
iOverlay: A Lightweight Middleware Infrastructure
for Overlay Application Implementations

Baochun Li, Jiang Guo, Mea Wang

Department of Electrical and Computer Engineering
University of Toronto

{bli,jguo,mea}eecg.toronto.edu

Abstract. The very nature of implementing and evaluating fully distributed algorithms or protocols in application-layer
overlay networks involves certain programming tasks that are at best mundane and tedious — and at worst challenging
— even at the application level. These include multi-threaded message switching engines at the application layer, failure
detections and reactions, measurements of QoS metrics such as loss rates and per-link throughput, application deploy-
ment and terminations, debugging and monitoring facilities, virtualizing distributed nodes, as well as emulating resource
bottlenecks and asymmetric network connections. Unfortunately, such a significant set of programming tasks is inevitable
when implementing a diverse variety of application-layer overlay protocols and algorithms.
In this paper, we present iOverlay, a lightweight and high-performance middleware infrastructure that addresses these
problems in a novel way by providing clean, well-documented layers of middleware components. The interface between
iOverlay and overlay applications is designed to maximize the usefulness of iOverlay, and to minimize the programming
burden of application developers. The internals of iOverlay are carefully designed and implemented to maximize its
performance, without sacrificing the simplicity of application implementations using iOverlay. We illustrate the effectiveness
of iOverlay by rapidly implementing a set of overlay applications, and report our findings and experiences by deploying
them on PlanetLab, the wide-area overlay network testbed that iOverlay conveniently supports.

1 Introduction

Existing research in the area of application-layer overlay protocols has produced a sizable collection of real-world
implementations of protocols and distributed applications in overlay networks. Examples include implementations
of structured search protocols such as Pastry [1] and Chord [2], as well as overlay data dissemination such as
Narada [3], NICE [4], SplitStream [5] and Bullet [6]. However, an interesting observation is that most of the
existing work has resorted to simulations to evaluate the effectiveness of the proposed protocols. This phenomenon
is certainly not surprising, since it is generally difficult to federate a large number of physical nodes that are
globally distributed across the Internet, such that application implementations may be deployed globally to show
their real-world performance and quality.

The recent emergence of global-scale implementation testbeds for application-layer overlay protocols comes to
our rescue. Both PlanetLab [7] and Netbed’s wide-area testbed [8] have been designed and implemented precisely
for the purpose of evaluating new protocols and distributed applications over a wide-area overlay network. The
availability of these testbed platforms makes it feasible to design, implement and deploy overlay protocols in a
wide-area network, so that they may be evaluated in realistic environments rather than simulations. However,
there still exist roadblocks that make it impractical for a small research group to deliver a high-quality, high-
performance and fully distributed real-world implementation of overlay applications entirely from scratch: such
an implementation involves many software components that must work together, including certain programming
tasks that are at best mundane and tedious — and at worst challenging — to code.

We observe that, among all the components of a distributed application or protocol implementation, only a
few specific areas are interesting for research purposes, and are subject to changes and innovations. On the other
hand, any realistic implementation of overlay applications — in order to be useful even for collecting the first set
of performance data — must include a significant number of largely uninteresting elements, such as bootstrapping
wide-area nodes from a centralized authority, implementing a multi-threaded message forwarding engine, as well
as monitoring facilities to control, debug, and record the performance of distributed algorithms. The necessity
of writing this kind of supporting infrastructure not only slows down the pace of prototyping new applications
and protocols, but also greatly increases the cost of entry to application-layer overlay research in realistic overlay
testbeds, such that many small but useful experiments of newly conceived ideas are simply not viable.

In this paper, we present iOverlay, a lightweight and high-performance middleware infrastructure that is
specifically designed from scratch to support rapid development of distributed applications and protocols over

realistic testbeds. By distributed applications, we refer to both specific applications such as multimedia stream-
ing or service composition, and application-layer overlay protocols such as multicast protocols for rapid data
dissemination. The design objectives of iOverlay are as follows. First, it seeks to provide a high-quality and
high-performance implementation of a carefully selected number of features that are common or useful to most
of the overlay application implementations. Second, it seeks to be as generic as possible, and minimizes the set of
assumptions with respect to the objectives and nature of new applications. Third, it seeks to significantly simplify
the implementation of distributed applications, to the extent that only the logics and semantics specific to the
application itself need to be implemented by the application developer. In addition, it should not be necessary
for the application developer to have any prior knowledge about the internal details of iOverlay, before starting
a successful implementation. Finally, it seeks to design a well-documented, straightforward and clean interface
between the application and iOverlay.

The remainder of this paper is organized as follows. In Section 2, we open our discussions with an overview
of the iOverlay architecture and highlights (Section 2.1), and proceed with a detailed account of various aspects
of iOverlay: (1) the design of the message switching engine (Section 2.2); (3) the interface between iOverlay and
algorithms (Section 2.3); and (4) the achievable performance with iOverlay (Section 2.4). In Section 3, we support
our observations by presenting our own experiences with rapidly prototyping a set of overlay applications as case
studies. Finally, we discuss iOverlay in light of related work (Section 4), and conclude the paper in Section 5.

algorithm

engine
socket interface

OS and network protocol stack

Basic elements of algorithms

 application-specific
 algorithm

iOverlay supplied
 developer
 supplied

On each overlay node

observer

On Windows desktop of
the algorithm developer

status and performance
reports, or bootstrap requests

control commands
or requests for
reports

application

algorithm

engine

OS/network

application

algorithm

engine

OS/network

overlay link overlay link

observer
connection

observer
connection legend:

application

Fig. 1. The iOverlay architecture.

2 iOverlay: Design and Performance

iOverlay considers three layers in a distributed application: (1) the message switching engine, which performs
indispensable tasks of switching application-layer messages. (2) the algorithm, which implements the application-
specific distributed protocol beyond mundane tasks in the engine; and (3) the application, which produces and
interprets the data portion of application-layer messages at both the sending and the receiving ends. This may
include global storage systems that respond to queries, or publish-subscribe applications that produce events and
interests. The ultimate objective is for the application developer to build new algorithms based on the engine,
and to select an application to be deployed on top of the algorithm.

Architecturally, the iOverlay middleware infrastructure provides support to the application developer in all
of these aspects. First, it implements a fully functional, virtualizable and high performance message switching
engine, upon which the application-specific algorithm is built. Second, it implements common elements of selected
categories of algorithms that are completely optional for the application developer to use. Third, it implements
typical applications, which the algorithm developer may choose to deploy. Finally, it provides a centralized
Windows-based graphical utility, referred to as the observer, for the purpose of monitoring, debugging, visualizing
and logging various aspects of the distributed application. The iOverlay architecture, as discussed, is illustrated
in Fig. 1.

2.1 Highlights

The fundamental contribution that the iOverlay middleware infrastructure has brought is that it eliminates the
need of “reinventing the wheel” with respect to uninteresting or challenging components that different overlay
applications share. We now show a few highlights of the iOverlay architectural design.

Fig. 2. The observer in action with 10 PlanetLab nodes across the Internet. The black node is the current selection, while
the gray (green) node is its selected downstream. The current outgoing throughput to this downstream is shown, along
with the buffer size. The map may be conveniently switched to the North American map using the controls at the lower
right corner.

Simplified interface. iOverlay is designed to have the simplest interface possible between the application-
specific algorithm and the engine on each overlay node, in order to minimize the cost of entry to use iOverlay.
The application developer only needs to be aware of one function of the engine: the send function, used for
sending data or protocol messages to downstream or peer nodes. In addition to this function, the entire interface
is designed to be completely message driven, in the sense that the algorithm only needs to passively process
messages when they arrive or are produced by the engine. Since messages are distinguished by their types, a
message handler that handles possible types is all that is required for the algorithm implementation. Further,
the entire implementation of the application-specific algorithm is guaranteed to be executed in a single thread,
and therefore does not need to use thread-safe data structures (those guarded with semaphores and locks).

Virtualized nodes. iOverlay features complete virtualization of overlay nodes in a distributed application. Each
physical node in the wide-area network may easily accommodate from one to up to dozens of iOverlay nodes,
depending on available physical resources such as CPU. Each iOverlay node has its own bandwidth specifications,
such as the total bandwidth available to and from the node, separate upload and download available bandwidth,
or per-link bandwidth limits. This adds to the flexibility of iOverlay deployment: if necessary, iOverlay may be
entirely deployed in a local area network with a cluster of servers; or, for small-scale tests, on just a single server.

Maximized performance and portability. Finally, iOverlay is designed to maximize its performance. The engine
is implemented from scratch with the C++ programming language and the native POSIX thread library in
UNIX. It is also portable across UNIX variants, and may be compiled without changes on Linux, FreeBSD,
or even Cygwin-based Windows environments. On the other hand, for the sake of simplicity of extensions and
modifications of the graphical user interface, the observer is implemented in Windows using the C# programming

language in Visual Studio .NET, guaranteeing rapid development of additional interface elements, as well as the
most impressive visual effects possible. Fig. 2 shows the current graphical user interface of the observer.

2.2 Internal Design

In iOverlay, we assume that all communication is in the form of application-layer messages (referred henceforth
as messages), containing application data (or payload) of a maximum (but not necessarily fixed) length, in terms
of bytes. The message structure is illustrated in Fig. 3. We strive to minimize the overhead (in terms of number
of bytes) of using application-layer headers. To keep it simple, the content of a message is mostly immutable,
and is initialized at the time of construction. In addition, the notion of a node in iOverlay is uniquely identified
by its IP address and port number. The port number may be explicitly specified at start-up time; otherwise, the
engine chooses one of the available ports.

message type (4 bytes)

 original sender
(IP: 4 bytes, port: 4 bytes)

application identifier (4 bytes)
(that the message belongs to)

sequence number (4 bytes)
 (modifiable)

size of the payload (4 bytes)

actual application data
 (payload)

Fig. 3. The application-layer message in iOverlay, with a fixed 24-byte header.

receiver thread 1

receiver buffer

receiver thread 2

receiver buffer

receiver thread 3

receiver buffer

incoming socket
connection

incoming socket
connection

incoming socket
connection

From
 upstream

 nodes

sender thread A

sender buffer

sender thread B

sender buffer

sender thread C

sender buffer

outgoing socket
connection

outgoing socket
connection

outgoing socket
connection

To dow
nstream

 nodes

engine

switch

n-to-1
mapping

1-to-n
mapping

calls Algorithm::process()
to process incoming data messages,
if forwarded, to decide downstreams

calls Engine::send()
to send to downstreams,
if necessary

listens on the port
 of the node

 control messages to and from the
observer and the algorithm on other nodes

algorithm

Fig. 4. The internal design of the engine. In this illustration, the engine has three receiver threads, three sender threads,
and one engine thread that encapsulates the application-specific algorithm and the switch.

The message switching engine: a close examination

The engine of iOverlay is an application-layer message switch. We seek to design the engine such that it
supports multiple competing traffic sessions, so that the application developer may easily test the performance of
distributed algorithms under heavy cross traffic. It also has the capability to concurrently process both application
data and protocol-specific messages.

We deploy a multi-threaded architecture to concurrently handle multiple incoming and outgoing connections,
application-specific messages, as well as messages to and from the observer. Specifically, we use a thread-per-
receiver and a thread-per-sender design, along with a separate engine thread for processing and switching messages
using the application-specific algorithm. All receiver and sender threads use blocking receive and send operations,
and the sender thread is suspended when the buffer is empty, to be signaled by the engine thread. We use a
thread-safe circular queue to implement the shared buffers between the threads. Such a design is illustrated in
Fig. 4.

We adopt such a design to avoid the complex wait/signal scenario where the receiver or sender buffer is shared
by more than one reader or writer threads. Unlike the receiver and sender threads that “sleep” when the the
buffer is full (receiver) or empty (sender), the engine thread constantly monitors the publicized port of the node
(by using the non-blocking select() function) for incoming control messages from the observer, or from the
algorithms of other nodes. If they exist, they are either processed within the engine, or sent to the algorithm to
be processed, by calling the Algorithm::process() function. Next, it switches data messages from the receiver
buffers to the sender buffers in a weighted round-robin fashion, with dynamically tunable weights (implemented
in the Engine::switch() function). The skeleton of the engine thread is shown in Table 1.

Table 1. Design of the engine thread

start the TCP server on the publicized port;
bootstrap from observer;
while not terminated

if there are incoming messages on the port detected
using non-blocking select()

if the message is engine-related
call Engine::process();

else
call Algorithm::process();

call Engine::switch();
stop the TCP server.

Obviously, when the switch attempts to forward messages to downstreams, the choice of downstream nodes is
at the sole discretion of the algorithm. Therefore, the engine consults with the algorithm by calling Algorithm::process().
There are two possibilities. First, the algorithm may locally process and consume the message. Second, the al-
gorithm continues to forward the message to one or more downstream nodes, by calling the Engine::send()
function. Only in the latter case does the engine forward the message to the sender buffers.

The tight coupling of the algorithm’s and the engine’s message processing components is intentional by design.
First, they must reside in the same thread, since we prefer to avoid the cases where the developer needs to use
thread-safe data structures when algorithms are developed with iOverlay. It is impossible to design a typical
two-thread solution — where the engine processes control messages in one thread, and switches data messages
in another — and still achieve such a favorable property of accommodating thread-unaware algorithms. Second,
the seemingly complex “paradox” — at times the engine calls the algorithm, and at other times the algorithm
calls the engine — is in fact straightforward, since the algorithm is always reactive and never proactive.

There are further complexities involved in the design of a switch. As a first example, there may be cases
where messages are successfully forwarded to only a subset of the intended senders, but fail to be forwarded to
the remaining ones, since their buffers are full. In this case, we label each message with its set of remaining senders,
so that they may be tried in the next round. As a second example, in some scenarios a set of states needs to be
shared and exchanged between active threads. For example, a receiver thread needs to notify the engine when
a failed upstream node has been detected, such that the engine thread can clear up its data structures related
to this node. To avoid complex thread synchronization between active threads, we extensively take advantage of
the mechanism of passing application-layer messages across thread boundaries via the publicized port. Without
a doubt, these complexities are completely transparent to the algorithm developer.

Finally, we may not only wish to forward verbatim messages in an application-layer switch, but also wish to
merge or code multiple incoming messages into one outgoing message. In order to implement the most generic

n-to-m mapping (such as coding messages from n multiple incoming connections to m downstreams), we allow
Algorithm::process() to return a hold type, instructing the engine that the message is buffered in the algorithm,
but its processing should be put on hold to wait for other messages from other incoming connections. It is up to
the algorithm to implement the logic of merging or coding multiple messages after requesting a hold on them, and
eventually producing a new message to be sent to downstreams. Using the hold mechanism, we have successfully
implemented algorithms that perform overlay multicast with merging or network coding [9].

Salient features

Handling of failures. In iOverlay, we assume that the nodes themselves, the virtual link between nodes, as
well as the application data sources may all fail prematurely. Transparent to the algorithm developer, iOverlay
supports the automatic detection of failed nodes and links, and the automatic tear-down of relevant links after
such failures. For example, if an upstream link in a multicast tree has failed, it causes a “Domino Effect” that
fails all downstream links from this point. The engine is able to appropriately tear down these links without
affecting any of the other active links, and to notify the algorithm of such failures. All terminations are graceful,
and all affected links are smoothly dropped without side effects.

We have implemented a collection of exception handling mechanisms to detect and process such failures.
Depending on the state of the sockets at the time of premature failures, we rely on a combination of mechanisms
to detect that a node or a link may have failed: (1) exceptions thrown and timeouts at the socket level; (2)
abnormal signals caught by the engine, such as the Broken Pipe signal; and (3) long consecutive periods of traffic
inactivity, detected by throughput measurements. To avoid overhead, we do not use any forms of active probes
or “heartbeat updates” for this purpose. Still, we are able to implement very responsive detections of link and
node failures in most cases. In addition, the observer may choose to terminate a node at will, in which case all the
data structures and threads in both the engine and the algorithm will be cleared up, and the program terminates
gracefully.

Measurement of QoS metrics. At the socket level, we have implemented mechanisms to measure the TCP
throughput of a connection, as well as the round-trip latency and the number of bytes (or messages) lost due to
failures. The results of these measurements are periodically reported to the algorithm and the observer. Upon
requests from the algorithm, the available bandwidth and latency to any overlay nodes can be measured.

Emulation of bandwidth availability. In some cases, the algorithm developer prefers to test a preliminary
algorithm under controlled environments, in which node characteristics are more predictable. iOverlay explicitly
supports the emulation of bandwidth availability in three categories: (1) per-node total bandwidth: the total
incoming and outgoing bandwidth available; (2) per-link bandwidth: the bandwidth available on a certain point-
to-point virtual link; and (3) per-node incoming and outgoing bandwidth: iOverlay is able to emulate asymmetric
nodes (such as nodes on DSL or cable modem connections) featuring disparate outgoing and incoming bandwidth
availability. The emulated values may be specified at node start-up time, or within the observer at runtime. In
the latter case, artificially emulated bottlenecks may be produced or relieved on the fly, in order to evaluate the
adaptivity of the algorithm. To implement such emulations, we have wrapped the socket send and recv functions
to include multiple timers in order to precisely control the bandwidth used per interval (the length of which may
be specified by the algorithm).

Performance considerations

The performance objective of the engine design is to “push” messages through the engine as quickly as possible,
with the lowest possible overhead at the switch. Towards this objective, we have considered three directions of
performance optimizations, and successfully implemented them in the current engine.

Persistent connections. In order to avoid the unacceptable overhead of thread-level context switching at the
operating system when a large number of threads are used, we implement both incoming and outgoing socket
connections as persistent connections, in the sense that all the messages between two nodes are carried with the
same connection, regardless of the applications they belong to. With persistent connections, we have avoided
the creation of more threads when new distributed applications are deployed; instead, existing connections are
reused.

Zero copying of messages. In order to avoid deep copying of entire messages when they pass through the
engine, we have implemented a collection of mechanisms to ensure that only the references of messages are
passed from the incoming socket all the way to the outgoing socket, and no messages will be copied in the engine
at all. The algorithm may choose to copy messages, if necessary, supported by the copy constructor of the Msg

class. In order to appropriately destruct messages whose references are shared by multiple threads, an elaborate
thread-safe reference counting mechanism is in place in the core of the engine.

Footprint. The engine is meticulously designed and tested so that the memory footprint is minimized and
stable (without leaks). For example, with a message size of 5 KB and a buffer capacity of 10 messages, the
footprint of the engine is only 4 MB per active connection1. The optimized binary executable of the engine (with
a simple testing algorithm) is only 100 KB. Such a footprint guarantees the scalability of iOverlay, especially
when a large number of virtualized nodes are deployed on the same physical server.

The observer and its proxy

As a centralized monitoring facility, we have implemented the observer as a graphical tool in Windows, as
illustrated previously in Fig. 2. The observer implements the first level of bootstrap support, by responding to
any bootstrap requests (messages of type boot) with a random subset of existing nodes that are alive. The number
of initial nodes in such a subset is configurable. Once a node is bootstrapped, the observer periodically sends it a
request message to request for status updates, which include lengths of all engine buffers, measurements of QoS
metrics, and the list of upstream and downstream nodes. With these status updates, the observer may visually
illustrate the current network topology of each of the applications with geographical locations of all nodes, on
either the world or the North American map.

Further, the observer serves as a control panel and may take the following actions to control the status of the
network: (1) controlling the emulated per-link and per-node bandwidth availabilities; (2) deploying an application;
(3) asking a node to join or leave a particular application; and (4) terminating an application data source or a
node. For the sake of flexibility, the observer is also able to send new types of algorithm-specific control messages
to the nodes, with two optional integer parameters embedded in the header.

Finally, the observer is able to record the content of any messages with the type trace in its log files. This
mechanism serves as a centralized facility to collect and record debugging information, performance data and
other traces. Alternatively, if the volume of traces becomes large, it may be more favorable to log them locally
at each node, in which case iOverlay provides scripts to collect them after algorithm execution.

Initially, the observer is designed as a traditional multi-threaded TCP server on Windows. Our initial expe-
riences with such a design have shown two problems. First, Windows XP Professional poses a very tight limit
on the number of concurrently backlogged connections, such that when there are more than a few nodes re-
porting their states concurrently, the connection requests of some of them may be refused. Second, most of the
Windows desktops are installed behind firewalls, preventing the updates to arrive from wide-area overlay nodes
(e.g., on PlanetLab). To address both problems, we have implemented an efficient proxy to be executed in an
UNIX environment outside of the firewall on the same local area network, such as on PlanetLab nodes or firewall
gateways. In this case, the status updates from overlay nodes are submitted to the proxy, who relay them with a
single connection to the observer. With the addition of the proxy, we have tested the observer handling incoming
messages from thousands of virtualized nodes without problems.

Basic elements of algorithms

Despite the tight coupling between the algorithm and the engine, the algorithm is placed in its own namespace
with an object-oriented design. The basic and commonly used elements of an algorithm is defined and implemented
in a generic base class referred to as iAlgorithm. We present two examples. First, it implements a default message
handler, that handles known messages from the observer and the engine with a default behavior. For example,
upon receiving the bootstrap message from the observer, it records the set of initial nodes in a local data structure
referred to as KnownHosts. Second, iAlgorithm implements a disseminate function, which disseminates a message
to a list of overlay nodes, with a specific probability p. This resembles the gossiping behavior in distributed
systems. The default implementations of a library of functions in the iAlgorithm class serve as a set of basic
utilities, and since application-specific algorithms are classes that inherit from iAlgorithm, the developer may
choose to override any default behavior with application-specific implementations.

2.3 Interface between iOverlay and Algorithms

Given the iOverlay design we have presented, how do we rapidly develop an application using iOverlay? Many
design choices are made to reduce the complexity of developing new application-specific algorithms. First, the
1 This is the case in Linux, which may be inferior with respect to footprint since clone() is usually used to support

user-level POSIX threads.

algorithm namespace extensively uses object orientation such that new algorithms may be built based on existing
algorithm implementations. As we have discussed, a few basic elements of algorithms have already been provided
by iOverlay. Second, the algorithm only needs to call one function of the engine: the send function. This greatly
improves the learning curve of the interface. Finally, the algorithm is designed as a message handler, in the form
of a switch statement on different types of messages. While processing each incoming message, internal states of
the algorithm may be modified. The message handler should reside in the process() function. The skeleton of
an algorithm is shown in Table 2.

Table 2. Skeleton of the algorithm using iOverlay

process(Msg * m)

switch (m -> type())

case sDeploy: (from observer)
deploy an application source;

case request: (from observer)
send algorithm status updates to observer;

case sTerminate: (from observer)
terminate an application source;

case BrokenSource: (from upstream)
clear up internal states corresponding to the application
source at upstream, since it has failed;

case data: (from the engine)
process, consume or forward the message using
send(Msg * m, Node dest);

case UpThroughput: (from the engine)
record or process the throughput from an upstream;

. . . (process other engine or algorithm-specific types)
default: (use the default behavior from iAlgorithm)
iAlgorithm::process(m);

In such a skeleton, it is not necessary for an algorithm to handle all the known message types from the engine
or the observer. If a message type is not handled in the algorithm, the default process() function provided by
the base iAlgorithm class takes this responsibility. In fact, the only message type that the algorithm must handle
is the type data, indicating a data message. iAlgorithm provides default handlers for all other types of messages.
It is also not necessary for an algorithm to handle abnormal return values when invoking the send() function. In
fact, send() has a return type of void, and all abnormal results of sending a message are handled by the engine
transparently. For example, if the destination node of the message fails, the algorithm is notified appropriately,
again via messages produced by the engine.

Another important design decision is related to the destruction of messages. In order to completely eliminate
memory leaks, we need to carefully assign the responsibilities of message destruction. Particularly, consider a
message passed to the algorithm (by pointers) as a parameter in the process function. Should the engine or the
algorithm be responsible for destructing the message after it has been processed? Further, when a message is
constructed in the algorithm and passed to the send function of the engine, should the engine or the algorithm
be responsible for destructing the message after it is sent? To simplify the tasks of algorithm developers, we
stipulate that all message destructions are the responsibility of the engine. The algorithm developer should never
destruct messages, even if they have been constructed in the algorithm.

However, there exist a subtle problem with this solution even it works well at most times. When the algorithm
receives a pointer to an engine-created message as a parameter of the process function, what if the algorithm
passes the pointer back to the engine by using the send function? We distinguish treatments of this scenario
depending on the type of the message. If the message is of type data, we have developed the engine carefully such
that the algorithm can directly invoke send with the same message, guaranteeing zero copying of data messages.
However, if the message is of any other type, we require the algorithm developer to clone the message before
invoking send on the new copy. Performance-wise this is not a problem, since most protocol messages are very
small in size.

2.4 iOverlay: Performance and Correctness

With C++ on Linux, C# on Windows, and around 19, 000 lines of code in total, we have completed a stable
implementation of the entire iOverlay middleware infrastructure that we have presented. We now evaluate the
results of such an implementation, focusing on the baseline correctness, accuracy and performance aspects. For
these purposes, we execute iOverlay nodes on a single dual-CPU server with two Pentium III 1GHz processors,
1.5GB of memory, and Linux 2.4.25. The iOverlay engine is compiled with gcc 3.3.3 with the most aggressive
optimizations.

We first evaluate the raw message switching performance of iOverlay nodes, especially when they are vir-
tualized nodes on the same server. Since iOverlay nodes are multi-threaded user-level programs, the bottleneck
of such switching performance under heavy load is the overhead of context switching among a large number
of threads. We create such a load using a chain topology, and we test iOverlay with different number of nodes
in the network. Before we deploy an application on the chain topology, we observe that the CPU load is 0.00,
which shows that iOverlay does not consume CPU resources without traffic. After we deploy an application that
sends back-to-back traffic from one end of the chain to the other as fast as possible, we measure the end-to-end
throughput, as well as the total bandwidth in the chain, calculated by the end-to-end throughput multiplied by
the number of links. The total bandwidth represents the actual number of messages per second that have been
switched or in transit in the network. Fig. 5 shows the iOverlay engine performance in this test, with a chain
from two nodes to 32 nodes.

We have two noteworthy observations from this experiment. First, if we compare the two-node total bandwidth
of 48.4 MBps and the three-node bandwidth of 46.8 MBps, the overhead of one user-level message switch is only
3.3%. Second, as the number of nodes increases, the overhead of context switching becomes more significant,
due to the Linux implementation of POSIX threads using clone(). Still, even with a 32-node configuration, the
sustained throughput is still 424 KBps, which is higher than the typical throughput of wide-area connections.
This implies that we may potentially deploy dozens of nodes on a single physical node in a local-area or wide-area
testbed, making it feasible to test the scalability of new applications in terms of the number of participants. Such
performance is simply not achievable if, for example, Java is used rather than C++, or zero message copying is
not enforced.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

of nodes

T
hr

ou
gh

pu
t (

M
B

yt
es

 p
er

 s
ec

on
d)

End-to-end throughput
Total bandwidth

2.5 MBps, 12 nodes
5.0 MBps, 8 nodes

7.7 MBps, 6 nodes

1.6 MBps, 16 nodes 424 KBps, 32 nodes

10.1 MBps, 5 nodes

14.5 MBps, 4 nodes

23.4 MBps, 3 nodes

48.4 MBps, 2 nodes

Fig. 5. The raw performance of the iOverlay engine.

In order to verify the correctness of the engine, we have constructed a seven-node topology as in Fig. 6(a), and
deployed an application source at node A, so that it sends back-to-back traffic as rapidly as possible to all the
remaining receivers. When the number of downstream nodes is more than one, we use the simple algorithm that
identical copies of the messages are sent to all downstream nodes. When more than one upstream node exists,
no merging is performed.

We first verify per-node total bandwidth emulation and the baseline correctness of message forwarding
switches. For this purpose, we have set the buffers of all nodes to be 5 messages at start-up, and specified
the per-node available bandwidth on node A as 400 KBps, after deploying the application source using the ob-
server. We observed that the throughput values on all the links have converged to correct values, as shown in
Fig. 6(a). At this point, we proceed to set the uplink available bandwidth of node D to 30 KBps, which is much
smaller than its current measurements. In a few seconds, the throughput values of all the links except EF and
EG have converged to those shown in Fig. 6(b). At node D, both incoming links have converged to 15 KBps due
to the flow conservation property (no merging performed); while at node B, since BD is currently the bottleneck
and messages have to be copied to both downstreams, both AB and BF are therefore throttled to the same
throughput as BD. This demonstrated the accuracy of bandwidth emulation, and the correctness of the basic
switching behavior of the engine.

A [per-node: 400 KBps]

B C

D

E

GF

(a) The traffic topology. A is the appli-
cation data source, with a per-node total
available bandwidth of 400 KBps, and
copies are made when forwarding
to multiple downstream nodes. The
measured throughput values are marked
at the edges, in KBytes per second.

200.3 199.2

201.5

199.3

198.6

200.5401.3

398.9 399.0

A [per-node: 400 KBps]

B C

D

E

GF

(b) When the uplink available bandwidth
of node D is updated to 30 KBps, the
throughput of all the links except EF and
EG have decreased to 15 KBps. Both
EF and EG have converged to 30 KBps.
The changes are propagated to all the
links, rather than downstreams only, due
to the back pressure from full buffers.

14.5 15.8

15.3

15.4

15.0

15.630.2

30.3 29.7

[uplink: 30 KBps]

A [per-node: 400 KBps]

B C

D

E

GF

(c) When node B is terminated by the
observer, the other nodes are undisturbed,
except that the throughput of link CD is
adjusted to 30 KBps.

[closed] 29.9

[closed]

[closed]

30.1

29.829.5

30.2 29.6

[uplink: 30 KBps]

A [per-node: 400 KBps]

B C

D

E

GF

(d) When node G is terminated by the
observer, node F may still receive appli-
cation data, forwarded by nodes C, D
and E.

[closed] 30.5

[closed]

[closed]

30.1

[closed]30.4

30.2
[closed]

[uplink: 30 KBps]

Fig. 6. Correctness of the engine: verified with a seven-node topology.

Next, we verify the correctness of node terminations. In the case shown in Fig. 6(c), we terminate node B
with the observer. After termination, links AB, BF and BD are closed automatically, while the other nodes are
undisturbed, except that the link throughput of CD has converged to 30 KBps. When we continue to terminate
node G (Fig. 6(d)), node F is still able to receive application data from A, via the nodes C, D, and E, completely
undisturbed.

For some applications, the “back pressure” effect2 that bandwidth emulations have on upstream nodes in the
topology (as shown in Fig. 6b) is not desirable or realistic. For example, while video streaming and conferencing
applications on the overlay may cause such a “back pressure” effect due to its strict latency requirements (and
therefore small per-node buffers), data dissemination applications, in general, should allow very large buffers on
overlay nodes.
2 With limited buffer space on a particular node, throughput from upstream nodes eventually converges to the same as

the smallest throughput to downstream nodes. This is referred to as the “back pressure” effect.

To show the effects on throughput when large buffers are used, we use the same seven-node topology and the
same bandwidth emulations as Fig. 6(b), but set the buffer size to 10000 messages, with each message carrying
5 KB of data. The results with respect to link throughput are shown in Fig. 7(a). In this case, the smaller
uplink bandwidth on D has only affected its downstream links, rather than the entire network. We then updated
the emulated bandwidth of link EF to 15 KBps, which has not affected the link EG, shown in Fig. 7(b). This
is because that with large sender thread buffers, the throttling effects on other more capable downstreams are
significantly delayed. Of course, when the node buffers do become full after running for a prolonged period of time,
the back pressures from full buffers are still effective to decrease link throughputs to those shown in Fig. 6(b).
With these experiments, we are confident that iOverlay is able to meet the demands of both delay-sensitive and
bandwidth-aggressive applications, by adjusting per-node buffer sizes.

A [per-node: 400 KBps]

B C

D

E

GF

(a) With large buffers on overlay
nodes, the effects of a smaller uplink
bandwidth on D are only propagated
to immediate downstream nodes.

200.8 200.4

199.5

200.5

200.1

199.730.5

30.4 30.2

A [per-node: 400 KBps]

B C

D

E

GF

(b) When the per-link bandwidth on
EF has been changed to 15 KBps,
none of the other links is affected.

200.5 198.3

200.3

199.6

200.2

201.230.5

14.9 30.4

[uplink: 30 KBps][uplink: 30 KBps]

Fig. 7. The effects of bottleneck per-node or per-link available bandwidth: the case of large buffers

3 Case Studies of Application Implementations using iOverlay

We believe that iOverlay is useful to support the rapid implementation of a wide range of applications and
distributed algorithms in application overlay networks. We briefly illustrate a few potential research directions
to informally justify our observations, and then undertake several case studies to highlight our own experiences
of rapidly prototyping new algorithms and ideas using iOverlay as the middleware infrastructure.

3.1 How Useful is iOverlay?

How useful is iOverlay to assist application implementations after all? We now present a few examples.
Content-based networking. Content-based networks, which consist of a collection of client and router nodes in

an application-layer overlay, is a natural fit to be supported by iOverlay. In content-based networks, messages are
not addressed to any specific node; rather, a node advertises predicates that define messages of interest that the
node intends to receive. The content-based service consists of delivering a message to all the client nodes that
advertised predicates matching the message. Any algorithm in content-based networks boils down to one that
makes decisions on which nodes should a message be forwarded to, and this may be implemented as a derived
class from iAlgorithm in iOverlay. The engine passes messages to the content-based decision-making algorithm;
and once decisions are made, it forwards the message to all selected downstreams.

Load balancing, rationality and self-interests. There have been recent interests on applying economic or game-
based models to study per-node behavior motivated by self-interests and rationality. In this case, nodes may not
be able to relay messages, accept new child nodes in a topology, or give precedence to certain traffic flows, due to
the lack of incentives. iOverlay naturally supports such algorithms that seek to engineer and exchange incentives
across nodes. For example, an algorithm may perform an elaborate local calculation to determine whether or not
a data message should be forwarded, or a new join request should be acknowledged. Since bandwidth and latency

measurements are already in place, the load balancing aspects of such algorithms may be straightforwardly
evaluated.

Fault tolerance, robustness and availability. Due to the transparent detection of link and node failures in
iOverlay, it is easy to design experiments consisting of a certain number of failures, and evaluate the robustness
and dependability of proposed algorithms with the presence of failures. For example, the availability of application
services may be evaluated by measuring the received throughput at all participating clients, and observe whether
the quality of service has been degraded. The faults are all injected by the observer in a controlled fashion, while
any possible exceptions are handled by the engine, transparent to the algorithm.

The potential of iOverlay is not limited to these informal discussions. We have envisioned tremendous oppor-
tunities of undertaking future research directions using iOverlay as a middleware infrastructure. We now proceed
to discuss our own experiences with three case studies.

3.2 Network Coding

The advantages of application-layer overlay networks arise from the fundamental property that overlay nodes, as
opposed to lower-layer network elements such as routers and switches, are end systems and have capabilities far
beyond basic operations of storing and forwarding. In the first case study, we implement a novel message processing
algorithm that performs network coding on overlay nodes, using iOverlay. In such an algorithm, messages from
multiple incoming streams are coded into one stream using linear codes in the Galois Field (and more specifically,
with GF(28)). We are pleasantly surprised that, with one developer, such a non-trivial task is completed within
a few days. We have evaluated the network coding algorithm in the same topologies as those shown in Fig. 6,
and we show the performance of the algorithm in Fig. 8.

A [per-node: 400 KBps]

B C

D

E

GF

(b) Network coding is performed
on nodes D, F and G. The
effective throughput to nodes D, F
and G are 400 KBps, while B, C
and E are "helper" nodes.

201.1 199.5

200.7

199.5

198.4

198.8198.9

198.4 199.6

A [per-node: 400 KBps]

B C

D

E

GF

(a) Without network coding, A
sends half of the messages to B,
and the other half to C. The
effective throughput to node D is
400 KBps, while nodes F and G
receive 300 KBps.

199.7 202.3

198.6

199.1

201.8

200.3200.5

99.5 101.6

[a] [b][a] [b]

[b]

[b]

[a][b][a]

[a][b][a]

[a + b][a, b]

[a+b] [a+b][b] [a]

[a,b] [a,b]

400

400

[uplink: 200 KBps] [uplink: 200 KBps]

300 300

200

400

400

Fig. 8. Performance of network coding: an iOverlay case study.

Fig. 8(a) shows the results without using network coding. Node A is the data source with per-node bandwidth
of 400 KBps, and node D has an uplink bandwidth of 200 KBps. Node A splits its data into two streams sent to B
and C, respectively. In this case, B and C are not able to receive both streams, and are referred to as helper nodes.
Based on iOverlay throughput measurements, the nodes D, E, F and G have received 400, 200, 300, 300 KBps,
respectively. In comparison, Fig. 8(b) shows the case where the coding algorithm a + b in GF(28) is applied
at node D on the two incoming streams. In this case, the nodes F and G are able to receive both streams a
and b by decoding a + b with a, achieving a throughput of 400 KBps. The trade-off, however, is that node E
becomes a helper node, in addition to B and C. Our experiences with this case study have demonstrated both the
advantages and the trade-offs of applying network coding on overlay nodes. We believe that such an experiment-
based evaluation of network coding algorithms is not possible within such a short time frame, if iOverlay is not
available as a substrate.

3.3 Construction of Data Dissemination Trees

In this case study, we are interested in the development and evaluation of new algorithms that construct data
dissemination multicast trees in overlay networks, particularly in the scenario that the “last-mile” available
bandwidth on overlay nodes is the bottleneck. With iOverlay, we have implemented a node stress aware algorithm
to construct such multicast trees, where node stress is defined as the degree of a node in a data dissemination
topology divided by the available “last-mile” bandwidth of the node.

The outline of this algorithm is as follows. Periodically, each node in the existing multicast session exchanges
node stress information with its parent and child nodes. As a node A joins the multicast session, it first locates a
node that is currently in the tree by using one of the utility functions supported in iOverlay, which disseminates
a sQuery message. As the message is relayed to the first such node B in the tree, B compares its own node stress
with its parent and child nodes. If B itself has the minimum node stress, it responds with an sQueryAck message,
so that A becomes a new child of B in the tree. Otherwise, it recursively forwards the message to the node with
the minimum node stress (parent or children), until the message reaches the minimum-stress node who sends the
acknowledgment.

In order to evaluate such an algorithm in a comparative study, we have also implemented the all-unicast and
randomized tree construction algorithms as control. In the all-unicast algorithm, node B — or any node who
is aware of the source of the session (e.g., from the sAnnounce message in iOverlay) — simply forwards the
sQuery to the data source of the session. In the randomized algorithm, node B directly sends the sQueryAck
acknowledgment to A, and A will join the tree on receiving the first such acknowledgment.

Table 3. Tree construction algorithms: node degree and stress

Node node degree node stress (1/100 KBps)

unicast random ns-aware unicast random ns-aware
S 4 2 2 2.0 1.0 1.0
A 1 1 3 0.2 0.2 0.6
B 1 1 1 1.0 0.98 0.97
C 1 2 1 0.5 1.0 0.51
D 1 2 1 1.0 1.98 1.0

We first experiment with a five-node data dissemination session, shown in Fig. 9, in which the data source
is deployed on node S, and nodes A – D joins the session in the order of D, A, C, and B. The figure has
been annotated with the per-node available bandwidth, as well as the throughput that we have obtained in our
experiments. The node degree and stress are summarized in Table 3. It is very clear that, with respect to end-
to-end throughput, our new algorithm has the upper hand. We have also observed that the topology of the node
stress aware tree is not optimal, there may be better trees with respect to throughput. For example, in Fig. 9(g),
if D is a child of A rather than S, throughput may be further improved, leaving possibilities for further research.
Such experiment-based insights would not be possible without the substrate that iOverlay provides.

In the next experiment, we choose to evaluate the performance and stress tolerance of the node stress aware
algorithm in large-scale overlay networks, by deploying it to a total of 81 wide-area nodes in PlanetLab. The
per-node available bandwidth has been specified to a uniform distribution of 50 to 200 KBps for all the nodes,
with the source node set at 100 KBps. By taking advantage of the deployment scripts in iOverlay, we are able to
deploy, run, terminate and collect data from all 81 nodes, with one command for each operation. Fig. 10 shows
the North American portion of the wide-area topology after 30 nodes have joined the data dissemination session.

The results we have obtained from these PlanetLab experiments are illustrated in Fig. 11. With respect to
node stress, we may observe that the node stress aware algorithm has managed to approach the ideal case (i.e.,
the vertical line at node stress 20) much better than the other cases. With respect to end-to-end throughput,
we may observe that the throughput is much higher with the node stress aware algorithm. Finally, a 10-node
topology generated by the node stress aware algorithm implementation is illustrated in Fig. 12 (labeled with
per-node IP addresses), while the 81-node topology is shown in Fig. 13.

S

A
B

C
D

200

500
100

200

100

(a) after bootstrapping

S

A

B C

D

50.69 51.66

49.7948.91

(b) all-unicast multicast tree

S

A B

CD

51.50 102.53

50.61

(c) randomized multicast tree

101.67

sDeploy

2. sJoin
4. sJoin

3. sJoin

1. sJoin

S

D

 99.97

(d) node stress aware
tree (after D's join)

S

D

 97.77

(e) node stress aware tree
 (after A's join)

A

 102.30

S

D

100.23

(f) node stress aware tree
 (after C's join)

A

 98.23

C

S

D

 99.97

(g) node stress aware tree
 (after B's join)

A

104.22

C B

 98.72 102.80 99.85

Fig. 9. Tree construction algorithms: throughput (in KBytes per second).

Fig. 10. The real-time wide-area topology produced by the node stress aware algorithm after 30 nodes have joined (only
nodes that reside in North America have been shown, some nodes may reside in the same geographical location).

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

 overlay receiver nodes

 e
nd

-t
o-

en
d

th
ro

ug
hp

ut
 (

K
B

ps
)

unicast
random
ns-aware

(a) End-to-end throughput: all-unicast, randomized, and
ns-aware tree construction algorithms (dotted lines show the
spread of measurements).

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 node stress

 fr
ac

tio
n

of
 m

em
be

rs

 unicast
 random
 ns-aware

the ideal case

(b) Cumulative distribution of node stress: all-unicast,
randomized and the node stress aware algorithms.

Fig. 11. Performance of the node stress aware algorithm using 81 wide-area nodes in PlanetLab. (a) end-to-end throughput;
and (b) the cumulative distribution of node stress.

131.215.45.71

128.59.67.200128.2.198.188

199.77.128.193

128.59.67.202

128.84.154.49204.123.28.52 152.3.136.2

128.197.13.31

150.135.65.2

Fig. 12. A 10-node topology generated by the node stress aware algorithm.

216.165.109.82

131.179.112.70 131.179.112.71

208.216.119.20

128.84.154.49

128.111.52.62

192.17.239.250

131.243.254.36

192.17.239.251

160.36.57.172

199.77.128.194

200.19.159.34200.19.159.35

199.77.128.193

138.96.250.222171.64.64.217150.135.65.2 150.135.65.3132.239.17.225 128.8.126.12

132.65.240.100 132.65.240.101

12.46.129.21130.37.198.243 130.149.49.28

128.2.198.199

141.213.4.202

169.229.51.251169.229.51.252 169.229.51.250

152.3.136.1

128.59.67.201

128.59.67.200

128.59.67.202

192.58.208.3

128.111.52.61 128.151.65.102

192.197.121.2

128.2.198.196

192.58.208.5

132.239.17.224132.239.17.226

128.2.198.188155.98.35.3

192.58.208.4

155.98.35.2

12.17.136.13618.31.0.192131.243.254.35 128.197.13.31 18.31.0.190

165.91.36.5128.42.6.143128.42.6.144 152.2.130.66128.83.143.153152.3.136.2 155.98.35.4128.83.143.152152.3.136.3

192.197.121.3

216.165.109.81

198.133.224.146128.84.154.71

128.95.219.194 204.123.28.52

12.17.136.137 131.215.45.71128.42.6.145

128.143.137.249 128.112.152.123128.112.152.122

128.151.65.101

128.100.241.68

128.95.219.192

128.83.143.154

18.31.0.191128.197.13.32

Fig. 13. The 81-node topology generated by the node stress aware algorithm.

3.4 Service Federation in Service Overlay Networks

In some applications, data messages may need to be transformed (such as media or web data transcoding) by
a series of third-party nodes (or services) before they reach their destinations. The process of provisioning a
complex service by constructing a topology of a selected group of primitive services is known as service federation
(or composition), within what is referred to as service overlay networks consisting of instances of primitive services.
In order to start a service federation process, a specific service requirement needs to be specified, which includes
the required primitive services in order to compose the federated service. As a case study, we have designed and
implemented a new distributed algorithm, referred to as sFlow, to federate complex services that require service
requirements in the generic form of directed acyclic graphs, with the aid of iOverlay and over a period of three
weeks.

We outline the gist of the algorithm as follows. When a new service is established by the sAssign message
from the observer, it locally maintains a service graph that represents the producer-consumer relationships among
different types of services, and disseminates its existence to all its known hosts via the sAware message. The
message is further relayed until an existing service node is reached, which forwards the message to the direct
upstream and downstream nodes of the new service in its service graph. When a service federation session is
started using the observer, the requirement for the complex service is specified in a sFederate message to the
designated source service node. As this message is forwarded, each node applies a local algorithm to select the
most bandwidth efficient downstream service node according to the requirement, until the sink service node is
reached. The federation process is concluded with the deployment of actual data streams through the selected
third-party services. In order to construct a high-quality service topology, the algorithm takes advantage of
iOverlay’s feature that measures point-to-point throughput to selected known hosts.

We start our experiments by implementing our new algorithm on 16 real-world nodes in PlanetLab, mostly
in North America, to construct a service overlay network. The best-quality — i.e., most bandwidth efficient —
federated service according to a particular service requirement is presented in Fig. 14. Each node in Fig. 14 is
labeled with a service identifier assigned to them by the observer. The edges indicate a live service federation
session where live data streams are being transmitted. The end-to-end delay of this service session is 934.547
milliseconds, and the last hop average throughput is measured as 69374 bytes per second.

14

13

13 10

15

11 11

16

20

6
4

4
719

3 1

Fig. 14. The constructed complex service in a service overlay network.

During the session, we record detailed statistics on bandwidth measurements and control message overhead on
each of the 16 nodes, shown in Fig. 15. In this experiment, the sAware message overhead depends on the number
of known hosts of each node, and the overhead of sFederate messages is sufficiently small, compared to that of
sAware messages. The per-link and total per-node bandwidth are illustrated in Fig. 15(b) in descending order.
Evidently, the overhead incurred by the algorithm is sufficiently small, and seven nodes are left untouched during
the entire session of the protocol, since they do not host services or are not involved in the service federation
process.

We further experiment with larger-scale service overlay networks, and when multiple service requirements are
requested within a short period of time. We are mainly interested in two aspects of the sFlow algorithm. First,
the message overhead that the algorithm has incurred, particularly during its phases of disseminating awareness
of new services, and of federating existing services to construct the service topology. Second, the end-to-end
throughput from the source service to the sink in the constructed service topology.

ov
er

he
ad

 o
f p

ro
to

co
l-s

pe
ci

fic
 m

es
sa

ge
s

(b
yt

es
)

service ID

0

500

1000

1500

2000

1 19 3 4 4 6 7 20 10 1111 131316 14 15

sFederate Message Overhead

sAware Message Overhead

(a)

pe
r-

lin
k

an
d

to
ta

l p
er

-n
od

e
ba

nd
w

id
th

 (
B

ps
)

service ID

total per-node bandwidth

per-link download bandwidth

per-link upload bandwidth

0

30000

60000

90000

120000

150000

1 193 4467 2010 11 1113 131614 15

(b)

Fig. 15. Service federation: (a) control message overhead; (b) per-link and per-node bandwidth measurements on each of
the overlay nodes. The overlay nodes are sorted by their per-node bandwidth availability.

The overhead of control messages is evaluated with respected to time and different network sizes. Fig. 16
illustrates the sAware message overhead over time, when establishing a 30-node service overlay network, with
an average of three new services participating in the network every minute. We may observe that the sAware
message overhead starts to significantly decrease after 10 minutes, and is moderate and acceptable over the entire
period. Further, Fig.17 shows the results of evaluating the total communication overhead of the control messages
as the network size varies. We may observe that the overhead of both types of control messages grows gradually
as the network size increases. Especially, the overhead of sFederate messages grows at a slower rate compared to
that of the sAware messages. Still, even in a 40-node overlay network, the total control message overhead is less
than 1 KB over a 10-minute period, which is equivalent to less than 2 bytes per second.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

 Time (min)

 C
on

tr
ol

 M
es

sa
ge

 O
ve

rh
ea

d
(b

yt
es

)

 sAware Message

Fig. 16. The total control message overhead in a 30-node service overlay network, within a period of 22 minutes.

We are further interested in the per-node overhead of control messages during the service federation session,
especially when the network load is heavy. Fig. 18 provides more detailed insights with respect to per-node
message overhead in a 30-node overlay network. We observe that the overhead caused by the sFederate messages
has reached a maximum of 40 KB on three specific nodes. These are the nodes selected by the observer as the
source service nodes for most the service requirements. Three other nodes have a sFederate message overhead
of 17 KB, as they are either selected as the source service node, or executing services involved in most of the
federated services. As we may observe, there are 11 nodes with very low overhead with respect to sFederate
messages. This indicates that either their services are not required in the service requirements, or they have low
available bandwidth, and are therefore not selected.

Finally, we present the end-to-end throughput of the federated complex services generated by the sFlow
algorithm, as compared to alternative service composition algorithms. As control, we have implemented the
random algorithm that randomly chooses a direct downstream node that leads to the corresponding downstream

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
x 10

5

 Network Size

 C
on

tr
ol

 M
es

sa
ge

 O
ve

rh
ea

d
(b

yt
es

)

 sAware Messages
 sFederation Messages

Fig. 17. The total control message overhead under different network sizes, over a period of 10 minutes, with 50 new service
requirements specified and requested every minute.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

 Overlay Service Nodes

 C
on

tr
ol

 M
es

sa
ge

 O
ve

rh
ea

d
(b

yt
es

)
 sAware Message
 sFederate Message

Fig. 18. The per-node control message overhead within a period of 22 minutes, with 50 new service requirements specified
and requested every minute.

service node required in the service requirement. In addition, we have also implemented the fixed algorithm,
which always chooses the direct downstream node with the highest available bandwidth to the corresponding
downstream service in the requirement, rather than randomly choosing downstream nodes. As indicated in Fig. 19,
compared to the random and the fixed algorithms, the sFlow algorithm consistently produces federated complex
services with higher end-to-end throughput, regardless of the network size. Given the complexity of sFlow, its rapid
implementation demonstrates the effectiveness of iOverlay in supporting realistic algorithm implementations.

4 Related Work

iOverlay was originally motivated by our own experiences of implementing distributed application implementa-
tions on overlays, when we have failed to locate a suitable middleware framework for such developments. The
idea behind iOverlay originates from the Flux OSKit project [10] in operating system design, where a modular
set of OS components are designed to be reusable, and to facilitate rapid development of experimental OS ker-
nels. iOverlay provides a reusable set of components in the domain of overlay rather than OS implementations,
and seeks to achieve similar design objectives that support rapid prototyping of new overlay-based distributed
applications. Particularly, iOverlay is designed to minimize the bar of entry: in order for it to be useful, it is
not required to have either knowledge about its internals, or extensive system-level programming skills. In ad-
dition, iOverlay is also designed to reside at a “higher level” than previous work on user-level network protocol
stack implementations (e.g., Alpine [11]), and aims at the development of application-layer rather than network
protocols, without the requirements of root privileges.

There exist previous work on using virtual machines (such as VMWare or User-Mode Linux) and support
the deployment of full-fledged applications over a virtual network (e.g., [12]), as well as on emulation testbeds
and environments to test network protocols in a virtualized and sandboxed environment (e.g., Netbed [8] and
ModelNet [13]). In comparison, the objective of iOverlay is to facilitate the development of distributed applications
and algorithms at the application layer, and iOverlay assumes the availability of a wide-area network testbed
such as PlanetLab. Although iOverlay supports virtualizing multiple overlay nodes on a single physical node,

5 10 15 20 25 30 35 40
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

 Network Size
 E

nd
-t

o-
E

nd
 B

an
dw

id
th

 (
B

ps
)

 sFlow Algorithm
 Fixed Algorithm
 Random Algorithm

Fig. 19. End-to-end bandwidth of federated complex services under different network sizes, comparing sFlow to the random
and the fixed algorithm.

all implementations are achieved at the user level beyond the abstraction of sockets. iOverlay is designed to be
tightly coupled with applications and distributed algorithms, rather than a supporting infrastructure based on
either virtual machines or emulation environments.

In particular, ModelNet [13] has introduced a set of ModelNet core nodes that serve as virtualized kernel-level
packet switches with emulated bandwidth, latency and loss rates. Such kernel-level modifications may not be
achievable in wide-area testbeds due to the lack of root privileges. The iOverlay engine, in contrast, implements
application-layer message switches, that may be bundled with any new algorithms and deployed in the user space
of any UNIX hosts. Thanks to the virtualization of iOverlay nodes, it is not required to have access to a large-scale
network in order to experiment with large-scale application topologies.

To the best of our knowledge, there exist two previous papers that present similar objectives to iOverlay.
First, the PLUTO project [14], an underlay topology service (or routing underlay) for overlay networks, based
on PlanetLab. PLUTO is a layer between the overlay algorithms and the network, that exposes topological
information to the algorithms. More specifically, it may expose information on connectivity, disjoint end-to-end
paths between overlay nodes, as well as the distance between nodes in terms of a particular metric such as latency
or router hops. We believe that iOverlay and PLUTO are completely complementary with each other, and that it
is straightforward for the algorithm to simultaneously take advantage of both architectures. From the viewpoint
of PLUTO, iOverlay is simply an overlay application. When it comes to measurement of metrics, iOverlay focuses
on measuring the performance of active or potential overlay links, while PLUTO focuses on obtaining insights
on the underlay physical topology. From this perspective, iOverlay operates at a higher level than PLUTO does,
and PLUTO may be easily integrated into the overall iOverlay middleware architecture.

Second, the Macedon project [15] offers a common overlay network API by which any Macedon-created overlay
implementation may be used. It features a new language to describe the behavior of an overlay algorithm, from
which actual code can be generated using a code generator. As a result, Macedon allows algorithm designers to
focus their attention on the algorithm itself, and less on tedious implementation details. Despite the similarities
between the design objectives of Macedon and iOverlay, the design principles are drastically different. Macedon
attempts to minimize the lines of code to be developed by the algorithm developer, by providing a new language
to specify the characteristics of the algorithm. In contrast, iOverlay seeks to maximize the freedom and flexibility
when designing new algorithms, by minimizing the API between the middleware and the application. While
Macedon is able to support Distributed Hash Table based searching and overlay multicast algorithms, iOverlay
is sufficiently generic to accommodate virtually any applications to be deployed on overlay networks, while still
encapsulating tedious and common functional components such as message switching, throughput emulation,
fault detection and recovery, as well as a centralized debugging facility. Our recent experiences of successfully and
rapidly deploying a Windows-based MPEG-4 real-time streaming multicast application on iOverlay have verified
our claims.

5 Concluding Remarks

We have been pleasantly surprised at how phenomenally rapidly one can develop fully distributed overlay ap-
plications using iOverlay. The evolution of features we have presented have been entirely demand-driven: rather
than being designed a priori, with inevitably flawed vision of what new applications may need, iOverlay has been
constantly refined and augmented, driven by the needs of new application implementations. From this experience,
we conclude that research and implementation of overlay applications and algorithms are significantly aided by
having reusable, extensible and customizable components that iOverlay provides. As a matter of fact, the burden
on the application developer is completely shifted to the core portion of the application-specific algorithm, rather
than subtle and mundane details that iOverlay has encapsulated.

We are convinced that the full potential of iOverlay has yet to be realized. First, the library of prefabricated
algorithms may be significantly extended, in the form of new classes derived from the base iAlgorithm class.
These new extensions may become foundations of similar categories of algorithms, which may further simplify
the process of new application implementations. Second, the PLUTO routing underlay may be integrated into
the iOverlay framework as additional reusable components in the form of libraries, in order to support algorithms
that need topological knowledge of the underlying IP topology. Finally, we expect a growing user base of iOverlay
clients to drive the continued growth in its performance, generality, power and simplicity, such that the journey
from brainstorming sessions to performance evaluations may indeed become enjoyable rather than daunting.

References

1. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer
systems,” in Proc. of IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001),
2001.

2. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications,” in Proc. of ACM SIGCOMM, 2001.

3. Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End System Multicast,” IEEE Journal on Selected Areas
in Communications, pp. 1456–1471, October 2002.

4. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multicast,” in Proc. of ACM
SIGCOMM, August 2002.

5. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “SplitStream: High-Bandwidth
Multicast in Cooperative Environments,” in Proc. of the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), October 2003.

6. D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data Dissemination Using an Overlay
Mesh,” in Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), October 2003.

7. L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for Introducing Disruptive Technology into the
Internet,” in Proc. of the First Workshop on Hot Topics in Networks (HotNets-I), October 2002.

8. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
Integrated Experimental Environment for Distributed Systems and Networks,” in Proc. of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI 2002), to appear, December 2002.

9. R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Information Flow,” IEEE Trans. on Information
Theory, vol. IT-46, pp. 1204–1216, 2000.

10. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers, “The Flux OSKit: A Substrate for Kernel and
Language Research,” in Proc. of the 16th ACM Symposium on Operating Systems Principles (SOSP 1997), October
1997.

11. D. Ely, S. Savage, and D. Wetherall, “Alpine: A User-Level Infrastructure for Network Protocol Development,” in
Proc. of the the 2001 USENIX Symposium on Internet Technologies and Systems (USITS 2001), March 2001.

12. X. Jiang and D. Xu, “vBET: a VM-Based Emulation Testbed,” in Proc. of ACM Workshop on Models, Methods and
Tools for Reproducible Network Research (MoMeTools 2003), August 2003.

13. A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker, “Scalability and Accuracy in a
Large-Scale Network Emulator,” in Proc. of 5th Symposium on Operating Systems Design and Implementation (OSDI
2002), December 2002.

14. A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for Overlay Networks,” in Proc. of SIGCOMM 2003,
August 2003.

15. A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat, “MACEDON: Methodology for Automatically Creating,
Evaluating, and Designing Overlay Networks,” in Proc. of the USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2004), 2004.

