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Abstract

Querying for a particular data item is perhaps the most
important feature to be supported by peer-to-peer network
infrastructures, and receives the most research attention in
recent literature. Most existing work follows the line of
designing decentralized algorithms to maximize the per-
formance of peer-to-peer queries. These algorithms often
have specific rules that peer nodes should adhere to (e.g.,
placement of data items on particular nodes), and thus as-
sumes that peers are strictly cooperative. However, in re-
alistic peer-to-peer networks, selfish and greedy peer nodes
are the norm, and query strategies degenerate to random or
flooding based searches. In this paper, we explore the de-
sign space with respect to query efficiency in selfish peer-to-
peer networks where nodes have asymmetric information,
and apply the signaling mechanism from microeconomics
to facilitate the sharing of private information and thus im-
prove search efficiency. We extensively simulate the signal-
ing mechanism in the context of other alternative solutions
in selfish networks, and show encouraging results with re-
spect to improving query performance.

1 Introduction

Querying for a particular data item is perhaps the most
important feature to be supported by peer-to-peer network
infrastructures, and receives the most research attention in
recent literature. Most existing work seeks to design decen-
tralized algorithms to maximize the performance of peer-
to-peer queries. These algorithms often have specific rules
that peer nodes should adhere to. Examples of such rules
include all research proposals in the area of structured peer-
to-peer networks, which specify the mandatory placement
of data items on particular nodes (e.g., the Chord proto-
col [10]), and thus assist to achieve querying performance
in the order of log N , N being the size of the peer-to-peer
network. Obviously, these proposals assume that peers are
strictly cooperative when it comes to implementing these

rules. However, in realistic peer-to-peer networks, self-
ish and greedy peer nodes are the norm, and query strate-
gies unfortunately degenerate to random or flooding based
searches (e.g., Gnutella). In such scenarios (often referred
to as unstructured peer-to-peer networks), either the search
performance is not satisfactory (O(N)) when doing random
searches, or the message exchange overhead is high, when
performing flooding-based searches.

Various previous work [1, 4, 6, 11] have been attempt-
ing to address such problem of querying performance in
unstructured peer-to-peer networks. As one example, Co-
hen et al. [4] resort to the approach of requiring peer nodes
to collaboratively replicate the actual data items in demand.
We observe that all previous proposals have resorted to the
introduction of a certain degree of structure or discipline
(e.g., required replications) to an unstructured peer-to-peer
network, and with this measure they have been successful
in achieving better querying performances. Furthermore,
we emphasize the following key observation: Introducing a
certain degree of structure or discipline in unstructured net-
works has imposed the unwarranted assumption of coopera-
tion, which is against the observation that leads to the study
of such networks in the first place: selfishness of nodes. For
one example, selfish peer nodes may not even be willing
to share its own private information to others (the case of
asymmetric information), not to mention the cooperation re-
quired to implement protocols that introduce structure (e.g.,
replications).

In this paper, we explore the following questions: What
may occur if peer nodes do not share their private informa-
tion, such as shortcuts to existing data items? What may be
possibly proposed to incentivize selfish nodes to share their
private information for the common good? Ultimately, what
may be possibly proposed to improve query efficiency in
selfish peer-to-peer networks where nodes hold asymmetric
information? In light of all these questions, we propose to
apply the signaling mechanism from microeconomics to fa-
cilitate the sharing of private information and thus improve
search efficiency and avoid the phenomenon of adverse se-
lection. We extensively simulate the signaling mechanism



in the context of other alternative solutions in selfish net-
works, and show encouraging results with respect to im-
proving query performance.

The remainder of the paper is organized as follows. We
formulate the problem in Sec. 2. In Sec. 3 we begin by dis-
cussing the case of asymmetrical information, and propose
mechanisms to signal those private information, which can
significantly improve the system equilibrium. In Sec. 4 we
propose a set of distributed algorithms and present simula-
tion results. Sec. 5 concludes the paper.

2 Problem Formulation

In this paper, we consider an unstructured peer-to-peer
network that consists of N selfish nodes. Each node can cre-
ate shortcuts (i.e., pointers) to any data items on any nodes.
In addition, each node also has a set of neighbors, which
generally includes all the other nodes in the network that
this node is aware of. Since on each node u the table to
contain shortcuts is of limited size which is smaller than the
number of items in the network, when node u wishes to ac-
cess an item that is not in its own shortcut table, node u has
to turn to its neighbors to forward the query until a node that
owns such item is found or certain maximum query limits
are imposed. We illustrate the nodes and their roles in the
peer-to-peer network in Fig. 1.

the market for local queries

shortcut table

data 

node i

data 

node k

data 

node j

neighbor u

neighbor r

neighbor t
neighbor s

neighbor list

histories

Figure 1. Nodes in a peer-to-peer network.

Provided that nodes are selfish and always seek to max-
imize their own gains, it is natural that nodes have to be
rewarded in some way for providing the service of process-
ing incoming queries. For convenience of our analysis, we
model such queries in a market. At each query hop, the
node that initiates the query and its neighbors constitute the
market. In such market, the querying node, referred to as a
consumer, is interested in the commodity, which is the infor-
mation on the item’s location. As a consumer, the querying
node can purchase the commodity from its neighbors, also
referred to as producers.

The nodes that initiate the queries wish to access the item
as quickly and efficiently as possible — they benefit or gain
from such successful queries. We introduce θ to quantita-
tively model such gains, and to reflect the quality of the pur-
chased commodity. A commodity is said to have a quality of
θ, if the consumer receives a gain of θ when the consumer
purchases such a commodity. A higher θ implies that the
producer providing such a commodity is more likely to find
the item. Without loss of generality and for convenience
of our analysis, the producer that provides a commodity of
θ gain is considered to have a type of θ (using microeco-
nomics terms). We let [θ, θ] ⊂ R denote the set of possible
quality levels, where 0 ≤ θ < θ < ∞. θ implies that the
producer is most likely to locate the item, i.e., it has the
item in its possession or a shortcut to the item in its shortcut
table. On the contrary, θ implies that the producer is most
unlikely to find the item, i.e., it has no idea with respect to
the whereabouts of the item. When selecting a neighbor to
forward the query, it is clear that the neighbor of the highest
type is always preferred.

The proportion of producers with θ or less is given by
the distribution function F (θ). For simplicity, we assume
that F (·) is nondegenerate and has an associated density
function f(·), with f(θ) > 0 for all θ ∈ [θ, θ]. To produce
a commodity of quality θ (to obtain the information on the
position of the item, e.g., entries in the shortcut table with
a limited size), a producer incurs certain costs, denote as
r(θ). We make the following assumptions with respect to
such costs:

1. r(θ) ≤ θ, for all θ ∈ [θ, θ];

2. r(·) is a strictly increasing function.
The first assumption implies that every producer has a

chance to accept queries, so that we disregard the case when
r(θ) is larger than θ. The second assumption implies that
the producers with higher types are more likely to cost more
to produce the commodity, i.e., to obtain the information of
the item. This assumption is mainly for the simplicity of
our theoretical analysis. We relax such an assumption in
our simulation experiments in Sec. 4.2.

Consider a producer v of type θ, θ is proprietary to v it-
self, and not known by other nodes, including its neighbors.
We refer to such information as private information. Such
a scenario where nodes keep private information from other
nodes is economically known as a system with asymmetric
information. The opposite case is the system with symmet-
ric information. Asymmetric information significantly im-
pairs query performance in peer-to-peer networks. For ex-
ample, suppose a consumer u chooses to purchase the com-
modity at a price p from a set of producers with different
types. In the case of symmetric information, the consumer
u chooses the producer with the highest type θ and receives
the profit of πu = θ − p. However, in the case of asymmet-
ric information, the consumer can not tell the producers of



high types apart from the producers of low types, i.e., the
consumer may not be able to choose the producer with θ.

In this paper, we are interested in exploring the effects
of asymmetric information, as well as different alternatives
of mitigating asymmetries in order to improve peer-to-peer
queries.

3 Mitigating Information Asymmetries

For comparison purposes, we first consider the case of
symmetric information, the ideal case where the types of
the neighbors are publicly observable. In this case, since
the consumer u knows the quality of all commodities, it is
clear that u will simply choose the commodity of the highest
quality. By choosing the neighbor that has the highest type
θ, the consumer u will maximize its payoff.

To study the price p∗ at the equilibrium, we study the
market where multiple consumers compete for one com-
modity by setting different prices, and the one with the high-
est price obtains the commodity. Following the Bertrand
model [3], this is a simple case of an oligopolistic market,
where we have p∗ = θ at equilibrium. The consumer u

earns zero profit due to the competition from other con-
sumers. The producer of the highest type θ wins the offer
and obtains a welfare of θ − r(θ). It is clear that upon this
query the market is efficient. However, such an ideal case
is unrealistic in unstructured peer-to-peer networks, where
such type information is not publicly observable, belonging
to the case of asymmetric information.

3.1 Information asymmetries: microeconomics

We proceed to study the equilibrium in the case of asym-
metric information and the welfare at such equilibrium.

The problem is modeled as a dynamic game G. The steps
of the game are as follows: (1) the consumer u claims a
price p; (2) each producer chooses to accept it or not and
replies its choice to u; and (3) u randomly chooses one of
the set of neighbors who accept the price.

Due to asymmetric information, the consumer u does not
have any knowledge about its producers except θ and θ. We
note that when the types of producers are not observable,
the price p must be independent of such types.

From the perspective of a producer with type θ, its strat-
egy is straightforward: it chooses to serve u only if r(θ) is
equal to or smaller than p.

Let the inverse function of x = r(θ) be θ = g(x), the av-
erage commodity quality that the consumer u receives when

price is p will be D(p) =
∫ g(p)

θ
xf(x)dx, where f(·) is the

density function of producers’ type.
Particularly, for any p ∈ [r(θ), θ], all producers will

choose to accept the price. For simplicity, we let E[θ] rep-
resent the expected commodity quality that the consumer

u receives when all the producers are willing to accept the

price, i.e., E[θ] =
∫ θ

θ
xf(x)dx.

To examine the consumer’s strategy, we introduce the
notion of a competitive equilibrium presented in Definition
3.1 1.

Definition 1: When producer types are unobservable, a
competitive equilibrium is an operating point, where p∗ =
D(p∗).

We call this a microeconomic approach, in which case
the consumer u will choose to be at the competitive equilib-
rium.

Proposition 1: There exists at least one competitive
equilibrium, where p∗ = D(p∗).

Proof: Let function φ(p) represent D(p)−p. Since D(p)
is continuous on p ∈ [r(θ), θ], φ(p) is continuous on the
same range as well. When p = r(θ), D(p) = θ; hence,
φ(r(θ)) = θ − r(θ). When p = θ, D(p) = E[θ] and
φ(θ) = E[θ] − θ. With assumption 1, we have r(θ) ≤
θ,∀θ ∈ [θ, θ]. Therefore, we have φ(r(θ)) ≥ 0. On the
other hand, it is not difficult to find out E[θ] ≤ θ, such that
we have φ(θ) ≤ 0. According to the intermediate value
theorem [5], there exists at least one p∗ that satisfy φ(p∗) =
0, i.e., p∗ = D(p∗). ut
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Figure 2. General competitive equilibrium and
the worst case

Fig. 2 illustrates how Definition 1 helps to determine
competitive equilibria. The solid curve is the general case
of function D(p), which has a competitive equilibrium p∗.
Furthermore, from Fig. 2, we have two observations:

1. Competitive equilibria are actually those intersecting
points between the curve D(p) and the line of D(p) =
p;

2. The competitive equilibrium price p∗ is upper bounded
by E[θ] and lower bounded by θ.

The first observation is straightforward, according to the
definition of competitive equilibrium. From the second ob-
servation, we notice that the competitive equilibrium may
not be efficient and may be much smaller than E[θ]. The
problem is that to get the producers of the highest type to



accept the query, we need p to be at least r(θ). However,
the consumer u can not reach even at this price because do-
ing so will bring u a negative payoff of E[θ]− r(θ). There-
fore, the consumer will choose to lower the price p until
the competitive equilibrium is encountered. In microeco-
nomics term, such phenomenon is known as adverse selec-
tion. In the present context, adverse selection arises when
only the commodities of lower quality are chosen, i.e., only
the neighbors that have worse path to the item are willing to
accept the query. The worst case occurs, which is depicted
as the dotted curve in Fig. 2, when we have r(θ) = θ and
r(θ) < θ for all other θ. The equilibrium price is p∗ = θ,
which is the lower bound.
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Figure 3. The case of multiple competitive
equilibria

Depending on the distribution of neighbors/producers of
different types F (θ), multiple competitive equilibria may
exist, e.g., Fig. 3 depicts a case in which there are three
equilibria. Unfortunately, the lowest competitive equilib-
rium is always chosen by such microeconomic approach.
In microeconomics, this is called coordination failure. The
reason is straightforward: the price p is too low because
the consumer u expects that the average quality of the com-
modities is low and, at the same time, only low type pro-
ducers accept the query precisely because the price p is low.

To summarize, based on the concept of competitive equi-
librium, the microeconomic approach is inefficient due to
adverse selection and coordination failure. Because of ad-
verse selection, the average quality of commodity that the
consumer u receives can not reach the upper bound E[θ],
while coordination failure causes the consumer u to choose
to stay at the lowest competitive equilibrium.

3.2 Information asymmetries: games

We propose an alternative approach based on game the-
ory to address the problem of coordination failure. In such
a game-theoretic model, the consumer u could change the
price p and choose not to enter an equilibrium, if it observes
that deviating from such equilibrium can yield higher pay-
off. In other words, in the game-theoretic model, consumer

u is more sophisticated: If the price is too low, the con-
sumer u will find it in its interest to offer a higher price and
attract better neighbors until the highest-price competitive
outcome is obtained.

Furthermore, we will show that the consumer u chooses
to stay at the highest competitive equilibrium, which is ac-
tually the unique subgame perfect Nash equilibrium defined
by Proposition 2.

Proposition 2: Let p∗ be the highest competitive equi-
librium. If there is an ε > 0 such that D(p′) > p′ for
all p′ ∈ (p∗ − ε, p∗), then p∗ is the unique pure strategy
subgame perfect Nash equilibrium of the game-theoretic
model.

Proof: We observe that Proposition 2 is exactly the first
case of Proposition 13.B.1 in [7]. Refer to [7] for a detailed
proof. ut

For example, in Fig. 3, consider the equilibria p∗

1 and
p∗2, which are obviously dominated by the equilibrium p∗

3.
In equilibrium p∗3, for any p′′ > p∗3, the consumer u will
choose p∗3 due to adverse selection, i.e., p′′ is dominated by
p∗3. On the other hand, for any p′ ∈ (p∗2, p

∗

3), the consumer u

earns positive profit on p′. However, due to the competition
from other consumers, the consumer u will finally choose
p∗3 instead and earn zero profit. Therefore, the consumer u

will arrive at the highest equilibrium p∗3 and will no longer
deviate.

The game-theoretic model solves the issue of coordina-
tion failure and achieves the highest competitive equilib-
rium. However, the game-theoretic model still suffers from
adverse selection that is originated from asymmetric infor-
mation. Consequently, the outcome of the game-theoretic
model is also upper bounded by E[θ].

3.3 Mitigating Information asymmetries: signal-
ing

Signaling [2, 9], as a branch of microeconomics, has
been proposed to solve the problem of asymmetric infor-
mation. In this paper, we apply the signaling mechanism to
accomplish this objective. The basic idea is that the produc-
ers (neighbors) of high types may have actions they can take
to distinguish themselves from their low type counterparts.

We model the problem as a signaling game, also a dy-
namic game of asymmetric information. As an extreme ex-
ample to simply our analysis, we ask the producers to sig-
nal their types by actually finding the item. Obviously, this
approach results in much overhead, since in some cases a
number of producers would like to perform the query. In
Sec. 4, we introduce a refined approach whose overhead is
more moderate. We adapt the model discussed above as fol-
lows. The steps of the dynamic game is as follows: (1) the
consumer u claims a price p and asks the producers — all its
neighbors — to find the item; (2) each neighbor (producer)



chooses whether or not it should exactly locate the item and
replies the result to the consumer u; and (3) u randomly
choose one of the neighbors which has reported positive re-
sults to process the query.

In the analysis that follows, we examine the possible
equilibrium of the signaling model and the welfare of each
producer and consumer. Compared with the model dis-
cussed in Sec. 3.1, the significant extension of our signaling
model is that the producers can infer their types by exe-
cuting the signaling action. The cost incurred by such an
action for a type θ producer is given by the function c(θ),
which is assumed to be lower for high type producers, e.g.,
c(θ) < c(θ). Since in most cases r(θ) � c(θ), to keep
things simple, we concentrate on the special case in which
r(θ) = 0,∀θ ∈ [θ, θ].

From the perspective of a producer v with type θ, its
strategy is as follows:

• v chooses to take the signaling action, if c(θ) ≤ p;
• otherwise, v chooses not to take the signaling action:

– if there exists another producer that takes signal-
ing action, v is considered by the consumer u

as low type producer; therefore, v receives zero
profit.

– if none of producers take signal action, the model
degenerates to the microeconomic model dis-
cussed in Sec. 3.1.

For convenience of analysis, We further assume that
c(θ) < θ < c(θ), so that only part of producers take the
signaling action. Let the inverse function of x = c(θ) be
θ = h(x), the average commodity quality that the consumer

u receives when price is p will be D′(p) =
∫ θ

h(p)
xf(x)dx,

where p ∈ [c(θ), c(θ)].
Similar to Sec. 3.1, we have the following definition and

proposition.
Definition 2: When producers are eligible to take signal-

ing actions, a signaling equilibrium is an operating point,
where p∗ = D′(p∗).

Proposition 3: If there exists at least one producer that
takes the signaling action, there exists at least one signaling
equilibrium, where p∗ = D′(p∗).

Due to space constraints, we omit the proof that is similar
to the proof of Proposition 1.

Since the consumer u should earn at least zero profit,
p∗ can not be larger than θ. Such an upper bound can be
achieved when c(θ) = θ. Therefore, p∗ is upper bounded
by θ.

We then discuss two extreme cases: (1) all producers
take the signaling action; (2) none of producers take the ac-
tion. In the former case, c(θ) ≤ p, i.e., the signaling ac-
tion is so inexpensive that each producer takes the action

attempting to distinguish itself from other producers; on the
contrary, in the latter case, c(θ) > p, meaning that the sig-
naling action is too costly for any producer to take. How-
ever, in both cases, since we assume r(θ) = 0, all producers
accept the offer p. Furthermore, since the consumer u can
not distinguish high type producers from low type ones, the
expected commodity quality that the consumer u receives
is E[θ] in both cases. If we consider both cases as extreme
cases of the signaling game, the signaling equilibrium price
p∗ is lower bounded by E[θ].

In most cases when only part of producers takes the sig-
naling action, the signaling approach is efficient: the sig-
naling approach can distinguish the producers of higher
types and consequently improve the system query effi-
ciency. However, signaling also incurs costs. For example,
the proposed signaling approach may be costly in term of
overhead. Consider a case when most neighbors have high
types and would like to distinguish themselves, most neigh-
bors would choose to complete the query; therefore, this
approach becomes a flooding style query, which results in
significant message overhead.

4 Algorithm Design and Performance Evalu-
ation

4.1 HU algorithm: type estimation

In previous sections, in the case of a query, we assume
that each producer has a type θ, which reflects the extent
to which the neighbor knows the position of the item being
queried. Obviously, such type does not exist in reality. For
the purpose of providing type information, we introduce HU
algorithm, which is required before any microeconomics-
based approaches may be implemented.

In HU algorithm, each node is required to keep a his-
tory of the queries. The history contains pair values of the
following information: (1) the identifier of an item; (2) the
timestamp of the last query to this item. When a node has
just performed a query on an item, or forwarded a query on
such item, the node updates the timestamp of this item. The
intuition behind such mechanism is that a node that has re-
cently performed or forwarded a query on an item is more
likely to have an advantage over another node that has not
recently encountered a query on such an item. Since the
size of the history is limited, when a new entry is about to
be inserted and the history is full, the history entry with the
lowest timestamp is evicted.

Given the history of queries, we can obtain the type θ

from the timestamp t of the query. Consider an incoming
query on item i, the producer v checks its local storage as
well as its history of queries. In the case that item i has an
entry in the query history with timestamp t, a larger t means
higher probability to achieve a successful query, indicating



a higher type θ. Formally, we can assume that producer v

associates θ with t through a mapping function θ = σ(t),
which increases on t. In the case that item i is possessed by
v, we can consider t to be the current time tnow. Another
extreme case occurs when item i is in neither local storage
nor the query history, we let t be zero in this case.

Similarly, we can estimate r(θ) and c(θ). The produc-
tion cost r(θ) has two parts: (1) the occupation cost of the
entry in the query history; (2) the cost to update the en-
try. We model the production cost r(θ) by the function
r(θ) = τ(Lv, x, θ), where Lv is the size of the query history
of v, and x is the number of times that item i’s history entry
has been updated during last time period T . A larger history
size leads to lower r(θ), while a higher updating frequency
means higher r(θ).

In order to estimate c(θ), we require that the current
producer needs to know the number of hops h that current
query has covered so far. This can easily be done by allo-
cating an entry in the message header of such a query mes-
sage and asking intermediate producers to increment such
entry. We model the signaling cost c(θ) by the function
c(θ) = χ(h, θ). Intuitively, c(θ) becomes lower when h

increases.

4.2 Performance Evaluation

We have conducted simulation-based experiments us-
ing a packet-level, event-based C++ simulator to evaluate
the effects of asymmetric information and to reveal the
strengths of the signaling algorithm (SG) (Sec. 3.3), in the
context of three approaches: (1) The ideal case of symmet-
ric information (SI); (2) the microeconomic approach illus-
trated in Sec. 3.1 (ME); and (3) the game-theoretic approach
outlined in Sec. 3.2 (GT).

SI is the ideal case that can always find the producer that
has the highest type. In the other algorithms, transactions
occur among nodes during the query. The difference is that
in ME the consumer always adheres to the lowest compet-
itive equilibrium while in GT the highest competitive equi-
librium is chosen. In SG, the producers are offered an op-
portunity to complete specific actions in order to signal their
types.

The signaling approach proposed in Sec. 3 is effective to
enable high type producers to distinguish themselves. How-
ever, such approach may lead to significant message over-
head, especially in the case that most producers are of high
type. Instead, we introduce a slightly different version of
such a signaling method. The consumer incrementally in-
creases the price p until one or more producers accept to
process the query or pmax is reached (obviously pmax ≤ θ);
the consumer randomly chooses one of them and pay the
price p until the query completes. Such refined approach
does not qualitatively change the purpose of the signaling

method and, meanwhile, significantly reduces the message
overhead brought by signaling.

Initially, each node is given a set of peer nodes as neigh-
bors, which consists of an initial topology. To focus on the
effect of shortcuts, we fix the neighbor set during the sim-
ulation. We have performed most of our simulations in a
ring-like initial topology. We have also performed the simu-
lation in the cases of other initial topologies such as (1) two-
dimensional grids; (2) random graphs with Zipf-like node
degree distributions; and (3) random graph with Gnutella-
like node degree distributions, and have obtained qualita-
tively similar results. We omit the figures of these settings
due to the space constraints.

The network consists of 1000 homogeneous nodes and
100 items. Each node has a shortcut table of 20 and a history
1of size 40, i.e., L = 40. All items have uniform popularity.
The network generates queries using a Poisson process with
an average query rate λ of 100 queries per time unit. The
life time of each item follows the exponential distribution
with the average life time of µ = 100 time units. Each
simulation runs 1000 time units which is sufficient for each
algorithm to reach a stable state.

We assume that initially each item only has one copy in
the network, and each consumer never replicates the item
that has been queried and supposedly retrieved. The query-
ing process progresses until the desired item is located or
the maximum hops limit of 40 is reached.

We list the estimation functions that we use in the simu-
lations as follows 2.

θ =
max(t − t0, 0) ∗ 1000

T
(1)

r(θ) =
min(x + 1, 20) ∗ θ

20 ∗ L
(2)

c(θ) =
(40 − h) ∗ 500 ∗ T

40 ∗ max(1, t − t0)
(3)

where t is the timestamp of the history entry, t0 is the be-
ginning moment of every time period of T (T = 50).

4.2.1 Simulation Results: Query Efficiency

With respect to the efficiency of queries, we compare all
four algorithms in both the average query resolution hops
and the query success ratios.

Fig. 4(a) shows that none of the algorithms has suc-
ceeded to resolve all the queries3. This is reasonable since
the network is strictly unstructured with a query hop limit

1In case when an item is not in the history, it means the node has no
idea on the whereabout of such item, i.e., it has the lowest type.

2We believe that substituting the constants in the functions with differ-
ent values does not qualitatively effect our conclusions

3Since the type information we use here is not accurate and just an
approximation, the SI algorithm in our simulation cannot always resolve
queries.



of 40. The uniformly distributed item popularity and the
approximation of type information also contribute to such
results. SI always outperforms all the other alternatives, for
the reason that a node in SI can always select the neigh-
bor with the best knowledge of the desired item. SG is the
second best, which solves about 40% compared to about
50% of SI. Compared with ME (about 18%) and GT (about
20%), the signaling approach significantly improves the
query efficiency. This validates our analysis in previous sec-
tions that signaling can distinguish the advantageous neigh-
bors from the neighbors that are less so. GT is worse than
SG, but is still slightly better than ME. This confirms our
analysis that, due to the coordination failure in ME, the mar-
ket often fails and behaves inefficiently. Obviously, accord-
ing to the figure, GT overcomes the issue of coordination
failures, but still suffers from the asymmetric information.
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Figure 4. Query performance under uniform
data popularity: (a) query success ratios; (b)
average number of hops

Further, we evaluate the efficiency of queries in terms
of the average number of query hops. As is evident in
Fig. 4(b), the performance of SG approaches that of SI and
results in much fewer query hops in average than GT and
ME.

4.2.2 Simulation Results: Query Overhead

In order to evaluate the message passing overhead when
performing queries, we compare all four algorithms with re-
spect to the number of messages transmitted. Fig. 5 shows
that SI causes the lowest amount of message overhead, due
to the fact that the queries in SI can always find the best path
to the item (i.e., the shortest query path), and that there ex-
ist no transaction costs. GT and ME lead to nearly the same
level of message overhead and ranks the second among the
alternatives. Since in each query hop the current node needs
to perform transactions with all neighbors, such an action
results in additional overhead compared with that of SI. SG
is evidently the worst, and causes worse levels of message
passing overhead than GT and ME. This is because that, in
our implementation of the signaling approach, the consumer

needs to incrementally increase the price p until a producer
of a high type accepts the query, which results in additional
overhead. Considering the performance we have acquired
by introducing signaling, the extra overhead is the cost that
we have to pay, and we believe that SG has reached a better
point of tradeoff between query performance and overhead.
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Figure 5. Query overhead in terms of the av-
erage number of messages per query under
uniform data popularity

4.2.3 The case of heterogeneous item popularity

We have also evaluated all four algorithms under the as-
sumption that the popularity of data items — the rate at
which queries are issued — conforms to the Zipf distribu-
tion4. We use α = 1.2 in our simulations, based on mea-
surements from Saroiu et al. [8] on popular peer-to-peer file
sharing systems.
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Figure 6. Query performance under Zipf-like
data popularity: (a) query success ratios; (b)
average number of hops

Fig. 6(a) shows that the Zipf distribution can be exploited
by all four algorithms to improve query success rates, al-
though the ranking with respect to query efficiency is still
identical to that of the uniform popularity case. All four
algorithms perform much more efficiently, for the reason
that Zipf distribution always favors popular items and the
queries on popular items encourage more nodes to create

4With a Zipf distribution, the popularity of the ith most popular item is
proportional to i

−α.



shortcuts on them. Consequently, upon one of such popular
items, the number of neighbors which has the highest type
θ becomes larger and the expected type E[θ] also increases.
It is encouraging to observe that, the signaling algorithm
SG achieves the highest query success ratio after SI and in
some cases even achieves the same success ratio as that of
SI. The Zipf distribution also benefits ME and GT, whose
query success ratios have nearly doubled. One interesting
phenomenon is that GT performs much better in such a set-
ting and separates itself from ME. The reason may be that,
in such a setting, types of neighbors become much more
diverse, multiple competitive equilibria exist in the game
and GT has the advantage over ME to achieve the dominant
equilibrium and to find more neighbors of high types. In
addition, with respect to the average number of query hops,
Fig. 6(a) shows that the same ranking is maintained as that
of the uniform popularity case in Fig. 4(a).

To summarize, the ideal case of symmetric information
(SI) shows that without asymmetric information, the query
in a strictly unstructured peer-to-peer network should have
performed much better. The signaling algorithm we have
proposed (SG) encourages the nodes of high types to per-
form signaling actions and to reveal their private informa-
tion, and therefore achieves much more efficient query per-
formance. Another advantage of our proposed signaling al-
gorithm is that the algorithm only incurs moderate signaling
overhead compared with the ME and GT algorithms.

4.3 Discussions

We now discuss a few open but orthogonal problems
with respect to our algorithms and implementations, that
may possibly be addressed in future work.

First, it may require additional work to deploy our
proposal to wide-area peer-to-peer network environments,
most of which are beyond the scope of this paper. For exam-
ple, we implicitly assume that a particular micro-payment
mechanism exists as an underlying layer, which is still an
open problem in the literature.

Second, it is clear that the performance of all our algo-
rithms depends on the accuracy of type estimations, which
are provided by the HU algorithm. In our simulation, we
simply adopt a regular Least Recently Used cache replace-
ment algorithm in the HU algorithm. We believe any im-
provements on the accuracy of type estimations will effec-
tively improve the query performance of our algorithms,
and they do not affect the general conclusions we have
reached with respect to the nature of these algorithms.

5 Concluding remarks

Efficient peer-to-peer queries are essential to the success
of unstructured peer-to-peer networks. Our observation is

that, if a node can always find the best neighbor as the
next hop, the query should be as efficient as flooding and
at the same time causes only acceptable message overhead.
Unfortunately, when selecting the next hop to forward the
query, the node often suffers from the fact that the node can-
not distinguish the better neighbors from the inferior candi-
dates. This is the phenomenon of information asymmetries
in selfish peer-to-peer networks, a key observation and fo-
cus of our paper. We have thoroughly examined the system
behavior in asymmetric information and proposed a signal-
ing mechanism to overcome the problem, associated with a
decentralized algorithm. Our analytical and simulation re-
sults have led to and established an efficient peer-to-peer
query algorithm with moderate message overhead. We be-
lieve that our studies presented in this paper form a first
step towards a thorough understanding of the behavior of
peer nodes in strictly selfish overlay networks, where algo-
rithms have to be carefully designed to avoid unwarranted
assumptions of cooperative behavior.
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