilities will increase its effective capacity.
The interest for messages is both time-dependent and location-
sensitive. For instance, passengers are likely to read the same
time-limited coupon posted in a subway station, and access
its related website within a short period of time. With the

assistance of D2D communication, if a message happens to
be read and cached at a device, it can then be retrieved by a
neighboring device without consuming the bandwidth of links
that interconnect base stations and other components in LTE
networks.

The previous literature has largely focused on how D2D
communication can run efficiently as an underlay to cellular
networks [2] [3] [4]. In contrast, we focus on how D2D
communication can effectively offload cellular traffic, with
three major challenges. First, it is infeasible to cache all the
messages a device has acquired due to its limited storage.
A decision on whether to cache a message needs to be
correctly made so that a limited number of cached messages
can best meet local demand. Second, for each message being
requested, there may be multiple devices that can send this
message; for each device receiving requests, there may be
multiple messages from which it can choose one to send.
An algorithm that matches senders to receivers is needed to
maximize cellular traffic offloading. Finally, being inherently
selfish, mobile devices may not be willing to cache and share
messages, since such caching and sharing will consume their
local storage, energy, and uplink bandwidth. An incentive
mechanism is inevitable for content sharing to proceed in
practice.

In this paper, we propose Rally, a new array of strategies
specifically designed to address these challenges, with the
objective of maximizing cellular traffic offloading via D2D
communication. As a highlight of this paper, the design
of Rally is based on our theoretical analysis from a game
theoretic perspective, where each mobile device is regarded
as a selfish player in the game, and the D2D content sharing
network is regarded as a trading network. With such a perspec-
tive, a D2D transmission can be naturally viewed as a trade,
where the messages to be shared are treated as commodities,
and the senders and receivers are viewed as sellers and buyers,
respectively. The price of a message is the amount of profit
a seller derives by trading the message, which is negotiated
among local buyers and sellers. Through bargaining, prices
of messages effectively reflect the demand and supply level
of messages in the trading network. To fully motivate mobile
users to participate in D2D content sharing, the base station
pays monetary rewards to senders and receivers based on the
price of a locally shared message. Such an infrastructure-
driven framework distinguishes D2D content sharing from
traditional ad hoc content distribution.

From a game theoretic perspective, we first show that the



problem of maximizing cellular traffic offloading is equivalent
to the maximization of social welfare in a trading network. We
then proceed to divide the content sharing game as two sub-
games: a non-cooperative caching game where players make
cache decisions based on market prices, followed by a network
formation game, where players mutually select trading partners
via a distributed bargaining process. Our bargaining strategy
is designed by extending an existing bargaining dynamic
[5], which guarantees a convergence to the Nash bargaining
solution. The upshot of this paper from the perspective of
game theory is our theoretical proof that, with our caching
and bargaining strategies in Rally, the content sharing game
converges to a subgame perfect Nash equilibrium. In a fully
connected network, the social welfare, hence the cellular traffic
offloading, is maximized at the Nash equilibrium point.

The remainder of the paper is organized as follows. We first
present our system model and describe the content sharing
problem in Sec. II. In Sec. III, we present the game theoretic
formulation of the content sharing network. We proceed to
present Rally, a set of strategies that constitutes a subgame
perfect Nash equilibrium in Sec. IV. In Sec. V, we theoret-
ically analyze the efficiency of our proposed strategies. Our
simulation results in Sec. VI validate the effectiveness of Rally.
We discuss possible extensions of our system in Sec. VII. We
discuss our contributions in the context of related work in
Sec. VIII before we conclude this paper in Sec. IX.

II. CONTENT SHARING AS A PROBLEM

In this section, we present our system model, and formulate
the D2D content sharing as an optimization problem. In
general, we wish to offload cellular traffic by stimulating
devices to cache selected messages locally, and by encouraging
devices to retrieve messages from nearby devices rather than
from the Internet. Our objective is to maximize such cellular
traffic offloading.

A. System Model

We consider a single cell scenario, where a base station
is responsible for relaying requests from each device to the
Internet. Each device has a 3G or 4G interface for cellu-
lar network connections, as well as one interface for D2D
communication. As our focus is on request-driven content
sharing, we adopt unicast D2D as existing literature [6].
D2D communication operates on the licensed spectrum of the
cellular operators and utilize LTE uplinks as defined in the
infrastructure-driven model in the 3rd Generation Partnership
Project [7]. Base stations lightly control D2D communication
in terms of resource allocation, interference mitigation and
authentication. Devices discover and communicate with each
other through a signaling mechanism [8].

Leveraging the model of random geometric graphs [9],
any two devices with a distance of at most R apart can
communicate directly, and are neighbors. For a device di, we
denote the set of its neighboring devices as Ni in Eq. (1).

Ni = {dj ∈ D : ||di − dj || ≤ R} (1)

where D = {d1, ...dn} denotes the set of devices randomly
distributed in the cell.

Interference among D2D and cellular links is possible.
Fortunately, the techniques for distributed resource allocation
and link scheduling are already mature (e.g., FlashlinQ [3]).
Leveraging such a synchronous MAC/PHY architecture for
D2D communication, we suppose D2D links have ignorable
affect over cellular links, and mutual-interference among con-
current D2D links can be well handled. Nevertheless, two
concurrent links at a device still conflict with each other. Choi
et al. in [10] design a reliable transceiver to enable full-duplex
communication. Based on their work, we suppose that each
device can transmit and receive messages simultaneously, but
at most one uplink and one downlink can exist. It then follows
that a device can act both as a sender and a receiver at the
same time, with the limitation that the sending and receiving
procedure are both dedicated to another device respectively.

Since the storage capacities and battery lives of devices
are limited, we stipulate that a device does not prefetch any
message that it does not desire. We also impose the restriction
that no messages are relayed over multiple hops. A device
only assists its one-hop neighbors by sharing the messages
it retrieved earlier. Furthermore, we assume each message is
of unit size without loss of generality, since large messages
can be divided into uniform-sized chunks when transmitted.
Possible extensions to Rally are discussed in Sec. VII.

B. Problem Description

In a content sharing network, each device acts both as a
message receiver and sender. As a receiver, a device tries
to find a neighbor caching the message it desires. If fails,
the request is re-sent to the base station. After a message
is received, the receiver turns to a potential sender, and
decides whether to cache the newly received message. As
a sender, the device may receive multiple requests during
a time period, but it can at most accept one request at
a time. It is clear that each device makes two types of
decisions: (1) which messages it should cache; and (2) which
device it should communicate with. Our problem is to find
the effective decision-making strategies to jointly maximize
cellular offloading. With respect to caching strategies, each
device estimates the benefit of caching a message. Although
the access frequency is a plausible indicator [11], we argue
that the local availabilities of messages is also necessary. With
respect to selecting communication partners, receivers try to
acquire messages at lowest possible costs, whereas senders try
to earn profits from sharing. Devices must reach consensus on
how to allocate the benefit of a D2D transmision to maximize
their own profits.

For a more formal treatment of the content sharing problem,
let D denote the set of devices randomly distributed in the cell.
We introduce two sets of 0-1 variables xkj and ljki: xkj equals
one if dk caches mj ; l

j
ki equals one if dk sends mj to di. The

problem to maximize the weighted cellular offloading can be



formulated as

max
∑
i

∑
j

xkj l
j
kivij (2)

s.t.
∑

j
xkj ≤ |Ck|, ∀dk ∈ D (3)∑

j

∑
di∈Sj ,dk∈Bj

ljik ≤ 1, ∀i (4)∑
j

∑
di∈Bj ,dk∈Sj

ljki ≤ 1, ∀i (5)

The constraints (3), (4), (5) hold for every single device.
More specifically, constraints (3) require the total cached
messages never exceed a device’s cache capacity. Constraints
(4) and (5) avoid self-interference. For each message mj , we
define the set of players caching mj as Sj , and the set of
players requesting mj as Bj . vij indicates the value of mj for
di, which is positively related to the local energy consumed
or the cellular traffic incurred when transmitting mj from the
base station to di. A device itself estimates the value of a
message and reports to the base station. Since the values of
messages are input to the caching and bargaining algorithms,
the definition of the valuation function has no influence on the
design of algorithms. Due to the non-linearity of the content
sharing problem, we utilize a game theoretic approach instead
of leveraging combinatoric analyses.

III. CONTENT SHARING AS A GAME

In this section, we regard each device as a rational player,
and all the players in the network compose a local community.
We formulate such a content sharing community as a trading
network, where messages are goods, and senders and receivers
are sellers and buyers, respectively. The following three obser-
vations motivate such a formulation. First, whether a device
can receive a message locally depends on the number of its
neighbors. Analogously, the number of sellers that a buyer
can trade with determines the trading outcome. Second, since
sharing is resource-consuming, devices are unwilling to share
messages for free; they need to get paid in return. Third, the
sharing of messages from senders to receivers is inherently
similar to the flow of goods from sellers to buyers in a trading
network [12].

In a trading network, the payoff for a buyer is the valuation
of a commodity minus its price, and the payoff for a seller
is the price of a commodity. Players choose to conduct a
transaction only if the resultant payoffs are positive. Buyers in
a D2D network, however, are unwilling to pay extra money to
sellers, since they have already pay the cellular operators for
mobile data services. It is thus the responsibility of cellular
operators to stimulate D2D content sharing. To motivate
players, the base station rewards a seller and a buyer by paying
them the amount of money proportional to their payoffs in a
successful D2D transmission. The monetary payoffs of a seller
and a buyer add up to the monetary valuation of a message,
which is proportional to a message’s value. Sellers and buyers
reach consensus on how to allocate the monetary values of
messages through bargaining. Noticeably, the base station is
always a backup seller to any buyer in the network and sell a
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Fig. 1. A content sharing network and its bipartite exchange market.

message at a price equal to its valuation. In other words, the
payoff of obtaining messages from the base station is always
zero for a buyer. Therefore, a buyer chooses the base station
as the seller only if the payoffs of D2D transmissions become
non-positive.

The utility function of a player is the payment earned from
the base station through one local transaction. Since each
player can be both a seller and a buyer, the utility function
of a player can be represented in Eq. (6). We suppose the
scaling factor for computing the monetary payments is one
without loss of generality.

u(di) =
∑
di∈Sj

ρijPkj +
∑
di∈Bj

τij(vij − Pij) (6)

ρij =
∑

dk∈Bj

ljik, τij =
∑

dk∈Sj

ljki (7)

ρij and τij indicate whether di has succeeded in selling and
buying mj locally. Pkj and Pij are the transaction prices at
which di has successfully sold and bought mj , respectively.
When a device first joins a cell, its utility is set to zero. As it
starts to utilize D2D communication, it gradually accumulates
its utility. Devices in a cell rely on the base station for authen-
tication and accounting of individual utilities. A lightweight
protocol described in [13] can be utilized to allocate payoffs
to the senders and the receivers of successful D2D transmis-
sions. The transaction price of a message is broadcast to the
neighborhood once the transmission completes.

It is clear to see players go through two stages in content
sharing. First, all players, acting as potential sellers, try to
cache the most profitable messages. Second, all the sellers
and buyers mutually select partners to trade with, trying to
maximize their payoffs. Therefore, we divide the content
sharing game into a non-cooperative caching game and a
network formation game.

In a content sharing network G0 = (D, E), a directed edge
(i, j) exists if dj , a neighbor of di, holds the message di
requests (shown in Fig. 1(a)). In the caching game, the caches
of all the potential senders form the supply of a bipartite
exchange market G = (B ∪ S,E′), B =

⋃
j Bj , S =

⋃
j Sj

(shown in Fig. 1(b)). An undirected edge in G is constructed
as

e = {i, k} ∈ E′, iff (k, i) ∈ E, dk ∈ Bj , di ∈ Sj (8)



Sj includes the potential sellers of the message mj , and its
buyers comprise Bj . The neighboring vertices in G represent
a player’s potential partners. In the network formation game,
players bargain with their potential partners on messages’
prices. In accordance with the constraints (4) (5), players have
to obey the 1-exchange rule, namely, a player can at most
select one neighbor as a trading partner. After the bargaining
terminates, the trading network is formed and the messages
are shared between trading partners. We adopt the utilitarian
social welfare function, i.e., the sum of individual utilities:

Social Welfare =
∑

i
u(di) =

∑
i

∑
j
τijvij (9)

When some player dk sells mj to di, τij and ρkj are equal
to one, the utilities of di and dk increase by vij − Pij and
Pij , respectively. The social welfare increases by vij . It is
clear that the social welfare of the D2D network arises from
the value of the offloaded messages. Therefore, maximizing
the social welfare is equivalent to maximizing the weighted
cellular offloading.

IV. CONVERGENCE TO A NASH EQUILIBRIUM

In this section, we present a set of strategies, Rally, to
construct a subgame perfect Nash equilibrium to the content
sharing game. Specifically, we design the caching strategy
that constitutes a Nash equilibrium to the non-cooperative
caching game, and the bargaining strategy that results in a
stable trading network in the network formation game.

A. Non-cooperative Caching

In a non-cooperative caching game, players act as potential
sellers, and try to maximize their payoffs from their cached
messages. As each message is of unit size, the cost to store and
transmit any message is identical. It then follows that players
can ignore the cost of caching and sharing, and only focus on
the payoff a message can bring about. The profit of caching a
message is thus the market price of a particular message.

The market price of a message, however, varies with its
dynamic demand and supply status in the local market. At
the current time t, after all the transactions in the local market
complete, a message is sold at different transaction prices. The
player di computes the local market price Ptij for the message
mj in Eq. (10). Ni is di’s neighbor set and τkj is defined in
Eq. (6).

Ptij =
∑

dk∈Bj∩Ni

(1− τkj)vkj + τkjPtkj
|Bj ∩Ni|

(10)

Essentially, Ptij is the average of all the prices at which di’s
neighbors bought mj at the current time t.

Prices reflect all past market information and instantly
change to reflect new status. Therefore, players can estimate
the future market price of a message based on its local
transaction records. Each player records Pt−1ij and Ptij for each
cached message mj , while the local market price at t + 1 is
estimated as

Pt+1
ij = max(0,min(vij ,Ptij + µ4Ptij)) (11)

where 4Ptij = Ptij − P
t−1
ij and µ ∈ [0, 1]. In Eq. (11), the

estimated price of a message is the linear combination of its
current price and the difference between its current and last
prices. The potential profit of mj is thus Pt+1

ij . Each player
then chooses to cache the messages that are most profitable
in the near future. The caching strategy for all the players is
described in Algorithm. 1.

Algorithm 1 Profit-driven Caching Strategy
1: Initialize µ; Wi ← |Ci|
2: Compute the current local market price Ptij for each

candidate message mj ∈ Ci ∪M∗
3: P t+1

ij ← max(0,min(vij ,Ptij + µ4Ptij))
4: Sort messages in the decreasing order of Pt+1

ij

5: for j′ = 1 to |Ci| do . Others are kicked out
6: if |mj′ | < Wi then
7: Wi =Wi − |mj′ | . Update capacity
8: Ci = Ci ∪mj′ . Cache the message

Based on the profit-driven caching strategy, a player always
caches a newly received message until the cache is full.
Afterwards, the player eliminates the least profitable message
among the messages in the cache (mj ∈ Ci) and the newly
received m∗ (line 2). It is obvious that players will not deviate
from this strategy, since their potential profits would decrease
consequently. It follows that the caching strategy constitutes a
pure-strategy Nash equilibrium.

B. Formation of the Trading Network

The trading network is built upon the bipartite exchange
market G. Two players, di and dk, connected by an edge e =
{i, k} in G are capable of trading with each other. Based on
the 1-exchange rule, each player needs to select only one as
a trading partner. Suppose dk requests mj cached by di. The
weight of the edge {i, k}, denoted as wik, equals vkj . Since
the payoffs for di and dk add up to wik, the two players have a
conflict of interest in how the profit of their transaction should
be allocated. Therefore, bargaining is needed for the players
to reach a consensus, and two players who conclude a bargain
become trading partners. A set of valid trading partners forms
a matching in G essentially. The goal to maximize the social
welfare is thus equivalent to finding the maximum weighted
matching in G.

A desirable bargaining outcome should be stable, balanced
and Pareto optimal. The Nash bargaining solution is known to
possess all these properties. The authors in [5] propose a bar-
gaining dynamic, which is guaranteed to converge to the Nash
bargaining solution. When the bipartite exchange market has
a unique optimal matching, the convergence takes polynomial
time. Otherwise, the convergence speed is indeterminate. We
construct a perturbed graph Gp = (B ∪ S,E′) with weights
wik = wik + ηUik, where Uik are independent random vari-
ables, uniformly distributed in [0, 1]. The disturbance degree
of the new weights is represented in η ∈ [0, 1]. Gp has a
unique optimal matching with high probability. Our bargaining
strategy is shown in Algorithm 2.



Algorithm 2 Bargaining Strategy
1: Initialize wik, ε, σ, α0

i\k
2: while |αri\k −maxs∈Ni\km

r
s→i| ≥ 2ε do

3: Exchange best alternative αri\k
4: mr

i→k = (wik − αri\k)−
1
2 (wik − α

r
i\k − α

r
k\i)

5: Calculate best earning λri = maxs∈Ni m
r
s→i

6: αr+1
i\k = (1− σ)αri\k + σmaxs∈Ni\km

r
s→i

7: if λri = 0 then
8: i fails to conclude a local transaction
9: else

10: s = argv(maxs∈Ni
mr
s→i), (i, s) ∈M

Denote r as the index of the current round. The best
alternative of di with respect to dk is αri\k, which represents
the payoff di can get if it chooses to trade with a player
other than dk. di sends an offer mr

i→k to dk based on αri\k
and αrk\i (line 4). After receiving all offers, di updates the
estimation of the best alternative as αr+1

i\k , and sends to dk.
An inertia factor, σ ∈ (0, 1), is adopted to update the best
alternatives. Sellers and buyers continue making new offers
and new estimations until the difference between the estimated
best alternative and the actual best alternative is less than 2ε.
We further explain the bargaining process through the example
in Fig. 2. d1 is the only buyer of d2, d3 and d4, which means
αr2\1, α

r
3\1 and αr4\1 all equal zero. The best alternatives for d1

are positive since it has multiple potential senders. Therefore,
the offers from d2, d3 and d4 to d1 keep increasing. The price
of the corresponding message, in turn, keeps decreasing. d1
can thus buy the message at a low price. Similarly, as d3 and d4
compete for a message cached in d1, d1 can sell the message
at a high price. A possible trading network is presented in
Fig. 2(b). From this example we can see the excess supply
of a message pushes down its price, whereas a short supply
pushes its price up.

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

Buyer

Seller

(a) Bipartite Exchange Market (b) Trading Network

Fig. 2. The formation of a trading network.

Lemma 1. After r ≥ O(n
2|E′|
ηξ ), the bargaining outcome of

Algorithm. 2 converges to an ε-approximate Nash bargaining
solution, which can induce the optimal matching of G with a
probability of at least 1− ξ, ξ ∈ [0, 1].

Proof. See [5] for detailed proof.

Theorem 1. With our caching and bargaining strategies in
Rally, the content sharing game converges to a subgame
perfect Nash equilibrium.

Proof. We have shown that the caching strategy constitutes a
Nash equilibrium. Lemma 1 demonstrates that the bargaining
outcome is the Nash bargaining solution, and the resultant
trading network is stable, that is, the network formation
game converges to a Nash equilibrium. Therefore, the content
sharing game converges to a subgame perfect Nash equilib-
rium.

V. EFFICIENCY OF THE GAME

A Nash equilibrium to a content sharing game is effi-
cient only if it optimizes the social welfare of the network.
Non-hierarchical network topologies, dynamic demand and
selfish players are the main reasons for the inefficiency of
a content sharing game. Theoretical analyses in hierarchical
networks, such as tree and star networks, are tractable [14].
It is difficult, however, to analyze the efficiency of ad hoc
networks. Moreover, the demand for a message, called its
popularity, varies from time to time. For instance, requests
for a piece of breaking news might emerge rapidly, leading to
the severe shortage of that particular message. Consequently,
many concurrent requests cannot be satisfied locally.

Given the intractability stated above, we investigate the
scenario where devices are fully connected and the popularity
distribution is static. We further prove Rally can maximize the
social welfare under such conditions despite the selfish behav-
ior of players. In a fully connected network, the transaction
prices of messages are public to all players. Therefore, there
exists a unique market price for each message in the network,
namely,

for ∀ di, dk ∈ D, Ptij = Ptkj = Ptj (12)

Since all the players observe the same market price, the profits
they estimate for each message are identical. As a result, the
high profits of some messages stimulate the players to cache
them. Such an emergence of affluent supply will saturate the
markets quickly. Nevertheless, the supply of other messages is
in shortage, making some of the requests locally insatiable. To
mitigate the lagging regulation of the free market mechanism,
the base station should guide players to maximize the social
welfare without harming their profits. We introduce the bonus
to regulate the caching behavior:

bonus = supdi∈D, mj∈M vij (13)

As an incentive policy, the base station distributes the bonus
to a player that caches the newly received message. It is
obvious that the bonus is greater than or equal to the market
price of any message. A newly received message is thus the
most profitable among all the candidate messages. The profit-
driven players would all cache their newly received messages
immediately. We next prove there exists a B-saturating match-
ing in the bipartite exchange market under the incentive policy.



Lemma 2. There exists a matching in the bipartite exchange
market with a cardinality equal to |B|.

Proof. For ∀B ⊂ B, B = Btj1 ∪ B
t
jh
∪ ... ∪ BtjH , where

Btjh is the buyer set of mjh at the current time t. Driven
by bonuses, the devices in Bt−1jh

all cache mjh , and become
potential sellers of mjh at the time t. Namely,

Bt−1jh
⊂ Stjh = NG(B

t
jh
),

⋃
h
Bt−1jh

⊂ NG(B)

where NG(Btjh) denotes the neighborhood of Btjh in G, i.e.,
the set of all sellers adjacent to some buyer in Btjh . Since the
buyer sets, Bt−1jh

, are non-overlapping, we have

|
⋃

h
Bt−1jh

| =
∑

h
|Bt−1jh

|

Recall that the demand is static. It follows that,

|NG(B)| ≥
∑

h
|Bt−1jh

| =
∑

h
|Btjh | = |B|

According to Hall’s theorem, there exists a matching in the
bipartite exchange market with cardinality equal to |B|, which
is called a B-saturating matching.

In other words, there exists a trading network that satisfies
all the requests locally. Under the incentive policy, the social
welfare defined in Eq. (9) is recomputed as

Social Welfare =
∑

i

∑
j
τijvij + |B| · bonus (14)

Since the demand for messages and the bonus are both static,
|B| ·bonus is a constant term in Eq. (14). The maximization of
the recomputed social welfare is thus still equivalent to maxi-
mizing the cellular offloading. Since player’s caching strategy
remains unchanged, it still constitutes a Nash equilibrium.
We next show that the social welfare is maximized at the
equilibrium point.

Theorem 2. Social welfare is maximized at the Nash equi-
librium point through the non-cooperative caching and the
formation of a trading network.

Proof. According to Lemma 2, the profit-driven caching strat-
egy guarantees the existence of a B-saturating matching in
the bipartite exchange market. Combined with Lemma 1, the
bargaining process finds the optimal matching between sellers
and buyers, which must be a B-saturating matching. It follows
that all the requests for messages can be satisfied locally. In
other words,

τij = 1, for ∀ di ∈ Bj , ∀ mj ∈M

Social Welfare =
∑

i

∑
j
vij + |B| · bonus

Therefore, the social welfare is maximized after the content
sharing game converges.

When devices are partially connected, they merely have
imperfect market information. On the one hand, the efficiency
of the content sharing game is no longer guaranteed. On the
other hand, devices become less likely to cache the same

messages due to different local prices, and the extra bonus is
thus unnecessary. Despite the hardness of theoretical analyses,
we show through simulations that Rally still performs well
in partially connected networks, even when the demand is
dynamic.

VI. EVALUATION

In this section, we evaluate the performance of the content
sharing system based on a time-slotted simulator implemented
using C++. The length of a time slot is one second. With
a communication range between 70 and 140 meters, each
device has 30 neighboring devices on average [15]. As our
system model is independent of the valuation for messages,
we assume that the values of all the messages are identical.
The perturbed graph Gp in the network formation game is
constructed with η = 1. According to Lemma 1, the bargaining
process converges when r ≥ O(n

2|E′|
ηξ ). In practice, after

10-20 bargaining rounds, the outcome has already stabilized.
Therefore, we set the number of total bargaining rounds as 10
to shorten the bargaining process.

It is commonly assumed the popularity of messages follows
a Zipf-like distribution [16], where the relative probability of
a request for the ith most popular message is proportional to
1/iα. The estimates of α typically range from 0.5 to 1 for web
proxies, and range from 1 to 2 for a busy web server [17]. We
vary α from 0.6 to 2 in our experiments. Furthermore, the size
of a message is 512 KB, and there are 10,000 messages in the
message repository. Each device independently sends a request
with probability 0.5 in each time slot. We use the cache hit
ratio and the offloading ratio to examine the effectiveness of
Rally. The cache hit ratio is the percentage of requests that
hit local caches, and the offloading ratio is the percentage
of cellular traffic offloaded through D2D communication. We
next evaluate Rally’s offloading performance, its agility to
dynamic demand and its sensitivity to system parameters.
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Fig. 3. System performance with the average cache capacity |Ci| = 5MB,
|Ni| = 30, m = 10, 000, α = 0.99. The average offloading ratio over the
60 time slots is 9.55%.

A. Overall Performance

We first inspect the overall performance of a content sharing
network over 60 time slots in Fig. 3. Since the caches of
all devices are empty initially, the cache hit ratio and the
offloading ratio both equal zero at first. Gradually, devices start
to retrieve messages and cache the useful messages locally.
After 16 time slots, the system performance stabilizes around



12%. The average offloading ratio over the simulation period
is 9.55%.

Based on the statistic of all the local requests, about 72%
of the requests are unique. In other words, the corresponding
messages are only required once, making it impossible to
acquire through D2D communication. Therefore, the optimal
offloading ratio is at most 28% even if devices have unlimited
cache capacities and the network is fully connected. Our
system demonstrates its strong capability in alleviating the
need for cellular bandwidth through D2D communication.
Furthermore, we can see that the difference between the
cache hit ratio and the offloading ratio is fairly small, which
demonstrates the efficacy of our bargaining strategy.

B. Comparisons with Other Methods
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Fig. 4. The pricing scheme outperforms other three methods relatively by
more than 2%, 6%, 16% and 17% when α = 0.99, 1.2, 1.5 and 2. |Ci| = 5MB,
|Ni| = 30, m = 10, 000.

We conduct a series of experiments to compare the of-
floading ratios of four different caching algorithms in Fig. 4.
As a benchmark, devices in the first group randomly replace
messages when their caches are full. The second group applies
the Least Frequently Used (LFU) approach, which greedily
discards the least frequently accessed message. The third group
of data is collected by using the market sharing mechanism
proposed in [13], where devices who cache a message equally
share the profit of this message. This method is similar to ours
in that it also considers the supply of messages.

In the last group, we adopt the pricing scheme we have
designed in this paper. As we can see from the results, the
pricing scheme surpasses the other three methods under differ-
ent popularity distributions. Furthermore, our solution is more
effective when the redundancy of requests is higher: compared
with the market sharing mechanism, our scheme relatively
improves the offloading ratio by 2% and 6% when α equals
0.99 and 1.2, respectively; when α equals 1.5 and 2.0, our
method outperforms other methods significantly, improving
the offloading ratio by more than 16%.

C. Dynamic Response of the System

The dynamic response of our system to the variation of
message requests is presented in Fig. 5. At the 30th time
slot, the popularity distribution changes completely, which
imitates the shifting of interest during different periods of
a day. For instance, the most popular message might be a
piece of breaking news during the morning, whereas the video
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Fig. 5. Dynamic response to the variation of demand with |Ci| = 5 MB,
|Ni| = 30, m = 10, 000, α = 0.99. The popularity distribution is updated
when t = 30.

highlights of a basketball game might become popular in
the evening. The result demonstrates that the content sharing
system reacts quickly to any changes in demand under market
regulations: within 12 time slots after the demand changes,
the system performance goes back to normal. The key to such
agile response is our pricing scheme makes local supply of
messages keep up with any change promptly. If the requests
for a message emerge rapidly, the original supply of this
message becomes insufficient. Consequently, its market price
increases dramatically, attracting more devices to cache it.
On the contrary, if the requests for a message diminish over
time, its original supply becomes ample. The market price
of this message decreases gradually, making it less appealing
to devices. In essence, the pricing scheme forms negative
feedback and improves the dynamic response of the system.

D. Sensitivity Analysis

The basic parameters for sensitivity analysis are as follows:
|Ci| = 5MB; |Ni| = 30; m = 10, 000; and α = 0.99. We
vary one parameter each time, and keep the other parameters
constant to analyze the influence of each system parameter.
Fig. 6(a) illustrates that the offloading ratio significantly in-
creases with larger cache capacities. The devices with larger
capacities are able to store more messages. The local content
availability thus arises, leading to better system performance.
The slope of the curve, however, decreases with larger cache
capacities. The most appropriate cache capacity could be
adjusted based on different application scenarios. Similarly,
when the local network intensifies, the content availability will
raise. Fig. 6(b) shows that the offloading ratio keeps increasing
with the increase of the average number of neighbors a device
has. Nevertheless, D2D links are more likely to mutually
interfere when the network is denser. It is therefore more
difficult to schedule these links. A trade-off between offloading
performance and system complexity needs to be considered.

In Fig. 6(c), it is clear to see that the offloading ratio
decreases with the increasing number of messages. A larger
repository implies that the interest for messages spreads more
widely. In other words, it is less likely that the messages a
device holds are appealing to other devices. Consequently, the
possibility of finding a desired message locally becomes lower.
Fig. 6(d) illustrates the system performance under different
popularity distributions. When α increases, the offloading ratio
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(c) Number of messages.
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Fig. 6. Average offloading ratios and cache hit ratios under different system parameters.

improves accordingly. Among all the system parameters in
Fig. 6, the offloading performance is most sensitive to α.
Therefore, D2D content sharing is especially beneficial when
the local requests are highly redundant.

VII. DISCUSSIONS

In this section, we first discuss whether Rally applies to
the situation where users are not static, but keep moving
randomly across multiple cells. We then enable multi-hop D2D
by involving devices as relay. Furthermore, we discuss how to
apply our algorithms in a scenario where push-based broadcast
communication is more efficient. Finally, we explain how our
scheme deals with cheating.

Mobility: When users that hold mobile devices are static,
each device has a fixed set of neighbors that it can communi-
cate with. However, users actually move with different veloc-
ities and to different directions from time to time. Therefore,
the neighbors of a device change accordingly. Under such
circumstances, Rally still works if devices can dynamically
discover and negotiate with their current neighbors. Further-
more, it is also possible that the sender is moving away from
a receiver, which makes the signal between them decrease.
Devices can detect such signal decrease and starts to find
another potential partner. If the signal strength goes down
below a threshold, the device would switch to the potential
partner to continue receiving the message.

Multi-cell scenario: Our system can be easily applied to
a multi-cell scenario if the base stations in different cells all
support D2D communication. In fact, only devices reside in
the border of a cell would be influenced. The major problem
is how to enable devices from different cells to discover each
other and who to allocate radio resources to such a connection.
Once these problems are fixed, Rally can be naturally applied
to devices in the cell borders without modifications.

Multi-hop D2D: If we enable multi-hop communication, a
new type of players, traders, needs to be introduced. Players as
traders do not need messages, they only want to earn profit by
relaying messages from sellers to buyers. Traders must ensure
the asked (selling) prices is higher then the bid (buying) price
of any relayed message. As a result, there might be more
bargaining rounds involved in one transaction. Traders first
set prices based on local information, buyers and sellers then
react to these prices accordingly [12] [18].

Push-based broadcast: For pull-based content retrieving,
unicast is appropriate; for push-based message spreading ap-
plication, such as public safety services and mobile adver-
tising, broadcast fits more [19]. Under such circumstances, a
message source is fully motivated to spread messages, while
receivers prefer to receive messages locally due to less power
consumption. Therefore, no incentive mechanism is necessary.
The problem shifts to scheduling who should send out mes-
sages to avoid interference and improve information coverage
[20]. As the application scenario of push-based broadcasting
is totally different from pull-based content sharing, we do not
employ D2D broadcast in our content sharing system. For
future work, we can design a hybrid D2D network to enable
both unicast and broadcast by introducing a two-layer game.
In the first layer, buyers requesting the same message are
regarded as one super-buyer, and participate in the bargaining
process as a single entity. In the second layer, buyers determine
individual payments through negotiation.

Potential cheating: The rewarding mechanism in Rally
encourages devices to help each other through D2D communi-
cation. Unfortunately, such a mechanism does not necessarily
stimulate people that holding the devices to help each other.
Since users may have multiple devices, a user can make his
or her own devices send messages to each other. Without
knowing this, the base station will pay both the sender and
the receiver. These devices can then retrieve messages from
devices belonging to other users without actually contributing
to them. Most existing P2P-like systems suffer from such
a risk since it is almost impossible to directly determine
whether multiple devices belong to the same user. We can
only try to identify such malicious devices by checking the
communication pattern of each device. For instance, if a set
of devices only frequently communicate with each other, these
devices will form a coalition. If the devices in this coalition
only have incoming links (downlinks), they probably belong
to a malicious user. We leave such a detecting mechanism for
future work.

VIII. RELATED WORK

The cooperative caching problem has been widely studied in
wireless ad hoc networks. To maximize content accessibility,
the caching algorithm proposed in [11] leverages the access
frequency of messages. Merely focusing on the demand of
messages, such a mechanism fails to consider distinct message



supply in the neighborhood. We propose a pricing scheme for
devices to fully utilize their storage to best meet dynamic and
unforeseen local demand. Secondly, this method, as well as
a substantial amount of other works (e.g., [21], [22]), impose
caching and sharing as compulsory services that devices have
to provide, ignoring the costs to prefetch and share messages.
Essentially, devices make selfish decisions based on their
resource restrictions.

Chun et al. first solve the selfish caching problem in
[23]. They simplify the problem by unrealistically assuming
devices have unlimited storage capacities. Goemans et al.
in [13] formulate the caching problem as a market sharing
game, where the profit of caching a message is proportional
to the number of requests for each message, and inversely
proportional to the number of devices that cache this message.
Choi et al. in [24] try to determine the degree of selfishness of
a device to help senders to adjust their strategies accordingly.
Lacking of actual rewarding from a central coordinator, these
tit-for-tat mechanisms merely exclude free riders. With the
base station actively stimulating devices in Rally, mobile users
are willing to cache, share and receive content through D2D
communication for monetary payoffs.

Chen et al. in [25] propose a social trust and social
reciprocity based method for devices to form coalitions and
select relay devices, while the sender-receiver pairs are fixed.
Abedini et al. tackle the sender selection problem in broadcast
D2D applications [20]. Their focuses are both different from
ours in that we enable senders and receivers to mutually
select each other to maximize mobile user profits and cellular
traffic offloading simultaneously. Henceforth, their works are
orthogonal to ours, and can be utilized if multi-hop and
broadcast D2D communication is considered.

IX. CONCLUSION

In this paper, we have studied the content sharing problem
through D2D communication with the objective of maximizing
cellular traffic offloading. We present an in-depth analysis on
content sharing from a game theoretic perspective. The content
sharing game consists of a non-cooperative caching game and
a network formation game. In the caching game, each mobile
device makes cache decisions driven by their own profits in
a non-cooperative way. In the network formation game, we
propose a bargaining strategy for devices to select their optimal
trading partners in polynomial time. The results from both
theoretical analyses and extensive simulations demonstrate that
Rally can offload cellular traffic effectively, even when the
demand for messages changes over time.
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