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Abstract

In a distributed environment where multiple applications compete and share a limited amount of system
resources, applications tend to suffer from variations in resource availability, and are desired to adapt their
behavior to the resource variations of the system. We propose a Task Control Model to rigorously model the
dynamics of an adaptive system, using the digital control theory. With our Task Control Model, we are able
to quantitatively analyze the stability and equilibrium of the adaptive applications, while simultaneously
providing fairness guarantees to other applications in the system. Our control algorithm has also been
extended to the cases where no sufficient task state information are observable. We show that even under
these circumstances, our Task Control Model can still be applied and our control algorithms yield stable and
responsive behavior.

1 Introduction

In a heterogeneous distributed environment, a wide variety of distributed applications demand specific
Quality of Service (QoS) from the underlying supporting platform to ensure user satisfaction. Critical
qualities that are usually demanded are timeliness, data quality and reliability, other qualities such as security
concerns and synchronization between data streams are also occasionally required.

In a typical system, it is normally observed that multiple applications compete and share a limited
amount of resources. Due to variations in the underlying distributed environment, with respect to resource
availability, applications may not be able to receive constant Quality of Service from the system. However,
there are a variety of flexible applications that can accept and tolerate resource scarcity to a certain minimum
limit, and can improve its performance if given a larger share of resources. If resources above the minimum
requirements are shared among all applications, statistical multiplexing gain can be improved. In addition,
for the flexible applications that involve interactive activities that cannot be predicted a priori, it may be
hard or impossible to specify a maximum demand for QoS beforehand. Based on these observations, it is
necessary to support QoS adaptation mechanisms in the system.

If we examine the adaptive behavior of applications in a more detailed fashion, it is very natural to
map it to an adaptive control system. In a typical control system, there is a target system to be controlled.
This target system takes appropriate actions to process the input. The input is determined by a controller
according to a control algorithm, which monitors the states inside the target system, and compares them to
the desired values referred to as the reference. Similarly, adaptation also needs to identify the current states
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of the target system based on any parameters that can be observed, and to decide input values to the target
system in the future.

This paper rigorously models adaptation behavior of a distributed heterogeneous environment, based
on its analogy to the above described control system. The application of the adaptive control model onto
a distributed adaptive system leads to a new Task Control Model. There are two major advantages of this
approach: (1) With the Task Control Model we can utilize various adaptive control policies, and rigor-
ously derive equilibrium, stability and responsiveness properties of these policies using control theoretical
techniques. (2) The Task Control Model fits well into the distributed environment, because it allows us to
associate various system adaptive mechanisms, such as buffer smoothing, scaling, filtering, prefetching and
others, with policies in the adaptive controllers. This mapping between the adaptive control policies and
system mechanisms will result in a flexible design and implementation of adaptive middleware. The con-
trol policies will guarantee equilibrium, stability and responsiveness properties, while the mapping between
policies and system mechanisms will guarantee flexible adaptation and reconfiguration of different adaptive
behavior. This paper addresses the first justification.

The rest of this paper is organized as follows. In Section 2, we discuss existing work related to QoS
adaptation issues. In Section 3, we propose a Task Control Model based on the Task Flow Model [7] in
order to analyze adaptation behavior using the control theory. In Section 4, we analyze the stability, fairness
and responsiveness of a control theoretical approach that we propose for adaptive systems. In Section 5, we
extend our approach and show that the Task Control Model also applies to the case where sufficient state
information for the tasks is not available. Section 6 concludes the paper and discusses future work.

2 Reated Work

It has been widely recognized that many QoS-constrained distributed applications need to be adaptive
in a certain QoS range between [QoSin, Q0Smaz] [8], in order to provide a graceful reaction to dynamic
resource availability in a distributed environment. Various schemes have been proposed [1] [3] [8] [12]. This
work differs from other approaches in the sense that it concentrates on determining adaptive policies, rather
than the development of adaptive mechanisms. We use digital control theory to quantitatively determine
the states of the adaptive system, and based on these states we activate control algorithms to adapt to the
dynamics of the system.

Our work is closely related to and utilizes the knowledge of dynamic resource allocations. Other ap-
proaches in the adaptive resource allocation area have also been presented in [9] [10]. The work in [9]
focuses on maximizing the utility functions, while keeping QoS received by each application within a feasi-
ble range. The work in [10] focuses on a multi-machine environment running a single complex application,
and the objective is to dynamically change the configuration of the application to adapt to the environment.
Our work focuses on the analysis of the actual adaptation dynamics, rather than utility factors. We also focus
on an environment with multiple applications competing for a pool of shared resources, which we believe is
a common scenario easily found in many actual systems.

The essence of a closed-loop control system is its feedback path. Various software and distributed sys-
tems utilize feedback information for adaptation purposes. For example, the work presented in [2] uses
software feedback mechanisms that enhance system adaptiveness by adjusting video sending rate according
to on-the-fly network variations. However, the algorithms used in most of the software systems are heuris-
tic in nature, and the analysis of various adaptation properties such as stability, steady-state fairness and
responsiveness is not addressed.

In recent research, control theories have been examined for QoS adaptation. In [11], the application
of control theory is suggested as a future research direction to analyze adaptation behavior in wireless
environments. In [4], a control model is proposed for adaptive QoS specification in an end-to-end scenario.



In [6], the time variations along the transmission path of a telerobotics system are modeled as disturbances
in the proposed perturbed plant model, in which the mobile robot is the target to be controlled. Our work
attempts to apply control theory to analyze the adaptation dynamics in a broader range of applications, and
in a more rigorous fashion.

3 A Task Control Model for Quality of Service Adaptations

3.1 The Task Flow Model for Distributed Environments

In order to analyze the adaptation behavior using the control theory, we need a strict mapping between
traditional control systems and the distributed environment that we study. As a start, we consider each
application as an ensemble of functional components, which we refer to as tasks. Tasks are execution units
that perform certain actions to deliver a result to other tasks or the end user.
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Figure 1: Illustrations of the Task Flow Model for Distributed Environments

With the above definition of tasks, we utilize the Task Flow Model described in [7] and extend the
model to address the modeling of adaptation behavior. In this model, the Task Flow Graph is a directed
acyclic graph which consists of multiple tasks, and illustrates the consumer-producer dependencies among
the tasks. A directed edge from task 7; to task 77 indicates that task 7 uses the output produced by task
T;. Tasks can be uniquely characterized by its input quality, output quality and utilized resources. Figure
1 illustrates a generic Task Flow Graph and its application to a distributed visual tracking system, whose
objective is to track objects inside a sequence of images captured from a remote site and transferred via a
network connection.

3.2 The Task Control Model
3.2.1 A Generic Task Control Model

Based on the Task Flow Model, the Task Control Model concentrates on one single task in the Task
Flow Graph. This task is referred to as the Target Task, which is the task to be controlled. In addition, we
introduce an Adaptation Task, which performs the adaptive control algorithm, as well as an Observation
Task, which observes the states of the Target Task and feeds them back to the Adaptation Task.

The ideal objective of the Task Control Model is to achieve the following properties: (1) Target Task
maintains the same output quality at the desired QoS level, regardless of variations in resource availability;
(2) Dynamic changes in QoS requirements can be accommodated in a timely fashion; (3) Fairness is guaran-
teed among all competing tasks. These properties will be met by careful choice of adaptive control policies
in the Adaptation Task and by assistance of the Observation Task.



e Adaptation Tasks: These tasks implement adaptive control policies and modify a set of control-
lable parameters according to a specific adaptive control algorithm. Controllability has a two-fold
interpretation. First, a parameter is controllable means that by changing end-system configuration
dynamically it is possible to affect its values; Second, it also means that by changing values of a
parameter, it is possible to affect the internal states of the task and thus affect the output quality.

e Task States: In order to control the input quality to achieve the ideal range of the output quality, we
need a precise analytical model to characterize the internal dynamics in the Target Task. We refer
to the parameters in this model as Task States. The most important task states in any task are its
parameters related to its resources. Any tasks have to consume resources in order to perform actions
on input and produce output.

e Observation Tasks: Adaptation Tasks need knowledge about the current states of the Target Task, in
order to perform the control. If the task states are observable, they are observed by the Observation
Tasks and fed back into the Adaptation Tasks. Otherwise, if some related parameters can not be
observed, the Observation Tasks will estimate or predict the current states, based on the estimation
algorithm of its choice.

Once the above notations are established, we are ready to present the Task Control Model based on the
control theory. In the most generic fashion, we use the vector s for the vector of task states, the vector u
for the vector of controllable input parameters, the vector y for the vector of observed output parameters
of the task, the vector v for the uncontrollable variations in the task, and the vector n for the observation
errors. Using the above notations, we model the Target Task in the Task Control Model with the following
equations:

ds(t)
dt

= §(t) = f[s(t), u(t), v(t),1] (1)
y(t) = his(t),n(t), ] @
With the above definition, the task is said to be at equilibrium when:

5(t) = 0 =f[s(2), u(t), v(t),] 3)

An equilibrium is stable if small disturbances do not cause the state to diverge and oscillate. Otherwise, it
is an unstable equilibrium.

The above stated definitions are generic and can illustrate a wide variety of adaptation capabilities of
the Target Task. According to these definitions, the Target Tasks may be continuous in time, non-linear and
time-varying. In this paper we study a subset, namely, the tasks that can be approximated without loss of
accuracy by discrete and linear equations as the following form:

s(k +1) = Gs(k) + Hu(k) + v(k) (4)
y(k) = Cs(k) + n(k) (5)

where G, H and C are constant matrixes. We assume in later examples that the Target Tasks can be
characterized accurately by discrete-time and linear equations in Equation (4) and (5).



3.22 An Example of the Task Control Model

The Task Flow Model stated in Section 3.2.1 can characterize a wide variety of tasks. To demonstrate
a concrete example, we consider the following scenario. Let us assume multiple tasks competing for a
shared resource pool with the capacity Cy,.,. Each task makes requests for resources in order to perform
their actions on inputs and produce outputs. These requests may be granted or outstanding. If a request is
granted, resources are allocated immediately. Otherwise, the request waits in the outstanding status until it
is granted. The system is granting requests from multiple tasks with a constant request granting rate c.

The mapping between the abstract notation resource requests and the actual services processing the re-
source requests varies among different types of system resources. For temporal resources, such as processing
bandwidth and transmission throughput, where the resources are shared in a temporal fashion, outstanding
resource requests may be mapped to the waiting queue, and granted requests may be mapped to allocated
temporal resources, such as bandwidth. For spatial resources, such as volatile or non-volatile storage capac-
ity, outstanding requests may be mapped to the actively used and occupied capacity, and granted requests
may be mapped to the reclaimed capacity by the system due to inactivity. The framework presented in this
section applies to both cases.

Figure 2 illustrates the above scenario and the mapping between the classic control and Task Control
Model. Naturally, if the Target Task is greedy and makes an excessive number of resource requests in a short
period of time, it is not fair to other tasks sharing the same resource pool. Thus, the request rate need to be
throttled by the Adaptation Task. What the Adaptation Task tries to control is the resource request rate made
by the Target Task, so that it does not exceed its fair share.
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Figure 4a: A block diagram in a classic control system
Figure 4b: The Task Control Model used for QoS adaptation

Figure 2: The mapping between the classic control model and the Task Control Model
In this scenario, we define the following notions for the system with a Target Task T5:

1. t. is a constant sampling time interval, which is the time elapsed in interval [k, k& + 1], k being time
instants;

2. r;(k) is the number of requests made by T; in [k, k + 1];

3. u;(k) is the number of requests in [k, k£ + 1] allowed by the Adaptation Task of T; to enter the out-
standing queue, which is referred to as the adapted request rate;

4. z(k) is the total number of outstanding resource requests made by all tasks at time &;
5. M(k) is the total number of active tasks competing for resources in the system;

6. A(k) is the set of tasks at time & whose request rate is throttled by their respective Adaptation Tasks,
N (k) is the set of other tasks that are not affected by the Adaptation Tasks;

7. 1(k) is the number of tasks in A(k), M (k) — (k) is the number of tasks in N (k). We assume that
both M (k) and [(k) stays constant within one time interval [k, & + 1].



8. wy; is the static weight of T; showing its relative priority or importance compared to other tasks.

Using the above notation, the derivative of outstanding resource requests can be described as follows:

M(k—1)
i=azk)—zk—-1)= > u(k—1)—c (6)
i=0

The Difference Equation (6) depicts the internal dynamics of the adaptive system.

The objective of the control is to maintain the number of outstanding requests z to stay around a specific
reference value z°(k). Under the assumption that the dynamics of the adaptive system behave according
to Equation (6), we can derive a control algorithm/policy in the Adaptation Task for T; to calculate u;(k)
values, which will lead to the desired values for z. For example, if a standard proportional-integral-derivative
(PID) control [5]  is engaged, then wu; (k) obeys the equation

ui(k) = ui(k — 1) + alz®(k) — z(k)] + B{[z°(k) — z(k)] — [z°(k — 1) —=(k - )]} (7)

where « and g are configurable scaling factors. This is one of the many effective control algorithms
illustrating the ability of the Task Control Model to capture the adaptation dynamics and map these dynamics
onto a classic control model.

4 A Control Theoretical Approach for Quality of Service Adaptation

This section continues with a rigorous analysis of the stability, fairness and responsiveness of the Task
Control Model characterized by the Target Task in Equation (6) and the PID control algorithm in Equation
(7), in order to prove the validity of our approach using the Task Control Model.

We assume in our analysis that the controllable parameter of task 7; is the request rate r;(k). The
Adaptation Task may control r;(k) at a lower rate u;(k), namely, u;(k) < r;(k). The PID control algorithm
presented in Equation (7) becomes:

ui(k) = Ypyy { wilk = 1) + a(z(k) — z(k)) + B[(z°(k) — 2(k)) = («“(k = 1) —z(k = 1))] } (8)
Where U,(z) is defined as:

0 ifz<O,
U(x) =1 t ifz>t, 9
z  otherwise.

In addition, since at time k& we assume that, among all tasks, (k) tasks are throttled by their respective
adaptation tasks, and M (k) — I(k) tasks are not affected, we conclude that the total number of outstanding
resource requests in the system shows the following dynamic property, which is an extension to Equation

(6):

zk) = Vg, {x(k—l)—l— Yoouk-+ Y ri(k—l)—c} (10)

T;€A(k—1) T;eN(k—1)
= Ug, .. {x(k—1)+1(k—1)u(k — 1)+ R(k — 1) — ¢}, where (11)

1PID control isa classic control algorithm where the control signal is alinear combination of the error, the timeintegral of the
error, and the rate of change of the error.



R(k)= Y ri(k),and (12)
T;€N(k)
ui(k) = i(k) (k) u(k) (13)
where %(k) is the average rate for all u;(k) that satisfies u;(k) < r;(k). In this equation, +;(k) is the
dynamic weight of task 7; which indicates priority for resource requests, and satisfies >, c 4k vi(k) = 1.
The dynamic weight of T; can be derived from the static weight w; of T;, with the following calculation:
w;
%ik) = =———— (14)
ETJ- €A(k) Wy
Combining Equation (8) and Equation (11), we obtain the complete characterization of the adaptation
system. Associated with each task T;, we have a static weight w;, and three internal task states:

o o T
i) = {2 (k) = a(0k) (k= 1) = ol = 1,350k = ) 106 = 1) falh = 1) - S HEEDY ag

Where z¢(k) and C_l(}fc()k) are the equilibrium values of z(k) and 1y, respectively. The detailed analysis

of the equilibrium states is given in Section 4.1.

4.1 Equilibrium Analysis

Now that we have established the control algorithm in the Adaptation Task, we start to analyze the exact
value that the system stays at equilibrium. The ideal case is that z(k) always stays the same as the reference
z¢(k). Let us assume that for a specific period of time [k1, k2], z¢(k), I(k), M (k) and R(k) are all stable
and stay at constants z¢, I, M, and Ry, respectively. Then we show the following properties:

Theorem 1: Within [kq, k2], The number of outstanding resource requests z in the system, established
by Equation (8) and (11), will converge to an equilibrium value which equals to the reference value z<. In
addition, the system also fairly shares resources among competing tasks according to their static weights.

Proof: Let x5 and u, be the equilibrium values corresponding to the system established by Equation (8)
and (11).

zs =V, .. {zs + lsus + Rs — ¢} (16)
Yils Us = qui {'Yi ls us + a($§ - 375)} 17)
Ignoring the threshold cases, the solution to Equation (16) and (17) is
g, = £ fs (18)
Ls
Ts = T (19)

Equation (19) directly proves the first part of the theorem. Assume the stable set of throttled tasks is A,
Equation (18) can be rewritten for task T; at equilibrium as follows:

wy ls Cc— Rs wy ls { Cc (Ms - ls)MLs - Rs} (20)

U;). =Y ls Ug = = — +
( 1)5 Vi ts Us ETjeAs w; s ETJ-GAS w; M, I

Equation (20) presents the following weighted max-min fairness property. Each task T; can be granted at
least a w; share of the resources; In addition, if M, — [, tasks request less than their fair share, namely, only
[, tasks are adapted, then the free portion (MM;”C — R, can be distributed among those who are throttled
and thus need these resources, according to their static weights, which identify their relative priority and
importance. This concludes the proof. O



4.2 Stability Analysis

The concept of stability has a two-fold meaning. First, in an environment of multiple tasks simultane-
ously sharing the limited availability of resources, the ensemble of the adaptation activities in all tasks need
to be stable, which means that when the number of active tasks is fixed, system resources allocated to each
task settle down to an equilibrium value in a definite period of time. This definition also implies that, if a
new task becomes active, existing active tasks will adjust their resource usage so that after a brief transient
period, the system settles down to a new equilibrium. Second, stability implies that with respect to variations
in resource availability due to unpredictable and physical causes, for example a volatile wireless connection,
adaptation activities do not suffer from oscillations, which are undesirable because they cause both fluctu-
ations in user-perceptible qualities, and an excessive amount of adaptation attempts that may occupy too
much resource to overload the system.

In order to converge to the equilibrium of the system regardless of disturbances and statistical multi-
plexing, we need to prove that the system is stable. Due to the nonlinear nature of the system given by
Equation (8) and (11), we are unable to derive a global and absolute stability condition, which is the case
for most systems with nonlinear properties. However, formal conditions for local asymptotic stability can
be addressed analytically. We present the following theorem related to local asymptotic stability conditions.

Theorem 2: The adaptation system established by Equation (8) and (11) is asymptotically stable for
task 7; around a local neighborhood, under the condition that o > 0, 8 > 0, and a + 28 < 4v;.

Proof: Given the states defined in Equation (15), we define

e(k) = z°(k) — z(k) (21)

(k) =7 106 [alh) — <)

In order to examine the asymptotic stability properties, we simplify the dynamic equations (8) and (11) in
the neighborhood of equilibrium by: (1) removing the nonlinearities introduced by ¥, (x) at both thresholds;
(2) treating I(k) and R(k) as constants in the neighborhood of the equilibrium. Thus, Equations (8) and (11)
become:

(22)

(k) = 4;(k — 1) + ae(k) + B [e(k) — e(k — 1)] (23)
(k) = 2k — 1)+ %a(k _1) (24)

We perform z-transform on Difference Equations (23) and (24) to obtain D;(z) and G;(z), respectively.
Thus, the transfer function F;(z) of the entire system is [5]:

Fi(z) = Di(2)Gi(z)  _ 1 i B) ﬁ]ﬂ (25)
1+D1(Z)Gl(z) 22+(%+%—2)Z—(%—1)
We then consider the discrete characteristic equation of the above:
2248 9B 1o (26)
Vi Vi Vi

According to theorems in the digital control theory [5], in order for the system to be stable, all roots of
Equation (26) need to be within the stability boundary, which is the unit circle. In other words, for any root
z, We need |z| < 1. It can be proved that this property holds if the following condition is valid (the proof is
omitted for space limitations):

a>0, >0, anda+ 20 < 4y; 27)



Equation (27) concludes the proof. O

It is obvious to see from Theorem 2 that the asymptotic stability of the adaptation for task 7; is deter-
mined by an appropriate choice of o and 8. It then follows that in order to guarantee that the entire system
is stable, we need to choose « and 3 so that for any task 7; with any static weight values w;, stability is
ensured.

Corollary: There exist appropriate values of parameters « and £ so that all the tasks in the system are
stable, for any pre-determined static weight w; for task Tj;.

Proof: Assume w;, is the minimum value among all pre-determined w;. « and 8 can be chosen to
satisfy

Wmin Wy

<4 ,
2w Wi ZTJ- cA(k) Wy

It follows from Theorem 2 that if these conditions hold, the system will be stable for any task 7; with a
static weight w;. O

a>0,3>0, and a+28<4 Vi, k (28)

4.3 Responsiveness Configuration
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In addition to stability requirements, It is also desired that the system responds quickly to changes in
both resource availability and QoS requirements of the tasks. Responsiveness is determined by the config-
urable parameters in control algorithm. In the case of a PID control algorithm in Equation (8), o and 3 are
configurable as long as the stability conditions in Theorem 2 hold. The actual configuration is tailored to the
needs of the system.

Four illustrations are given in Figure 3(a) - 3(d) to show the effects of different configurations on the
system. In all four graphs, we simulated the system established by Equation (8) and (11) for 1000 time
intervals. The changes of I(k), R(k) and z¢(k) are given in Table 1:

Time k | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-700 | 700-850 | 850-1000
k) |2 2 4 5 3 3 3 3
R(k) |3 3 3 3 3 7 4 4
z¢(k) | 9 11 11 11 11 11 11 14

Table 1: The values of [(k), R(k) and z¢(k) used in the illustration

It can be seen from these illustrations that the dynamics of the system is affected significantly by different
configurations of the Adaptation Task. In Figure 3(d), it even starts to oscillate in the interval [300,400]. The
configuration in Figure 3(b) reaches equilibrium much faster than Figure 3(c), and both of them do not show
the oscillating transient response shown in Figure 3(a). Overall, the illustrations show that the Adaptation
Task is configurable according to the needs of the system. For the PID control algorithm in Equation (8),
there are two parameters to configure. However, for more complex control algorithms, there will be more
dimensions for finer tuning of the transient responses.

5 An Extension to the Control Theoretical Approach

We proved that the control theoretical approach presented in Section 4 is stable, fair to all participating
tasks and configurable with respect to responsiveness. However, this approach is only applicable if the
Observation Task can observe full system states, and feed them back to the Adaptation Task in a timely
fashion. This is true if the Target Task utilize local resources only, such as local processing power and local
storage capacity. However, in a distributed environment, there may be cases that tasks share global resources
in a distributed fashion. This renders it hard or impossible for the Observation Task to locate and observe
full system states information.

In one example, the Target Task is a transmission task, which relocates data between different sites in
a distributed environment. The resource it uses is transmission throughput, and it is shared by other tasks.
The quantity and behavior of these tasks may be unpredictable and unknown to the Observation Task. In
the approach proposed in previous sections, the Observation Task needs to provide z(k), which is the total
number of outstanding requests for all tasks. This is naturally impossible given an unpredictable distributed
environment.

The Task Control Model still applies to this scenario. However, the fairness property cannot be guaran-
teed for the lack of global state information. In order to demonstrate this statement, we take the example
that the transmission task is in charge of transmitting data between two end systems. By analyzing this
example we conclude that the same PID control algorithm in Section 4 can still be applied, i.e. it preserves
equilibrium and stability properties. Only the model for the Target Task needs to be slightly modified.

We assume that the transmission throughput allocated to the transmission task, T, is not fixed and will
vary according to the global state of the distributed environment, such as activities of other tasks sharing the
same resource. Rather than considering z(k) as the total number of outstanding requests for all tasks, we
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consider z(k) as the number of outstanding requests made by task 7;. This is the number of data units in
flight in T; before reaching destination.

Assume u(k) is the number of new requests made in T; for resources. This is modified by the Adaptation
Task, if necessary, in order to control 7; so that (k) stays at the reference value z¢(k). Also assume c(k) is
the number of granted requests in [k, k + 1]. Because allocated throughput for T; varies, ¢(k) will change
accordingly. In implementation, «(k) can be mapped to the number of data units sent into the transmission
path in [k, k+1], and ¢(k) can be mapped to the number of data units received at the destination in [k, k+1].

We now can give the equation characterizing the Target Task 7;:

o(k) = 2(k — 1) +u(k — 1) — c(k — 1) (29)

In order to apply the PID control algorithm proposed in Section 4, we only need the Observation Task
to estimate x(k). Implementation-wise, there are various mechanisms to solve this problem, such as the
utilization of resource management cells in an ATM network. We take one of the solutions as an example.
Assume that the destination acknowledges all the received data units to the source, and assume E(k) is the
total number of data units unacknowledged at source at time k. In addition, assume that p,,,, equals to the
maximum propagation delay of one data unit between source and destination in either direction.

With these assumptions, we can estimate (k) in the Observation Task at source by:

k—1
sy =By = > i) (30)
i=h =B
This is because the total number of unacknowledged data units is either in flight from source to destina-
tion, or received by destination. Equation (30) characterizes the Observation Task.
The PID control algorithm for the Adaptation Task can thus be given as:

u(k) = u(k — 1) + ae(k) + Ble(k) — e(k — 1)], where (31)

e(k) = z(k) — z(k) (32)

Equations (29) and (31) fully characterize the adaptation system. We have the following theorems about
equilibrium analysis and asymptotic stability around a local neighborhood.

Theorem 3: Within the time interval when z¢(k) remains at a constant X'¢, the number of data units

in flight z in the system established by Equation (29) and (31) will converge to an equilibrium value which

equals to the reference value z¢. In addition, « will converge to an equilibrium value which equals to c.
Proof: Let x4, us and ¢s be the values at equilibrium of z, u and ¢. We then have

Ty =Ts+ Us—Cs = Us = ¢ and (33)
us = us + ozl — 5] + B[zl — s — (25 — z5)] = x5 = 2 (34)

Equations (33) and (34) conclude the proof. O
Theorem 4: The adaptation system established by Equation (29) and (31) is asymptotically stable for

task T; around a local neighborhood, under the condition that & > 0, 8 > 0, and o + 28 < 4.
Proof: Around a local neighborhood, assume ¢(k — 1) = ¢(k) = ¢;. Let a(k) = u(k) — ¢;, we have

(k) = a(k — 1) + ae(k) + Ble(k) — e(k — 1)] (35)

z(k) =z(k—1)+a(k—1) (36)

Equations (35) and (36) are identical to Equations (23) and (24). The proof follows from Theorem 2. O

To conclude, we believe that the Task Control Model still yields asymptotic stability and responsiveness
configurability, despite of incomplete task state information. It is possible to apply the same PID control

algorithm in the Adaptation Task to these situations, if the models for the Target Task and Observation Task
are appropriately established.
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6 Conclusions

Our work made two contributions. First, we established the Task Control Model based on the Task Flow
Model presented in [7] and rigorously defined the mapping between classic control systems and the Task
Control Model. Second, we proposed a PID control algorithm and analyzed fairness properties, asymptotic
stability conditions, and responsiveness of the adaptation behavior. In addition, we also proved that the
Task Control Model yields the same equilibrium and stability properties despite of incompleteness of task
state information, as in the example of controlling a transmission task. Obviously, control theory itself is
not new; our contribution is to propose a model that successfully applies the control theory to the practice
of QoS adaptations. The design and implementation of an experimental adaptive QoS framework in the
middleware layer based on the model presented in this paper is in progress.
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