
Maximizing Link Utilization with Coflow-Aware
Scheduling in Datacenter Networks

Jingjie Jiang∗, Shiyao Ma∗, Bo Li∗, Baochun Li†, and Jiangchuan Liu ‡
∗Department of Computer Science and Engineering, Hong Kong University of Science and Technology

†Department of Electrical and Computer Engineering, University of Toronto
‡South China Agricultural University

Abstract—Link utilization has received extensive attention since
datacenters become the most prevalent platform for data-parallel
computing applications. A specific job of such applications involves
communication among multiple machines. The coflow abstraction
depicts such communication and captures application performance
through corresponding network requirements. Existing techniques
to improve link utilization, however, either restrict themselves to
work conservation, or merely focus on flow-level metrics and ignore
coflow-level performance. In this paper, we address the coflow-aware
scheduling problem with the objective of maximizing link utiliza-
tion. Through theoretic analyses, we formulate the coflow-aware
scheduling problem as a NP-hard open shop scheduling problem with
heterogeneous concurrency. Despite the hardness of this problem,
we design Maluca, a hierarchical scheduling framework to conduct
both inter- and intra- link scheduling. Maluca’s algorithm is not
only starvation-free and work-conserving, but also 2-approximate in
terms of link utilization. Extensive simulation results demonstrate
that Maluca outperforms both per-flow and coflow schemes in
terms of link utilization, and achieves similar coflow performance
in comparison with the state-of-art coflow scheduling schemes.

I. INTRODUCTION

Achieving high link utilization has come into the academic
spotlight since datacenters become the de facto computing plat-
form for data-parallel applications [1]. Although the network links
are very costly to deploy, the average utilization of network links
is unfortunately very low (Less than 40%) in most datacenters
[1] [2]. However, edge links still suffer from severe congestions
during peak hours. The high peak-to-average ratio forces the overs
network bandwidth to guarantee the acceptable end-to-end delay
even during the peak hours.

To improve link utilization, existing flow scheduling mech-
anisms strive to be work-conserving [3] . Work conservation,
however, only tries to improve the utilization of each single
link without considering the global situation. Without proper
coordination, a flow might unnecessarily occupy the bandwidth
of a receiver’s downlink, hindering other flows on the same
link. Consequently, the uplinks of these affected flows are at
risks of underutilization. In such cases, work conservation is not
violated, but the link utilization is suboptimal. Mechanisms with
work conservation are thus insufficient to achieve optimal link
utilization. To make things worse, datacenter tenants may hide
their true traffic demands and throttle some of their data transfers
on purpose to acquire more bandwidth on a congested link. The
datacenter operator would then deem that the network is work
conserving, while the actual link utilization is very low.

The research was support in part by grants from RGC under the contracts
615613, 16211715 and C7036-15G (CRF), a grant from NSF (China) under the
contract U1301253.

Since data-parallel jobs are usually network-bounded [4], the
response times depend on network transfers within each job. Such
job-specific communication involves multiple parallel flows to
transmit data among groups of machines in successive compu-
tation stages [4]. The coflow abstraction [5] formally defines
a group of concurrent flows that transfer intermediate results
among machines as a coflow. Until the completion of all the
constituent flows, will a coflow be considered completed. Given
such correlation of flows, even if flow-level scheduling can
effectively maximize link utilization, their ignorance to coflow-
level network requirements would hurt coflow performance.

In this paper, we try to maximize the utilization of access
links without sacrificing coflow performance. Specifically, there
are three major challenges to this problem. Firstly, access links are
correlated with each other. The utilization of the uplink of a flow’s
source depends on the state of the downlink of the same flow’s
destination. We need to properly coordinate the coupled band-
width among all access links. Secondly, high link utilization must
be achieved without sacrificing coflow performance. As demon-
strated previously [5], coflow-level priority scheduling effectively
reduces the average coflow completion time. Nevertheless, their
coflow-centric scheduling hierarchy may conflict with our link-
oriented objective. A new scheduling framework is needed to
consider both link and coflow efficiency. Thirdly, coflow-aware
scheduling must work in an online fashion. This excludes tradi-
tional wisdom in operation research and combinatorics [6], which
need information about all the coflows in advance.

We propose to address these three challenges by designing
an online framework, Maluca, to maximize link utilization with
coflow-awareness. Based on an in-depth analysis of the coflow
scheduling problem, we prove maximizing link utilization is
NP-hard by reducing the open shop scheduling problem to it.
To handle the correlation between link utilization and coflow
performance, we design a hierarchical scheduling mechanism
to conduct both inter- and intra- link scheduling. At the first
level, Maluca treats one link as an entity, and conducts inter-
link scheduling to reduce the makespan of the schedule. At the
second level, Maluca zooms in to flows belonging to the same
link, and performs intra-link scheduling to minimize the average
coflow completion time. As reducing coflow completion times
can improve system throughput, intra-link scheduling essentially
reinforces the performance of inter-link scheduling. We further
prove our algorithm is 2-approximate when all access links are
identical. We evaluate the performance of Maluca using ns3. The
extensive simulation results verify that Maluca improves link uti-
lization, and achieves similar coflow performance in comparison
with [5], the state-of-art coflow scheduling scheme.

H2

H3

31 2Time

H4

H5

H1

2 3

C1 C2 C1 C2

(a) The optimal schedule

H2

H3

31 2Time

H4

H5

H1

2 3

C1 & C2 C1 & C2

(b) Per-flow priority (pFabric) [3]

H2

H3

31 2Time

H4

H5

H1

2 3

C1 C2C1 & C2

C1 & C2

(c) Weighted Shuffle Scheduling (WSS) [4]

H2

H3

31 2Time

H4

H5

H1

2 3 44

C2C1 C1 C2

(d) TCP fair sharing

H2

H3

31 2Time

H4

H5

H1

2 3 44

C2C1 C1 C2

(e) Smallest Effective Bottleneck First (SEBF) [5],
Minimum Completion Time First [7]

Fig. 1. A motivating example to discuss the relation among work conservation, link utilization and coflow completion times: the flows of both coflows arrive at time
0. All the schedules are work-conserving. The per-flow fair sharing and SEBF are suboptimal in terms of link utilization; per-flow sharing, per-flow priority and WSS
are suboptimal in terms of the average coflow completion time. Flows sent to H4 are green and sent to H5 are blue.

II. MOTIVATION AND BACKGROUND

A. System Model

According to the statistics collected in production datacenters
[8], core networks seldom experience severe or persistent con-
gestion, while network edges are often congested. Given such
observations, we suppose congestions only occur at network edges
for simplicity. The whole datacenter fabric can then be viewed
as a non-blocking switch. Under such a network model, the only
scarce network resource is the bandwidth of access links. have
no influence on scheduling strategies.

Existing coflow-aware scheduling schemes simply aim to re-
duce the average coflow completion time. Intuitively, reducing
coflow completion times brings about higher link utilization. We
contend that rather than the average coflow completion time,
the key to maximizing link utilization is when the last coflow
finishes. In other words, the makespan of a schedule is critical
for improving network efficiency.

One may argue that an idle link can be offline to save power
and thus the idle time does not influence link utilization. However,
even if an idle link currently has no pending traffic demand, we do
not know if there will be more coflows to arrive in online systems
since the execution time of a computation job is often non-
deterministic. For instance, in Fig. 1(a), H2 is idle at time 1 but it
needs to transfer data at time 2. Without priori information about
when coflows arrive, turning down idle links will either harm
network availability of incur too frequent on-offs and consume
even more power. Therefore, we contend that idle links have
to remain online as in [1]. Possible energy saving schemes are
beyond the scope of this paper.

B. Motivating Example

Expediting flows or coflows as in [3], [4], [5], [9] does not
necessarily indicate higher link utilization. We analyze the rela-
tionships among work conservation, link utilization and coflow
completion times through an example shown in Fig. 1. Three
hosts, H1, H2 and H3, initiate five flows to the two receivers, H4

and H5, in the network where access links have unit capacity.
It is easy to verify that all the five schedules are work-

conserving, but the link utilization and coflow performance vary
significantly. The per-flow fair sharing strategy equally shares

the bandwidth among all the flows, and achieves the results in
Fig. 1(d): the two coflows finish within 2.5 and 3.25 time units,
and the average link utilization is 67.7%. pFabric [3] (Fig. 1(b))
prioritizes smaller flows, and makes the two coflows finish at 3
time units with the link utilization equal to 73.3%. Orchestra [4]
aims to reduce coflow completion times but only achieves the
same performance as pFabric. In contrast, the smallest effective
bottleneck first algorithm in Varys [5] and the minimum com-
pletion time first strategy in Rapier [7] trims the average coflow
completion time to 2.5. Essentially, since no alternate path can
bypass the access links, Rapier is equivalent to Varys under such
circumstances. Nevertheless, such a strategy prolongs C2, and
thus brings downs the average link utilization to 55%. The optimal
schedule in Fig. 1(a) achieves the same average coflow completion
time but raises the average link utilization to 73.3%.

Through this example, we demonstrate that achieving work
conservation is necessary yet insufficient to maximize link utiliza-
tion. Furthermore, the makespan of all coflows, rather than their
average completion time, determines link utilization. Therefore,
we need to consider link utilization and coflow completion time
at the same time to optimize these two important performance
metrics for data-parallel jobs.

III. PROBLEM FORMULATION

Given a set of coflows running in datacenters, we try to
schedule flows belonging to different coflows with the objective
of maximizing link utilization. Suppose there are N coflows trans-
ferring data among M physical servers in a datacenter network.
We suppose all coflows arrive at the same time for the ease of
analysis, but our conclusions can be easily applied to coflows with
different arrival times. Define a coflow as Ck = {fkij}, where
the flow fkij transfers skij amount of data from an ingress port
P Ii to an egress port PEj . We only consider single-wave coflows
like in existing coflow scheduling schemes [5], [9], namely, all
the flows belonging to the coflows arrive at the same time. The
structure of a coflow Ck can be depicted through a traffic matrix
Mk = [skij]P×P . Since a coflow is considered completed only
when all its constituent flows finish, the coflow completion time
can be represented as

Tk = maxfk
ij∈Ck

skij
rkij
, ∀k (1)

rkij =
1

tkij

∫ tkij

0

rkij(t) dt (2)

rkij is the average rate of a flow through its lifetime and tkij is the
flow duration. Replacing rkij with the expression (2) yields∫ Tk

0

rkij(t) dt = skij , ∀i,∀j (3)

Eq. (3) guarantees that any flow belonging to Ck is able to
transmit all its data within Tk time units. Let L = maxk Tk denote
the makespan (or the length) of a schedule, which indicates that
all the coflows have completed transmission after L time units.
Therefore, we can derive that

sij =
∑
k

skij =

∫ L

0

rij(t) dt, ∀i, ∀j (4)

where rij(t)=
∑
k

rkij(t) (5)

To find a feasible schedule, any access link should not be
overloaded. The bandwidth of a port Pi, denoted as Bi is divided
into the ingress bandwidth BIi and egress bandwidth BEi . The
capacity constraints of uplinks and downlinks are shown in
Eq. (7) and (8). Together with the constraint (3), the problem
of maximizing the aggregated utilization of all access links can
be formulated as

max
1

L

∫ L

0

∑
i

∑
j(rij(t) + rji(t))∑
i(B

I
i +BEi)

dt (6)

s.t.
∑

j
rij(t) ≤ BIi , ∀t, ∀i (7)∑

j
rji(t) ≤ BEi , ∀t, ∀i (8)

Since the egress and ingress bandwidths add up to a port’s total
bandwidth, Eq. (6) can be transformed to

1

L

∑
i

∑
j

∫ L
0

(rji(t) + rij(t)) dt∑
iBi

(9)

Replacing the integral term with sij as in Eq. (4) yields

1

L

∑
i

∑
j(sji + sij)∑
iBi

(10)

Since Bi, sij and sji are fixed, minimizing the makespan of all
coflows can maximize the average link utilization. This coincides
with our previous observation. When flows are bottlenecked at
the receiver side, some bandwidth of a sender’s uplink would
be left unusable. The effective capacity of an uplink is thus
restricted by the load of the corresponding downlinks. In other
words, the capacities of uplinks and downlinks are interdependent.
By regarding uplinks as jobs to be scheduled and downlinks
as machines with nonuniform capabilities, we formulate the
scheduling problem with the objective (10) as a variant of open
shop scheduling problem [10]. The dependencies among access
links can then be transformed to heterogeneous concurrency
constraints. It is worth noticing that the uplinks and downlinks
are interchangeable in our problem. Whatever has been proved
for uplinks as jobs and downlink as machines can also be proven
for downlink as machines and uplink as jobs.

Furthermore, the coflow performance is measured through the
average coflow completion time (CCT):

min CCT =
1

n

n∑
k=1

Tk (11)

s.t. (3) (7) (8) hold

Minimizing the makespan or average coflow completion time
is NP-hard even when all links are homogeneous and all coflows
start at the same time with prior knowledge. As a sketch of
proof, the NP-complete open shop scheduling problem [10] can
be reduced to our problem to minimize the makespan; the NP-
hard concurrent open shop scheduling problem can be reduced to
the problem to minimize average coflow completion time. It is not
always possible to find an optimal schedule that both minimizes
the average completion time and the makespan. We need to make
a trade-off between the coflow performance and link utilization.

IV. DESIGN

A. Framework Overview

The framework of Maluca is shown in Fig. 2. Maluca does
not involve any functionalities or computations at switches. A
daemon running on each physical machine is responsible for
delivering coflow information and link status to the central
scheduler. When a coflow’s data is ready, the senders’ daemons
report the corresponding information to the coflow info collector.
When receivers are ready, the daemons estimate the states of the
senders’ uplinks and receivers’ downlinks. The central scheduler
then determines the rate of each flow directly and informs the
daemons to enforce endhost-based rate limiting for each flow.
Nevertheless, such fine-grained scheduling at a single scheduler
would be hard to scale out. As the number of coflows increases,
the maintenance of flow states in each coflow is likely to slow
down the schedule procedure.

To circumvent the overhead of a fully centralized scheduler,
each daemon inquires the central scheduler periodically (or on-
demand) to acquire the link and coflow information and determine
the rate of each flow running through it. Since the number of
concurrent coflows are typically from tens to hundreds [5], the
efficiency of the central scheduler is unlikely to become the
performance bottleneck. Furthermore, the coflow size follows a
heavy-tailed distribution [5]: about 98% of traffic is generated
only by 8% of the coflows. By focusing on the large coflows, the
side effect of the central coordination can be counteracted.

Link
Database

Usage
Estimator

Coflow Info
Collector

Central
Scheduler

Maluca

Maluca
Daemon

Machine

Storage

Sender

Maluca
Daemon

Machine

Storage

Receiver

Sender Receiver

Coflow
Database

Fig. 2. Maluca’s architecture: the central scheduler acquires up-to-date infor-
mation about network states through the usage estimator and the information
collector, and communicates with Maluca daemons running on physical machines.

B. Algorithms of Maluca

In production datacenters, coflows arrive to the system succes-
sively and we cannot predict the information of incoming coflows
in advance. Therefore, the complicated combinatorial algorithms
that work well in offline cases cannot be directly applied to
schedule coflows in online cases. Instead, Maluca only accounts
for the currently active coflows, and is invoked whenever a new
coflow arrives in, or an old coflow departs from the network.

As we have proved previously, minimizing the makespan is
the key to maximize link utilization. Without virtual machine
migration, the optimal makespan of any schedule equals to the net
processing time of the heaviest loaded link. The net processing
time of a link is the aggregated amount of traffic through a
link divided by its bandwidth. Nevertheless, flows on the busiest
link might be congested at the coupled links. Consequently, they
cannot use up all the available bandwidth of the link, and will
prolong the makespan and harm link utilization. Therefore, the
key to minimizing the schedule makespan is to guarantee that the
heaviest link experiences the least waiting time.

Algorithm 1 Online Scheduling Algorithm
1: procedure LARGESTLOADFIRST(Mk,Wk)
2: for i = 1 : M do
3: lIi ← 1

BI
i

∑
j

∑
k(dkij − wkij) . current load on P Ii

4: π = Sort({lIi })
. Sort uplinks in the decreasing order of their loads

5: return π . the permutation schedule of uplinks
6: procedure SMALLESTTIMEFIRST(BR, i)
7: Initiate: C = {Ck : ∃ dkij > 0}, Ω← C

. the set of coflows on a given uplink
8: for Ck ∈ Ω do

9: Tk ← max(max
i

∑
j s
k
ij − wkij
BIi

,max
j

∑
i s
k
ij − wkij
BEj

)

10: for p = 1 : |C| do
11: π(p)← arg minCk∈Ω Tk . the shortest coflow
12: Ω← Ω \ {Cπ(p)}
13: for p = π(1) : π(|C|) do
14: for j = 1 : m do

15: rpij = min(
BR(P Ii)

npi
,
BR(PEj)

npj
)

16: Update remaining bandwidth on P Ii and PEj
17: return {rkij(t) : Ck ∈ C} . rates of flows on lIi
18: procedure BACKFILLING(BR, {rkij})
19: for i = 1 : m do
20: while BR(P Ii) > 0 do
21: for all k, j do
22: δ = min(BR(P Ii), BR(PEj))
23: rkij(t) = rkij(t) + δ
24: Update flow rates and idle bandwidth
25: procedure MAIN
26: Initiate: BR ← {Bi},Wk = {0}
27: Π = LARGESTLOADFIRST(Mk,Wk)
28: for i = Π(1) : Π(M) do
29: {rkij(t)}= SMALLESTTIMEFIRST(BR, i)

30: BACKFILLING(BR, {rkij})
31: Update bandwidth BR and transmitted data Wk

We achieve this design principle through the largest load first
algorithm. The dynamic load of a link is defined as its net
processing time as below

lIi ←
∑
j(d

k
ij − wkij)
BIi

, lEi ←
∑
j(d

k
ji − wkji)
BEi

(12)

wkij indicates the amount of data fkij has transmitted. Maluca
then prioritizes uplinks with heavier loads when competing for
downlink bandwidth. For flows on the same uplink, we try to
improve coflow performance via the smallest remaining time first
algorithm. We estimate the completion time of each coflow if it
exclusively occupies the network in line 9 of Algorithm 1, and use
this value as its priority number. The low-level scheduling then
conducts strict priority-based scheduling for flows belonging to
different coflows on the same link. Flows belonging to the same
coflow on a given link equally share the available bandwidth as
in line 15. npi and npj are the number of flows on P Ii and PEj
that belongs to Cp respectively. The whole algorithm is shown in
Algorithm 1. Although Maluca cannot guarantee the optimality
under all circumstances, we show in Sec. V that its performance
is much improved compared to existing schemes.

C. Properties of Maluca

We next demonstrate the scheduling algorithms in Maluca
achieve two important properties as stated below.

1) Work conserving: Through priority-based scheduling, band-
width is first allocated to flows belonging to the fastest coflow on
the busiest uplink. Other flows then utilize the remaining band-
width according to their priorities. The rate allocating procedure
finishes when all the links are saturated or no flow is suspended.
We further integrate backfilling to make sure that all the available
bandwidth is fully utilized by active coflows. In this way, we
ensure the scheduling algorithm is work conserving.

2) Starvation free: Priority-based scheduling usually suffers
from starvation problem. Maluca achieves starvation freedom by
prioritizing links with larger loads dynamically. Loads on low
priority links will increase gradually, while loads on high priority
links are likely to decrease. As a result, the priority of a link
would increase relatively if its transmission has been throttled for
a long time. Essentially, we adopt the aging mechanism to avoid
starvation. Each uplink softly reserves a portion of bandwidth
(denoted as α) for flows belonging to low priority coflows to
proceed. By combine aging and multiplexing, we ensure no
flow or coflow is perpetually suspended, and thus the scheduling
mechanism is starvation free.

3) High link utilization: Scheduling jobs on a single machine
is simple since the resources are decoupled. We can maximize
link utilization by keeping the machine working until all jobs
complete, while we can achieve the optimal coflow performance
by prioritizing the smallest coflows [11]. It is NP-hard, however,
to derive an optimal schedule across multiple access links [3]
for either scheduling objective. We can prove that our largest
load first algorithm for inter-link scheduling is 2-approximate for
offline cases since it is a dense schedule [12]. We skip the detailed
proof due to the limited space.

4) Improved coflow performance: Due to the coupled re-
sources of uplinks and downlinks, it is theoretically difficult to
find a scheduling algorithm with performance bound in terms of
coflow completion time. We turn to evaluate Maluca in practical
networks through extensive simulations.

0.2 0.5 0.8
Network Load

25

50

75

100

Av
er
ag
e
Li
nk

 U
til
iz
at
io
n
(%

)

37.5

67.2
74.2

31.9

50.9
58.7

32.1

49.7

59.1

30.5

43.8 45.6

Maluca
Varys
pFabric
TCP

(a)

0.1 0.2 0.4
Extent of Multiplex

25

50

75

100

Av
er
ag
e
Li
nk

 U
til
iz
at
io
n
(%

)

67.2
72.6 73.3

50.9 50.9 50.949.7 49.7 49.7
43.8 43.8 43.8

Maluca
Varys
pFabric
TCP

(b)

Fig. 3. The link utilizations of four schemes under varying network loads ((a) α = 0.1.) and varying extents of multiplexing ((b) λ = 0.5).

V. EXPERIMENTAL EVALUATION

A. Simulation Methodology

We use empirical workloads to reflect coflow patterns observed
in production datacenters [5]. All access links have 1 Gbps band-
width. We capture the characteristics of a coflow through its width
(the number of constituent flows) and size (the overall amount of
data). Practical traces have shown that coflow sizes follow a long-
tail distribution: only about 18% of coflows contribute to more
than 80% of network traffic. In addition, about 78% of coflows
have less than 40 flows. Coflows arrive to the network according
to a Poisson process with rate λ ∈ [0.2, 0.8] to reflect varying
network loads. Since we focus on bandwidth allocation on access
links, how to place senders and receivers is irrelevant. We evenly
place senders and receivers across machines in a round-robin
fashion. The ratio between the number of senders and receivers
varies across different coflows. But the number of senders is larger
than the number of receivers in about 80% coflows.

We analyze the performance of Maluca by comparing it with
the three types of scheduling mechanisms: per-flow fairness
(i.e., TCP), per-flow priority (pFabric [3]) and coflow scheduling
(Varys [5]). Our evaluations and comparisons use two commonly-
used performance metrics: average link utilization and average
CCT. Unlike the offline case we have discussed in Sec. III, the
coflows do not arrive in the network at the same time in our
online simulations. Therefore, some ports may not have any traffic
demand in the beginning and thus remain idle regardless of the
scheduling schemes. Therefore, we record the utilization of each
link throughout its own active time, which is defined as the period
from the time point it starts transmitting data till all the data on
that link are sent. This is different from the definition of in the
offline case, but we are able to analyze fine-grained link utilization
states and locate the bottlenecks in the network.

B. Maluca’s Performance

From the results in Fig. 3, we can see that Maluca significantly
improves the average link utilization: compared to Varys, pFabric
and TCP, Maluca improves the average link utilization by about
19.04%, 16.82% and 22.95% (λ = 0.2). It is worth noticing
that Varys shows no advantage over per-flow schemes in terms of
link utilization since it only guarantees work conservation without
considering better utilization. As for the coflow performance
(Fig. 4), due to embracing coflow semantics, Maluca is able to
speed up coflows by about 2×, which is comparable with Varys.

Since network loads significantly influence link utilization, we
evaluate the reaction to different network loads through varying

the intensity (λ) of coflows’ arrival process. Under a low network
load, the interval of coflow arrivals is large, and thus the number
of concurrent coflows in the network is small. Links might be left
underutilized or even idle. When the network is heavily loaded,
the links are more likely to be saturated. As for the coflow
completion time, the competition intensity is severer when more
concurrent coflows run simultaneously. As a result, coflows get
less bandwidth to transmit data, and their completion times would
increase accordingly.

We vary coflows’ arrival rate, λ, from 0.2 to 0.8 to examine
the performance under different network loads. In Fig. 3(a) and
Fig. 4(a), the link utilizations and the coflow completion times of
the four schemes increase as the network becomes busier. Maluca
significantly outperforms other schemes under different network
loads. pFabric achieves higher utilization than traditional TCP
as it can effectively reduce the average flow completion time and
improve network efficiency. Similarly, Varys achieves similar link
utilization with pFabric since it make all the flows inside a coflow
finish at the same time to admit more coflows into the network.
With respect coflow performance, Varys and Maluca significantly
outperform per-flow mechanisms. Furthermore, Maluca further
reduces coflow completion times when network load is high due
to its ability in fully utilizing link bandwidth.

To avoid starvation, Maluca has introduced limited multiplex-
ing to let low priority coflows share the reserved bandwidth.
It is clear that the extent of multiplexing influences both link
utilization and coflow performance. We change the portion of
reserved bandwidth (α) in the group of experiments shown in
Fig. 3(b) and 4(b). As the network load and other parameters
remain the same, the performance benchmark schemes is not
influenced. In contrast, the link utilization under Maluca increases
with the increase of reserved bandwidth.

However, with more bandwidth reserved for multiplexed
coflows, it is more likely for flows to fairly share the reserved
bandwidth. In the extreme case, Maluca would fall back to the
per-flow fairness scheme. As a result, the coflow completion times
are prolonged. It is also worth noticing that the increase of link
utilization decreases with a larger extent of multiplexing. In our
simulations, we observe that the link utilization would start to
decrease when α is larger than 0.4. For the best practice, we
could find the extend of multiplexing that achieves the highest link
utilization. The best value of α depends on the actual workloads
and should be tuned dynamically. In general, we suggest to choose
a small α to guarantee the coflow performance.

0.2 0.5 0.8
Network Load

0

2

4

6

8

10
Av

er
ag
e
C
C
T
(s
)

1.37

3.12

5.47

1.44

3.05

5.51

3.56

6.01

8.68

3.95

6.27

8.92Maluca
Varys
pFabric
TCP

(a)

0.1 0.2 0.4
Extent of Multiplex

0

2

4

6

8

10

Av
er
ag

e
C
C
T
(s
)

3.12 3.32 3.78
3.05 3.05 3.05

6.01 6.01 6.016.27 6.27 6.27

Maluca
Varys
pFabric
TCP

(b)

Fig. 4. The coflow completion times of four schemes under varying network loads ((a) α = 0.1.) and varying extents of multiplexing ((b) λ = 0.5).

VI. RELATED WORK

Researchers have made continuously efforts to maximize net-
work throughput and improve link utilization. Recent flow-level
scheduling algorithms (e.g., [3]) struggle to achieve work conser-
vation, which is insufficient for the optimal link efficiency. B4 [1]
leverages software-defined networking to maximize the utilization
of inter-datacenter links. By dividing the traffic into coarse-
grained classes, the scheduler distinguishes flows with different
urgencies. Although it effectively improves network utilization,
but similar to other flow-level schemes, it still ignores coflow
performance. As a result, bandwidth might be wasted to flows
that already finish ahead of the bottleneck of the coflow. This
potentially slows down the bottleneck flow and the overall coflow
performance. We contend that maximizing link utilization should
take coflow performance into account at the same time.

Existing coflow scheduling schemes, however, have merely
focused on the average coflow completion time. Chowdhury
et al. in [5] propose the smallest bottleneck first heuristic as
the scheduling strategy. Aalo [9] further simplifies the coflow
scheduling without the need to acquire coflow information in
advance. Qiu et al. in [13] theoretically analyze the problem of
minimizing the weighted coflow completion times and propose
algorithms that have approximation bounds. Since the schemes
mentioned above all center on the coflow completion time, and
struggle to guarantee work conservation, the essence of achieving
high link utilization has not been fully explored. Another recent
work, HUG [14], achieves high link utilization and considers the
correlated demands of applications at the same time. However, it
sacrifices utilization for strategy proofness.

Apart from scheduling-only mechanisms, Alizadeh et al. pro-
pose Conga [15], an in-network load balancing mechanism,
to detect global congestion and distribute network loads more
evenly. The network utilization can then be effectively improved.
Zhao et al. in [7] try to reduce the coflow completion time
by combine coflow scheduling and dynamic routing via Rapier.
Leveraging OpenFlow-enabled switches, flows are routed to a
centrally computed path. Nevertheless, both Conga and Rapier
require upgrade of existing switches. In contrast, Maluca can be
built upon existing network devices without too much effort.

VII. CONCLUSION

In this paper, we have proposed and studied the problem
of maximizing link utilization with coflow-awareness. We have
designed and implemented a hierarchical online scheduling mech-
anism, Maluca, to conduct two-level scheduling. Specifically,

for inter-link scheduling, we compute the load of each uplink,
and prioritize flows on an uplink with larger processing time;
for intra-link scheduling, we try to minimize coflow completion
times leveraging the shortest remaining time first strategy. Maluca
is both work-conserving and starvation-free, making it practical
for online application. Through theoretic analyses, we prove
the simple yet effective heuristic algorithm in Maluca is 2-
approximate when access links are homogeneous. We demonstrate
that Maluca is able to maximize link utilization without loss of
coflow performance through extensive realistic simulations.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined WAN,” in Proc. ACM SIGCOMM, 2013.

[2] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proc. ACM SIGCOMM conference on Internet
measurement (IMC), 2010, pp. 267–280.

[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,” in
Proc. ACM SIGCOMM, 2013.

[4] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, 2011.

[5] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling with
Varys,” in Proc. ACM SIGCOMM, 2014, pp. 443–454.

[6] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan,
“Minimizing the sum of weighted completion times in a concurrent open
shop,” Operations Research Letters, vol. 38, no. 5, pp. 390–395, 2010.

[7] Y. Zhao, K. Chen, W. Bai, M. Y. USC, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang, “Rapier: Integrating routing and scheduling for coflow-aware
data center networks,” in Proc. IEEE INFOCOM, 2015.

[8] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and
A. Greenberg, “EyeQ: Practical network performance isolation at the edge,”
in Proc. USENIX NSDI, 2013.

[9] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. ACM SIGCOMM, 2015, pp. 393–406.

[10] D. Bai and L. Tang, “Open shop scheduling problem to minimize makespan
with release dates,” Applied Mathematical Modelling, vol. 37, no. 4, pp.
2008 – 2015, 2013.

[11] T. A. Roemer, “A note on the complexity of the concurrent open shop
problem,” Journal of scheduling, vol. 9, no. 4, pp. 389–396, 2006.

[12] R. Chen, W. Huang, Z. Men, and G. Tang, “Open-shop dense schedules:
properties and worst-case performance ratio,” Journal of Scheduling, vol. 15,
no. 1, pp. 3–11, 2012.

[13] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted completion
time of coflows in datacenter networks,” in Proc. ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 2015, pp. 294–
303.

[14] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-resource
fairness for correlated and elastic demands,” in Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2016, pp. 407–
424.

[15] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in Proc. ACM
SIGCOMM, 2014, pp. 503–514.

