APPENDIX

Proof of Theorem 3: The proof is based on the Chernoff Bound. For v; € [0, 1] independent random variables,
let S=>,v;,v=E[), v, then
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Let ©; = 35, @ w} = 2, UPwity p ®F = 2, g7 w?. All @, 07, @7 are sums of RV’s € [0,1]. With
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E[®?] = a;, E[®3] = 13 we have the followmg
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Note that the aggregate marginal utﬂity (flow) in the first time slot is obtained from the flow in the rounded solution
in the second slot. Assume }°_, ;*w(?, p > (1 — 8)d;. Since E[®}|®]] = d; = ®}/(1 — 6) > &, it can be shown that
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Now to ensure a net flow of at least (1 —§)a, at every PU and (1 — 8)b; at every SU with high probability, we need:
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This results in § = 4/ anéKR) =,/ QIHIEKR). Then the approximation bound B is given by
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S VE s Vi is maximized when ; = b; = 4 = W By the normalized weight assumption ). a; +

a3, b
> b S KR If e = maxl{wlcﬂ( - J( 12} > 1 then Do+ b; > K= Substituting into (1), we have the following

min; ;{w;’ ](Z),w](l) P

with high probability




