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Abstract— It is critical to discover and utilized shared services
and resources in wireless ad hoc networks. While wireline networks
can use the Domain Name System (DNS) to perform such key-value
lookups, designing scalable key-value lookup protocols with high
success rates and low message overhead in the dynamic topologies
of wireless ad hoc networks presents a non-trivial challenge. In this
paper, we present KELOP, a Key-Value Lookup Protocol for wireless
ad hoc networks. KELOP is a fully distributed best-effort protocol
that relies only on the local information stored at each node to locate
the closest estimates of the target. This strategy results in remark-
ably low control-message overhead. Simulation results show that, in
addition to low message overhead, KELOP is able to provide lookup
success rate close to 100% in most cases.

I. INTRODUCTION

It is critical to utilize and discover shared resources and
services efficiently in wireless ad hoc networks with dynamic
topologies. A generic key-value lookup protocol, once designed,
is able to support such resource discovery without changes. The
key-value lookup problem may be described as follows. Given a
key, locate the node that hosts the corresponding value.

In ad hoc networks, since very limited global information can
be available at each node, key-value lookups significantly de-
pend on the following question: if the value corresponding to
a particular key is not known yet, from where can this informa-
tion be obtained? In Domain Name System (DNS), for example,
this question is answered by forwarding the request to the next
server in the hierarchy of DNS servers [1]. However, the dy-
namic topology and the lack of base infrastructure in wireless ad
hoc networks pose special challenges not encountered in wire-
line networks. In mobile ad hoc networks, such an hierarchy is
expensive to maintain.

Since ad hoc networks are peer to peer in nature, the list of the
node identifiers present in the network is valuable to achieve suc-
cessful key-value lookups. Once such information is available, a
key can be hashed to a node identifier in a known set. However,
the list of nodes is dynamically changing in ad hoc networks. To
make matters worse, frequent information exchanges to update
the node list is not feasible because of bandwidth constraints.

In this paper, we identify that the information cached by the
routing protocols is one of the best candidates for the target node
lookups in wireless ad hoc networks. Using this information, we
seek to find a known node having an identifier that is closest to
the target node, rather than finding an exact target node. Based on
these concepts, we propose KELOP, a fully distributed key-value
lookup protocol in wireless ad hoc networks. The objective of
KELOP is to achieve high key-value lookup success rates with a

low message overhead. We present KELOP in details, and per-
form simulation studies to evaluate the associated success rate
and message overhead. Although KELOP is independent of any
specific routing protocols, the analysis and simulations in this pa-
per are carried out using the route cache of the Dynamic Source
Routing (DSR) protocol [2].

The remainder of the paper is organized as follows. We begin
the presentation of the KELOP protocol by first analyzing the
cached information from a routing protocol in Sec. II, followed
by the details of the KELOP protocol in Sec. III. We evaluate
the performance of KELOP in Sec. IV. Finally, we conclude the
paper with a survey of the related work in Sec. V and concluding
remarks in Sec. VI.

II. KELOP: CACHE INFORMATION ANALYSIS

In this section, we analyze the local cache information at each
node for the purpose of target node lookup corresponding to a
given key. As we have discussed, the most important informa-
tion for this purpose is the list of nodes present in the network,
referred to as node information in the remainder of the paper. To
analyze node information, we calculate the update rate λ at which
a node n′ can update its route cache with the ID of another node
n. 1/λ is the inter-update time. If the update rate is higher, with
a higher probability n′ knows the availability of n correctly.

We assume the following setup. The node information flow in
the network is caused by the normal data packet flows. Packet
generation at each node is a random Poisson process with a con-
stant rate α packets per time unit tu. Each packet is forwarded to
a destination node selected at random with a uniform probability
distribution.

A. Analysis of one-dimensional networks

For one-dimensional networks, we assume a setup such as the
one shown in Fig. 1. The transmission range is fixed and is the
same as the inter-node distance. Therefore, only adjacent nodes
can hear the transmission by a node. With these assumptions in
a one-dimensional formulation of Fig. 1, we get the following
result:

5' 32101'2'3'4'

n

54

n'

y x
Fig. 1. A one-dimensional network with 11 nodes (Y = 6, X = 4).



Theorem 1: 1In a one-dimensional node array such as the one
shown in Fig. 1, with a fixed transmission range of one hop, and
random packet generation by each node with a rate of α per time
unit, the rate λ at which a node n′ can update its route cache with
the ID of another node n is the following:

λ = αX(2Y + 1)/N (1)

where X and Y are the number of nodes in segments x and y
respectively as shown in Fig. 1.

Theorem 1 can be analyzed for the two aspects we mentioned
in the beginning of this section. First: The information update
rate and therefore the correct information available at any node
depends on the packet generation rate (α) and the total number
of nodes in the network (N ). Second: The rate at which n′ can
update the ID of n in its route cache is highly dependent on X and
Y , and in turn on the positions of n and n′ in the network. When
both n and n′ are at the center, X and Y are both of the order of
O(N), and the update rate is of the order of O(N). When n and
n′ are at extreme ends, X and Y both are of the order of O(1)
and the update rate is of the order of O(1/N).
B. Analysis of two-dimensional networks

In a two-dimensional network a packet flow can follow any one
of the several possible paths from the source to the destination.
However, for simplicity, we assume a straight line shortest path
between a source and a destination. Furthermore, we assume the
following:

• The total network area A is of rectangular shape with a uni-
form node density ρ. The total number of nodes, N , is ρA.

• The node density is high enough such that the number of
nodes in any given area segment ai can be approximated to
aiρ without any error.

• All nodes have a fixed transmission range r.
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Fig. 2. Flow groups 1 and 2 in a two-dimensional network

Fig. 2 illustrates a two-dimensional network with nodes n
and n′ marked. The entire rectangular area contains nodes with
uniform density ρ according to the assumption. In the follow-
ing discussion, we calculate the three flow groups for the two-
dimensional network of Fig. 2.

The first group consists of all the flows originated by n that
can be overheard by the node n′. It is clear from Fig. 2 that
n overhears all flows originated from n and directed towards the
dotted area. The dotted area is equal to (H ′(X ′+J)−rJ) which
can be simplified to X ′r(2 + X ′/J), using the fact that H ′ =
r(X ′ + J)/J . The number of nodes in the area X ′r(2 + X ′/J)

1Proof is excluded due to space constraints and is available upon request.
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Fig. 3. Flow group 3 in a two-dimensional network

is ρX ′r(2 + X ′/J). Since the rate at which packets are being
generated at n is α and a destination is randomly selected from
the total N nodes, the flow rate of the first group, λ2D 1, can be
written as αρX ′r(2 + X ′/J)/N .

The second group consists of all the flows destined to n that
can be overheard by the node n′. That is, the packet flows from
the nodes in the dotted area to n. The rate of packet flow from any
given node to a specific node (n in this case) is α/N . Therefore,
the total flow rate for the second group, λ2D 2, is (number of
nodes in the dotted area)×α/N , which is the same as λ2D 1.
Therefore, the first two flow rates can be written as the following:

λ2D 1 = λ2D 2 = αρX ′r(2 + X ′/J)/N (2)

A subset of third flow group is shown in Fig. 3; originated by
the nodes in area a′ and destined to the nodes in area a. All such
flows, having n on the path, are overheard by n′. The flow rate
from a single node in the area a′ to the nodes in area a is αρa/N .
Therefore, the flow rate from the nodes in area a′ to the nodes in
area a can be written as ρa′ × αρa/N . Therefore, the flow rate
dλ2D 3 corresponding to the incremental area shown in Fig. 3
can be written as:

dλ2D 3 = 2(ρa′)(αρa/N) (3)

Area a′ in Fig. 3, is equal to L′dh′/2− J(J/L′)dh′/2. Simi-
larly, area a can be written as Xr/2. By putting values of a and
a′, introducing fraction c, integrating dh′ over 2H ′, and using the
facts H ′ = rL′/J and L′ = X ′ + J , the rate of the third flow
group can be written as the following:

λ2D 3 = cαρ2(1/N)(Xr2/J)(X ′2 + X ′J) (4)

The total rate (λ2D) at which the route cache of n′ is updated
with the information of node n is the sum of three flow rates
calculated above for the two-dimensional case. That is,

λ2D = cαρ2(1/N)(Xr2/J)(X ′2 + X ′J)
+ 2αρX ′r(2 + X ′/J)/N (5)

Eq. (5) illustrates that node information in a two-dimensional
network depends on node density, packet flow rate in the net-
work, the total number of nodes, and the transmission range.

For the analysis of this result with respect to node position,
we use the property A ∝ N , which directly follows from the
assumption that ρ = N/A is a constant. When both n′ and n
are in the center of the network, X ′ and X are of the order of
O(
√

A), and J is of the order of O(1). With these parameters



and with α, ρ, r and c constants, λ2D in Eq. (5) results in the
order of O(

√
(N)). Intuitively, it can be visualized as follows:

The major contribution is from the flows in the one-dimensional
lines, with small or fixed widths, from O(

√
N) nodes to O(

√
N)

nodes integrated over O(
√

A) = O(
√

N), giving us O(N
√

N)
flows. The probability of each flow, however, decreases with the
rate O(N), giving us the effective update rate of the order of
O(
√

N). In another scenario, when both n′ and n are on the
opposite ends of the network, X ′ and X are of the order of O(1)
and J is of the order of O(

√
A). In this case, λ2D comes out to

be of the order of O(1/N).
From the above analysis, it is clear that center nodes have high

availability of node information than the nodes on the bound-
aries, since such nodes have more packets to forward and are
more active in the network. To increase the possibility of utiliz-
ing the information possessed by these nodes, KELOP uses the
route cache information of all forwarding nodes.

III. KELOP: THE PROTOCOL

In this section, we present and explain KELOP. KELOP is
composed of two modules, one for key-value advertisements and
the other for lookups (i.e., querying the value, given a key). Fig-
ures 4 and 5 show the KELOP advertisement and lookup proto-
cols respectively. Fig. 6 shows the helper functions for finding
the nearest node and the next target (next ID) from the known
node IDs. For the next target and the nearest node selections,
node IDs are calculated in a cyclic fashion. That is, if the ID
space is 1–1000, the smallest ID greater than 1000 is 1.

Following is the explanation of KELOP advertisement and
lookup protocols.

1) KELOP Advertisements: The advertising node hashes the
key to a target ID (called hashed target) in a predefined ID space,
using a globally known hashing function. Subsequently, the ad-
vertising node finds the greatest ID less than hashed target from
the known node IDs in its route cache. This greatest ID is called
current target. If the advertising node’s own ID is not the same
as current target, the packet is transmitted to the next hop aimed
for the destination, current target.

An intermediate node, upon receiving the advertisement
packet for forwarding, performs the following two actions be-
fore forwarding. First, it adds (or refreshes) the key-value pair in
its key-value table. Second, it checks its own route cache for a
better current target.

The value of current target is updated to reflect the new
value if a better current target is found such that: previous cur-
rent target < new current target < hashed target. Utilizing the
information stored in the route caches of the forwarding nodes
helps improve the estimate of an available target.

When the advertisement packet reaches the target node (cur-
rent target), the target node adds (or refreshes) the key-value pair
in its table. Moreover, the target node tries to further advertise
the pair to a next available target next ID, until the number of
advertisement attempts reach the maximum value K. next ID is
the smallest known ID that is greater than hashed target (Fig. 6).
After finding the value of next ID, hashed target is set to next ID
for the next advertisement. When the number of attempts reach
the value of K, advertisement is done.

2) KELOP Lookups: Before initiating the query, the request-
ing node (i.e. a requester) checks its own key value table for the
key (Fig. 5). If the key is not found, the requesting node calcu-
lates hashed target and current target, and forwards the packet
in the same way as explained for the advertisement module.

An intermediate node, upon receiving the query packet for
forwarding, performs the following steps before forwarding the
packet. First, if the key is found in its key value table, it replies
back to the requester with the key-value pair and the query is
done. Second, if the key is not found in its key value table, the
forwarding node tries to find a better guess to the value of cur-
rent target and forwards the packet to the next hop destined to
the new current target.

If the query reaches the target node (current target), and re-
mains unsuccessful, the target node forwards the query to a new
target, next ID, in a next lookup attempt. When the maximum
number of attempts (K) have been made, and a query is still un-
successful, a failure response is generated. K = 3 is used in
our simulations for advertisements as well as lookups. When the
value of K is high for advertisements, it results in an almost pro-
portional increase in message overhead. For lookups, however, a
higher value of K means only a slight increase in message over-
head because the query is done as soon as the key-value pair is
found.

IV. PERFORMANCE EVALUATION

KELOP is designed to maximize the service discovery suc-
cess rate with low protocol message overhead. To test how well
KELOP achieves its goal, we simulate KELOP for the lookup
success rate and the corresponding message overhead. Follow-
ing is the simulation setup and the discussion of results.

A. Simulation setup

We compare the simulation results of three cases: the ideal
case, KELOP, and the worst case. In the ideal case, each node
knows the shortest path to every other node. For a lookup, given a
key, the requester directly contacts the corresponding host. Since
the host ID is known to the user, no advertisement is required and
the lookup success rate is 100%.

To avoid the route request flooding by DSR, KELOP forwards
packets to only the nodes that are known to be in the network. In
the worst case, available links and node information are the same
as in KELOP. The main difference of the worst case from KELOP
is the following: advertising and querying nodes do not use the
nearest target strategy. In the worst case, if a hashed target is
not present in the network, or not known to the advertising or
querying nodes, lookup fails.

The simulation is composed of two components. The first
component consists of the simulation of a mobile ad hoc network
with regular packet flows for 450s. NS2 is used for simulating
various scenarios with 25 to 200 nodes with increments of 25 (8
scenarios). The corresponding deployment area in each case is
selected such that the node density remains constant (i.e., 1 node
per 7200m2). The maximum speed is 10m/s and pause time is
100s. During this regular packet generation and flow, route cache
builds up. This route cache information is then used to evaluate
KELOP in the second component.



KELOP Advertisement:
adv packet < sender, receiver, key, value, hashed target, current target, attempts >
max number of attempts = K
node running the algorithm is current node

Packet Initiation:(at the advertising node)
hashed target← hash(key)
key value table = (key,value) ∪ key value table
current target← findNearestNode(hashed target)
if (current target �= current node)

forward adv packet to the next hop for current target

Packet Forwarding:(at the forwarding node)
key value table = (key,value) ∪ key value table
if (current node = hashed target) OR (current node = current target)

if (attempts < K)
increment attempts
hashed target← findNextTarget(hashed target)

else
done

current target← findNearestNode(hashed target)
forward adv packet to the next hop for current target

Fig. 4. KELOP advertisement

KELOP Lookup:
query packet < sender, receiver, key, hashed target, current target, attempts,

requester >
response packet < sender, receiver, key, value, is successful, requester >
max number of attempts = K
node running the algorithm is current node

Packet Initiation:(at the requesting node)
if (key ∈ key value table)

return (key,value); done //value is found in the requester’s cache
hashed target← hash(key)
current target← findNearestNode(hashed target)
if (current target �= current node)

forward query packet to the next hop for current target
else

return lookup failure //no packet forwarded

Packet Forwarding:(at the forwarding node)
if (key ∈ key value table)

is successful← True
send response packet to requester; done

if (current node = hashed target) OR (current node = current target)
if (attempts < K)

increment attempts
hashed target← findNextTarget(hashed target)

else
is successful← false
send response packet to requester

current target← findNearestNode(hashed target)
forward query packet to the next hop for current target

Fig. 5. KELOP lookup



Finding the nearest node and the next target:

ID type findNextTarget(hashed target)
next ID← (the smallest known node ID > hashed target)
return next ID

findNearestNode(hashed target)
return (the greatest known node ID < hashed target)

Fig. 6. Finding the nearest node and next target
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Fig. 7. Total message overhead compared to the ideal case

B. Simulation results

We first compare the total message overhead introduced by
KELOP with the one introduced by the ideal case. Fig. 7 shows
the comparison of the two. For KELOP, the total overhead is
the sum of the service advertisement overhead and the lookup
overhead. In the ideal case, the overhead only involves the mes-
sages for lookups. The total overhead incurred by KELOP is
very close to that of the ideal case as expected from the conser-
vative approach of KELOP. An interesting implication of adver-
tisements is that the query succeeds in a very few hops. This
phenomenon results in efficient lookups and compensates for the
message overhead incurred for advertisements.
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Fig. 8. Success rate compared to the ideal case

After observing that KELOP is conservative in terms of mes-
sage overhead, in Fig. 8 we compare the success rate of KELOP
with the ideal case (success rate of 100%) in the absence of over-
hearing. Only three of the eight simulated scenarios fall below
the ideal 100%. Since KELOP highly depends on the current
route cache contents of any node, the deviation in success rate is
expected.
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Fig. 9. Success rate in the worst case scenario

The worst case success rate has a downward trend with the
increase of the number of nodes (Fig. 9). When the number of
nodes increases and the deployment area becomes larger, a node
can have only a limited information of the far nodes. Therefore,
the success rate is very low.
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Fig. 10. Message overhead with overhearing enabled

Fig. 10 and 11 show the effects of overhearing on success
rate and message overhead respectively. Because of overhear-
ing, with high probability, queries are answered from within a
few hops from the requesting node. Therefore, lookup message
overhead decreases and a high lookup success rate is achieved.
In Fig. 11, for all the simulated network sizes, the success rate
achieved is 100%. Clearly, KELOP adapts nicely to take full ad-
vantage of the useful overheard key-value information.

Finally, in Fig. 12 we observe the effect of a lower transmis-
sion range. With the lower transmission range, the overhearing
effect is reduced. When the transmission range decreases from
250m to 200m, success rate decreases from 100% in some of the
scenarios. Among the 8 simulated scenarios, 3 scenarios have
success rate below 100%, minimum being 94% in the 100 node
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scenario.
The above discussion of the simulation results shows that the

ideal case, using the global network information, is able to pro-
vide 100% lookup success rate with low message overhead. A
simple strategy that does not use KELOP, i.e. the worst case,
is left far behind the ideal case in terms of success rate. How-
ever, KELOP tracks the performance of the ideal case closely
by achieving almost the ideal success rate with the realistically
available DSR route cache information.

V. RELATED WORK

Most of the research work related to ad hoc networks concen-
trates on routing [3], [2], [4], [5], routing performance evalua-
tions [6], [7], [8], location management and resource availability.
In this context, resource discovery is a relatively new research
area. However, there is a good amount of closely related research
work on resource discovery in wired peer-to-peer networks.

In wired peer-to-peer networks, several protocols such as
Gnutella [9], Freenet [10] and Chord [11] facilitate resource shar-
ing. Creating and maintaining structures like Chord [11], is too
expensive, since each point to point packet flow in wired net-
works is in fact a multi-hop end-to-end packet flow in wireless
ad hoc networks. Furthermore, most of the key-value lookup
strategies used in wired peer to peer networks concentrate on ex-
act key-value lookups. Although feasible in wired peer to peer
networks, seeking an exact key-value lookup can be very un-
successful in wireless ad hoc networks due to high probability
of target node un-availability. Therefore, KELOP, using the best
effort strategy, tries to find a nearest node instead of the exact
target node. Furthermore, designed specifically for wireless ad

hoc networks, KELOP uses overhearing and re-evaluates its tar-
get on per-hop basis when a query or advertisement packet is
forwarded.

Some of the recent research work has focused on the service
availability in mobile ad hoc networks. Wang et al. [12] have
proposed protocols for guaranteed service coverage in partition-
able mobile ad hoc networks. Once the services are available, to
facilitate the utilization, the discovery protocols such as KELOP
can help users in discovering these services. In a closely related
work on service discovery in ad hoc networks, Kozat et al. [13]
form a virtual backbone to facilitate the distribution of service
information. KELOP, however, advertises service information
and provides successful service discovery without needing any
virtual backbone and incurring the associated control message
overhead.

VI. CONCLUDING REMARKS

Taking up the challenge of providing an effective and efficient
key-value lookup protocol for mobile ad hoc networks, this paper
presents and evaluates KELOP. KELOP is a fully distributed key-
value lookup protocol and relies only on the local route cache
information. Furthermore, instead of trying to locate the exact
target node, KELOP’s strategy is to work with the best estimate
of the target node. To the best of our knowledge, there exists no
key-value lookup protocol for ad hoc networks based only on the
local information. The simulation results show that KELOP is
able to achieve high success rates, close to 100% in most cases.
KELOP’s conservative approach in terms of message overhead
and adaptability to take full advantage of the available informa-
tion make it a suitable key-value lookup protocol for mobile ad
hoc networks.
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