
TinyFlow: Breaking Elephants Down Into Mice
in Data Center Networks

Hong Xu⇤, Baochun Li†
henry.xu@cityu.edu.hk, bli@ece.toronto.edu

⇤ Department of Computer Science, City University of Hong Kong
† Department of Electrical and Computer Engineering, University of Toronto

Abstract—Current multipath routing solution in data centers

relies on ECMP to distribute traffic among all equal-cost paths.

It is well known that ECMP suffers from two deficiencies.

ECMP does not differentiate between elephant and mice flows,

creates head-of-line blocking for mice flows in the egress port

buffer, and results in long tail latency. Further it does not

fully utilize available bandwidth due to hash collision among

elephant flows. We propose TinyFlow, a simple yet effective

approach that remedies both problems. TinyFlow changes the

traffic characteristics of data center networks to be amenable to

ECMP by breaking elephants into mice. In a network with a

large number of mice flows only, ECMP naturally balances load

and performance is improved. We conduct NS-3 simulations and

show that TinyFlow provides 20%–40% speedup in both mean

and 99-th percentile FCT for mice, and about 40% throughput

improvement for elephants.

I. INTRODUCTION

Modern data center networks are constructed with Clos
topologies such as fat-tree [5] and VL2 [16]. To achieve full
bisection bandwidth in a scalable, cost-effective manner, these
topologies provide abundant path diversity with many equal-
cost paths between a given pair of hosts. Hash-based multipath
routing, e.g. ECMP (Equal Cost Multipathing), is widely used
to choose a path among all shortest paths based on the hash
value of a flow’s five-tuples. ECMP is simple to implement
and does not require per-flow information at switches.

Yet, ECMP suffers from two major drawbacks when
used in data center networks [6], [11], [14], [25]. First,
ECMP does not differentiate between mice flows—flows that
are latency-sensitive short requests/responses for interactive
applications—and elephant flows—flows that transfer bulky
traffic for parallel computation jobs [7], [25]. Thus, mice
flows often find themselves queued behind elephants in the
egress port, suffering from long queueing delays and poor
flow completion times (FCT), especially in the tail [7], [25].
Second, ECMP cannot effectively utilize available bandwidth
due to hash collision [6], [11], [14]. When the hash values of
two (or more) elephants collide, they have to share the same
link with reduced throughput even though other paths may be
completely free.

The networking community has devoted much attention
to ECMP’s problems recently. In general there are two ap-
proaches to improve ECMP. The first is to identify and route

elephants to uncongested paths based on global informa-
tion [6], [10], [13], [20]. This approach requires centralized
optimization algorithms and poses scalability challenges for
current OpenFlow switches [13]. More importantly, it does
not address the tail latency problem, since elephant routing is
performed at the granularity of seconds, due to the overhead
of statistics collection and the complexity of optimization.
The second, and newer, approach is to use per-packet rather
than per-flow routing, where each packet is forwarded to a
distinct port among equal-cost paths in a randomized [14]
or deterministic [11] way. Per-packet routing clearly leads to
better load balancing and improved tail latency, though its
performance in asymmetric topologies due to link failures and
topology updates is unclear at best, especially for mice flows
with packet reordering.

We present a new approach to designing multipath rout-
ing systems that provide high utilization, low latency, and
short latency tail, called TinyFlow. TinyFlow is based on
a simple observation: ECMP is designed to balance load
evenly when there are many flows of similar sizes [14].
Thus, we can break elephants down into many mice flows,
and distribute them uniformly at random over all paths.
Intuitively, TinyFlow represents a per-mice routing approach,
and automatically changes the traffic characteristics of the
network to be amenable to ECMP. During the lifetime of an
elephant, its packets are spread across the network instead of
pinned to a pre-determined path, leading to better bandwidth
utilization and tail latency. On the other hand, reordering now
only happens across mice flows of an elephant flow. The
negative impact on tail latency is reduced as each “real” mice
flow is always kept on the same path. Note that reordering
does not affect throughput of long-lived elephants with TCP
SACK and packets traversing equal-cost paths whose loads are
well balanced. This is verified by both testbed experiments in
previous work [14] and our simulations.

TinyFlow can be implemented in many different ways to
transform an elephant into mice. The current TinyFlow design,
generally speaking, works on each edge switch of the network
to record the active elephants together with their egress ports
and byte counts. An elephant’s egress port is varied randomly
every 10KB, effectively breaking it down into a sequence1

1These mice flows are transmitted sequentially, not concurrently.

978-1-4799-4894-9/14/$31.00 c�2014 IEEE

of mice flows each with 10KB. This design does not require
global coordination in the control plane or application/end-
host modification, and can be easily implemented over any
OpenFlow switches without the complexity of periodically
running any centralized algorithm. An elephant (say >1MB)
is equivalent to a large number of mice flows (<100KB).
Thus in TinyFlow, when an elephant is split into mice, they
are transmitted sequentially rather than concurrently to avoid
incast [22], and is different from MPTCP [19].

We evaluate TinyFlow with packet-level simulations in NS-
3. Our simulations use a data center traffic trace that mimics a
web search workload [7] with a 16-pod 1,024-host fat-tree. It
is shown that TinyFlow achieves ⇠18% and ⇠40% speedup in
both mean and 99-th percentile FCT for mice flows, and ⇠40%
in mean and tail FCT for elephants compared to ECMP. These
preliminary results confirm that TinyFlow is a lightweight and
effective multipath routing system.

The remainder of this paper is organized as follows. Sec. II
summarizes related work. Sec. III discussses the motivation,
design, and alternative implementations of TinyFlow. Sec. IV
presents trace-driven NS-3 simulations results, and finally
Sec. V concludes the paper.

II. RELATED WORK

Motivated by the drawbacks of ECMP, many new multipath
routing designs have been proposed. We briefly review the
most relevant prior work here, including both per-flow and
per-packet approaches. We also cover other related solutions
working on other layers of the data center network to improve
FCT.

Per-flow multipath. Most work here adopts a centralized
approach enabled by software defined networks (SDN) [15].
Hedera [6] is the first that identifies ECMP’s hash collision
problem in data centers. Al-Fares et al. propose a dynamic
routing system that detects elephants and finds a good end-
to-end path with optimization algorithms, and show that ag-
gregated throughput can be improved by more than 100%.
MicroTE [10] leverages the short-term traffic predictability
and develops a fine-grained routing system using linear pro-
gramming. Both systems are OpenFlow based, and require
global information and decision-making. TinyFlow shares the
philosophy to strategically route elephants, but does so in a
purely local and distributed manner by randomly varying the
egress ports and transforming them into mice flows. LocalFlow
[20] is a switch-local solution that routes elephants based on
multi-commodity flow algorithms. Yet, similar to other work,
it is not designed to reduce the tail latency of mice flows.

Some other work focuses on specific aspects of the system
design. Mahout [12] improves the scalability of elephant
detection with a host-based mechanism that monitors the host
socket buffers to detect elephants. DevoFlow [13] proposes a
modified OpenFlow model to improve the scalability of the
controller for centralized flow management. These proposals
are complementary to TinyFlow.

Per-packet multipath. Another thread of work departs from
the traditional per-flow paradigm, and advocates per-packet

multipath routing instead [11], [14]. Per-packet routing signif-
icantly improves load balancing. However it introduces packet
reordering which interacts negatively with TCP, because TCP
interprets out-of-sequence packets as a congestion signal and
unnecessarily reduces the window size. Dixit et al. [14]
examine the impact of packet reordering with random packet
spraying in a fat-tree network using testbed implementations.
They find that because of the symmetry of the topology,
and modern TCP’s DupACK threshold adjustment, DSACK
option, and other built-in mechanisms, packet reordering can
be tolerated quite well and does not affect throughput of long-
lived elephants. As part of the system, DeTail [25] includes
an adaptive network layer that forwards a packet to an egress
port whose queue occupancy is below a certain threshold. Cao
et al. [11] focus on latency, and design a deterministic per-
packet round-robin routing system that focuses on reducing
the queue length.

Despite the progress, it is still unclear how per-packet mul-
tipath routing affects the tail latency of mice flows, especially
in asymmetric topologies which occur frequently in reality due
to temporary failures, maintenance, etc. Mice flows are very
sensitive to reordering and a single event of retransmission
can cause the flow to hit the tail. When some links are down,
congestion levels can differ significantly on equal-cost paths,
leading to long latency tail as well as reduced throughput [14].

Beyond the network layer. At the transport layer, MPTCP
[19] is a multipath TCP that splits a flow into a few subflows,
each routed by ECMP through different paths concurrently in
order to increase throughput and robustness. DCTCP [7] and
HULL [8] use fine-grained congestion control and phantom
queues to reduce the queue length and improve latency. The
latency improvement comes at a small cost of throughput
though. Other work, including D3 [23], PDQ [17], and pFabric
[9], proposes different queueing and scheduling disciplines to
prioritize mice flows for better latency. On the same ground,
our previous work RepFlow [24] works at the application layer
by replicating each mice flow to reap multipath diversity and
achieve better latency on average and at the tail. All these
proposals work beyond the network layer, and they can be
used together with an efficient multipath routing system, such
as TinyFlow, to improve performance in a data center network.

III. MOTIVATION AND DESIGN

We present the motivation and design of TinyFlow in this
section.

A. Motivation
Production data center networks use symmetric topologies

such as Clos-based fat-tree or VL2. For such networks, ECMP
is designed to balance load perfectly when there are many
flows with similar sizes. This is intuitive to understand:
hashing a large number of flows leads to a uniform distribution
of hash values, and a uniform distribution of traffic over the
paths given flow sizes are similar. However it is widely known
that data center traffic violates this assumption [7], [25], and
causes various performance problems.

elephant flow mice flow

H1 H2 H3 H4

S1 S2

S4S3

H1 H2 H3 H4

S1 S2

S4S3

(a) Without TinyFlow (b) With TinyFlow

Fig. 1: TinyFlow alleviates head-of-line blocking for mice flows and improves
latency.

Researchers have focused on redesigning ECMP to better
cope with data center traffic as mentioned already. Another
approach, working in the opposite direction, is to “redesign”
the traffic and transform its characteristics to be amenable to
ECMP’s original design, which has not been discussed thus far.
This motivates TinyFlow, whose objective is to break elephants
down into a stream of many mice.

TinyFlow brings two benefits. First, it alleviates head-of-line
blocking due to elephants hogging up the egress port buffer
in switches, and improves FCT for mice flows. To understand
this, consider the following toy example shown in Fig. 1. Say
H1 sends an elephant flow to H3, which takes the path S1-
S3-S2 as shown in Fig. 1(a). H2 sends a stream of mice flows
to H4. By ECMP, these mice flows have equal probability to
traverse the two paths S1-S3-S2 and S1-S4-S2, and roughly
half of them will experience head-of-line blocking because of
the colocating elephant. With TinyFlow, as shown in Fig. 1(b),
the elephants are broken into many mice flows, evenly spread
across both paths. The uniform load distribution significantly
reduces tail latency of mice flows.

For the purpose of illustration, assume the link capacity
is µ bps, the elephant flow has a throughput of � bps, and
the traffic from mice flows is negligible. This is a reasonable
simplification as mice flows account for less than 5% of total
bytes based on previous measurements [7], [16], [25]. Further
assume one path can be modeled as a M/D/1 queue, whose
expected queue length as a function of the load ⇢ = �/µ is
Q(⇢) = (2�⇢)⇢

2(1�⇢) . Then the average queue length seen by mice
flows is 0.5Q(⇢), and half of them see an expected queue
length of Q(⇢) without TinyFlow. With TinyFlow, both paths
are identical and the arrival rate becomes 0.5�. The average
queue length is Q(0.5⇢), which is less than 0.5Q(⇢) due
to concavity of Q(·). This holds for many queueing models
as long as the expected queue length is a concave function
of load. Therefore, TinyFlow improves both average and tail
latency by evenly distributing traffic from elephants.

The second benefit of TinyFlow is that it alleviates the ill
effect of hash collision among elephants and improve their
throughput. This can also be illustrated by a toy example in
Fig. 2. The setup is similar to Fig. 1, where H1 sends an ele-
phant flow to H3 via S1-S3-S2. Now H2 needs to send another
elephant to H4. When a hash collision happens between the
two elephants, they obtain a throughput of 500 Mbps only if

elephant flow 1 elephant flow 2

H1 H2 H3 H4

S1 S2

S4S3

H1 H2 H3 H4

S1 S2

S4S3

(a) Without TinyFlow (b) With TinyFlow

Fig. 2: TinyFlow improves throughput of elephant flows as well as bandwidth
utilization.

the network is 1 Gbps. The bandwidth utilization is only 50%
as the other path is completed wasted. With TinyFlow, both
elephants are evenly spread out, each with a throughput of
1 Gbps which represents a 100% bandwidth utilization.

B. Design

On the high level, TinyFlow’s design can be summarized in
one sentence: it identifies and routes elephant flows as many
independent mice flows, by dynamically varying the egress
port of a detected elephant. TinyFlow only needs to run at the
edge switches of a Clos network; the rest of the network uses
unmodified ECMP. This is because each host is connected to
a unique edge switch, and varying the egress port at the edge
switch leads to a unique non-overlapping path to the upstream.
TinyFlow is comprised of two components: elephant detection
and dynamic random rerouting. We present the detailed design
in the following.

Elephant detection can be done in several ways: maintaining
and polling per-flow statistics, packet sampling, and end-host
based monitoring. Per-flow statistics as used in Hedera [6] has
high accuracy at the cost of poor scalability in commodity
switches. End-host based monitoring such as Mahout [12]
overcomes the scalability issue, though it has not been widely
adopted. In our current design we use packet sampling, since
it is widely used in practice with mature switch support such
as sFlow [3]. This also allows us to understand the practical
benefits of the system. In TinyFlow edge switches sample
packets on the downstream ports connected to hosts and keep
flow records for a small time period. If a flow’s occurrence
exceeds a pre-defined threshold it is detected as an elephant.
TinyFlow is not bound to a particular elephant detection
method, and certainly stands to gain with future improvements
in detection accuracy.

At the heart of TinyFlow is the dynamic random rerouting
mechanism based on OpenFlow, which effectively transforms
an elephant into a stream of mice and works together with
ECMP. Specifically, all flows are routed using ECMP by
default. Once an elephant is detected, the edge switch adds a
new entry for it to the flow table and monitors its byte count.
When the byte count exceeds a threshold, the switch chooses
a different egress port out of the equal-cost paths uniformly
at random for the elephant, modifies the flow table entry,
and resets the byte count. This design is distributed where

each edge switch makes independent rerouting decisions. Thus
the controller does not need to be invoked at all, and the
overhead of aggregating information and running centralized
optimization is eliminated.

Some aspects of the dynamic rerouting design bear further
discussions. First, the system can be potentially improved by
using end-to-end congestion information to aid path selection.
Such information can be carried over feedback messages
between switches, such as the congestion notification packets
defined in IEEE 802.1Qau [1]. Indeed some work has explored
this direction with promising results [21]. Second, TinyFlow
may also be improved with just local congestion information,
i.e. port buffer occupancy. This represents another dimension
of the design space with little previous work [25]. We believe,
as verified by large-scale simulations also, that TinyFlow’s
simple design balances the load of the entire network and to a
large degree remedies ECMP’s problems. We do not explore
these directions in this preliminary study, with the hope that
they will be addressed in follow-up studies.

C. Alternative Implementations
TinyFlow lends itself to many implementation choices. Here

we discuss some alternative designs briefly.
It is possible to implement TinyFlow purely at the appli-

cation layer, by having the application transmit an elephant
as a stream of mice flows. To ensure the resulting mice are
transmitted independently by ECMP, their five-tuples (most
likely port numbers) must be modified. This approach does
not require switch modifications. Yet it does require changes
to existing application code, and it may not be extensible to
implement adaptive rerouting as it lacks direct control on path
selection.

It is also possible to have a different switch implementation
of TinyFlow. For example one may instruct the OpenFlow
switch to directly modify the five-tuples of a detected elephant,
so that ECMP will hash it to a different egress port. This
approach still lacks direct control on path selection. Further it
imposes additional per-packet processing overhead which may
degrade the latency performance.

Compared to these alternatives, our current design strikes a
good balance between practicality and performance. TinyFlow
only requires primitive OpenFlow operations, such as byte
count and modifying egress port, that has been supported since
the inception of OpenFlow standard [4]. It also allows direct
control over path selection with extensibility, and existing
applications can directly run on top of it. The tradeoff we make
is that packet sampling is not as accurate as an application
layer implementation that perfectly identifies elephants.

IV. EXPERIMENTAL EVALUATION

We now evaluate TinyFlow using packet-level simulations
in the NS-3 simulator.

A. Methodology
Topology: We use a 16-pod fat-tree as the network topology

[5], which is commonly used in data centers. The fabric

consists of 16 pods, each containing an edge layer and an
aggregation layer with 8 switches each. Each edge switch
connects to 8 hosts. The network has 1,024 hosts and 64 core
switches. There are 64 equal-cost paths between any pair of
hosts at different pods. Each switch is a 16-port 1Gbps switch,
and the network has full bisection bandwidth. The end-to-end
round-trip time is ⇠32µs.

Benchmark workloads: We use empirical workloads to
reflect traffic patterns in production data centers. We consider
a flow size distribution from a data center mostly running
web search [7], which is heavy-tailed with a mix of mice
and elephants. In this workload, over 95% of the bytes are
from 30% of the flows larger than 1MB. Flows are generated
between random pairs of hosts following a Poisson process
with load varying from 0.1 to 0.8 to thoroughly evaluate
TinyFlow’s performance in different traffic conditions. We
simulate 0.5s worth of traffic at each run, and ten runs for
each load. The entire simulation takes more than 900 machine-
hours.

B. Schemes Evaluated
ECMP: The default multipath routing scheme. ECMP

hashes the five-tuples, i.e. src and dst IP, src and dst port
number, and protocol number.

TinyFlow: Our design as explained in Sec. III.
We implement TinyFlow switches as a new
point-to-point-net-device in NS-3, and adds
dynamic rerouting support at the network layer. Packet
sampling is done every 100 KB, an elephant is detected once
two samples are found in 500 µs, and a detected elephant is
rerouted every 10 KB.

For both ECMP and TinyFlow, TCP NewReno is used
without any tuning as the transport protocol. Our code is based
on NS-3.10 which contains a full implementation of TCP
NewReno as of RFC 2582 [2], without SACK. Note SACK
may further improve throughput with the presence of packet
reordering. Table I summarizes some key parameters.

Parameter Value
Fat-tree topology k = 16

Link speed 1 Gbps
Switch queue type DropTail

Buffer size per port 25 packets
Packet size 1500 B

Sampling interval 100 KB
Elephant detection threshold 2 samples in 500 µs

Reroute interval 10 KB

TABLE I: Key parameters in our simulation.

We use (normalized) flow completion time, FCT in short,
as the performance metric throughout the evaluation. FCT is
defined as the flow’s completion time normalized by its best
possible completion time without contention.

C. Overall Performance
We first look at the overall FCT performance. From Fig. 3a,

TinyFlow reduces the mean FCT for all flows by up to 25%
compared to ECMP. When the load is low (0.1 or 0.2), the

(a) All flows. (b) Mice flows (0, 100] KB. (c) Elephant flows (100,1) KB.

Fig. 3: Mean FCT in a 16-pod fat-tree with the web search workload [7].

(a) All flows. (b) Mice flows (0, 100] KB. (c) Elephant flows (100,1) KB.

Fig. 4: 99-th percentile FCT in a 16-pod fat-tree with the web search workload [7].

improvement is small as most of the paths are uncongested
and ECMP functions well most of the time. TinyFlow’s
improvement is more salient in terms of tail FCT. As shown in
Fig. 4a, it improves the 99-th percentile FCT by around 40%
consistently in almost all loads.

The results demonstrate the advantage of breaking elephants
down into mice in load balancing the network, especially when
the load is mild to high (>0.3). The FCT reduction is more
substantial in relatively high loads because with a mix of
elephants and mice ECMP results in severe unbalance of the
load and high FCT.

D. Performance of Mice Flows

Next we focus on mice flows—flows that are less than
100 KB. Fig. 3b and Fig. 4b show the mean and 99-th
percentile FCT for mice flows, respectively. The first obser-
vation is that mice flows in general has slower FCT: both
the mean and tail FCT are longer than that of all flows.
This is in line with the recent trend in our community that
focuses on improving FCT of mice flows [18]. One can also
observe that the discrepancy between mean and tail FCT
improvements of TinyFlow is more salient now. Mice flows’
mean FCT reduction is only 14%–18%, while the tail FCT
reduction is 30%–38%. Mice flows’ FCT depends largely on
queueing delay in the path. Thus, the long tail FCT evidently
shows that mice flows suffer more from head-of-line blocking
due to elephants that arrive from time to time. TinyFlow
can effectively improve the tail FCT and application level
performance.

E. Performance of Elephant Flows

Here we look at the performance of elephant flows, whose
size is larger than 100 KB. Their FCT depends on throughput
and therefore congestion with other co-locating elephants,
instead of queueing delay which could vary significantly. Thus
one can clearly see that their performance, especially the 99-th
percentile FCT in Fig. 4c, is much better than mice flows in
general. Nevertheless, TinyFlow still improves the mean FCT
by around 25%, and tail FCT by around 40%. This confirms
that TinyFlow can alleviate throughput degradation caused by
hash collisions among elephants.

To better understand the effect of packet reordering, Ta-
ble II shows the amount of additional traffic caused by TCP
retransmissions as a result of out-of-order arrivals. We can
see that there is a fair amount of retransmitted packets. Note
that the results are obtained with un-tuned TCP. If we adjust
the DupACK threshold for retransmission and enable SACK
(which is not implemented in NS-3), this overhead can be
reduced and performance of both elephants and mice can be
further improved.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
9.19% 12.59% 14.06% 14.49% 14.53% 17.08% 16.48% 16.61%

TABLE II: Retransmission overhead in TinyFlow with packet reordering.

To summarize, TinyFlow achieves much better FCT for all
flows in data center networks. Our performance evaluation
serves as a conservative estimate of its benefits. There is room
for improvements especially in elephant detection accuracy,
adaptive rerouting, and handling packet reordering.

V. CONCLUDING REMARKS

We presented the design and evaluation of TinyFlow, a sim-
ple approach that breaks elephant flows down into mice flows
to better load balance the data center network. It is an effective
multipath routing system that can be readily implemented
on OpenFlow switches to support existing applications and
transport layer protocols. TinyFlow represents a new approach
that aims to redesign the traffic characteristics to better suit
the protocols rather than redesigning the protocols to work
with the traffic. We believe such a thinking applies beyond
the network layer and potentially can lead to promising new
ideas. Our work is only the first step in this direction. The
design space needs more thorough exploration. Future work
is needed to improve various aspects of the system, some of
which are already identified, and better understand the benefits
of TinyFlow.

REFERENCES

[1] IEEE 802.1Qau — Congestion Notification. http://www.ieee802.org/1/
pages/802.1au.html.

[2] The NewReno Modification to TCP’s Fast Recovery Algorithm RFC
2582. http://datatracker.ietf.org/doc/rfc2582/.

[3] sFlow.org. http://www.sflow.org/.
[4] OpenFlow switch specification v.1.3.3. https://www.opennetworking.

org/, September 27 2013.
[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In Proc. ACM SIGCOMM, 2008.
[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-

dat. Hedera: Dynamic flow scheduling for data center networks. In
Proc. USENIX NSDI, 2010.

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
Proc. ACM SIGCOMM, 2010.

[8] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: Trading a little bandwidth for ultra-low latency
in the data center. In Proc. USENIX NSDI, 2012.

[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. M. B. Prabhakar, and
S. Shenker. pFabric: Minimal near-optimal datacenter transport. In
Proc. ACM SIGCOMM, 2013.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: Fine grained
traffic engineering for data centers. In Proc. ACM CoNEXT, 2011.

[11] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz. Per-packet load-balanced, low-latency routing
for Clos-based data center networks. In Proc. ACM CoNEXT, 2013.

[12] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection.
In Proc. IEEE INFOCOM, 2011.

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In Proc. ACM SIGCOMM, 2011.

[14] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact
of packet spraying in data center networks. In Proc. IEEE INFOCOM,
2013.

[15] N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intel-
lectual history of programmable networks. ACM Queue, 11(12):20:20–
20:40, December 2013.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center
Network. In Proc. ACM SIGCOMM, 2009.

[17] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with
preemptive scheduling. In Proc. ACM SIGCOMM, 2012.

[18] S. Liu, H. Xu, and Z. Cai. Low latency datacenter networking: A short
survey. http://arxiv.org/abs/1312.3455, 2013.

[19] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath tcp. In Proc. ACM SIGCOMM, 2011.

[20] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scalable, optimal flow
routing in datacenters via local link balancing. In Proc. ACM CoNEXT,
2013.

[21] A. S.-W. Tam, K. Xi, and H. J. Chao. Leveraging performance of
multiroot data center networks by reactive reroute. In Proc. IEEE
Symposium on High Performance Interconnects, 2010.

[22] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective
fine-grained TCP retransmissions for datacenter communication. In
Proc. ACM SIGCOMM, 2009.

[23] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never
than late: Meeting deadlines in datacenter networks. In Proc. ACM
SIGCOMM, 2011.

[24] H. Xu and B. Li. RepFlow: Minimizing flow completion times with
replicated flows in data centers. In Proc. IEEE INFOCOM, 2014.

[25] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing
the flow completion time tail in datacenter networks. In Proc. ACM
SIGCOMM, 2012.

