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Abstract—Short TCP flows that are critical for many interactive
applications in data centers are plagued by long flows and head-
of-line blocking in switches. Hash-based load balancing schemes
such as ECMP aggravate the matter and result in long-tailed
flow completion times (FCT). Previous work on reducing FCT
usually requires custom switch hardware and/or protocol changes.
We propose RepFlow, a simple yet practically effective approach
that replicates each short flow to reduce the completion times,
without any change to switches or host kernels. With ECMP
the original and replicated flows traverse distinct paths with
different congestion levels, thereby reducing the probability of
having long queueing delay. We develop a simple analytical model
to demonstrate the potential improvement. Further, we conduct
NS-3 simulations and Mininet implementation and show that
RepFlow provides 50%-70% speedup in both mean and 99-th
percentile FCT for all loads, and offers near-optimal FCT when
used with DCTCP.

I. INTRODUCTION

Data centers run many interactive services and applications
that impose stringent requirements on the transport fabrics.
They often partition computation into many small tasks, dis-
tribute them to thousands of machines, and stitch the responses
together to return the final result [4], [39]. Such partition-
aggregation workflows generate a large number of short query
and response flows across many machines, and demand that
short flows have low latency in order to provide soft real-time
performance to users. More importantly, the tail latency also
needs to be low since the request completion time depends on
the slowest flow.

TCP is the dominant transport protocol in data centers [4].
Flow completion times (FCT) for short TCP flows are poor:
FCT can be as high as tens of milliseconds while in theory
they could finish in 10-20 microseconds with 1G or 10G
interconnects. The reason is that these flows are often queued
behind bursts of packets from long flows of other workloads
(e.g. backup and data mining), a phoenomenon known as head-
of-line blocking. The situation is even worse with hash-based
flow-level load balancing schemes such as ECMP [3]. ECMP is
agnostic to congestion, does not differentiate between short and
long flows, and may assignment many long flows to the same
path causing flash congestions and long-tailed FCT even when
the network is lightly loaded [3], [39]. We measure the round-
trip times (RTT) between two small instances in Amazon EC2’s

us-west-2¢ zone every 1 second for 100K samples as a rough
estimation of FCT. The newer EC2 data centers are known to
have many equal-cost paths between given pairs of instances
[30]. Fig. 1 and Fig. 2 confirm the long-tailed distribution:
While mean RTT is only 0.5ms, the 99-th percentile RTT is
17ms.
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Fig. 1:
small instances in EC2 us-west-2c.  tion.

Recent research has proposed many new transport designs to
reduce FCT of short flows. Broadly speaking, the central idea
is to reduce the short flows’ queueing delay via adaptive ECN-
based congestion control [4], explicit flow rate assignment [19],
deadline-aware scheduling [26], [34], [37], priority queueing
[6], and cross-layer redesign [6], [39]. While effective, they
do require modifications to switches and operating systems,
making it difficult to deploy them in a large-scale data center
with a large number of servers and switches.

Our goal is to design a practical and effective data center
transport scheme that provides low latency for short flows both
on average and in the 99-th percentile, and can be readily
deployed in current infrastructures. To this end, we present
RepFlow, a simple data center transport design. RepFlow
directly uses existing TCP protocols deployed in the network.
The only difference with RepFlow is that it replicates each short
TCP flow by creating another TCP connection to the receiver,
and sending identical packets for both flows. The application
uses the first flow that finishes the transfer. Flow replication can
be easily implemented as libraries or middleware at the appli-
cation layer. Thus RepFlow requires no change to switches,
the network stack, or operating systems, and maintains TCP’s
robustness for throughput intensive traffic. It can also be used
with other data center transport protocols such as DCTCP [4]
to further improve performance as we will show later.

The key insight behind RepFlow is the observation that
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multi-path diversity, which is readily available with high bisec-
tion bandwidth topologies such as Fat-tree [2], is an effective
means to combat performance degradation that happens in a
random fashion. Flash congestion due to bursty traffic and
imperfect load balancing happen randomly in any part of the
network at any time. As a result, congestion levels on different
paths are statistically independent. In RepFlow, the replicated
and original flow are highly likely to traverse different paths,
and the probability that both experience long queueing delay is
much smaller. RepFlow targets general clusters running mixed
workloads, where short flows typically represent a very small
fraction (< 5%) of overall traffic according to measurements
[4], [15]. Thus the replication overhead and impact on through-
put for long flows are rather mild.

It is important to note that RepFlow works with ECMP per-
flow load balancing, and differs from multipathing schemes
such as MPTCP [30] and packet spraying [12] that split a
flow across multiple paths. Traffic is asymmetric and dynamic,
especially considering link failures and external traffic that
originates or terminates outside of the data center. When the
paths used by a flow have different loads, out-of-order packets
interact negatively with TCP. Splitting a flow hardly reduces
latency for short flows, though it improves throughput for
long flows. ECMP is also widely used in current data centers,
reducing the implementation overhead of RepFlow.

We evaluate RepFlow with queueing analysis, packet-level
simulations in NS-3, and Linux kernel-based implementation
using Mininet [17]. We develop a simple M/G/1 queueing
model to model mean and tail FCT. Our model shows that the
diversity gain of replication can be understood as a reduction
in the effective traffic load seen by short flows, which leads to
significantly improved queueing delay and FCT. Our evaluation
uses two data center traffic traces: one that mimics a web
search workload [4] and one that mimics a typical data mining
workload [15]. NS-3 simulations with a 16-pod 1,024-host Fat-
tree, and experiments with a 4-pod Fat-tree on Mininet show
that RepFlow achieves 50%—-70% speedup in both mean and
99-th percentile FCT even for loads as high as 0.8 compared
to TCP. When it is feasible to use advanced transport protocols
such as DCTCP [4], RepFlow offers competitive performance
compared to state-of-the-art clean slate approaches such as
pFabric [6]. The overhead to the network is negligible, and
long flows are virtually not affected. Thus we believe it is
a lightweight and effective approach that requires minimal
implementation efforts with salient FCT reductions.

II. RELATED WORK

Motivated by the drawbacks of TCP, many new data cen-
ter transport designs have been proposed. We briefly review
the most relevant prior work here. We also introduce some
additional work that uses replication in wide-area Internet,
MapReduce, and distributed storage systems for latency gains.

Data center transport. DCTCP [4] and HULL [5] use ECN-
based adaptive congestion control and appropriate throttling
of long flows to keep the switch queue occupancy low in
order to reduce short flows’ FCT. D2 [37], D2TCP [34], and

PDQ [19] use explicit deadline information to drive the rate
allocation, congestion control, and preemptive scheduling de-
cisions. DeTail [39] and pFabric [6] present clean-slate designs
of the entire network fabric that prioritize latency sensitive
short flows to reduce the tail FCT. All of these proposals
require modifications to switches and operating systems. Our
design objective is different: we strive for a simple way to
reduce FCT without any change to TCP and switches, and
can be readily implemented at layers above the transport layer.
RepFlow presents such a design with simple flow replication
that works with any existing transport protocol.

Replication for latency. Though seemingly naive, the gen-
eral idea of using replication to improve latency has gained
increasing attention in both academia and industry for its
simplicity and effectiveness. Google reportedly uses request
replications to rein in the tail response times in their distributed
systems [11]. Vulimiri et al. [36] argue for the use of redundant
operations as a general method to improve latency in various
systems, such as DNS, databases, and networks. In the context
of wide-area Internet, [38] argues for the latency benefit of
having multiple wide-area transit links in a multi-cloud CDN
deployment scenario. Replication has also been recently used in
MapReduce [7] and storage systems [33] to mitigate straggling
jobs. As a related technique, Mitzenmacher’s “power of two
choices” work [25] proposes for a request to randomly choose
two servers, and queue at the one with less requests to achieve
good load balancing without a global view of the system.

III. REPFLOW: MOTIVATION AND DESIGN
A. Motivation

In today’s data center networks based on a Fat-tree or Clos
topology [4], [15], many paths of equal distance exist between
a given pair of end-hosts. Equal-cost multi-path routing, or
ECMP, is used to perform flow-level load balancing. When a
packet arrives at a switch, ECMP picks an egress port uniformly
at random among equal-cost paths based on the hash value of
the five-tuple in the packet header. All packets of the same flow
then follow a consistent path.

———— large flow
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Fig. 3: A large flow transmits from H2 to H4 following the path shown in the
solid line. If the short flow from HI to H3 takes the path S1-S3-S2, it will
queue behind packets of the large flow in the links S1-S3 and S3-S2. If it
takes the path S1-S4-S2, there is no head-of-line blocking since all ports of
this path are empty. ECMP will randomly hash a short flow to one of the two
paths.

Due to hash collisions in ECMP, flows are often routed on
the same path. Short flows then have to wait until packets
of long flows are processed and suffer from head-of-line
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blocking. Consider a toy example shown in Fig. 3. The topology
resembles one pod of a 4-pod Fat-tree network. A host under
switch S1(S2) has two paths to each host under switch S2(S1).
There is a persistent long flow from H2 to H4, taking the path
S1-S3-S2. Now HI starts to send short flows of 10 packets
continuously to H3. ECMP randomly hashes short flows with
0.5 probability to the path S1-S3-S2, creating head-of-line
blocking and long FCT. We conduct an experiment in Mininet
[17] using exactly the same setup, and observe the mean FCT
is 10x worse with the long flow as shown in the following table
(more on Mininet in Sec. VI).

Scenario Mean FCT | 99-th percentile FCT
without a long flow 0.0135s 0.0145s
with a long flow 0.175s 0.490s
with a long flow and replication 0.105s 0.212s

TABLE I: Mininet experiment results of the toy example shown in Fig. 3. Each
link is 50Mb with 1ms delay. Short flows of 10 packets are sent continuously
from H1 to H3 with ECMP. With the large flow, short flows suffer from 10x
worse FCT. Replication dramatically improves mean and tail FCT by over 50%
in this case.

ECMP creates serious problems. Yet it also provides
a promising solution—multi-path diversity, which motivates
RepFlow. In the toy example it is obvious that the path S1-
S4-S2 has much shorter queueing delay. By replicating a
short flow and making sure the two flows have distinct five-
tuples, one copy of it will traverse this path and improve FCT
significantly. From the same Mininet experiment we observe
over 50% improvement with simple replication in this case, as
shown in Table I. It is in general difficult to choose the right
path for short flows beforehand in a data center network with
a large number of flows, not to mention the latency overhead.
Replication removes this need by opportunistically utilizing the
less congested paths.

B. Design

RepFlow uses flow replication to exploit multi-path diversity.
It does not modify the transport protocol, and thus works on
top of TCP as well as any other TCP variants, such as DCTCP
[4] and D2TCP [34]. On the high level, there are several design
decisions we need to make. First, which short flow should we
replicat? We mandate that flows less than or equal to 100KB
are considered short flows, and are replicated to achieve better
latency. This threshold value is chosen in accordance with
many existing papers [6], [19], [26], [39]. Second, we need
to decide when to replicate the flows. One might argue that
we should only replicate when flows are experiencing long
queueing delays to reduce the replication overhead. However
the extremely short duration of these flows makes such a
reactive approach too slow to remedy the situation. In its current
design, RepFlow proactively replicates each and every short
flow from the very beginning to achieve the best latency. As we
will show in Sec. V-E, the overhead of doing so is negligible,
thanks to the well-known fact that short flows only account for
a tiny fraction of total bytes in production networks [6], [20].
Finally, we replicate exactly once for simplicity, though more
replication is possible.

RepFlow can be implemented in many ways. The simplest is
to create two TCP sockets when a short flow arrives, and send
the same packets through two sockets. This is also our current
implementation. Since data centers run a large number of appli-
cations, it is preferable to provide RepFlow as a general library
or middleware for any application to invoke [1]. For example
one may implement RepFlow as a new transport abstraction
in Thrift, a popular RPC framework used by companies like
Facebook [32]. We are currently investigating this option.
Another possibility is to implement RepFlow at the transport
layer, by modifying TCP so that short flows are marked and
automatically replicated with two independent subflows. This
approach provides transparency to applications, at the cost
of requiring kernel upgrades. In this space, RepFlow can be
incorporated into MPTCP [31] with its multi-path support.

RepFlow lends itself to many implementation choices. Re-
gardless of the detail, it is crucial to ensure path diversity
is utilized, i.e. the five-tuples of the original and replicated
flow have to be different (assuming ECMP is used). In our
implementation we use different destination port numbers for
this purpose.

IV. ANALYSIS

Before we evaluate RepFlow at work using simulations and
experiments, in this section we present a queueing analysis of
flow completion times in data centers to theoretically under-
stand the benefits and overhead of replication.

A. Queueing Model

A rich literature exsits on TCP steady-state throughput mod-
els for both long-lived flows [24], [27] and short flows [18].
There are also efforts in characterizing the completion times
of TCP flows [10], [23]. See [10] and references therein for a
more complete literature review. These models are developed
for wide-area TCP flows, where RTTs and loss probabilities
are assumed to be constants. Essentially, these are open-loop
models. The data center environment, with extremely low fabric
latency, is distinct from the wide-area Internet. RTTs are largely
due to switch queueing delay caused by TCP packets, the
sending rate of which in turn are controlled by TCP congestion
control reacting to RTTs and packet losses. This closed-loop
nature makes the analysis more intriguing [29].

Our objective is to develop a simple FCT model for TCP
flows that accounts for the impact of queueing delay due to long
flows, and demonstrates the potential of RepFlow in data center
networks. We do not attempt to build a fine-grained model that
accurately predicts the mean and tail FCT, which is left as future
work. Such a task is potentially challenging because of not only
the reasons above, but also the complications of timeouts and
retransmissions [28], [35], switch buffer sizes [8], [23], etc. in
data centers.

We construct our model based on some simplifying assump-
tions. We abstract one path of a data center network as a M/G/1
first-come-first-serve (FCFS) queue with infinite buffer. Thus
we do not consider timeouts and retransmissions. Flows arrive
following a Poisson process and have size X ~ F(-). Since

1583



IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

TCP uses various window sizes to control the number of in-
flight packets, we can think of a flow as a stream of bursts
arriving to the network. We assume the arrival process of the
bursts is also Poisson. One might argue that the arrivals are not
Poisson as a burst is followed by another burst one RTT later
(implying that interarrival times are not even i.i.d). However
queueing models with general interarrival time distributions are
difficult to analyze and fewer results are available [14]. For
tractability, we rely on the commonly accepted M/G/1-FCFS
model [6], [8]. We summarize some key notations in the table
below. Throughout this paper we consider (normalized) FCT
defined as the flow’s completion time normalized by its best
possible completion time without contention.

TABLE II: Key notations.

M maximum window size (64KB, 44 packets)

S, threshold for long flows (100KB, 68 packets)
F(), f(-) flow size CDF and PDF
pel0,1) overall traffic load

w queueing delay of the M/G/1-FCFS queue

k initial window size in slow-start

For short flows, they mostly stay in the slow-start phase for
their life time [8], [10], [13], [23]. Their burst sizes depend on
the initial window size k. In slow-start, each flow first sends
out k packets, then 2k, 4k, 8k, etc. Thus, a short flow with
X packets will be completed in log,(X/k + 1) RTTs, and its
normalized completion time can be expressed as

log, (X/k+1)

2.

i=1

FCTx = W/ X +1, (1
assuming link capacity is 1 packet per second.

For long flows that are larger than S, we assume that
they enter the congestion avoidance phase immediately after
it arrives [24], [27]. They continuously send bursts of a fixed
size equal to the maximum window size M (64KB by default
in Linux). A large flow’s FCT is then

X/M
FCOT% = Z Wi/X +1,X > S )
i=1
B. Mean FCT Analysis

We now analyze the mean FCT for short flows in TCP. On
average, each burst sees the expected queueing delay FE(W).
Thus according to (1), the mean FCT of a flow with X packets
is

E[FCTx) = logy(X/k + 1)@ +1.

The mean FCT for short flows less than Sy, is

%t logy(z/k +1) f(x)
F(SL)
The mean queueing delay of a M/G/1-FCFS queue with load

p is obtained with the famous Pollaczek-Khintchine formula
[16]:

E[FCT] = E[W]/ dz+1. (3)

0 X

__p E[B]_ oM
s Em Ty @

where B denotes the burst size as opposed to the flow size.
Since most of the bytes are from long flows, almost all bursts
arrive to the queue are of a fixed size M, and E[B?|/E[B] =
M. Therefore we have

pM /SL logy(¢/k +1) f(x)
2(1—=p) Jo x F(SL)

The mean FCT for short flows depends on the load of
the network and the flow size distribution. Many data center
operators opt for an increased initial window size to reduce
latency in the slow-start phase [13]. So we use k = 12 packets
[6], [13] throughout the paper. Using a flow size distribution
from a production data center running web search workloads
[4], Fig. 4 plots the FCT with varying load.

E[FCT] = dz + 1. (5)
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packets, flow size distribution from the packets, flow size distribution from the
web search workload [4]. web search workload [4].

We now turn our attention to RepFlow, and obtain its mean
FCT expression. For each short flow, RepFlow sends two identi-
cal copies by initiating two TCP connections between the same
end-points. With ECMP, each flow is transmitted along different
paths and experiences different congestion levels. We model
this as having two independent queues with independent arrival
processes and the same load p. When a short flow arrives, it
enters both queues and get serviced, and its completion time is
based on the faster queue.

Without replication, each short flow sees a queue of load
p, i.e. the network is busy with probablility p when the flow
enters, and idle with probablility 1 — p. Now with replication,
each queue’s load is slightly increased from p to (1+4€)p, where

el (@)de

- BEX]
€ is the fraction of total bytes from short flows, and is usually
very small (less than 0.1 [4], [15], [20]). Since the two queues
are independent, a short flow will find the network busy only
when both queues are busy with probability (1 + €)?p?, and
idle with probability 1 — (1 + €)2p2. In other words, each flow
is effectively serviced by a virtual queue of load (1 + €)?p.
Thus, the mean FCT for RepFlow is simply

(1+e)*p*M /SL logy(z/k+1) flx)
2(1 = (1+¢€)%0?) Jo z F(St)
+1. (6)

E[FCTyep) =

For small € < 0.1, (1 + €)?p? is much smaller than p. As p
increases the difference is smaller. However the factor p/(1—p)
that largely determines the queueing delay E[W] and FCT is
very sensitive to p in high loads, and a small decrease of load
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leads to significant decrease in FCT. In the same Fig. 4, we
plot FCT for RepFlow with the same web search workload [4],
where 95% of bytes are from long flows, i.e. € = 0.05. Observe
that RepFlow is able to reduce mean FCT by a substantial
margin compared to TCP in all loads.

Our analysis reveals that intuitively, the benefit of RepFlow
is due to a significant decrease of effective load experienced
by the short flows. Such a load reduction can be understood as
a form of multi-path diversity discussed earlier as a result of
multi-path network topologies and randomized load balacing.

At this point one may be interested in understanding the
drawback of RepFlow, especially the effect of increased load
on long flows. We now perform a similar FCT analysis for long
flows. For a large flow with X > Sy, packets, substitute (4) to
(2) yields

pM X p

W-pM-x ' Taa-p @

The mean FCT for long flows only depends on the traffic load.
With RepFlow, load increases to (1 + €)p, and FCT becomes

E[FCT*) =

repl = M —(+p) +1, (8)

For long flows, load only increases by ¢, whereas small flows
see a load decrease of 1 — (1 + ¢)2p. long flows are only
mildly affected by the overhead of replication. Fig. 5 plots
the mean FCT comparison for long flows. As we shall see
from simulations and implementations results in Sec. V-E and
Sec. VI the performance degradation is almost negligible even
in high loads.

C. 99-th Percentile FCT Analysis

To determine the latency performance at the extreme cases,
such as the 99-th percentile FCT [4], [5], [19], [39], we need
the probability distribution of the queueing delay, not just its
average. This is more difficult as no closed form result exists
for a general M/G/1 queueing delay distribution. Instead, we
approximate its tail using the effective bandwidth model [21],
which gives us the following

_,20=p)  _E[X]

PW>w)=e ,

BIX2] — 67w2(;;1p>. (9)

This equation is derived in the extended version of [8]. Setting
(9) equal to 0.01, we obtain the 99-th percentile queueing delay
W:
M
W=In10- —— =2In10- E[W].

P p
10

/ (10)

Recall short flows finish in logy(X/k + 1) rounds. If a flow
experiences a queueing delay of W in one round, the total FCT
will be guaranteed to hit the 99-th percentile tail'. Thus, we can

'We cannot say that the delay is W for all rounds, which happens with
probability 0.01%82(X/k+1) " je much smaller than 0.01 even for small
number of rounds.

e—e TCP
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Fig. 6: Short flow tail FCT. £ = 12 Fig. 7: Large flow tail FCT. k£ = 12
packets, flow size distribution from the packets, flow size distribution from the
web search workload [4]. web search workload [4].

approximate the 99-th percentile FCT for short flows using 1474
as:

— St logy(z/k+1) =1+ 210 f(z)
FCT—E[W]/O ) Hrsida+1
=E[W]-N +1. (11)

By the same token, we can calculate the 99-th percentile FCT
for short flows under RepFlow.

FCTrep = EWyep) - N +1,
(1+€)?p*M
21— (1+ %2
From (11) and (12) we can see that the tail FCT depends
critically on the queueing delay, which is determined by the
traffic load p. Therefore RepFlow provides better tail latency in
addition to better average latency, since it reduces the effective
load seen by the short flows. Fig. 6 shows the numerical results
using the web search workload where we observe ~40%—70%

tail FCT improvement.

According to queueing theory, the most likely reason for
the extreme events such as 99-th percentile FCT to happen
is that for some time all inter-arrival times are statistically
smaller than usual [9]. This has an intuitive interpretation in
our problem. Recall that our queue resembles a path of the
data center network connecting many pairs of end-hosts. The
arrival process to our queue is in fact a composition of many
Poisson arrival processes generated by the hosts, with ECMP
controlling the arrival rates. While the aggregate arrival rate on
average is A, at times the queue would see the instantaneous
arrival rates from individual hosts much higher than usual due
to hash collisions in ECMP, resulting in the tail FCT.

The tail FCT analysis for long flows can be similarly derived
as follows.

12)

where E[W,.,| =

FCTL = E[FCT"] + (2In10 — 1)E[W] - P, (13)
% L L
FCTL, = E[FCTL ] + (2In10 - )E[WL ] - P, (14)
_ [T f)
where P = /SL 1o F(SL)dI’
(1+e)pM

L
EWeal = 501+ )

Fig. 7 shows the numerical results. long flows enjoy better
tail FCT performance compared to short flows, since their
transmission lasts for a long time and is not sensitive to long-
tailed queueing delay. Again observe that RepFlow does not
penalize long flows.
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Fig. 9: FCT breakdown for different flows with a 16-pod Fat-tree and the data mining workload [15] in NS-3.

D. Summary

We summarize our analytical findings. Short flows’ mean and
tail FCT depend critically on queueing delay, and the factor
ﬁ assuming a M/G/1-FCFS queue. Using replication, they
have much less probability of entering a busy queue, and the
effective load they experience is greatly reduced. This confirms
the intuition that RepFlow provides path diversity gains in data
center networks. RepFlow is expected to have speedup around
40%—-70% as numerical results show. The negative impact on
large flow is very mild, because from long flows’ perspectives,
load only increases slightly.

V. EXPERIMENTAL EVALUATION

We now evaluate RepFlow using packet-level simulations in
the NS-3 simulator. Building on this, we show how RepFlow
performs in a realistic small-scale implementation running
Linux kernel code based on Mininet [17] in the next section.

A. Methodology

Topology: We use a 16-pod Fat-tree as the network topology
[2], which is commonly used in data centers. The fabric consists
of 16 pods, each containing an edge layer and an aggregation
layer with 8 switches each. Each edge switch connects to 8
hosts. The network has 1,024 hosts and 64 core switches. There
are 64 equal-cost paths between any pair of hosts at different
pods. Each switch is a 16-port 1Gbps switch, and the network
has full bisection bandwidth. The end-to-end round-trip time is
~32us. ECMP is used as the load balancing scheme.

Benchmark workloads: We use empirical workloads to
reflect traffic patterns that have been observed in production
data centers. We consider two flow size distributions. The first

is from a cluster running web search [4], and the second is
from a data center mostly running data mining jobs [15]. Both
workloads exhibit heavy-tailed characteristics with a mix of
small and long flows. In the web search workload, over 95%
of the bytes are from 30% of flows larger than 1MB. In the
data mining workload, 95% of all bytes are from ~3.6% flows
that are larger than 35MB, while more than 80% of flows are
less than 10KB. Flows are generated between random pairs of
hosts following a Poisson process with load varying from 0.1 to
0.8 to thoroughly evaluate RepFlow’s performance in different
traffic conditions. We simulate 0.5s worth of traffic at each run,
and ten runs for each load. The entire simulation takes around
900+ machine-hours.

B. Schemes Compared

TCP: Standard TCP-New Reno is used as the baseline of our
evaluation. The initial window is set to 12KB, and switches use
DropTail queues with a buffer size of 100 packets. These are
standard settings used in many studies [6], [34].

RepFlow: Our design as described in Sec. III. All flows less
than 100KB are replicated. Other parameters are the same as
TCP.

DCTCP: The DCTCP protocol with ECN marking at Drop-
Tail queues [4]. Our implementation is based on a copy of the
source code we obtained from the authors of D2TCP [34]. The
ECN marking threshold is set to 5%. Other parameters are set
following [4].

RepFlow-DCTCP: This is RepFlow on top of DCTCP. As
discussed in Sec. III RepFlow can work with any TCP variant.
We use this scheme to demonstrate RepFlow’s ability to further
reduce FCT for networks that adopt specialized data center
transport such as DCTCP.
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pFabric: This is the state-of-the-art approach that offers
near-optimal performance in terms of minimizing flow comple-
tion times [6]. pFabric assigns higher priority to flows with less
remaining bytes to transfer, encodes the flow priority in packet
headers, and modifies switches so they schedule packets based
on flow priority. Thus short flows are prioritized with near-
optimal FCT. Our implementation is based on a copy of the
source code we obtained from the authors of the paper [6]. We
follow [6] and set the DropTail queue size to be 36KB at each
switch port for best performance.

C. RepFlow on TCP

We first evaluate RepFlow on TCP. RepFlow significantly
reduces the mean and 99-th percentile FCT for short flows in
both workloads compared to TCP. Fig. 8 and Fig. 9 show the
FCT for different flows in different workloads as we vary the
load. With the web search workload, RepFlow reduces mean
FCT by ~40%—-45% for short flows for loads from 0.4 to 0.8.
The improvement in tail FCT is more salient. RepFlow can
be ~10x faster than TCP when the load is low (<0.4), and
over 60% in all other loads. The data mining workload yields
qualitatively similar observations.

The results demonstrate the advantage of replication in
harvesting the multi-path diversity, especially when the load is
relatively low which is usually the case in production networks
[20]. The tail FCT reduction is more substantial in low loads,
while the mean FCT reduction is more significant in high loads.
The reason is that when the load is low, most short flows
finish quickly, with a few exceptions that hit the long tail.
Since path diversity is abundant with low loads, RepFlow can
easily reduce the tail latency by a large margin. When the load
is higher, almost every short flow experiences some queueing
delay resulting in longer average FCT. RepFlow is thus able to
provide diversity gains even in the average case for most short
flows. The results also corroborate our analysis and numerical
results in Sec. IV.

We also look at the impact of replication on long flows. From
Fig. 8c and 9¢ we can see that long flows suffer negligible FCT
increase. Thus in a realistic network with production workloads,
RepFlow causes little performance degradation and perform
better than our analysis predicts. Note that long flows in the
data mining workload has better FCT than those in the web
search workload. This is because the data mining workload
is more skewed with elephant flows larger than 1MB, while
in the web search workload there are many “medium” flows
of size between 100KB and IMB. These medium flows also
suffer from queueing delay especially in the slow-start phase,
resulting in the larger FCT in Fig. 8c.

D. RepFlow on DCTCP

RepFlow’s full potential is realized with specialized data
center transport such as DCTCP [4]. For data centers that have
already adopted DCTCP, RepFlow can be readily utilized just as
with regular TCP. We observe in Fig. 8 and Fig. 9 that DCTCP
improves FCT significantly compared to TCP, especially the
99-th percentile FCT for short flows. We show the mean and

tail FCT for DCTCP, RepFlow-DCTCP and pFabric only in
Fig. 10 and 11 for better contrasts. Observe that RepFlow-
DCTCP reduces mean FCT by another 40% in both workloads,
and is only ~30% slower than pFabric for the data mining
workload. In terms of 99-th percentile FCT, DCTCP, RepFlow-
DCTCP and pFabric all provide almost an order of magnitude
reduction compared to TCP. RepFlow cuts down another ~35%
tail FCT on top of DCTCP, and performs close to the near-
optimal pFabric [6]. In general short flows perform better in
the data mining workload than in the web search workload.
This is because in the data mining workload it is less likely
that some long flows are transmitting concurrently on the same
port, implying less contention with short flows.

The improvements of RepFlow with DCTCP are less signifi-
cant than with TCP. The reason is that by using ECN marking,
DCTCP keeps the queue length very small most of the time,
yielding less path diversity for RepFlow to exploit.
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(a) Web search workload. (b) Data mining workload.

Fig. 10: Mean FCT for short flows with a 16-pod Fat-tree in NS-3. Note the
different ranges of the y-axis in the plots.
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Fig. 11: 99-th percentile FCT for short flows with a 16-pod Fat-tree.

Overall, Fig. 12 shows the average FCT across all flows for
all schemes. RepFlow improves TCP by ~30%-50% in most
cases. RepFlow-DCTCP improves DCTCP further by ~30%,
providing very close-to-optimal FCT compared to state-of-the-
art pFabric.
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Fig. 12: Mean FCT for all flows.
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Fig. 14: Implementation on Mininet with a 4-pod Fat-tree and the data mining workload [15].

E. Replication Overhead

Replication clearly adds more traffic to the network. In this
section we investigate the overhead issue of RepFlow. We
calculate the percentages of extra bytes caused by replicated
flows in both workloads for all loads as shown in Table III.
Since short flows only generate a tiny fraction of all bytes
in both workloads, not surprisingly replication does not incur
excessive overhead to the network. The overhead for the
DCTCP implementation is essentially the same and we omit
the results.

0.1 02 03 0.4 035 0.6 07 03
345% | 2.78% | 3.13% | 338% | 3.29% | 341% | 3.22% | 321%

(a) Web search workload
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.41% [ 1.18% [ 2.13% | 138% | 133% | 1.07% | 1.12% [ 1.09%

(b) Data mining workload
TABLE III: Overhead of RepFlow in NS-3 simulation.

To summarize, RepFlow achieves much better FCT for short
flows compared to TCP with minimal impact on long flows.
The improvements are not as significant as pFabric [6]. This is
expected since RepFlow only opportunistically utilizes the less
congested path without being able to reduce queueing delay.
However, since RepFlow does not require switch hardware or
kernel changes, it is an effective and practical approach to
the imminent problem of reducing FCT. On the other hand
when it is feasible to implement RepFlow on top of advanced
transports such as DCTCP, RepFlow performs competitively
against pFabric.

VI. IMPLEMENTATION ON MININET

We implement RepFlow on Mininet, a high-fidelity network
emulation framework built on Linux container based virtual-
ization [17]. Mininet creates a virtual network, running real
Linux kernel, switch and application code on a single machine.

Its scale is smaller than production data center networks due
to the single-machine CPU limitation (tens of Mbps link
bandwidth compared to 1Gbps). Mininet has been shown to
faithfully reproduce implementation results from [3], [4] with
high fidelity [17], and has been used as a flexible testbed for
networking experiments [22].

Our implementation follows the design in Sec. III. We run
socket-based sender and receiver programs as applications on
virtual hosts in Mininet. Each virtual host runs two receivers,
one for receiving regular flows and the other for replicated
flows, in separate threads and listening on different ports. A
flow is created by spawning a sender thread that sends to the
regular port of the receiving host, and if it is a short flow
another sender thread sending to the other port. The replicated
flow shares the same source port as the original flow for
idenfitification purpose. We implement RepFlow on top of TCP-
New Reno in Mininet 2.0.0 on a Ubuntu 12.10 LTS box.

We use a 4-pod Fat-tree with 16 hosts connected by 20
switches, each with 4 ports. Each port has a 50-packet buffer.
We set link bandwidth to 20Mb and delay to 1ms, which is
the minimum delay Mininet supports without high-precision
timers. RiplPOX is installed as the controller on switches to
support ECMP. The entire experiment takes ~6 hours to run
on an EC2 cl.xlarge instance with 8 cores. We observe that
Mininet becomes unstable when the load exceeds 0.5, possibly
due to its scalability limitation. Thus we only show results for
loads from 0.1 to 0.5.

Fig. 13 and 14 show the results. Fig. 13a and 14a show
RepFlow has ~25%-50% and 50%—-70% mean FCT improve-
ments in the web search and data mining workload, respec-
tively. The improvement in tail FCT is around 30% in most
cases for both workloads and is smaller than the NS-3 sim-
ulation results. The reason is two-fold. First there are fewer
equal-cost paths in the 4-pod Fat-tree than the 16-pod Fat-tree
in the simulation, implying less path diversity for RepFlow.
Second, in the Mininet implementation, each sender thread of
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the replicated flow is forked after the original flow. The time
difference due to virtualization overhead is non-negligible for
short flows (~1ms). Thus it less likely for the replicated flows
to finish faster, reducing the potential of RepFlow. We believe
in a real implementation without virtualization this is unlikely
to be an issue. Fig. 13c and 14c confirm that long flows are
not affected by replication. Overall the implementation results
are in line with simulation results.

VII. CONCLUDING REMARKS

We presented the design and evaluation of RepFlow, a simple
approach that replicates short TCP flows to reap path diversity
in data centers to minimize flow completion times. Analytical
and experimental results demonstrate that it reduces mean and
tail FCT significantly with no changes to existing infrastruc-
tures. We believe flow replication is an intuitive approach to
combat unpredictable performance degradations, including but
not limited to slow and long-tailed FCT. Our work is a first
step in this direction. Our next step is to prototype RepFlow
as a general application library running on TCP and DCTCP,
and evaluate its benefits for real applications in a deployed data
center. Ultimately, this may pave the path for practical use of
RepFlow at scale.
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