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Abstract—Peer-to-Peer (P2P) live video streaming systems
have recently received significant attention, with commercial
deployment gaining increased popularity in the Internet. It is
evident in our empirical experiences with real-world systems
that, it is not uncommon to have hundreds of thousands of
viewers trying to join a program in the first few minutes of
a live broadcast. This phenomenon in live streaming systems,
referred as the flash crowd, poses unique challenges in the system
design. In this paper, we develop a mathematical model to capture
the inherent relationship between time and scale during a flash
crowd. We derive an upper bound on the system scale, and then
demonstrate that the timing factor plays a critical role for such
a system to scale. In addition, our analysis also brings a more in-
depth understanding with respect to the use of Gossip protocols,
i.e., the effects of partial knowledge.

I. I NTRODUCTION

Recently, the Internet has witnessed a significant increase
in the popularity of peer-to-peer (P2P) live media streaming
applications, that deliver real-time and sustained media content
to potentially millions of users. As participating peers not
only download media streams, but also contribute their upload
bandwidth capacities to serve one another, such systems are
potentially more scalable, and are thus cost-effective to be de-
ployed, compared to traditional infrastructure-based solutions,
such as IP multicast or Content Delivery Networks.

While recent measurement studies [1], [2] on real-world
P2P streaming systems have demonstrated that the streaming
performance can be typically maintained at a high level once
the systems have reached a reasonable scale, this is challenged
by a severe phenomenon called theflash crowd, in which
there could be a large number of peers arriving at the system
within a short period of time, just after a new live event
has been released. It is evident in our empirical experiences
from the latest version of Coolstreaming+ [3] that, it is
considerably more challenging for a P2P streaming system
to accommodate an abrupt surge of newly arrived peers, with
reasonable streaming qualities and initial startup delays.

In this paper, we seek to analyze and understand the inherent
relationship between time and scale in P2P streaming systems
under a flash crowd scenario (henceforth referred to asscale-
time), through a tractable analytical model that we propose.
Specifically, our major contributions are: (1) We first derive
the fundamental constraint of the scale-time relationshipwith
the upper bound of system scale over time, which explains
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in depthwhy the intuitive “demand vs. supply”condition is
insufficient to capture the system scale. (2) We further proceed
to an enhanced constraint that quantitatively characterizeshow
the system scale is further constrained by the timing constraint,
if the partial knowledge of peers and their competition for the
limited upload bandwidth resources in the system are taken
into account. In addition, our analytical framework also offers
us the flexibility to investigate the effects of various critical
factors, including the initial system scale, the scale of the flash
crowd, the peer upload capacity, and the number of partners
each peer has.

With respect to analytical studies on P2P streaming systems,
Kumar et al. [4] have derived the maximum streaming rate
for churnless systems and developed a stochastic fluid model
with peer churn to examine its performance. There have also
emerged a number of analyses on the performance bounds
of tree-based or mesh-based systems in terms of streaming
rate, delay, and server load (e.g., [5]–[7]), particularly through
the perspective of chunk dissemination to participating peers.
Along this direction, a more recent study [8] has analyzed the
performance gap between the fundamental limits and actual
performance of mesh-pull systems. Zhouet al. [9] have com-
pared, through a stochastic model, different chunk scheduling
strategies based on the performance metrics of continuity and
startup latency. While recognizing the significance of these
prior works, our study is different from and complementary to
them. To our knowledge, this paper, for the first time, attempts
to provide an analytical characterization and understanding of
the scale-time relationship in P2P streaming systems, witha
particular focus on the flash crowd and various critical factors.

II. SYSTEM MODEL AND FUNDAMENTAL PRINCIPLES

A. System Model

In this section, we present our basic model for P2P live
video streaming under a flash crowd, including the underlying
assumptions and notations summarized in Table I. We consider
a video with rateR = xr to be streamed to all participating
peers, wherer is the bit rate corresponding to a unit of
bandwidth, andR corresponds to the bandwidth requirement
of x units. This can alternatively be related to the concept of
substreamsin the real-world large-scale P2P streaming system
Coolstreaming+ [2], in which a media stream is divided into
multiple substreams and peers could subscribe to different
substreams from different partners.

For a peeri, let ui denote the upload capacity of the peer.
The peer download capacity is assumed not to be the bottle-
neck, which is in accordance with most of the recent Internet
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access technologies and measurement studies of existing P2P
systems [10]. Given a streaming rateR, we define therelative
surplus upload capacityhi of a peeri as the ratio of(ui −R)
to r. Let u be the average peer upload capacity andh be the
relative average peer surplus capacity, which will be elaborated
in Theorem 1 (Sec. II-B) later.

To capture essential aspects of practical systems, yet be still
simple enough to yield relevant insights, our model mainly
considers the following aspects:

⊲ First, initial system capacity. We assume initially there
areM existing peers that already joined the system. That is,
they have obtained sufficient upload bandwidth resources to
satisfy the streaming rate, and are able to contribute their
upload capacities to the system. We assume that there exists
one or multiple servers in the system with aggregate upload
capacity Us. Given a streaming rateR, the relative server
capacityus is defined as the ratio ofUs/R.

⊲ Second, flash crowd. We focus on an extreme flash crowd
scenario whereN(≫ M) peers arrive at approximately the
same time [8], just after a new live event has been released.
Each new peer that has yet to join the system needs to gather at
leastx units of upload bandwidth resource from those existing
peers to meet the streaming rate requirement. Our model
strives to capture the difficulty for peers to gather sufficient
upload bandwidth resources at startup, which we believe is a
critical issue under a flash crowd.

⊲ Third, system scale and initial startup delays. Without
loss of generality, we assume that timet is slotted. If anew
peer— one that has not yet joined the system — has obtained
sufficient upload bandwidth resource (i.e., x units) at thet-th
time slot, it is regarded as “joined the system” and counted
towards the system scaleS(t) of existing peers. Otherwise, the
peer will continue to seek upload bandwidth resource along the
subsequent time slots until it joins the system. In our model,
once a peer is able to join the system, it will not leave the
system during the flash crowd. From the perspective of user
experience, the timet represents the initial startup delays for
peers.

⊲ Fourth, we first analytically consider the case of global
knowledge and centralized control of the system, which yields
an upper bound of the system scale over time. Further, we
proceed to demonstrate the effects of partial knowledge, by
a simple random partner selection strategy. Specifically, each
new peer will randomly selectk partners from the current set
of existing peers to ask for their surplus upload capacitiesin
each time slot. Since an existing peer can be selected by a
number of new peers, it would randomly choose a certain
number of them to supply its upload bandwidth resource,
depending on its surplus capacity. Such random partner se-
lection strategy with parameterk essentially represents the
decentralized gossiping among peers to gather upload band-
width resource. This is a reasonable assumption, as such a
strategy is typically adopted in many practical P2P systems
(e.g., BitTorrent and Coolstreaming) for bootstrapping peers,
mainly due to its simplicity.

Different from the perspective of chunk dissemination that

TABLE I
KEY PARAMETERS IN THE SYSTEM MODEL.

Notation Definition

M Initial system scale.

N Flash crowd scale.

R Video streaming rate (= xr).

ui Upload capacity of peeri.

hi Relative surplus upload capacity of peeri (= (ui − R)/r).

u Average peer upload capacity.

h Relative average peer surplus capacity (= (u − R)/r).

k Number of partners of a new peer (≥ x).

S(t) System scale (number of existing peers) in thet-th time slot.

Us Server capacity provisioning.

us Relative server capacity provisioning (= Us/R).

takes the peer streaming buffer state or/and chunk scheduling
as main consideration (e.g., [5], [6], [8], [9]), we attempt to
provide a complementary perspective in this paper: we analyze
the asymptotic scaling behavior of the system, rather than the
individual peer behavior.

Based on this system model, we are able to derive a
tractable theoretical framework in Sec. II-B, which reveals
the fundamental relationship between time and scale in P2P
streaming systems under a flash crowd, as well as insights on
the impacts from various critical factors, includingk, h, M ,
andN .
B. Scale-Time Relationship with Critical Factors

First of all, we derive the fundamental constraint of the
scale-time relationship in P2P streaming systems, even with
global knowledge and centralized control of the systems:
While “the average peer uploading capacity should be no
less than the average peer downloading rates” is a necessary
condition for P2P streaming systems to scale, it is insufficient
to capture the system scale, as the upload bandwidth resource
from newly arrived peers cannot be utilized immediately. This
leads to the following upper bound of system scale over time.

Theorem 1: For a P2P streaming system with a given
streaming rateR and average peer upload capacityu, the
system scale after thet-th time slot,S(t), has the following
upper bound:

S(t) ≤ min{(
u

R
)t(M + C) − C,N + M}, (1)

whereC = Us/(u−R), M is the initial system scale at time
t = 0, Us is the server capacity provisioning, andN is a flash
crowd of newly arrived peers.

Proof: Clearly, the system scale cannot exceed the total
number of peers, including both existing and new peers; thus,
S(t) ≤ N + M .

Furthermore, the system scale after each time slotS(t)
is bounded by the aggregate upload bandwidth resource that
is currently available in the system, which depends on the
number of existing peers in previous time slots (i.e., S(t−1))
and their surplus upload capacitieshi, as well as the server
capacity provisioningUs. If these resources can be fully
utilized, which essentially implies that global knowledgeand
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centralized control of the system can be achieved, then

S(t) ≤ S(t − 1) +

∑

i∈S(t−1)

hi

x
+

Us

R

= S(t − 1) + S(t − 1)
h

x
+

Us

R

≤ (1 +
h

x
)tS(0) +

Us

u − R

(

(1 +
h

x
)t − 1

)

= (
u

R
)t(M +

Us

u − R
) −

Us

u − R
.

Combining the above two bounds gives Eq. (1). Equivalently,it
also implies the minimum time to accommodate a flash crowd
of N peers.

Note that this fundamental upper bound neither depends
on specific flash crowd arrival patterns, nor the bandwidth
unit. However, it intuitively would still be too optimistic
as it assumes all current surplus bandwidth resources from
existing peers can be fully utilized.Since the system scale
is further constrained by the partial knowledge of peers and
their competition for limited resources, how can we quantify
such effects?To this end, we proceed to analyze the scale-
time relationship with a random partner selection strategyas
follows.

Since it has already been proved in [4], [8] that the average
peer upload capacityu satisfiesu > R in large-scale streaming
systems, we shall focus on the general homogeneous case
where ui = u > R (i.e., hi = h > 0) for all peers. This
is reasonable as we are more interested in the asymptotic
collective behavior of the system rather than the individual
peer behavior. As we focus on such a homogeneous case,
we first ignore the server capacity, and will introduce it as
a parameter later.

Lemma 1: For a P2P streaming system with each peer
having partial knowledge of the system and a random partner
selection strategy (i.e., each new peer independently and
randomly selectsk partners from the set of existing peers),
the number of new partners of an existing peer during thet-th
time slot,q(t, k), is a random variable that follows a binomial
distribution with parameters(N +M −S(t− 1), k/S(t− 1)),
and an expected value of

E[q(t, k)] =
k(N + M − S(t − 1))

S(t − 1)
, (2)

whereS(t− 1) is the current number of existing peers in the
system.

Proof: At the beginning of thet-th time slot, the number
of existing and new peers in the system isS(t− 1) andN +
M−S(t−1), respectively. Since each new peer independently
and randomly selectsk partners from those existing peers, the
probability for an existing peer to be selected as a partner by
a new peer isCk−1

S(t−1)−1/Ck

S(t−1) = k/S(t − 1). Hence, the
probability for an existing peer to be selected as a partner by
i new peers is a binomial distribution with parameters(N +
M−S(t−1), k/S(t−1)). Hence, the expected value ofq(t, k)
can be expressed as Eq. (2).

Based on Lemma 1, we can derive an approximation of the
expected system scale as follows.

Theorem 2: For a P2P streaming system with each peer
having partial knowledge of the system and a random part-
ner selection strategy, assume that each existing peer could
randomly provide each of its new partner with1 unit of
upload bandwidth resource with a probability ofh/q(t, k). If
we use the expected valueE[q(t, k)] given by Eq. (2) as an
approximation ofq(t, k), then the expected system scale after
the t-th time slot,E[S(t)], can be approximated by

E[S(t)] ≈ S(t − 1) + (N + M − S(t − 1))

×
k

∑

i=x

Ci

kp(t, k, h)i (1 − p(t, k, h))
k−i

, (3)

wherep(t, k, h) ≈ hα(t)/k is the probability for a new peer
to obtain1 unit of upload bandwidth resource from an existing
peer; andα(t) = S(t − 1)/(N + M − S(t − 1)) is the ratio
of the number of existing peers to the number of new peers
in the system at the beginning of thet-th time slot.

Proof: Based on Lemma 1, we haveq(t, k) ∼
Binomial(N + M − S(t − 1), k/S(t − 1)). Since one of
the important features of a binomial distribution is that its
probability mass function Pr[q(t, k) = j] gains the highest
value atj = E[q(t, k)], we chooseE[q(t, k)] given by Eq. (2)
to approximateq(t, k) for all existing peers. Then,p(t, k, h)
can be derived as

p(t, k, h) ≈
h

E[q(t, k)]
=

(

h

k

)(

S(t − 1)

N + M − S(t − 1)

)

=
h

k
α(t).

Then, the amount of upload bandwidth resourcei that can
be obtained by a new peer can be simplified to a binomial
distribution with parameters(k, p(t, k, h)). The corresponding
probability mass function isCi

k
p(t, k, h)i (1 − p(t, k, h))

k−i.
Furthermore, recall that a new peer needs to gather at

least x units of upload bandwidth resource (corresponding
to the streaming rateR) to join the system; hence, the
expected system scale after thet-th time slot,E[S(t)], can
be approximated by Eq. (3).

Theorem 2 with Eq. (3) qualitatively indicates that,p(t, k, h)
plays an important role for the system scale, which depends on
α(t), h, andk. The effects of these factors will be thoroughly
demonstrated in Sec. III.

Furthermore, as demonstrated by both the real-world expe-
rience [3] and the numerical results (Sec. III) derived from
our model, P2P streaming systems by nature do not react
well to a flash crowd. Specifically, the system scale grows
relatively slower during the initial time slots. This motivates
a natural question:How a certain amount of server capacity
provisioning can help improve the system scale?Based on
Theorem 2, we can approximately derive the improved system
scale with a given amount of server capacity provisioning as
follows.

Corollary 1: For a P2P streaming system with a streaming
rate ofR and an aggregate server upload capacityUs, assume
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that server(s) support a number ofus = Us/R randomly
selected new peers at the beginning of each time slot. The
remainingN + M − S(t − 1) − us new peers still rely on
theS(t−1) existing peers through a random partner selection
strategy. Then, the expected system scaleE[S(t)] given by
Theorem 2 can be potentially improved as

E[S(t)] ≈ S(t − 1) + us + (N + M − S(t − 1) − us) ×
k

∑

i=x

Ci

kp′(t, k, h, us)
i (1 − p′(t, k, h, us))

k−i (4)

where p′(t, k, h, us) = hα′(t, us)/k, α′(t, us) = S(t −
1)/(N + M − S(t− 1)− us), andus = Us/R is the relative
server capacity.

The proof of Corollary 1 is similar to the proof of Theo-
rem 2. The effects of the parameterus will be quantitatively
demonstrated in Sec. III.

III. N UMERICAL RESULTS AND INSIGHTS

In this section, we take advantage of the theoretical results
derived from our model to demonstrate the fundamental scale-
time relationship in P2P streaming systems under a flash
crowd, as well as the effects of various critical factors.

A. Scale-Time Relationship and Join Time Distribution

Fig. 1 compares the approximated system scale over time
slots obtained by Theorem 1, 2 and Corollary 1, under the
same flash crowd scenario setting. We observe the following:

First, the system scale grows relatively slower during initial
time slots, as a surge of newly arrived peers compete for the
limited surplus capacities from a relatively smaller number of
existing peers. This results in considerable difficulty fornew
peers to obtain sufficient upload bandwidth resources.

Second, as more peers gradually joining the system with
positive gain of surplus capacities, the ratio of the numberof
existing peers to the number of new peersα(t) continuously
increases and the total system capacity improves; thus the
system scale ramps up more and more quickly.

Third, as expected, the system scale can be improved
with an additional amount of server capacity provisioned,
especially for the initial time slots. However, we note thatthe
improvement slows down with more and more server capacity
provisioned, as demonstrated by the decreasing gaps between
the curves.

To reflect the user experience under a flash crowd, Fig. 2
plots the peer join time distribution (i.e., the percentage of
peers that joined the system in each time slot). It shows
that potentially many peers could suffer from long startup
delays under a flash crowd; while only a small portion of
peers can join the system within the initial time slots. As
an additional amount of server capacity is provisioned, the
join time distribution noticeably shifts towards the earlier time
slots, with a relatively larger portion of peers joining the
system with shorter startup delays.

The above findings suggest that an adequate amount of
additional server capacity provisioning could help alleviate the

flash crowd effect in P2P streaming systems, and improve the
user experience with shorter initial startup delays. Specifically,
it can help improve the system scale during the initial period
of a flash crowd. Once the system scale reaches a reasonable
level (e.g., this can be simply reflected byα(t), which can
be roughly captured by the tracking server used for peer
registration and discoveries), peer resources would then be
sufficient for the system to scale up further, and thus the server
capacity can be reduced accordingly.

B. Sensitivity Analysis on Critical Factors

We next demonstrate the effects of several critical factors
indicated by Theorem 2, by carrying out a series of sensitivity
analysis. Specifically, we apply the classical approach of
varying one or two parameters while keeping others constant.

First, Fig. 3 compares the approximated system scale over
time, by varying the number of partners for new peersk.
We observe that the system scale improves significantly as
k increases in the range of typical settings that real-world
systems use [2]. Equivalently, the time to accommodate a given
scale of a flash crowd decreases significantly. However, when
k continues to increase to larger values up to the size of current
set of existing peersS(t − 1), the improvements, though still
exist, become relatively minor.

We further examine the effects ofk by comparing the time
to accommodate different scales of a flash crowd whenk
varies, as shown in Fig. 4. We observe that: (1) When the flash
crowd is less severe relative to the initial system capacity(i.e.,
the demand to supply ratio of(Nx)/(Mh) is relatively less
stringent), results are relatively insensitive to different values
of k. Specifically, the increase ofk actually does not help
(e.g., when the flash crowd scaleN = 4000, the time to
accommodate it under different values ofk stays nearly the
same); or could even bring negative effects when the flash
crowd scale decreases. This is in conflict with the intuitive
belief that an increase of the number of partners for peers
can always help reduce the startup delays and improve the
system scale. (2) As the scale of the flash crowd increases,
our results become more sensitive to different values ofk, and
there are remarkable improvements by increasingk. However,
excessive increase ofk brings relatively minor improvements,
which consists with previous observation from Fig. 3.

Finally, we examine the impact from the relative average
peer surplus capacityh, the initial system scaleM , and
their correlation withk. Fig. 5 and Fig. 6 plot the time to
accommodate a given scale of a flash crowd whenh or M
varies, respectively, under different settings ofk. We observe
that: (1) As expected, the increase ofh or M can effectively
reduce the time to accommodate flash crowd, as it essentially
enhances the entire system capacity. In general, the more
upload bandwidth resources exist in the system (though it takes
time to utilize them), the less time it takes to accommodate
a flash crowd. (2) The impact ofk observed in Fig. 4 is also
verified. When the upload bandwidth resource is relatively
constrained (i.e., when h or M decreases), the performance



5

0 5 10 15 20 25 30 35 40 45 50 55 60

2000

4000

6000

8000

10000

12000

14000

 

 
A

pp
ro

xi
m

at
ed

 s
ys

te
m

 s
ca

le
 S

(t)

Time slots (t)

 k=20, us=0        k=20, us=25
 k=20, us=50      k=20, us=100
 k=20, us=200    upper bound, us=200

Fig. 1. Approximated system scale along time
slots, with different amount of server capacity
provisioning. We set the initial system scaleM
to 1500 and flash crowd scaleN to 10000. The
number of partners for new peersk is set
to a typical value of20. The relative server
capacity provisioningus varies from0 to 200.
Others are set ash = x = 5.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0
5
10
15
20
25
30
35
40
45
50
55

 

 

Jo
in

 ti
m

e 
di

st
rib

ut
io

n 
(%

)

Time slots (t)

 k=20, us=0       k=20, us=25
 k=20, us=50     k=20, us=100
 upper bound, us=200

Fig. 2. Peer join time distribution versus time
slots, with different amount of server capacity
provisioning. We set the initial system scaleM
to 1500 and flash crowd scaleN to 10000. The
number of partners for new peersk is set
to a typical value of20. The relative server
capacity provisioningus varies from0 to 200.
Others are set ash = x = 5.

0 20 40 60 80 100 120 140 160 180 200

2000

4000

6000

8000

10000

12000

14000

 

 

A
pp

ro
xi

m
at

ed
 s

ys
te

m
 s

ca
le

 S
(t)

Time slots (t)

 k=6    k=10    k=20
 k=40  k=100  k=S(t-1)

Fig. 3. Approximated system scale over time
slots, with different settings of the number of
partners for new peersk. We set the initial
system scaleM to 1500 and flash crowd scaleN
to 10000. The value ofk varies from6 to S(t− 1).
Others are set asus = 0, h = x = 5.

1500 2000 3000 4000 5000 6000 7000 8000 90001000
0

0

10

20

30

40

50

60

70

80

90
 

Ti
m

e 
to

 a
cc

om
m

od
at

e 
fla

sh
 c

ro
w

d

Flash crowd scale (N)

 k=6
 k=10
 k=20
 k=40
 k=100
 k=S(t-1)

Fig. 4. Time to accommodate different scales
of a flash crowd, under different settings of the
number of partners for new peersk. We
set the initial system scaleM to 1500. The
value ofk varies from6 to S(t − 1).
Others are set asus = 0, h = 6, x = 5.

3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0
0

100

200

300

400

500

600

700

800

900

 

 

Ti
m

e 
to

 a
cc

om
m

od
at

e 
fla

sh
 c

ro
w

d

Relative average peer surplus capacity (h)

 k=10
 k=20
 k=40
 k=100

Fig. 5. Time to accommodate a flash crowd
of N = 10000 peers when relative average peer
surplus capacityh varies, under different settings
of the number of partners for new peersk.
We set the initial system scaleM to 1500. The
value ofk varies from10 to 100. Others are
set asus = 0, x = 5.

900 1200 1500 1800 2100 2400 2700 3000
0
50
100
150
200
250
300
350
400
450
500
550
600

 

 

Ti
m

e 
to

 a
cc

om
m

od
at

e 
fla

sh
 c

ro
w

d

Initial system scale (M)

 k=10
 k=20
 k=40
 k=100

Fig. 6. Time to accommodate a flash crowd
of N = 10000 peers when the initial system scale
M varies, under different settings of the
number of partners for new peersk.
The value ofk varies from10 to 100.
Others are set asus = 0, h = x = 5.

gaps (in terms of time saved) between different settings ofk
are more profound.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have studied the inherent relationship
between time and scale in P2P streaming systems during a
flash crowd, through a mathematical framework we developed.
We have derived an upper bound on the system scale and
demonstrated that the timing factor plays a critical role for
such a system to scale. In addition, our analysis also brings
a more in-depth understanding with respect to the partial
knowledge of peers and their competition for the limited pool
of upload bandwidth resources, as well as important insights
on a few other critical factors.

We believe that this work represents only the first step
towards analyzing flash crowd behavior of P2P streaming
systems. For example, it is desirable to consider more general
and bursty patterns of peer arrival and departure, which is more
representative of real-world systems. From the perspective of
additional server capacity provisioning, it is also important to
dynamically adjust additional capacities from servers to adapt
to the size of the flash crowd. We defer these investigations
to our future work.
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