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Abstract

In heterogeneous network environments with perfor-
mance variations present, complex distributed applica-
tions, such as distributed visual tracking applications, are
desired to adapt themselves and to adjust their resource
demands dynamically, in response to fluctuations in either
end system or network resources. By such adaptations,
they are able to preserve the user-perceptible critical QoS
parameters, and trade off non-critical ones. However, cor-
rect decisions on adaptation timing and scale, such as de-
termining data rate transmitted from the server to clients
in an application, depend on accurate observations of sys-
tem states, such as quantities of data in transit or arrived
at the destination. Significant end-to-end delay may ob-
struct the desired accurate observation. We present an op-
timal state prediction approach to estimate current states
based on available state observations. Once accurate pre-
dictions are made, the applications can be adjusted dy-
namically based on a control-theoretical model. Finally,
we show the effectiveness of our approach with experi-
mental results in a client-server based visual tracking ap-
plication, where application control and state estimations
are accomplished by middleware components.

1 Introduction

When complex distributed applications demand a par-
ticular level of Quality of Service (QoS) from the under-
lying system in a heterogeneous network environment,
only those systems that provide system-wide end-to-end
QoS guarantees (via CPU and network resource reser-
vation and admission control) are able to meet such de-
mands. If this is not the case, such as the Internet with
best-effort services, applications may experience signifi-
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cant variations in resource availability. These variations
are caused by either physical limitations, in the case of
wireless links, or dynamic multiplexing of multiple com-
petitive access to a limited pool of resources.

However, there exist flexible applications that present
the following characteristics: First, they can accept and
tolerate resource scarcity to a certain minimum bound,
and can improve its performance if given a larger share of
resources. Second, they are willing to sacrifice the perfor-
mance/quality of some application-level services in order
to preserve the performance/quality of critical functions.
For these flexible applications, it is possible to adapt to the
availability variations and still manage to preserve QoS
for critical parameters. Application-level adaptation sup-
port is also necessary when it is hard to specify an upper
bound of QoS demand for reservation, e.g., for interactive
applications.

The client-server based visual tracking application is an
example of flexible applications. A visual tracking server
grabs live video frames in real time from a camera, and
sends them over the network to the visual tracking client.
The client executes a computationally intensive tracking
algorithm, which tracks the coordinates of interested ob-
jects. Our interests focus on key application QoS param-
eters such as the precision of tracking algorithms, which
depends on video quality, network bandwidth availability,
jitter and other QoS parameters. As long as tracking pre-
cision is preserved, other parameters in the application,
such as video quality, can be dynamically tuned, adjusted
and reconfigured.

In order to adjust the application appropriately, and to
decide when, how and to what extent for the application
to adapt, accurate identification of current system states
is needed, based on observable parameters. This observe
and control process resembles a control system, where
control signals are determined by a controller, based on
the current state estimates. Our previous work takes ad-
vantage of control theory to model this process. As a
consequence, a Task Control Model was developed and



theoretical results were given to prove stability and fair-
ness properties in the model [11]. The objective of the
approach was to optimally adjust the internal parameters
and semantics of flexible applications, with a centralized
control algorithm.

The effectiveness of a control algorithm depends on ac-
curate observations of system states. However, in a dis-
tributed application with the presence of end-to-end de-
lays, many system states are not directly observable in
the end system, thus need to be estimated. For example,
in the visual tracking application, in order to control the
application and dynamically adjust the data rate transmit-
ted from server to client, we need to obtain system states
such as quantities of data in transit or arrived at the client.
Significant end-to-end delay may obstruct the desired ac-
curate observations, when estimations are used instead.

The key contributions of this paper are the following.
(1) An extended Distributed Task Control Model: The
Task Control Model introduced in [11] is extended from
a model focusing on local resources such as CPU, to a
distributed model focusing on bandwidth availability in
Transmission Tasks. The tradeoff is that the fairness prop-
erty that was previously proved can no longer be guaran-
teed. (2) A linear model for Transmission Tasks: To char-
acterize the Transmission Tasks in a distributed applica-
tion, we develop a linear model with concrete coefficients,
on which state estimation techniques are based. (3) Op-
timal state prediction mechanisms: Accurate control sig-
nals are based on precise estimates of system states. With
the presence of significant end-to-end delay that obstructs
accurate state observations, we present an optimal predic-
tion approach to estimate current system states based on
available observations. We adopt optimal estimation the-
ories such as the Kalman Filter in our approach. Assisted
by optimal state prediction techniques, the application can
be optimally controlled to adapt to dynamic variations.
(4) Verification with visual tracking: We show the valid-
ity of our approach by experiments with a client-server
based visual tracking application, where tracking preci-
sion is the crucial QoS parameter considered, and state
prediction mechanisms are implemented as middleware
components.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss existing related work. In Section 3, we
present an overview of the middleware control architec-
ture, in which optimal estimation algorithms contribute a
key functionality. In Section 4, we focus on modeling the
Transmission Task in a distributed application. In Section
5, we present our optimal prediction approach to consider
significant delays in the state estimation process. In Sec-

tion 6, we show experiments with the client-server based
visual tracking application. Section 7 concludes the paper
and discusses future work.

2 Related Work

In recent research, control theories have been examined
for QoS adaptation. In [3], a control model is proposed
for adaptive QoS specification in an end-to-end scenario.
In [4], the time variations along the transmission path
of a telerobotics system are modeled as disturbances in
the proposed perturbed plant model, in which the mobile
robot is the target to be controlled. In our previous work
[11], theoretical proofs are given for various properties
applying control theory to model QoS adaptation.

The issues related to application-level QoS adaptation
has also been studied by various previous work. The work
presented in [2] uses software feedback mechanisms that
enhance system adaptiveness by adjusting video sending
rate according to on-the-fly network variations. In [5], the
authors proposed application adaptation at the configura-
tion level, which carries out transparent transition from
primary components to alternative components, as well
as at the component level, which redistributes resources in
different components so that a QoS tradeoff can be made.
In [1], a software framework was proposed for network-
aware applications to adequately adapt to network varia-
tions. Similarly to the above, our approach models appli-
cations as a series of tasks and assisted by the feedback
loop. However, we differ in the sense that we take the
view that middleware components control the adaptation
behavior of applications, and we propose a separation of
control and estimation algorithms. With respect to con-
trol, proper choices are made on adaptation timing, scale
and methods used, which balances between the frequency
and responsiveness of adaptation actions within the appli-
cation; With respect to estimation, optimal predictions are
being made to obtain the best possible estimate of actual
states.

Optimal control and estimation theories, e.g., Kalman
Filters, have been previously applied to flow control in
high-speed networks. In [9], a Kalman Filter was given
for state estimation in a Packet-Pair flow control mecha-
nism. In [10], Kalman Filter was also used to shape traf-
fic in a collection of VC sources in one VP of an ATM
network, in this case the system state is the number of ac-
tive transmission sources. Our work distinguishes itself
from previous work in the following way: (1) Kalman
Filter is used as a optimal prediction algorithm, instead
a filtering or smoothing algorithm; (2) We use a differ-



ent and a macroscopic system model to interpret the dy-
namics of the Transmission Task; (3) Application-specific
adaptation are performed in a slower time scale (in mul-
tiples of round-trip delays) and (4) The middleware com-
ponents make control decisions in the application level,
and based on application-specific semantics, rather than
on the packet level via a traffic shaper.

3 The Middleware Control Architec-
ture

We have adopted a middleware solution in order to im-
plement a centralized control of all active applications.
We present the general architecture of the middleware so-
lution in this section, followed by detailed discussion of
the model and algorithms proposed for optimal state pre-
dictions, which participate in the design of the overall ar-
chitecture.

A major objective of the architecture is to implement
the observe and control process, i.e., to observe current
system states in the distributed environment and produce
control signals to the complex distributed applications.
These signals determine the actual adaptation actions (re-
configurations or parameter tuning) within the applica-
tions. The architecture consists of two parts: the Adap-
tors and Configurators. In an end system, each Adaptor
corresponds to a single type of resource, such as CPU
or transmission bandwidth, and consists of an Adaptation
Task and an Observation Task. Each Configurator corre-
sponds to a single target application, and makes control
decisions based on the output of Adaptors correspond-
ing to several types of resources. The interaction among
various middleware components and applications is made
through available specific service enabling platform, such
as CORBA or DCOM. Our middleware architecture uses
active components, in the sense that these components
call external interfaces in the applications in order to con-
trol them. Figure 1 shows an overview of the architecture.
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Figure 1: The Middleware Control Architecture

The optimal prediction algorithms presented in this pa-
per are implemented in the Observation Task, a part of the
Adaptor. The goal of the design is to accurately obtain
system states at a specific instant in a distributed environ-
ment, with the presence of significant end-to-end delays.
The mechanisms below show that the middleware compo-
nents can optimally estimate the states without soliciting
actions in underlying layers, which may lead to layering
violations. Accurately estimated states lead to appropri-
ate control decisions made by the Adaptation Task [11]
in the Adaptor, which are interpreted by the Configurator
and delivered to the applications, where proper adaptation
actions are performed.

4 Modeling Transmission Tasks

We view each application as a series of connected
tasks, with each task as a concrete component that per-
forms operations on the input, generates output and con-
sumes resources. We represent the relationships among
tasks within an application using a directed acyclic graph,
with each directed edge indicating the producer-consumer
relationship between output of the upstream task and in-
put of the downstream task. The directed acyclic graph is
referred to as the task flow graph [7].

With the above view of an application, a distributed ap-
plication has one or more Transmission Tasks in its task
flow graph, which transmits application data between two
end systems. Since multiple end systems are involved, the
middleware control architecture shown in Figure 1 resides
in all end systems. In the Observation Task, we observe
the current system states, such as available bandwidth in
the Transmission Task. These observations are delivered
to the Adaptation Task, which calculates control signals
according to the control policy [11]. The distributed view
is shown in Figure 2 in the example of a client-server
based application.

end-to-end delay

   Task    Task

System States

Operating Systems

Application Transmission
    Task

Configurator

Adaptation
   Task

Observation
   Task

System States

signals middleware

Operating Systems

Observation Adaptation

Transmission
     Task

Application
   Task 2

middleware Configurator signals

Task 1

Figure 2: The Middleware Control Architecture with a
Distributed Application

The control algorithms introduced in our previous work



[11] apply the control theory in the practice of calculating
control signals in the Adaptation Tasks. In the PID con-
trol algorithm introduced as an example, we were able to
prove that, if priority weights are given to each task, the
system fairly allocates resources among competing tasks
according to the weighted max-min fairness property. We
also proved that the system converges to equilibrium, and
stability of control is preserved around a local neighbor-
hood. With an appropriate model for the transmission
task, we can extend this work to apply to a distributed
environment, with the presence of significant end-to-end
delays.

4.1 State Observation in the Transmission Task

The accuracy of control signals calculated by the Adap-
tation Task relies on precise observations of system states.
However, in the distributed environment where observing
system states in a Transmission Task is necessary, end-
to-end propagation delay poses serious difficulties to ob-
serve and capture such information.

An important state to observe is available bandwidth
within the Transmission Task

���
, with � being an index in

the set of tasks within the application. We take a client-
server application as an example, and assume that the Ob-
servation Task located on the client can observe the num-
ber of received data units1 during the time �����	��
��� ( �
being discrete time instants), � ��� ��� . In reality, we assume
that � ��� ��� is the number of data units actually received
during �����	��
���� . On the server, the actual number of
data units sent by

���
during �����	��
���� , denoted by � ��� ��� ,

is controlled by the the Adaptation Task. Finally, � � � ��� is
the number of data units in flight in the Transmission Task���

. Note that the Transmission Task
���

itself is distributed
on both client and server side, therefore, both � ��� ��� and
� ��� ��� are internal states in

���
, while � ��� ��� is also the out-

put of
� �

. The above scenario is illustrated in Figure 3.
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Figure 3: States in the Transmission Task

The challenge is the following. Since the middleware

1Data units are defined based on application-specific semantics.
For example, in a video-on-demand application, a data unit may be
defined as a video frame.

control architectures are situated in different end systems,
if end-to-end delays are present, at any particular time in-
stant � , the server Observation Task can only obtain previ-
ously observed states by the client Observation Task, with
the lag equivalent to the end-to-end delay. This calls for
an estimation algorithm in the server Observation Task to
compensate the observation error, and to predict the states
for the current time instant � .

4.2 A Linear Model for the Transmission Task

As a preparation for later applications of analytical
techniques in the optimal estimation theory to estimate
system states in the distributed Transmission Task, we
present a precise analytical model to characterize the in-
ternal dynamics of the Transmission Task

���
.

4.2.1 Abstract Model for A Generic Application
Task

In order to control any Application Task, we identify
several key parameters in this task, referred to as Task
States. If we use a vector � denotes task states,  denotes
input to the task, ! denotes task output, " denotes system
noise within the task, # denotes observation, and $ de-
notes observation error, we examine a linear and discrete-
time model described by the following form:

� � ���&%(')� � ��*+�,��
.-/ � �0*+�,��
1" � ��*+�,� (1)

! � ���2%43�� � ��� (2)

# � ���2%5! � ����
.$ � ��� (3)

where �6%� to �8729;: , and ' , - , and 3 are known tran-
sition matrices without an error. In later discussions, we
develop a concrete analytical model based on the above
generic linear model, which is frequently used within the
state space approach in control systems.

4.2.2 A Concrete Model for the Transmission Task

In order to develop a concrete model for the distributed
Transmission Task

���
, we consider two types of noises

in the system. First, the data units in flight from server
to client, � ��� ��� , may suffer from random and unpre-
dictable variations and disturbances < :� � ��� , caused either
by physical unstable conditions (in the case of wireless
links) or statistical multiplexing of network connections.
Consequently, the received quantity of data units during
�����	�=
>��� , � ��� ��� , may also suffer from random distur-
bances <@?� � ��� . These are obviously system noises caused
by external dynamics in the Transmission Task. Second,



the Observation Task itself is also subject to random er-
rors, which can be characterized as the observation noise� � � ��� . Assume that the observed value is � ��� ��� , we have

� � � ��� %5� � � ����
 � � � ��� (4)

In Equation (1),  � ��� is actually a scalar � �;� ��� . Fol-
lowing the analogy of Equation (4) with (2) and (3) com-
bined, we have ! � ��� % � ��� ��� , and � � ��� contains � � � ��� .
We thus can compute 3 based on Equations (2) and (3):

# � ���2%4� ��� ��� % � � � � � � ��� ���� � � ����� 
 � ��� ��� (5)

and

3 % � � � � , � � ��� %
� � � � ���
� � � ����� and $ � ���&% � � � ��� (6)

In addition, from the definition of � ��� ��� , � � � ��� , < :� � ���
and < ?� � ��� , we have

� �;� ��� %4� ��� ��*6�,�,* � ��� � *6�,��
 � �;� ��*6�,� 
 < :� � ��*6�,� (7)

� � � ��� %4� � � ��* �,��
1< ?� � ��*+�,� (8)

It follows from Equations (7), (8), (1) and (6) that

'%
� � �
*)� ��� , - %

� �
��� and " � ���&%

� <@?� � ���
< :� � �����

(9)
This concludes the state space representation of the linear
model for Transmission Task

���
.

4.3 Extending Control Algorithms to Dis-
tributed Environment

In our previous work [11], a PID2 control algorithm
was given, and a weighted max-min fairness property was
proved. A prerequisite for the fairness property to hold is
that the Observation Task has the ability to observe com-
plete global system states. For example, if the resource
being observed is CPU usage in the same end system,
global states can be observed for all competing tasks.

However, this is normally not the case in a dis-
tributed environment, when observing task states within
the Transmission Task. Since the Observation Tasks re-
side as middleware components in the end system, it has
no ability to obtain states corresponding to all other con-
nections sharing the network. In such cases, the only
observable states are the parameters used or allocated

2PID control is a classic control algorithm where the control signal
is a linear combination of the error, the time integral of the error, and
the rate of change of the error.

by the Transmission Task itself, such as occupied band-
width. Therefore, while the control algorithm still adapts
to variations in resource availability and shows stability
and convergence properties, it lacks crucial observations
to guarantee any global fairness properties.

In distributed applications, the PID control algorithm
adopted in the Adaptation Task may be modified as fol-
lows:

� �;� ��� %4� ��� ��*+�,��

	/� ���� � ��� * � ��� ��� � 
�� � � �� � ��� * � ��� ��� � *5� � �� � ��*+�,� * � ��� ��*+�,� ��� (10)

where � �� is the reference value expected at equilibrium,
� ��� ��� is the actual number of data units sent by

���
, � � � ���

is the number of data units in transit from server to client,
and 	 and


are configurable scaling factors. The stability

and convergence proofs still hold as in the previous work.
However, with the presence of end-to-end delays, it is

inherently not trivial to accurately estimate � � � ��� directly
at the server, since the number of data units in transit in
�����	� 
 ��� is not directly observable.3 � � � ��� , the number of
data units received, is directly observable, but only at the
client side. Therefore, at the server side, the available val-
ues for � ��� ��� computation in the control algorithm (Equa-
tion (10)) are imprecise, as the � � � ��� values (needed for
� � � ��� computation) previously observed by the client are
received by the server only after an end-to-end delay from
the time of observation. This leads us to the following ap-
proach. Instead of deriving � ��� ��� using only the available
observed values transmitted from the client to the server
with an end-to-end delay, we will adopt optimal state pre-
diction techniques to estimate � ��� ��� at the current time
instant, which forms discussions in the next section.

5 Optimal Prediction of Task States In
Transmission Tasks

In this section, we present an optimal prediction ap-
proach to optimally predict the current task states in the
Transmission Task, based on observed task states in pre-
vious time instants before the end-to-end delay. The op-
timal prediction algorithms are implemented in the server
Observation Task, while the actual observation is made in
the client Observation Task. Optimality in the prediction
algorithms guarantees that the relative error between the
prediction and actual values of task states is minimized,

3Equation (7) is part of the linear model of the Transmission Task,
but it can not be easily utilized for the estimation of ��������� since it is
not observable directly.



i.e., a best possible guess is obtained. We adopt the opti-
mal control and estimation theory [12] to develop the pro-
posed algorithms, and associate the theoretical solutions
with the practical cases in complex distributed applica-
tions, focusing the Transmission Task.

5.1 The Need for Prediction

It is obvious from Equation (4) that the client Obser-
vation Task is able to observe � ��� ��� as � ��� ��� , with an
observation noise � � � ��� . However, from the control al-
gorithm expressed in Equation (10), we note that � ��� ���
is actually used in the Adaptation Task. In order to de-
rive � ��� ��� on the server from the observed values � ��� ���
on the client, we assume that the client acknowledges
all received data units to the server, and that the server
Observation Task has the knowledge of the total num-
ber of data units unacknowledged at the server up to
the time instant � , denoted by � �� � ��� . Then, we have
� �� � ��� %>� �� � ��� 
 � �� � ��� as the observed values of � �� � ���
with an observation noise � �� � ��� . Naturally, � �� � ��� rep-
resents the total number of unacknowledged data units
which are either in flight from server to the client, which
is � ��� ��� , or received by the client, but acknowledgments
not yet received by the server. We thus have

� � � ���&%5� �� � ��� *
������

�	� ����
� ������ � � ��� � (11)

where � � is the end-to-end transmission delay from
client to server,

� � is the sampling time interval between
��� * � �	� � , assuming � ����� � . Ideally, if � ����� � ��� ���
��� *���� ����� �! �	� * ��� is known, � � � ��� can be computed
and then used in the control algorithm of Equation (10).
However, the end-to-end delay, represented by � � , pre-
vents the knowledge of � � ��� � �"� �#� ���6*$��� � ��� �  �	� *5��� .
The last available observation is � �;� ��*%��� ����� �! � . The need
of predicting these values of � ����� � in the server Observa-
tion Task before calculating � ��� ��� arises from this lack of
knowledge. Figure 4 illustrates the above scenario.
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Figure 4: State Prediction in Transmission Tasks

We use &� � � ��� to denote the predicted values of � � � ��� .
Assuming that &� � � ��� is already obtained optimally, we can
estimate � ��� ��� by the following Equation:

� � � ���&%4� �� � ��� *
������

�	� ����
 � ����'� &� � ��� � (12)

The problem then shifts to the development of appro-
priate mechanisms to obtain &� � � ��� .
5.2 Mechanisms for Optimal Prediction

5.2.1 Definition of Optimality

Based on the Separation Principle [12], for a linear
stochastic system where an observer is used to estimate
the system state, the parameters for the observer and con-
troller are determined separately. Informally, this means
that we can develop an optimal prediction algorithm for
� � ��� � ��� �"� ����*(�*) �� �  �	��* ��� in the server Observation Task,
while still retaining complete freedom for adopting alter-
native control algorithms in the server Adaptation Task.

With regards to the prediction accuracy, we prefer to
design an optimal prediction algorithm that minimizes the
sum of squared errors between the predictions and values
being estimated, i.e., a least-squares estimate. More pre-
cisely, if + � ���6% � � � ���/*,&� ��� ��� , where &� � � ��� is the pre-
dicted values of � � � ��� at time � , we try to minimize the
quadratic error cost function - � ! �2%.- � � ��� �����&% �/ + / � ��� .
The optimal prediction approach, e.g., Kalman Filter, pre-
sented in this section is designed to minimize - � ! � .
5.2.2 Requirements of an Optimal Solution

The optimal prediction problem is generally hard if the
linear stochastic system is in its generic form. However,
it is proved in optimal control theory [13] that simplified
prediction algorithms can be adopted as an optimal so-
lution in a special case, with two prerequisites. First, the
system random disturbances " � ��� and observation noises
$ � ��� are uncorrelated white Gaussian-Markov sequences
with zero mean. This can be interpreted that: (1) random
vectors in the same stochastic sequence are independent
of each other; (2) they can be uniquely characterized by a
joint Gaussian probability density function; (3) this den-
sity function has zero mean expectation, and (4) random
vectors in different stochastic sequences are uncorrelated
with each other. Second, the initial system state vector
� ��� � is also a Gaussian random vector with zero means.

We assert that the system states and noises in the Trans-
mission Task

���
observe such nature. This assertion is

based on the following characteristics.



(1) The states in the Observation Task and the Trans-
mission Task are not correlated, since the Observation
Tasks are implemented separately in the middleware
level, while the Transmission Task is part of the appli-
cation. This observation guarantees that the observation
noise $ � ��� and the system noise " � ��� are uncorrelated.

(2) Within the transmission path, when the number of
simultaneous connections

�
sharing the same physical

communication channel (statistical multiplexing in inter-
mediate switches) is large, we expect that in a time inter-
val of length

� � , the changes in
�

is very small compared
to
�

itself. This leads to the fact that changes in � ��� ���
due to activities of other connections will be small. Thus,
when we model � � � ��� as a process given by Equation (7)
� ��� ��� %5� � � � * �,��* � � � � * �,��
 � � � � * �,� 
 < :� � � * �,� ,
the term < :� � � *(�,� , which is the dynamic disturbances
caused by activities of other connections, can be modeled
as a zero-mean Gaussian white noise [9]. Even though
when � � � ��� is small and the connection is in a starting
stage, the possibility of an increase is larger than a de-
crease, this assumption of zero mean is justifiable when
� ��� ��� is sufficiently far from

�
. The same observation also

applies to � ��� ��� and < ?� � ��� . This concludes that the ran-
dom noise " ��� ��� is a white Gaussian-Markov sequence
with zero mean.

We conclude that random disturbances of the Trans-
mission Task satisfy the requirements of applying the
simplified prediction algorithms, such as the Kalman Fil-
ter prediction algorithm that follows.

5.2.3 Parameters in the Kalman Filter

We now apply the frequently used optimal estimation
algorithm, Kalman Filter, to solve the prediction problem
of Task States in the Transmission Task.

Equation (9) shows that both ' � � * �,� and - � ��*��,�
in Equation (1) are constants without error. In addition,
 � � * �,� are also known in the server Observation Task
without error in the interval

��� � � � 7 9;: . We introduce
the definition of the following terms:

(1) The expected values, or expectations, � � � � of any
random vector � is defined as the mean vector of � . For-
mally, � � � � % � � � � ��� ����� ��� � � �	� ����� ��� , where � � ��� for a
random variable � is defined as � � ���&%��
	� 	 ���

� ����� � , if
� � ��� is the probability density function of � .

(2) The error covariance matrix  of � in the Trans-
mission Task is defined as:

 � ���&%���� � � � ��� * &� � ��� � � � � ��� * &� � ��� � � � (13)

(3) The dynamic system disturbance " is a white, zero-
mean Gaussian random sequence showing the following

properties, where � � ��� is the system noise covariance
matrix: ��� " � ��� ��% �

(14)

� � ��� %���� " � ��� " � ����� � � (15)

� � " � ��� " ��� ��� � ��% � � �����%���� (16)

(4) Similarly, in Equation (2) and (3), 3 is a constant
and the observation noise is modeled as a white, zero-
mean Gaussian random sequence that is uncorrelated with
the system disturbance:

��� $ � ��� ��% �
(17)

� � ���2%���� $ � ��� $ � ����� � � (18)

� � $ � ��� $ ��� ��� � ��% � � �����%���� (19)

� ��� � ��� " ��� ��� � ��% ���
all
�

and ��� (20)

where
� � ��� is the observation noise covariance matrix.

According to Equation (6), $ � ��� is a scalar � � � ��� , it fol-
lows that

� � ��� is the variance of � � � ��� , ����� � � ��� �����&%�� / ,
when � � � ��� is a Gaussian distribution

��� ����� .
In practice, it is necessary to determine � � ��� and

� � ���
offline. These covariance matrices indicate the level of
confidence in the system model and observations, respec-
tively. If one were to increase � , this would indicate that
stronger noises are driving the dynamics. Consequently,
the rate of growth of the elements of the error covariance
matrix  � ��� will also increase, which increases the filter
gain � � ��� (refer to Appendix for formal presentations),
thus weighing the measurements more heavily. There-
fore, by increasing � , we in effect put less confidence in
the system model. Similarly, increasing

�
indicates that

the observations are subject to a stronger corruptive noise,
and therefore should be weighed less by Kalman Filter.

5.2.4 Operations of Kalman Filter

Based on these definitions, Kalman Filter operates re-
cursively in a predict-update manner as informally de-
scribed in the following phases. Refer to Appendix for
the formal equations.

Update

i (k-1) zi (k)

x (k-1) x (k-1)

Observed

Estimated
- +

x (k) x (k)
- +

Phase

k-1(k-1)- (k-1)+

t c
PropagationUpdate

(k)-   k  (k)+

Update

Time

PredictPredict Update

z

Figure 5: The Kalman Filter in operation

(1) Prediction Phase occurs at time � � , that is, before
observations are made at time � . State predictions  � � � ���



are made for states � � � ��� , and error covariance predic-
tions  � � ��� is also made.

(2) Kalman Filter Gain Computation Phase occurs be-
tween � � and � �

, which is the time after � . The Kalman
Filter gain matrix � � ��� is computed to be used later in
the Update Phase.

(3) Update Phase occurs at time � �

. The Kalman Filter
gain matrix � � ��� is used along with the new observation
# � ��� . The error covariance matrix  � � ��� is also updated
from previously predicted  � � ��� in the Prediction Phase.

These phases are executed repetitively till the time
when the latest observation is available from the client
Observation Task. After this time instant, we can deploy
a linear-optimal predictor to predict the state and its er-
ror covariance on the basis of all the information that is
available without observation. Denoting the time of lat-
est available observation on the client as � * � ) �� �  for
Transmission Task

���
, where � is the present time in-

stant on server, the linear-optimal predictor starts with
the latest state estimate update phase using Kalman Fil-
ter, i.e.,  � � � ��* �*) �� �  � , and then recursively applies the
state prediction phase to calculate  � ��� � %  � � ��� � � � � �
��� * �*) �� �  �	� * ��� . According to Equation (6), we have the
following for Transmission Task

���
:

&� � ��� � %43  � ��� � � � � � ����*$� �
�
� �  �	� * ��� (21)

Equation (21) concludes our prediction mechanisms
utilizing the Kalman Filter. When the estimated values of
� ��� ��� are applied to Equation (11), � ��� ��� can be obtained
and thus applied to the control algorithm in the Adapta-
tion Task as presented in Equation (10).

6 Experiments with Visual Tracking

Based on the algorithms developed in previous sec-
tions, we have implemented a preliminary middleware
control architecture to control a client-server based visual
tracking application, adopting Kalman Filter as a opti-
mal prediction mechanism in the server Observation Task,
with the presence of end-to-end delay.

6.1 Overview of the Visual Tracking Applica-
tion

We use a client-server based visual tracking application
as an example of complex applications to evaluate our ap-
proach. Figure 6 shows an overview of its architecture.
Based on the original XVision [6] project in Unix, we
have completed the implementation of the client-server
based visual tracking application on the Windows NT 4.0

platform in Visual C++ 5.0, using Windows Sockets 2
API for the network transmission.

Update
State

Update
State

Update
State

Video Camera

Network
Transmission

of Digital
Live Video

Visual Tracking 
Frame Digitizing

Visual Tracking
Feature Detection

Feature Detection

Visual Tracking
Feature Detection

ClientServer

Live video input
Identification
and display

Figure 6: The Client-Server Visual Tracking Application

We have implemented the Adaptors shown in Figure
1 in C++ and Java as middleware components, includ-
ing both the Adaptation Task, using Equation (10) as the
control algorithm, and the Observation Task, using the
Kalman Filter as the optimal state predictor. All middle-
ware components interact among one another and with
the application using CORBA. We use ORBacus 2.0.4
[8] as our CORBA implementation. Figure 7 shows the
main tracking window of the application with three track-
ers (SSD, line and corner) running simultaneously. By
enabling adaptation, the primary QoS parameter that we
focus on is the tracking precision. For quality assurance
of this parameter, other QoS parameters such as the image
size can be sacrificed as a tradeoff.

We tested our system in a varying network environ-
ment, in order to experiment application-level adapta-
tion on transmission bandwidth requirements. In or-
der to simulate bandwidth fluctuations in a typical dis-
tributed environment over wide-area networks, we have
also implemented a simple network simulator, which sim-
ulates packet delay through a transmission path of multi-
ple network routers, each of them implementing the FIFO
scheduling algorithm. Because of the bursty nature of
cross traffic, throughput fluctuations may occur at various
times over the connection.

For the purpose of repeating the same set of experi-
ments and for measurements of tracking precision, we
use a computer generated image sequence, in which the
object moves at fixed speed and path. For the experi-
mental results shown in Figure 8, the moving speed of
the rectangle is set at a constant 3 screen pixels per sec-
ond continuously. In addition, we assume there are no
other CPU intensive process running in the background
on the same platform. This is for the purpose of sepa-
rating the experiments on bandwidth requirements from
those on CPU requirements.

In Figure 8, the three graphs on the left are in the case
without any adaptation. The three graphs on the right
are in the case with adaptation support from the mid-
dleware framework, with integrated optimal prediction
mechanisms in action in the server Observation Task to



Figure 7: Visual Tracking on Client: The Main Tracking
Window with three trackers

overcome end-to-end delay, as well as the PID control al-
gorithm in the Adaptation Task. We can observe that by
changing the frame size of the visual tracking applica-
tion, the tracking precision will be preserved without any
tracking error at all times during the connection. In con-
trast, without any adaptation, when the network through-
put degrades to a certain degree, the tracking algorithm
is not able to keep track of the object, the error accumu-
lates rapidly verifying that the tracking algorithm loses
the object. This prove-of-concept system proves that the
approach we have taken is effective in preserving track-
ing precision in a distributed environment with fluctuat-
ing bandwidth and significant end-to-end delay between
the client and server.

7 Conclusions

In this work, we focus on the scenario when flexible
applications, such as client-server based visual tracking,
need to adjust themselves to adapt to resource variations
and preserve critical QoS parameters, such as tracking
precision. We have extended the Task Control Model in a
distributed environment, modeled the Transmission Task
in a state-space representation, presented an optimal state
prediction mechanism to overcome end-to-end delay in
distributed state observations, and presented preliminary
results with our client-server visual tracking experiments
to verify our approach. The optimal prediction mecha-
nism proposed in this paper is integrated in the server
Observation Task, as middleware components and part of
the middleware control architecture in a larger scale. On-
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Figure 8 (Left): Experiments without adaptation support

Figure 8 (Right): Experiments with adaptation support

Figure 8: Experiments with the Client-Server Based Vi-
sual Tracking Application

going and future work involves application-configurable
adaptation and estimation algorithms via a configuration
scripting language, as well as QoS assurance and adapta-
tion in a multicasting environment.

Appendix: The Kalman Filter

In the following equations, we distinguish between es-
timates made before and after the updates.  � � � ��� is the
state estimate that results from the prediction equation
(22) alone (i.e. before the observations are considered),
and  � � � ��� is the corrected state estimate that accounts for
the observation made.  � � ��� and  � � ��� are defined sim-
ilarly. For completeness, the initial conditions are  � � ��� �
and  � ��� � .



� State Estimate Prediction Phase:

 � � � ���2% '  � � � ��*+�,��
 -  � �0*+�,� (22)

 � � ��� % '  � � ��* �,�	' � 
 � � �0*+�,� (23)

� Kalman Filter Gain Computation Phase:

� � ��� %� � � ��� 3 � � 3  � � ��� 3 � 
 � � ��� � ��� (24)

� Update Phase:

 � � � ��� %  � � � ����
 � � ��� � # � ��� * 3  � � � ��� � (25)

 � � ���2% �  � � ��� ��� 
.3 � � � ��� ��� 3 � ��� � ��� (26)
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