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Abstract—In this paper, we propose an effective distributed the MEDG problem is trivial — each sensor node can transmit
algorithm to solve the minimum energy data gathering (MEDG) jts collected data to the sink node via the minimum energy
problem in wireless sensor networks. The problem objective path.

is to find an optimal transmission structure on the network However. in sensor networks. sensor nodes are often densel
graph, such that the total energy consumed by the sensor , ! W ! y

nodes is minimized. We formulate the problem as a non-linear deployed. Nearby sensor nodes have overlapping sensing
optimization problem. The formulation considers in-network data ranges and the data they collected are either redundant or
aggregation and respects the capacity of the wireless shared-correlated. This data correlation can be exploited to redbe

medium. We apply Lagrangian dualization technique on this  amoynt of data transmitted in the network with data aggrega-

formulation to obtain a subgradient algorithm for computing tion techni lting i . Dat .
the optimal transmission structure. The subgradient algorithm ! lques, resulting in energy savings. Data aggeya

is asynchronous and amenable to fully distributed implementa- 1S intr'oduced by. Estriret al. [3] as an essential paradigm
tions, which corresponds to the decentralized nature of sensor for wireless routing in sensor networks. The concept is to

networks. aggregate the data originating from different sensor nodes
during their transmission to the sink node. In this paper, we
assume a perfect data correlation model, where interneediat
Recent technological advances have enabled the productemsor nodes perform simple aggregation functions to aggre
of low-cost sensor nodes. These sensor nodes are smaléin siate multiple input packets into a single output packet. To
and are equipped with limited sensing, processing, andg-+raachieve minimum energy data gathering, the optimal trans-
mission capabilities. They can be deployed in large numbarsssion structure should allow maximum aggregation of .data
to form sensor networks with the ability of distributed viess Besides the correlated sensor nodes, the optimal transmis-
sensing. In practice, sensor nodes are deployed in an ad-kimn structure also depends on the link capacities. In aag-pr
fashion over the area of interest. After the deploymentssen tical networks, there are capacity limitations on the liaksl
nodes collect data from their surroundings, encode the, datdaerference among competing signals. In wireline netwprk
and transmit them to the sink node via wireless channels. thiere is time-dependent contention, where two signals etenp
addition, intermediate sensor nodes can be used as relags. With each other if they both arrived at the router at the same
sink node is a specialized node in the network responsilole tone. The effect of interference in wireline networks is el
receiving data, and serves as a gateway between the sestadied, but they are not applicable in the context of sensor
network and the wired backbone network. networks. As a variation of wireless ad hoc networks, sensor
Many applications for sensor networks, such as targeetworks have the unique characteristic of location-ddpet
tracking [1] and habitat monitoring [2], involve monitogn contention, in addition to time-dependent contentionn8ig
a remote or hostile field. Sensor nodes are assumed towk compete with each other if nearby sensor nodes access
inaccessible after deployment for such applications amd tithe wireless shared-medium at the same time. In this paper,
their batteries are irreplaceable. Also, due to the sma#l sf we model the location-dependent contention as constraints
sensor nodes, they carry limited battery power. Thus, grierg according to the protocol model of packet transmission in
a scarce resource that must be conserved to the extent possilireless networks [4].
in sensor networks. In addition to data correlation and channel interference,
In this context, the objective of the MEDG problem is tdhere are other factors that should be considered whemsplvi
find the optimal transmission structure on the network grapthe MEDG problem:
such that the total energy consumed in transporting the data- Distributed solutions: With centralized solutions, partici-
from the sensor nodes to the sink node is minimized. If tha dat  pating nodes need to transmit detailed status information
collected by the sensor nodes are independent and the sgirele  repeatedly across the network to a central computation
links have unlimited bandwidth capacities, then the sotutb node. Although centralized approaches can achieve re-
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sults closer to the optimal, they are generally not feasible « Sensor nodes have the ability to adjust their transmission
— Asynchronous network environments: Due to the ad-hoc power depending on the distance of transmission.
infrastructure of sensor networks, it is expensive in termse Sensor nodes and the sink node are stationary.
of communication overhead to synchronize the nodes. « Simple aggregation functions are utilized by the sensor
In this paper, we propose an efficient algorithm to solve the nodes to aggregate the data they received with their own
MEDG problem. To obtain the optimal solution, it is a natural ~ data. Consequently, each sensor node produces only one
decision to employ optimization techniques. We formulate packet regardless of how many packets it has received in
the MEDG problem as a non-linear optimization problem. each round of communication. This perfect data correla-
This formulation considers in-network data aggregatiod an  tion model is also utilized in [5], [6], [7].
accounts for the effect of location-dependent contentd®. « Each node in the network has knowledge of its own
a result, our solution is guaranteed to be supported by the location.
wireless shared-medium. After applying Lagrangian daaliz S _
tion on the formulation, we utilize a price-based resouche' Optimization Objective
allocation strategy to find the optimal transmission stiet ~ Given a transmission structure, the flow vedtfv(; j)er
Price signals are used in the algorithm to reflect the corayestcan be determined, and the total energy consumed by each
status of the network. To facilitate its deployment in picadt link equalse;; - f;;. The objective of the MEDG problem is
sensor networks, our algorithm is asynchronous and amendl minimize the total energy consumed in the network:
to distributed implementations. _
Data gathering with correlated sources in sensor networks Minimize Z i Jis- (3
and resource allocation with capacity limitations in wasd (.)€l
networks have been separately studied in previous litexatuC. Constructing the Minimum Spanning Tree

The main contribution of this paper is to propose a dis- wijth our network model, it is shown in [3] that the optimal
tributed solution to the MEDG problem that considers botiymper of transmissions required per round of communicatio
topics simultaneously. Our algorithm finds a minimum ener®quals to the number of edges in the minimum spanning
transmission structure that allows maximum data aggregatiee (MST) on the network graph. Thus, for any gragh
and respects the wireless link capacities. To the best of gt gptimal transmission structure is equivalent to its MST
knowledge, no previous works have addressed the MEQ€3; any proper subsef c V, let 5(S) = {(.j)
problem with all of the factors above. exactly one endpoint ofi, j) is in S}. Then it is possible to

The remainder of the paper is organized as follows. In Se&snstruct the MST ofG by combining the optimization
tion Il, we present the optimization formulation for the MED qpjective with the following constraints:

problem. In Section lll, we construct an efficient distrisstit

algorithm to solve the formulation. Numerical results from Z fi; =1, vSCV, (2)
simulations are presented in Section IV. Finally, we discus (i,5)€8(S)

related work in Section V, and conclude the paper in Section ..

v bap fii ={0,1}, ¥(ij) € B. ©)

Note that a simple MST solution cannot solve the MEDG
problem because the MST may not be supported by the
wireless shared-medium.

II. PROBLEM FORMULATION
A. Network Model

The wireless sensor network is modeled as a gré@pk ) )
(V,E), where V is the set of nodes and is the set of D. Channel Contention Constraints
bidirectional wireless links. Lefx denotes the set of sensor In any wireless ad hoc networks, packet transmission is
nodes andSx denotes the sink node. TheW, = Sy U Sk. subject to location-dependent contention, where nearlty da
All sensor nodes have a maximum transmission range,of flows compete for the capacity of the wireless shared-medium
Let d;; denote the distance between nadand nodej. A In the literature, there exist two models for packet trarssioin
bidirectional link (¢, j) € E exists if d;; < ry,. Each link in wireless networks [4]. They are generally referred to as
is associated with an energy casj, referring to the energy the protocol model and thephysical model. According to the
consumed per unit flow on link, j). Moreover,f;; represents protocol model, all links adjacent to node will interfere
the flow rate of link(i, j). Here, the flow vectoff;;]v. ez with bidirectional link (i, j) if dp; < (1 + A)d;; or dy; <
are the variables that can be adjusted in order to minimige thi + A)d,;, where the quantityA > 0 specifies a guard

optimization objective stated in the next subsection. zone. In this paper, we utilize the protocol model of packet
There are various models for sensor networks. In this workansmission, and deriv,; for each link (i,j) € E as
we focus on a sensor network environment where: the cluster of links that cannot transmit simultaneouslyhwi

« Each sensor node has a continuous data delivery modelk (i,5). The notation of cluster is used here as a basic
The sensor nodes periodically sense their surroundingsource unit, as compared to individual links in the tiadal
and always have data to transmit in each round wfireline networks. In wireline networks, data flows compete
communication. for the capacity of individual links. However, in the case of



sensor networks, the capacity of a wireless link is intateel networks. Due to the complexities in constructing maximal
with other wireless links in its cluster. Consequently, adatcliques, the notation of cluster as defined in Section Il is
flows compete for the capacity of individual clusters, whigh used as the basic resource unit in this paper. Each cluster is
equivalent to the capacity of the wireless shared-medium. associated with a shadow price, and the transmission stauct
flow vector|[fi;lv., j)er iS supported by the shared-medium ifs determined in response to the price signals, such that the

the channel contention constraints below hold. aggregated price paid by the data flows is minimized. It is
. revealed from previous research that at equilibrium, suickep
fij +( ; foa=C, V(i,j) € B, ) based strategy may achieve global optimum, leading to the
P,q)EY;;

optimal utilization of resource.
where C' is defined as the maximum rate supported by the To solve the MEDG formulation with a price-based strat-
wireless shared-medium. We note that the channel contentegy, we relax the channel contention constraifity with
constraints are generic, since they can accommodate othagrangian dualization to obtain the Lagrangian dual probl
models of packet transmission instead of the protocol model o
Maximize LS(5) s.t. g>0. 9)

E. Non-Linear Programming Formulation

Combining the optimization objective with the mtroduceoB
constraints, the MEDG problem can be modeled as an opt

y associating price signals or Lagrangian multipligig
with the channel contention constraints, the Lagrangiaa du

mization problem as follows: problem is evaluated via the Lagrangian subproblem:
Minimize > ei;- fi; St (5) Minimize Yo e futBiy-(fut Y fu—C) st
(i.))eE (i,5)eE (P, @) €W

7 (10)
S g1, vscv, (6) Y fii=1, vScV, (11)

(4,7)€58(8) (4,3)€8(8)
fi+ Y fu<C. V) EE, ) fis ={0,1}, V(i,j) € E. (12)

(P.0)EYi;

We further define®;; as the set of clusters that link, ;)
fi; ={0,1}, V(i,j) € E. (8) belongs to. Recalt,, is the cluster of links that cannot
Sﬁansmlt when link(p, ¢) is active. For any link(i, j) that
mterferes with link(p, q), link (¢, 7) belongs to the cluster of
). Thus, for any linkgi, 7) and(p, q), (p,q) € ®;; iff
E \prq The Lagrangian subproblem can be remodelled
using this notation:

[1l. DISTRIBUTED SOLUTION Vi S p T B - BsC st
. L. Inimize iil€ss + D + — Dis S.L
Many algorithms have been proposed to solve optimiza- i I o P !
2Y, b, ij

The number of constraints required to construct the M
grows at an exponential rate in relation to the number of aod
This makes the optimization problem described above a no<n
linear programming formulation.

tion problems, such as simplex, ellipsoid and interior poin (13)
methods. These algorithms are efficient in the sense that the Z fi>1, VSCV, (14)
can solve large instance of optimization problems in a few s " ’

seconds. However, they have the disadvantage of being-inher 7

ently centralized, which implies that they are not applieab fi; ={0,1}, V(i,j) € E. (15)
for distributed deployment. In this section, we propose our

distributed solution to the MEDG formulation. The objective function of the remodelled Lagrangian subpro

lem specifies that the weight of each link is equal to the sum
of its energy and capacity cost. And the capacity cost islequa
The MEDG formulation resembles a resource allocatido the Lagrangian multiplier of the link plus the sum of the
problem, where the objective is to allocate the limited bandlagrangian multipliers irp,;. This is intuitive since when link
width capacities of the clusters to the data flows origimatin(¢, j) is active, any links in the seb;; cannot transmit due to
from the sensor nodes. Previous research works in wirelimgerference. Hence the actual price to pay for accessiig li
networks [8], [9] have shown that a price-based strategyis &, ;) should equal to the total price for accessing lifikj)
efficient means to arbitrate resource allocation. In thistegy, and all links in®;;.
each link is treated as a basic resource unit. A shadow priceSince the capacity constraints are relaxed, we observe that
is associated with each link to reflect the relation betwedhe solution of the Lagrangian subproblem requires each
the traffic load of the link and its capacity. Based on thsensor node to transmit its aggregated data along its MST
notation of maximal cliques, Xuet al. [10] extend this price- branch that leads to the sink node. As a result, finding the MST
based resource allocation framework to respect the uniqoe the network graph can solve the Lagrangian subproblem.
characteristic of location-dependent contention in wesel This can be achieved using a distributed MST algorithm [11].

A. Lagrangian Dualization



B. Subgradient Algorithm 5) Update Lagrangian multipliersg;;[k + 1] =

The subgradient algorithm is an efficient iterative aldworit max (0, Bi;[k] + O[k](fi; k] + Z(p,q)e% fralk] = C©)),
to solve the Lagrangian dual problem. We start with a set of  Whered[k] = 5, for all links (i, j) € E.
initial non-negative Lagrangian multipliers;;[0]. A possible ~ 6) For each link(i, j), send;;[k + 1] to all links in W
choice for the initial Lagrangian multipliers can be zeroes  and sendf;;[k + 1] to all clusters in®;;.
where we assume there is no congestion in the network.”) Repeat steps 2 to 6 until convergence.
In this case, the initial transmission structure chosenhgy t In asynchronous network environments, nodes with differen
algorithm will be the actual MST without any adjustmentsomputation speeds will execute the algorithm at varying
on the link weights. During each iteratioly given current paces. As a result, the links may not always have the most
Lagrangian multiplier valueg;;[k], we solve the Lagrangian recent price and rate information of other links due to dethy
subproblem by finding the MST on the network graph, whe out-of-order updates. To accommodate asynchronous up-
the weight of a link equals to the sum of its energy cost, itfates, we introduce thgartial asynchronism model that will
Lagrangian multiplier, and the Lagrangian multipliers bét be used in the practical implementation of our algorithme Th
clusters that this link belongs to. Using the new flow vectgrartial asynchronism model makes the following assumption
[fij[k]lvi,j)er Obtained from the Lagrangian subproblem, we There exists a positive integé# such that:

update the Lagrangian multipliers by: « For every link (4, j), the time between consecutive up-
N _ Ny N B dates is bounded bj for both price and rate updates.
Biglk+1] = max(0, 5i; (K] +6[] (£ [kH( %:\P Tralk]=C)), « One-way communication delays between any two nodes
p,q ij

is at mostB time steps.
where ¢ is a prescribed sequence of step sizes. Note fromThjs partial asynchronism model is first discussed in [13].
the above equation that the Lagrangian multipliers vari@sater, it is adapted by Lowet al. [9] in wireline networks and
depending on the value @fi; + 3, jew,, fra = C), Which  xye et al. [10] in wireless networks. In [10], a technique is
represents the amount of the capacity violation within atelu proposed to improve the price-based strategy to accommodat
When the violation of a cluster is positive, there are datafﬂo"!ésynchronous updates. At timeinstead of the most recent
traveling in the cluster that are not supported by the wa®lejnformation, a link may only recognizes a sequence of recent
shared-medium. Conversely, when the violation of a cluster,sqates. The idea of the technique is for the links to eséimat
negative, there exists free bandwidth in the cluster thabis e price and rate information by computing the average f th
utilized by the data flows. _ ~ sequence from time — B to ¢. To improve the estimation, a
The selection of step sizes plays an important role in thgoying average can be utilized with a heavier weight assigne
subgradient algorithm. If the step sizes are too small, then g the more recent updates. From their simulations, it isvsho
algorithm has a slow convergence speed. If the step sizes @& the price-based strategy will converge the fastestiwhe
too large, thens;; may oscillate around the optimal solutionyhe entire weight is assigned to the most recently received
and the algorithm fails to converge. However, the convergenpdate. Moreover, they prove that with sufficiently smagipst
is guaranteed whe# satisfies the following conditions [12]: gjzes¢, the algorithm converges to the global optimum in
o0 asynchronous network environments. We adapt this teckniqu
0k] > 0, klim 9k] = 0, andz k] = oc. (16) in our implementation, allowing each link to estimate thiegr
- k=1 and rate information of other links based on the most regentl
In this paper, we use the following sequence of step sizé§ceived update.

0[k] = m wherea, b, andc are positive constants. IV, SIMULATION

C. Distributed Algorithm A. Smulation Environments

Based on the subgradient algorithm, we design our dis-we study the distributed MEDG algorithm in three different
tributed algorithm for the MEDG problem. Each bidirectibnasimulation environments. In our first environment, we solve
link (i, 7) is delegated to its lower ordered node, assumiffle non-linear MEDG formulation presented in Section Il
each node has a distinct identity. All computations reldted girectly with the non-linear solver LOQO 6.02 called from
link (i, 7) will be executed on its lower ordered node. We nowMPL scripts. The computations are performed on the NEOS

summarize our distributed algorithm: server for optimization [14]. For convenience, we refer to
1) Choose initial Lagrangian multiplier valugs;[0], for this environment aoptimal. The purpose of theoptimal

all links (i,7) € E. environment is to provide us with an optimal solution to the

2) For thekth iteration, determine the weight of each linkMEDG problem, which is produced with a centralized scheme

as(e;; + Bi;[k] +Z(p7q)€q>” Bpqlk]). and global information. Since there are no other existing

3) Compute the MST on the network graph using a diseuting algorithms that consider data aggregation and-wire
tributed MST algorithm. less channel interference simultaneously in the liteeatthe

4) Based on the MST obtained, compufie[k + 1], for all optimal solution will serve as a reference in the perfornganc
links (i,7) € E. evaluation of our distributed MEDG algorithm. The second



simulation environment is referred to agnchronous. In this e ‘ ‘ ‘
environment, the MEDG problem is solved with a synchronous 2300f asynchronous
implementation of the algorithm. The local clocks on the 2200
nodes are synchronized, such that they will simultaneously
execute the algorithm at every time step € 1,2,3...).
Bounded communication delay is assumed where the price
and rate updates will arrive at their destinations befor th
next time step. The third simulation environment, referted
asasynchronous, is based on the partial asynchronism model
presented in Section Ill. The model assumes the existence 1700

N
=
o
S

N
=3
<]
S

1900

Total energy consumption
&
3
]

e——

of an integerB that bounds the time between consecutive 1600

price and rate updates. To implement this environment, artim 1500 ‘ ‘ ‘ ‘ ‘

initially set to a random integer betweérto B is maintained ° % 1 ime steps (rounds) 20 %0

on each node. At each time step, the nodes decrease their

timers by 1. When the timer reacheg, the Corresponding Fig. 1. Convergence in asynchronous network environments.

node executes an iteration of the algorithm, which includes
sending the price and rate updates. After the execution, the
node resets its timer to a random integer betwéeto B.

In the asynchronous environment, update messages may be 1500
delayed or out-of-date. .
Except for theoptimal environment, the distributed MEDG
algorithm is implemented with the C++ programming lan-
guage. In all of our experiments, we assume that the transmis
sion range is identical to the interference range. Furtbegm
we follow a generic signal path loss model anddgt= dfj.
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B. Convergence Behaviour
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In this subsection, we study the convergence behaviour of e
our algorithm. To this end, we generate a network topology S mbersinodes oo B
with 100 nodes randomly distributed on a square field of 50m

x 50m, and each node has a transmission range of 10m. In Fig. 2. Optimal vs. asynchronous simulation environment.

each time step, all sensor nodes will transmit one unit cd dat

destined to the sink node. We set the capacity of the wireless

shared-medium to 27 units, which correspond to the minimud®m and the capacity of the wireless shared-medium is set
capacity that a feasible solution exists. The algorithm {8 the minimum value, such that a feasible solution exists.
executed for 300 time steps under thmchronous and the The total energy consumed by the different environments
asynchronous environments, and the total energy consumed @t convergence is recorded, for one instance of the random
each time step is recorded. Fig. 1 shows that our algoritH¥§twork topology given the number of nodes. We observe from
converges to the identical optimal value in both environtaen Fig. 2 that our algorithm achieves the optimal solution fibr a
While the algorithm converges rapidly in thgnchronous topologies that were simulated. This result validates thgrc
environment, the result from thasynchronous environment that our distributed algorithm can find the minimum energy
fluctuates for around 50 time steps before converging towa#@ta gathering tree that is supported by the wireless shared

the optimal value. medium.

~
=]
S

3
ok
~

C. Performance Evaluation V. RELATED WORK

In our second study, we evaluate the performance ofThe problem of energy efficient routing in sensor networks
our algorithm by comparing thasynchronous environment has been investigated with optimization techniques in many
against theoptimal environment. We generate multiple netprevious works [15], [16], [17], [18]. Changt al. [15]
work topologies with fewer nodes. The reason for movinlgave formulated a flow-based linear programming problem
to smaller topologies is due to the exponential growth &6 maximize the network lifetime. In [16], the optimiza-
constraints in the non-linear MEDG formulation. The humbdion model minimizes energy consumption and considers the
of constraints grows &™, wheren is the number of nodes channel contention constraints associated with the vegele
in the network. Due to the limitation of the solver, we arshared-medium. Krishnamachaat al. [17] propose another
only able to simulate theptimal environment with at most 15 optimization formulation to maximize the raw data arrived a
nodes. The nodes in the topologies are randomly distributdee sink node, subject to flow, fairness, energy, and capacit
on a square field of 50nx 50m. The transmission range isconstraints. Boydet al. [18] study the simultaneous routing



and power allocation problem for wireless data networks.
In [17] and [18], the optimization formulations utilize the [1]
physical model [4] of packet transmission in wireless nekso

to model the channel contention constraints. However, ¢he r
sulting constraints are non-convex, which makes the riegult 2]
formulations difficult to solve. In this paper, we model chah
contention as linear constraints based on the protocol mode
Furthermore, even though these works generally save energy
they do not consider the additional energy savings that can
be achieved by exploiting data correlation among the sens&r]
nodes.

The concept of data aggregation is to exploit data corrds]
lation among the sensor nodes by eliminating redundancy.
Consequently, there are fewer transmissions in the networfg)
which results in energy savings. In [6], Kalpalgsal. have
formulated the maximum lifetime data gathering problemras a
integer program with linear constraints, taking into cdesa-
tion data aggregation, and present a polynomial-time akgar
to solve the problem. In [7], Goedt al. consider the joint
treatment of data aggregation and transmission structire.
data aggregation function utilized by the intermediateasod
modeled with concave, non-decreasing cost functions.l&ing [l
input coding is considered in [19], where intermediate sode
can aggregate their collected data with the side informati¢Lo]
provided by another node. In contrast, data aggregation wit
multi-input coding is only performed when all input infor-[1y)
mation from multiple nodes is available. Multi-input codin
is often employed by cluster-based routing algorithms sagch
LEACH [20] and PEGASIS [21]. In the model of LEACH, the[17
cluster heads are responsible for aggregating all dateiregri
from the nodes in their respective cluster into a single pack
Instead of clusters, the PEGASIS algorithm finds chains

(7]

(8]
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