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Abstract—Recently, a cooperative paradigm for single-channel
cognitive radio networks has been advocated, where primary users
can leverage secondary users to relay their traffic. However, it is
not clear how such cooperation can be exploited in multi-channel
networks effectively. Conventional cooperation entails that data
on one channel has to be relayed on exactly the same channel,
which is inefficient in multi-channel networks with channel and
user diversity. Moreover, the selfishness of users complicates
the critical resource allocation problem, as both parties target
at maximizing their own utility. This work represents the first
attempt to address these challenges. We propose FLEC, a novel
design of flexible channel cooperation. It allows secondary users to
freely optimize the use of channels for transmitting primary data
along with their own data, in order to maximize performance.
Further, we formulate a unifying optimization framework based
on Nash Bargaining Solutions to fairly and efficiently address
resource allocation between primary and secondary networks, in
both decentralized and centralized settings. We present an optimal
distributed algorithm and sub-optimal centralized heuristics, and
verify their effectiveness via realistic simulations.

I. I NTRODUCTION

Cognitive radio, with the ability to flexibly adapt its trans-
mission parameters, has been considered as a revolutionary
technology to dynamically access the under-utilized wireless
spectrum [1]. Recently, a new paradigm in which primary
users (PUs) can leverage secondary users (SUs) for their own
transmissions, termedcooperative cognitive radio networks
(CCRN), is advocated [2]. In CCRN, SUs cooperatively relay
data for PUs in order to access the spectrum. A single channel
network has been considered in [2]. The PU leases its channel
to SUs for a fraction of time in exchange for cooperative
transmission. SUs allocate a portion of the time fraction for
relaying primary data, and the rest for their own traffic. As-
suming they have better channel conditions to the primary
receiver, cooperative relay can dramatically increase primary
transmission rates. Meanwhile, SUs also gain opportunities to
access the spectrum, resulting in a “win-win” situation.

In this paper, we investigate cooperative cognitive radio
networks from a new perspective. We consider a multi-channel
cellular network based on OFDMA, such as IEEE 802.16
[3] and 802.22 [4], with multiple SUs assisting PUs on the
uplink as shown in Fig. 1. Multi-channel networks impose
unique challenges of realizing the cooperative paradigm, as we
narrate in the following, along with our original contributions
to precisely address them.
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First, we observe that conventional user cooperation perme-
ated through the cooperative diversity literature [5] becomes
inefficient when directly applied to multi-channel CCRN. It
implicitly postulates that data on one channel has to be relayed
on exactly the same channel, which may not be amenable to
relaying. Meanwhile, some other channel may have redundant
relay capacity to incorporate additional data with little cost.
In other words, cooperation using the same channel misses the
bulk of PU-SU cooperation opportunities, by unnecessarilylim-
iting the space of SU resource allocation to only the temporal
dimension, as shown in Fig. 1.
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Fig. 1. The motivating scenario forFlexible Channel Cooperation (FLEC).

Our first contribution in this paper is a new design for
cooperation among SUs and PUs, termed Flexible Channel
Cooperation (FLEC), that opens up all dimensions of resource
allocation for SUs. It takes advantage of channel and user
diversities profoundly available in multi-channel networks, and
allows SU to freelyoptimizeits use of resources — channels
and time slots leased from PUs, as well as power — for relaying
primary data along with its own data, as long as all the primary
data it received can be delivered.

The basic idea of FLEC works as shown in Fig. 1. Time
is equally divided into two slots among cooperating users.
PUs transmit in the first slot to SU, and SU transmits in
the second slot to the primary BS and to its own AP. SU
strategically customizes its use of leased resources,e.g. it can
use subcarrier 1 solely for relaying data aggregated from both
subcarrier 1 and 2, and use subcarrier 2 solely for sending
its own data as in Fig. 1. The intuition is that, if subcarrier
1 has superior conditions on SU-BS link but poor conditions
on SU-AP link, it is much more efficient optimizing it to
relay data from both subcarriers. Such channelswappingor
shuffling results in boosted SU throughput, as well as larger
relay capacity for PU, since the overall spectral efficiencyis
improved. Spectral efficiency gain can in turn be translatedto
more cooperation opportunities, as well as increased network
capacity and performance.



The preceding description of FLEC assumes a decentral-
ized setting where the primary and secondary networks are
independent. Subcarriers are assigned to PUs by BSa priori
to SU cooperation, and only those assigned to the helped
PUs are leased to the respective helping SUs. In a centralized
setting where SU cooperation becomes an integral part of the
scheduling performed by the primary BS, it becomes possible
to assignany subcarrier to a helping SU, to further improve
the performance. We also consider the centralized FLEC in
our paper. Note that in both settings, it is still possible touse
one channel forboth relay and SU’s own data following an
appropriate time sharing strategy, if the channel has excellent
conditions on both SU-BS and SU-AP links. We will first
assume this possibility, and later show that surprisingly,by
restricting toexclusivechannel usage,i.e. one channel is used
for either relaying primary data or sending secondary data,the
optimality of the solution is still preserved.

Given FLEC, thesecondunique challenge in multi-channel
CCRN is how to schedule the transmissions and allocate re-
sources, in order to maximize performance gains while ensuring
fairness among all users. A SU may assist several PUs (as
in Fig. 1) while a PU may also be paired up with several
SUs, complicating the resource allocation problem. Moreover,
in reality, PUs and SUs are selfish and have conflict of interests.
If relaying is beneficial, PUs have a natural tendency to exploit
SUs as much as possible by leasing more channels, while SUs
striving to maximize their own throughput will no longer be
willing to relay, given their depleted power budget. Addition-
ally, PUs compete among themselves when one SU resides in a
suitable position to relay for all of them; likewise SUs compete
among themselves if one channel has good conditions on all of
them. Our main objective in this paper, therefore, is to develop
efficient yet fair resource allocation algorithms for FLEC in
multi-channel networks.

To this end, oursecondcontribution is a unifying opti-
mization framework based on Nash Bargaining Game [6]. Our
framework jointly considers relay and subcarrier assignment,
relay strategy optimization, and power control. The solution
found, called the Nash Bargaining Solution (NBS) [6], is
a unique Nash Equilibrium point with NBS fairness among
PUs and SUs, which is a generalized proportional fairness
notion. We consider both decentralized and centralized FLEC
as introduced above. In the decentralized case, we obtain an
optimal distributed algorithm based on dual decomposition,
to allow PUs to bargain with neighboring SUs autonomously.
In the centralized case, cooperation opportunities are to be
carefully invented and engineered, rather than distributively
harvested. We identify the NP-hardness of the problem, design
a three-step heuristic via a decoupling approach, and provethe
approximation ratio for the decoupled subcarrier assignment
algorithm. Both algorithms are highly efficient in that they
can meet typical scheduling deadlines of5–10 ms [3] in real
OFDMA systems. Thus we believe our work sheds light on
the design and implementation of OFDMA based cooperative
cognitive radio networks.

II. A N OPTIMIZATION FRAMEWORK

A. System Model

We start by introducing the system model. We consider the
uplink of a single-cell OFDMA network. A number of SUs are
located in the cell and perform cooperative transmission for PUs
to access the primary spectrum. We assume that PUs and SUs
have infinite backlogged data to send and the OFDM frames
are synchronized. Decode-and-forward multi-hopping [5] is
used when SUs relay primary data. Note that higher rates are
achievable with more sophisticated coding/decoding schemes,
e.g.maximum ratio combining at the destination based on the
signals received in both slots (instead of multi-hopping) [5].
Here we focus on decode-and-forward multi-hopping only for
simplicity of presentation. Our analysis and algorithms are read-
ily applicable to scenarios with more complex coding/decoding
schemes.

We model the fading environment by large scale path loss and
shadowing, along with small scale frequency-selective Rayleigh
fading. The coherence bandwidth is in the order of the width
of a few subcarriers so that adjacent subcarriers have similar
channel conditions. Fading between subcarriers in different
frames is independent, and remains stable during each frame.
We assume techniques for channel estimation are employed and
full channel side-information (CSI) is available, which makes
the optimization possible. Such assumptions about the fading
environment and CSI are commonly used as in [7]–[10]. Noises
are modeled as i.i.d. circularly symmetric complex Gaussian
noisesCN (0, N0W ).

There are a total ofK subcarriers,NP primary users and
NS secondary users in the network. LetN = NP + NS . One
subcarrier can be allocated to one PU only, and can be leased
to one SU only. For a given PUi ∈ [1, NP ], if subcarrierc
with bandwidthW and complex channel gainhc

i is allocated
for direct transmission, the achievable throughput is:

Rc
i,N+1 = W log (1 + pc

i · gc
i ) , wheregc

i =
|hc

i |2
ΓN0W

. (1)

The subscript(N + 1) is used to denote the direction trans-
mission mode.Γ is the coding gap to capacity andpc

i denotes
the allocated power. Without loss of generalityW equals 1
in the subsequent analysis. If PUi decided to leasec to SU
j ∈ [NP + 1, N ] for cooperative transmission, then in the first
time slot, the achievable throughput on PU-SU link is

Rc
i,j =

1

2
log
(

1 + 2pc
ig

c
i,j

)

, (2)

since the effective power and throughput should take into
account the two-slot structure of cooperative transmission. For
SU j in the second time slot, under FLEC, it can freely decide
whether to usec solely for relay, or solely for its own data, or
jointly for both purposes in a time sharing manner. W.L.O.G.,
let αc

j ∈ [0, 1] denote its relay strategy. Thenj’s throughput for
relay and its own transmission is as follows, respectively:

Rc
j,P =

1 − αc
j

2
log
(

1 + 2pc
jg

c
j,P

)

, Rc
j =

αc
j

2
log
(

1 + 2pc
jg

c
j

)

.

(3)



Note that with conventional protocols,Rc
i,j = Rc

j,P holds for
any c PU i leases to SUj. With FLEC, this does not have to
hold for every leased subcarrier. The only requirement is that
SU j should deliver all data from the cooperating PUs,i.e. a
total flow conservation requirement as follows:

K
∑

c=1

NP
∑

i=1

Rc
i,j ≤

K
∑

c=1

Rc
j,P ,∀j ∈ [NP + 1, N ]. (4)

B. Basics of Nash Bargaining Solutions

We present the salient concepts and results from Nash
Bargaining Solutions, which are used in the sequel. For details
we refer readers to [6].

The basic setting is as follows: LetN = {1, 2, . . . , N}
be the set of players, including PUs and SUs. LetS be
a closed and convex subset ofRN to represent the set of
feasible payoff allocations that players can get if they all
work together. LetRmin

n be the minimal payoff that thenth
player would expect; otherwise, he will not cooperate. Suppose
{Rn ∈ S|Rn ≥ Rmin

n ,∀n ∈ N} is a nonempty bounded set.
Define Rmin = (Rmin

1 , . . . , Rmin
N ), then the pair(S,Rmin) is

called aN -person bargaining problem.
Within the feasible setS, we first define the notion of Pareto

optimality as a selection criterion in a typical game setting.
Definition 1: The point(R1, . . . , RN ) is said to bePareto

optimal if and only if there is no other allocationR′
n such

that R′
n ≥ Rn,∀n, and R′

n > Rn,∃n, i.e. there exists no
other allocation that leads to superior performance for some
user without inferior performance for some other user.

The question that arises is: at which of (infinitely many)
Pareto-optimal points should we operate the system? A possible
further criterion is the fairness of resource sharing. In this
paper, we use the NBS fairness axioms from game theory. The
intuitive idea is that after the minimal requirements are met for
all users, the rest of the resources are allocatedproportionally
to users according to their conditions.

Definition 2: r̄ is a NBS, i.e. r̄ = φ(S,Rmin), if the
following axioms are satisfied:Feasibility, Pareto Optimality,
Independence of Irrelevant Alternatives, Independence ofLin-
ear Transformations, andSymmetry[6].

Theorem 1:There is a unique solution functionφ(S,Rmin)
that satisfies all axioms inDefinition 2such that [6]

φ(S,Rmin) ∈ arg max
R∈S,Rn>Rmin

n

N
∏

n=1

(

Rn − Rmin
n

)

. (5)

C. An Optimization Framework Based on NBS

For our problem, we wish to considerlong-termNBS fair-
ness, which depends on the average throughput gain from
cooperation. For elastic traffic, long-term fairness not only
faithfully reflects users’ perceived performance, but alsogives
more flexibility to exploit multi-user diversity. As discussed
above, the cooperative game in an OFDMA based CCRN can be
formulated as follows. Each user, being primary or secondary,
has R̄n, the average throughput, as its objective function. It
is bounded above and has a nonempty, closed, and convex

support. The goal is to maximize all̄Rn simultaneously.̄Rmin

represents the minimal performance requirement. For PUs, the
minimal requirement will be the optimal average throughput
they could obtain should they choose not to cooperate with
SUs, given by a multi-user uplink scheduling algorithm [11].
For SUs, their minimal requirement is simply zero.S is the
feasible set of resource allocation with FLEC that satisfies
R̄n > R̄min

n ∀n. The problem, then, is to find the NBS,i.e.
to solve the optimization problem (5) with̄Rn and R̄min

n .
The product terms in (5) make the problem difficult to solve.

We first show that mathematically, it is equivalent to solving
the following:

max
R̄∈S,R̄n>R̄min

n

N
∑

n=1

ln
(

R̄n − R̄min
n

)

. (6)

This utility maximization problem has to be solved in every
scheduling epoch as channel qualities change over time. It
has been shown that maximizing the aggregatemarginal util-
ity
∑

U ′(R̄n) · Rn at each epoch achieves long-term utility
maximization [12]. Therefore, separating the terms for PUs
and SUs, the basic resource allocation framework for OFDMA
cooperative cognitive radio networks at each epocht is:

max
R∈S,R≻0

NP
∑

i=1

Ri − Rmin
i

R̄i(t) − R̄min
i (t)

+
N
∑

j=NP +1

Ri

R̄i(t)
. (7)

Ri, R̄i(t), Rj , R̄j(t) denote the instantaneous and average
throughput for PU i and SU j at epoch t, respectively.
Rmin

i , R̄min
i (t) are the instantaneous and average throughput

requirement, which can be obtained by running a multi-user
scheduling algorithm at each epoch, such as [11], and using
the weighted averaging technique.

III. O PTIMAL DISTRIBUTED ALGORITHM

A. Problem Formulation

We first consider a decentralized setting where the secondary
network is independent from the primary network, and cannot
be controlled by the primary BS. Thus, BS allocates resources
to PUsa priori to any cooperative transmission, and SUs have
to “negotiate” distributively with PUs in order to have coop-
eration taking place. In other words, cooperative transmission
serves as an add-on component to the existing primary network,
and isopportunisticallyharvested. This may correspond to the
most immediate implementation scenario of CCRN that does
not call for any change in the existing primary infrastructure,
and therefore is of great practical interest.

Resource allocation problem in this setting, including relay
assignment, SU subcarrier assignment, SU relay strategy op-
timization using FLEC, and PU-SU power control within the
basic framework in Sec. II-C can be expressed succinctly as:

Distributed: max
R,P≻0,ααα

NP
∑

i=1

Ri − Rmin
i

R̄i(t) − R̄min
i (t)

+

N
∑

j=NP +1

Rj

R̄j(t)

s.t. P · 1T � pmax,R ∈ C(P,ααα), (8)



where pmax = [pmax
1 , . . . , pmax

N ]T is the power constraint
vector,P is anN ×K matrix such thatP c

n denotes the power
expended by usern in subcarrierc, ααα is an NS × K matrix
such thatαc

j denotes the FLEC strategy of SUj on c, andC(·)
denotes the achievable rate region givenP andα (Eq. (1)–(3)),
with the flow conservation constraint at each SU (Eq. (4)). Since
only one PU and one SU can be active on each subcarrier, the
column vectorPc has at most two non-zero entries, and it also
specifies relay and subcarrier assignments.

B. Dual Decomposition

The decentralized problem (8) is essentially a mixed integer
program, with the objective function being neither convex
nor concave. However, in an OFDMA system with many
narrow subcarriers, the optimal solution is always a convex
function of pmax, because if two sets of throughputs using
two different sets ofP andααα are achievable individually, their
linear combination is also achievable by a frequency-division
multiplexing of the two sets of strategies. In particular, using
the duality theory of [13], the following is true:

Proposition 1: The decentralized resource allocation prob-
lem (8) has zero duality gap in the limit as the number of
OFDM subcarriers goes to infinity, even though the discrete
selection of subcarriers, SUs and relay strategies are involved.

This proposition allows us to solve non-convex problems in
their dual domain. Note that although the proposition requires
the number of subcarriers to go to infinity, in reality the duality
gap is very close to zero as long as the number of subcarriers
is large [9].

Introduce Lagrangian multiplier vectorsλλλ,µµµ to the power
and flow conservation constraints and the Lagrangian becomes

L(R,P,α, λ, µα, λ, µα, λ, µ) =

NP
∑

i=1

Ri − Rmin
i

R̄i(t) − R̄min
i (t)

+

N
∑

j=NP +1

Rj

R̄j(t)

+

N
∑

n=1

λi

(

pmax
n −

K
∑

c=1

pc
n

)

+

N
∑

j=NP +1

µj

(

K
∑

c=1

Rc
j,P −

K
∑

c=1

NP
∑

i=1

Rc
i,j

)

(9)

The dual function becomes

g(λ, µλ, µλ, µ) =

{

max
R,P,ααα

L(R,P,α, λ, µα, λ, µα, λ, µ)

s.t. R ∈ C(P,ααα).
(10)

To solveg(λ, µλ, µλ, µ) with givenλ, µλ, µλ, µ, it is equivalent to solving the
problem with the following objective:

K
∑

c=1

(

NP
∑

i=1

N+1
∑

j=NP +1

Rc
i,j

R̄i(t) − R̄min
i (t)

+
N
∑

j=NP +1

Rc
j

R̄j(t)

−
NP
∑

i=1

λip
c
i −

N
∑

j=NP +1

λjp
c
j +

N
∑

j=NP +1

NP
∑

i=1

µj

(

Rc
j,P − Rc

i,j

)

)

Notice that in the first term of the objective,j could beN + 1
which corresponds to the possibility of direct transmission.

Therefore, the problem can be decomposed intoK per-
subcarrier problems. Recall that each subcarrier is already
assigned to a PU by the BS, the per-subcarrier problem then
reduces to finding the optimal helping SU and the optimal
resource allocation, and can be shown alternatively as follows:

Per-subcarrier: max
j,pc

i ,pc
j ,αc

j

Rc
i,j

R̄i(t) − R̄min
i (t)

+
Rc

j

R̄j(t)

− λip
c
i − λjp

c
j + µj

(

Rc
j,P − Rc

i,j

)

s.t. Rc
i,j , R

c
j ∈ C(pc

i , p
c
j , α

c
j). (11)

C. Solving the Per-Subcarrier Problem

Next we show the per-subcarrier problem can be solved effi-
ciently via an exhaustive search over all SUs and transmission
strategies (direct or cooperative). To enable such exhaustive
search, we need to derive solutions under direct or cooperative
transmission modes for a given subcarrierc with its PU i.

⊲ Direct Transmission
If PU i chooses direct transmission, (11) becomes

max
pc

i

log(1 + pc
ig

c
i )

(R̄i(t) − R̄min
i (t))

− λip
c
i , (12)

the solution of which is readily available by simple calculus:

p̃c
i =

[

1

λi

(

R̄i(t) − R̄min
i (t)

) − 1

gc
i

]+

. (13)

⊲ Cooperative Transmission
Substituting the rate formulas (2)–(3) into (11) and regroup-

ing the terms, the objective (11) becomes

log(1 + 2pc
ig

c
i,j)

2(R̄i(t) − R̄min
i (t))

−
µj log(1 + 2pc

ig
c
i,j)

2
− λip

c
i

+
αc

j log(1 + 2pc
jg

c
j)

2R̄j(t)
+

µj(1 − αc
j) log(1 + 2pc

jg
c
j,P )

2
− λjp

c
j

The first three terms, denoted asbi(j, λi, µj), represent PUi’s
benefit by having SUj as its relay, discounted by possible vio-
lation of flow conservation with priceµj and power expenditure
with priceλi. bi(j, λi, µj) can be easily optimized byi as only
pc

i is involved:

p̃c
i =

1

2

[

1

λi(R̄i(t) − R̄min
i (t))

− µj

λi

− 1

gc
i,j

]+

. (14)

The last three terms, denoted asbj(i, λj , µj), represent SU
j’s benefits from transmitting both its own and PUi’s data,
discounted by the power expenditure with priceλi. Two opti-
mizing variablesαc

j and pc
j are involved here. Notice that the

terms are essentially a convex combination withαc
j , we have

the following theorem establishing the optimality of exclusive
channel usage on SUs.

Theorem 2:For the distributed resource allocation problem
(8), the optimal solution can be found, where every subcarrier
c leased to SUj is exclusivelyused for either relaying primary
data or sending its own data.



Proof: It follows from applying the fact that the convex
combination of two functions is upper bounded by the maxi-
mum of the two functions,i.e.,

af1(x) + (1 − a)f2(x) ≤ max (f1(x), f2(x)) , a ∈ [0, 1].

The per-subcarrier problem (11) can be solved optimally with
αc

j = {0, 1}, hence the dual and the primal problem (8).
Theorem 2greatly simplifies the optimization problem as

well as implementation since no complicated time sharing is
needed to achieve optimal performance. Hence we letαc

j =
{0, 1}. Maximization ofbj(i, λj , µj) can be obtained by setting
αc

j to 0 and 1, deriving the optimalpc
j respectively as shown

in the following, and comparing the objective values. Ties can
be broken arbitrarily.

p̃c
j =











1
2

[

µj

λj
− 1

gc
i,P

]+

, when α̃c
j = 0,

1
2

[

1
λjR̄j(t)

− 1
gc

i

]+

, when α̃c
j = 1.

(15)

To summarize, the per-subcarrier problem (11) can be effi-
ciently solved via exhaustive search over a finite set definedby
the transmission strategies, SUs, and SU relay strategies with
FLEC as discussed above. The size of this discrete set is very
limited, making it feasible for a practical network.

D. A Distributed Algorithm

We have shown that the dual function can be decomposed
into K per-subcarrier problems, the optimal solutions of which
can be obtained efficiently through exhaustive search. Then, the
primal problem (8) can be optimally solved by minimizing the
dual objective:

minimize g(λ, µλ, µλ, µ)

subject to λ, µλ, µλ, µ � 0. (16)

Subgradient method can be used to solve this dual problem.
The updating rules are as follows:

λ(l+1)
n =

[

λ(l)
n + ν(l)

n

(

K
∑

c=1

p̃c
n − pmax

n

)]+

, (17)

µ
(l+1)
j =

[

µ
(l)
j + κ

(l)
j

(

K
∑

c=1

NP
∑

i=1

R̃c
i,j −

K
∑

c=1

R̃c
j,P

)]+

, (18)

Following a diminishing step size rule for choosingν(l), κ(l)ν(l), κ(l)ν(l), κ(l),
the subgradient method above is guaranteed to converge to the
optimal dual variables. The optimal primal variables can then
be easily found.

Observe that, because of the dual decomposition, dual op-
timization by a subgradient method can be done in adis-
tributed fashion. The algorithm can be perceived as an iterative
bargaining process. During each iteration, the per-subcarrier
problems (11) can be solved simultaneously by the PU of
the subcarrier exchanging information with neighboring SUs,
though the objective jointly involves PU and SU’s benefits.
Specifically, from (14), the PU needs to know the current relay
“price” µj from j in order to calculate the optimal power̃pc

i ,

and the optimal value of its benefits̃bi(j, λi, µj). The optimal
α̃c

j , p̃
c
j can be obtained by SUj only with its local information

as in (15). Then the optimal value of SU’s benefitsb̃j(i, λj , µj)
needs to be passed to PUi. After calculatingb̃i(j, λi, µj) and
collecting b̃j(i, λj , µj) from all SUs, i can solve (11) by an
exhaustive search to maximizẽbi(j, λi, µj) + b̃j(i, λj , µj).

The subgradient updates can be easily performed by each and
every primary and secondary users. While the dual variableλn

is kept at each user privately and serves as a price signal to
regulate its power consumption,µj is exchanged between PUs
and SUs and serves as a relay price signal to coordinate the level
of cooperation. When the relay traffic demand

∑K
c=1

∑NP

i=1 R̃c
i,j

from PUs exceeds the supply
∑K

c=1 R̃c
j,P from j, i.e. PUs

over-exploit j, j increases its relay priceµj for the next
round of bargaining to suppress the excessive demand, as
shown in (18). Similarly, if j has redundant relay capacity
∑K

c=1 R̃c
j,P >

∑K
c=1

∑NP

i=1 R̃c
i,j , it will decrease the relay

price µj to attract more relay traffic and therefore obtain more
channels to use. The process continues until it converges tothe
optimal resource allocation.

Algorithm 1 Distributed Bargaining

1. Each primary user initializes the power priceλ(0)
i . Each

secondary user initializes both power and relay prices
λ

(0)
j , µ

(0)
j .

2. Givenλ(l), µ(l)λ(l), µ(l)λ(l), µ(l), each PUi bargains with each neighboring
SU j concurrently to solve the per-subcarrier resource
allocation problem (11) using (13)-(15).

3. PU i performs a subgradient update forλi, and SU j
performs a subgradient update forλj , µj as in (18) respec-
tively.

4. Return to step 2 until convergence.

The complete bargaining algorithm is shown inAlgorithm 1 .
We now analyze the amount of message exchanges and
complexity here. For each pair of PU-SU, two messages
µj , b̃j(i, λj , µj) need to be exchanged. They can easily be pig-
gybacked in the probing packets from SU to PU to measure the
channel gain, resulting in zero message exchange overhead.The
complexity of solvingK per-subcarrier problems by exhaustive
search isO(KNS). The complexity of the subgradient update
is polynomial in the dimension of the problemK. Therefore,
the complete algorithm has complexity polynomial inKNS .
While this may render it infeasible for real-time scheduling
within 5–10 ms when the network scales, the distributed nature
of the algorithm makes it possible for each PU toconcurrently
solve the per-subcarrier problem, reducing the complexityto
only O(NS). Further, in reality, only a few SUs residing in
the neighborhood of the PU can potentially help and thus have
to be considered. Therefore from the network point of view,
each round of bargaining has complexityO(1). Careful readers
may be concerned with the slow convergence of the subgradient
updates. We comment that since each PU only needs to bargain
with neighboring SUs, the convergence complexity becomes
polynomial in the limited size of the neighborhood. We observe



in simulations — shown later in Sec. V-C — that the algorithm
converges within about 20 iterations in most cases.

IV. N EAR-OPTIMAL CENTRALIZED ALGORITHMS

We now proceed to the centralized setting. We consider the
scenario where the SU cooperative transmission becomes an
integral part of primary BS scheduling, and SUs abide by the
scheduling decisions, provided that the resource allocation is
fair as reflected by the NBS fairness. With centralized FLEC,
we have an additional dimension to optimize:joint subcarrier
assignment to PUs and SUs.

While the problem can be formulated in a similar way as the
decentralized problem (8) and solved via dual decomposition
and subgradient update, it is computationally prohibitiveto do
so. At each iteration, the solution of the per-subcarrier prob-
lem now has to exhaustively search all possible combinations
of PUs and their neighboring SUs, which has a complexity
of O(KNP ) since distributed concurrent optimization is not
possible. Moreover, because of the global impact of centralized
subcarrier assignment, theN -dimensional andNS-dimensional
dual variablesλ, µλ, µλ, µ have to be numerically updated, the con-
vergence of which is too slow to be useful for scheduling on
a fast time scale as will be shown in Sec. V-C. Given that
the simpler primary user scheduling without SU cooperation
is extremely difficult in itself [11], we focus on developing
efficient heuristics in this section, which reduce the complexity
while exhibiting good performance. Nevertheless, the slow
subgradient based centralized algorithm, calledCentralized Op-
timization hereafter, is used to derive the optimal performance
as a benchmark as in Sec. V-D.

A. Overview of the Heuristic Algorithm

To make the problem more tractable, we decouple it to three
orthogonal dimensions: relay assignment, subcarrier assignment
with FLEC, and power control. First we derive optimal relay
assignment using bipartite matching, assuming that each SU
is only able to help one distinct PU. This simplification is
reasonable as it ensures a certain level of fairness. Then we
assume that power is equally distributed, and derive subcarrier
assignment algorithms. Even with optimal relay and equal
power assignment, this turns out to be an NP-hard problem. We
propose a sub-optimal algorithm based on randomized rounding
and prove its approximation ratio. Finally, power allocation
is solved to maximize performance with the given subcarrier
assignment. Be reminded that as an initialization step, the
BS first performs a multi-user scheduling [11] to determine
Rmin

i , R̄min
i (t) for PUs before the three component algorithms

run. The entire heuristic algorithm is calledCentralized Heuris-
tic hereafter. We note that other heuristics are possible, which
are beyond the scope of this paper and left as our future
research.

B. Sensible Relay Assignment

Here, we model each usern as having animaginarychannel
with normalized channel gain to noise ratioḡc

n = 1
K

∑

c gc
n and

powerpmax
n . Then the optimal FLEC strategy reduces to simple

time-sharing on this channel. Assuming each SU can only help
one distinct PU, the optimal relay assignment under the basic
framework in Sec. II-C can be determined by:

max
xi,j∈{0,1}

NP
∑

i=1

N+1
∑

j=NP +1

xi,j

(

Ri,j − Rmin
i

R̄i(t) − R̄min
i (t)

+
Rj,i

R̄j(t)

)

s.t. Ri,j =
1

2
min

(

log(1 + 2pmax
i ḡi,j), log(1 + 2pmax

j ḡj,P )
)

,

Rj,i =
1

2
log(1 + 2pmax

j ḡj)

[

1 − log(1 + 2pmax
i ḡi,j)

log(1 + 2pmax
j ḡj,P )

]+

,

∀j ∈ [NP + 1, N ],

Ri,N+1 = log(1 + pmax
i ḡi), RN+1,i = 0, R̄N+1(t) = ∞.

Herexi,j is the binary variable denoting the relay assignment
of SU j to PU i. Note again thatj can beN + 1 to denote
direct transmission.

The above relay assignment can be optimally solved by
weighted bipartite matching. Construct a bipartite graphA =
(V1 × V2, E) whereV1 and V2 correspond to the set of PUs
and SUs respectively. We patch void vertices toV2 to make
|V2| = |V1| = NP , since the number of SUs is typically
smaller. The edge setE corresponds toN2

P edges connecting
all possible pairs of users in the two vertex sets. Each edge
(i, j) carries a weight,wi,j , where

wi,j =
Ri,j − Rmin

i

R̄i(t) − R̄min
i (t)

+
Rj,i

R̄j(t)
.

For edges connecting PUs to void SUs that we patched, the edge
weights have captured the maximum marginal utility given by
direct transmission. Observe thatA is bipartite, optimal relay
assignment is then equivalent to finding maximum weighted
bipartite matching onA. The Hungarian algorithm is a popular
polynomial-time algorithm to solve it optimally [14].

C. Subcarrier Assignment by Randomized Rounding

For PUs using direct transmission as determined by optimal
relay assignment, they do not share resources with SUs, and
as such cannot benefit from SU cooperation. Therefore they
use the same subcarriers as allocated in the initializationstep.
For the set of PUsNR

P that use cooperative transmission, the
set of their allocated subcarriersKR in the initialization step
will be collected and re-assigned by the following algorithm.
For each PUi and its unique helping SUj(i), we assume they

will use power p̄i =
pmax

i

Ki
, p̄j(i) =

pmax
j(i)

Ki
respectively on each

subcarrier, whereKi is the number of subcarriers allocated toi
in the initialization step [11]. Such an equal power assumption
is widely used and leads to subcarrier assignment algorithms
with near-optimal performance, as reported extensively [11],
[15] and will be shown in Sec. V-D.

As seen inTheorem 2, assigning a subcarrier exclusively for
relaying or transmitting SU’s own data does not lose optimality
in the decentralized case. This can also be proved similarlyfor
the centralized case. Thus, the subcarrier assignment problem
can be formulated as in (19), wherewc1

i,j(i) denotes the marginal



utility (normalized to a large valuewmax) obtained by PU
i on being assignedc1 on PU-SU link in the first time slot
(i.e. wc1

i,j(i) = 0.5 log(1 + 2p̄ig
c1
i,j)/(R̄i(t) − R̄min

i (t))), and
wc2

j(i),P denotes the marginal utility of assigningc2 for j(i)

on SU-BS link in the second slot (i.e. wc2

j(i),P = 0.5 log(1 +

2p̄j(i)g
c2

j(i),P )/(R̄i(t) − R̄min
i (t)). wc2

j denotes the normalized
marginal utility of SU j on being assignedc2 for its own
data0.5 log(1+2p̄jg

c2
j )/R̄j(t), andai, bj denote the aggregate

marginal utility (flow) achieved by PUi and SUj respectively.
xc1

i is the binary variable denoting whetherc1 is assigned to
PU i in the first time slot,yc2

i denotes whetherc2 is assigned to
i’s helper SUj(i) for relaying in the second time slot, andyc2

j

denotes whetherc2 is assigned to SUj for its own transmission
in the second time slot.

max
x

c1
i ,y

c2
i ,y

c2
j

∑

i∈NR

P

ai +

N
∑

j=NP +1

bj (19)

s.t.
∑

c2∈KR

yc2
j · wc2

j = bj ,∀j ∈ [NP + 1, N ],

∑

c1∈KR

xc1
i · wc1

i,j(i) = ai,
∑

c2∈KR

yc2
i · wc2

j(i),P = ai,∀i ∈ NR
P ,

∑

i∈NR

P

xc1
i = 1,

∑

i∈NR

P

yc2
i +

∑

j∈[NP +1,N ]

yc2
j = 1,∀c1, c2 ∈ KR,

Theorem 3:The subcarrier assignment problem under the
above IP formulation is NP-hard.

Proof: The problem can be reduced from type-dependent
multiple knapsack problems(MKP), where each set of knap-
sacks (users) belongs to a different type (time slot and pri-
mary/secondary). The profit of allocating an item (subcarrier)
depends not only on the knapsacks but also the type of them.
The one-type MKP is known to be NP-hard and even hard to
approximate [16]. Therefore our problem is NP-hard.

Given the hardness of the problem, we present a rounding
based algorithm to solve it as shown inAlgorithm 2 . It ensures
that each subcarrier is assigned to at most one user for both
slots. We now capture the performance of the algorithm.

Theorem 4:Algorithm 2 provides an approximation guar-

antee of at least1 −
√

4cNS

KR ln (KR) with high probability,

whereKR is the cardinality of the subcarrier setKR.
Proof: Refer to the Appendix for a detailed proof.

Therefore, its performance becomes better when there is a
larger magnitude of available subcarriers to users in the system.
Since the number of subcarriers in a practical OFDMA system
is much bigger than that of users,Algorithm 2 can be expected
to provide good performance.

D. Power Control

After all the subcarriers are allocated as above, power can
be allocated to each user optimally. For PUs with direct
transmission, optimal power allocation is a simple water-filling
solution. For PUs with cooperative transmission, optimal power
allocation is performed on a per-pair basis with their unique
helping SUs. With subcarriers allocated and their use on an

SU determined, power allocation on each pair of PU-SU is a
standard convex optimization problem and can be readily solved
by KKT conditions. We omit the details here.

Algorithm 2 Rounding-based Subcarrier Allocation
1. Formulate the problem using the IP above. Solve its LP

relaxation withxc1
i , yc2

i , yc2
j being relaxed to[0, 1]. Let the

LP solutions bêxc1
i , ŷc2

i , ŷc2
j and âi, b̂j .

2. Adopt the following procedure to round the fractional
solutions,x̂c1

i , ŷc2
n , to integral values,̃xc1

i , ỹc2
n , wheren ∈

{i ∈ NR
P } ∪ {j ∈ [NP + 1, N ]}.

• For every c2, round yc2
n to 1 (ỹc2

n ) with probability
ŷc2

n . If ñ is the user to whomc2 is assigned, then
ŷc2

n = 0,∀n 6= ñ.

• Updateãi =
P

ỹ
c2
i w

c2
j(i),P

1−δ
, b̃j =

P

ỹ
c2
j w

c2
j

1−δ
, whereδ is a

constant derived below. Run the LP again onxc1
i only.

Let x̄c1
i be the solutions of the new LP.

• For c1, roundxc1
i to 1 (x̃c1

i ) with probability x̄c1
i . If ĩ

is the PUc1 is assigned to, theñxc1
i = 0,∀i 6= ĩ.

V. PERFORMANCEEVALUATION

To evaluate the performance of FLEC with proposed algo-
rithms, we adopt empirical parameters to model the fading en-
vironment. There are128 subcarriers centered at2.5 GHz with
bandwidth312.5 kHz. Channel gain can be decomposed into
a large-scale log normal shadowing component with standard
deviation of5.8 and path loss exponent of4, and a small-scale
Rayleigh fading component. The inherent frequency selectivity
is captured by an exponential power delay profile with delay
spread1.257 µs as reported via extensive measurements [17].
The entire40 MHz channel is partitioned into blocks of size
equal to the coherence bandwidthBc ≈ 795.6 KHz. Three
independent Rayleigh waveforms are generated for each block
using the modified Jakes fading model and a weighted sum is
taken to calculate the SNR. A scheduling epoch is of5 ms
duration, and an evaluation period consists of1000 scheduling
epochs. The number of PUs is set to60, and the number of
SUs varies. Such setup is commonly used in related works [9].

A. Overall performance of FLEC

We first evaluate the overall performance of distributed and
centralized FLEC compared with conventional identical channel
cooperation (“ICC” in the figures). Resource allocation of ICC
can be similarly formulated as that of FLEC, with per-subcarrier
flow conservation constraints instead of total flow conservation
(4), and our algorithms are readily applicable with minor
adjustments. We then apply a revisedCentralized Optimization
to derive theoptimal ICC performance as the benchmark here.
In Fig. 2, we plot the average throughput of both PUs (first three
bars) and SUs (last three bars). We can see that distributed and
centralized FLEC, implemented withDistributed Bargaining
andCentralized Heuristicas in Sec. III-IV provide20–40% and
30–60% improvement, respectively. It clearly demonstrates the
advantage of FLEC. A similar trend is also observed for SUs,
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although the improvement becomes marginal when the number
of SUs scales up. The reason is that, though a larger number
of SUs provides more and better cooperation for PUs and thus
improves their throughput, it results in fewer channels leased
to each SU, and a lower degree of optimization freedom.

B. Effects of Topology

Next we investigate the effects of topology on FLEC. We
chooseDistributed Bargainingas the representative algorithm,
and evaluate three representative topologies, whereNS equals
40 and the average distance from PU to BS is controlled to
be 0.8, 0.65, and 0.5 of the cell radius (topology 1, 2, and
3 respectively). We observe from Fig. 3 that while coopera-
tion always results in some improvement in PU throughput,
scenarios dominated by high path loss and poor shadowing
benefit the most (topology 1), as more cooperation opportunities
can be explored. SU’s throughput also becomes better in these
scenarios, which we do not show here due to space limit.
This observation justifies the deployment of SU cooperationfor
throughput enhancement in primary networks with high path
loss and limited coverage.

C. Convergence of FLEC algorithms

We study convergence of the algorithms proposed to re-
alize FLEC, which affects their practicality. Fig. 4 shows
the convergence ofDistributed Bargainingfor two randomly
chosen PUs with different number of neighboring SUs. It is
clear thatDistributed Bargainingconverges within20 iterations,
validating its feasibility in practice. The reason for the fast con-
vergence, as discussed in Sec. III-D, is mainly the limited size
of neighborhood. With distributed and concurrent operations, it
is indeed suitable for practical implementation.

We also observe thatCentralized Optimizationdoes not
converge even after1000 iterations in Fig. 4. This echos our
concern about the complexity of centralized subgradient update
of two vector dual variables in Sec. IV, and justifies our
motivation to design efficient heuristics.

D. Near-optimality ofCentralized Heuristic

We now evaluate the performance loss of the sub-optimal
Centralized Heuristiccompared with that ofCentralized Op-
timization. As seen from Fig. 5, with respect to the average
throughput of both PU and SU,Centralized Heuristiclosses
about5% in all cases. Due to the slow convergence ofCentral-
ized Optimization, we may conclude thatCentralized Heuristic
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achieves a good tradeoff between performance and complexity,
and is amenable to practical implementations.

To further understand the practicality ofCentralized Heuris-
tic, we observe the running time of its component algorithms
in our simulations. We find that all of them are of the order
of milliseconds on an Intel Xeon Quad-core CPU running at
3GHz with 2GB memory. Therefore usual scheduling deadlines
of 5–10 ms [3] can be satisfactorily met. Due to space limit,
we omit the data here.

VI. RELATED WORK

A plethora of works has been done on spectrum shar-
ing based on cognitive radio. Generally, they fall into three
paradigms,interweave, underlay, andoverlay [18]. The inter-
weave paradigm insists that SUs should only transmit when
PUs are not, while the underlay paradigm allows them to
transmit concurrently with PUs provided that their signalsdo
not cause harmful interference. Essentially, in both casesSUs
are transparent to PUs. Theoverlay paradigm, which is the
focus of this paper, assumes PUs have side information about
SUs, and leverage them to improve primary network perfor-
mance. However, most existing works on either information
theoretic analysis [19] or implementation issues [2] adopta
single-channel setting. In contrary, we consider a multi-channel
setting with multiple PUs and SUs, and seek to provide a
practical framework to implement cooperative cognitive radio
networks.

Resource allocation in cognitive radio and cooperative net-
works have been extensively studied. For the former, most
works [20], [21] consider maximizing SUs’ throughput with
constrained interference to PUs. For the latter, [9] and ourpre-
vious work [10] address the problem with different primary user
cooperation schemes. In a multi-channel CCRN, primary and
secondary networks have to bejointly considered, aggravating
the optimization problem. Moreover, existing works invariantly
assume that relays are obedient and altruistic to help, as they
do not possess their own data to transmit. In CCRN, PUs
and SUs are selfish, and fairness between them needs to be
addressed appropriately for cooperation to take place. We apply
the concepts of Nash Bargaining Solutions [6] to ensure both
parities benefit from cooperation, and are not taken advantage
of unfairly. NBS has been applied to allocate resources in
cooperative OFDMA networks [7], [8]. These works do not
consider the inefficiency of conventional cooperation methods
in the context of multi-channel CCRN, and only heuristics
without any performance bounds are given.



VII. C ONCLUDING REMARKS

This work represents an early attempt to study multi-channel
cooperative cognitive radio networks. The central question ad-
dressed in the paper is how to effectively exploit secondaryuser
cooperation when conventional cooperation method becomes
inefficient in this scenario, which has not yet been explored.
We propose FLEC, a flexible channel cooperation design to
allow SUs to customize the use of leased resources in order
to maximize performance. We develop a unifying optimization
framework based on Nash Bargaining Solutions to address the
resource allocation problem with FLEC, where relay assign-
ment, subcarrier assignment, relay strategy optimizationand
power control intricately interplay with one another. An optimal
distributed algorithm as well as an efficient centralized heuris-
tic with near-optimal performance are proposed. Simulation
studies corroborate that FLEC is efficient and improves the
performance of both primary and secondary networks.

APPENDIX

Proof of Theorem 4:The proof is based on the Chernoff
Bound. Forvi ∈ [0, 1] independent random variables, letS =
∑

i vi, µ = E[
∑

i vi], then

P [S ≤ (1 − δ)µ] ≤ e−
δ2µ
2 .

Let Φ1
i =

∑

c1
x̃c1

i wc1

i,j(i),Φ
2
i =

∑

c2
ỹc2

i wc2

j(i),P ,Φ2
j =

∑

c2
ỹc2

j wc2
j . All Φ1

i ,Φ
2
i ,Φ

2
j are sums of R.V’s∈ [0, 1]. With

E[Φ2
i ] = âi, E[Φ2

j ] = b̂j , we have the following

P [Φ2
i ≥ (1−δ)âi] ≥ 1−e−

δ2âi
2 , P [Φ2

j ≥ (1−δ)b̂j ] ≥ 1−e−
δ2 b̂j

2 .

Note that the aggregate marginal utility (flow) in the first
time slot is obtained from the flow in the rounded solution
in the second slot. Assume

∑

c2
ỹc2

i wc2

j(i),P ≥ (1− δ)âi. Since
E[Φ1

i |Φ2
i ] = ãi = Φ2

i /(1 − δ) ≥ âi, it can be shown that

P [Φ1
i ≥ (1 − δ)âi|Φ2

i ] ≥ 1 − e−
δ2âi

2 .

Now to ensure a net flow of at least(1− δ)âi at every PU and
(1 − δ)b̂j at every SU with high probability, we need:

P [Φ1
i ,Φ

2
i ≥ (1 − δ)âi] ≥

(

1 − e−
δ2âi

2

)2

=

(

1 − 1

KR

)2

,

P [Φ2
j ≥ (1 − δ)b̂j ] ≥

(

1 − e−
δ2 b̂j

2

)2

=

(

1 − 1

KR

)2

.

This results in δ =
√

2 ln(KR)
âi

=
√

2 ln(KR)

b̂j
. Then the

approximation boundB is given by

B = 1 −
√

2 ln (KR)

∑

i

√
âi +

∑

j

√

b̂j

∑

i âi +
∑

j b̂j

(20)

P

i

√
âi+

P

j

√
b̂j

P

i âi+
P

j b̂j
is maximum when âi = b̂j = â =

P

i âi+
P

j b̂j

2NS
. By the normalized weight assumption

∑

i âi +
∑

j b̂j ≤ KR. If c =
maxi{w

c1
i,j(i)

,w
c2
j(i),P

}
mini,j{w

c1
i,j(i)

,w
c2
j(i),P

} ≥ 1, then

∑

i âi +
∑

j b̂j ≥ KR

c
. Substituting into (20), we have the

following with high probability

B ≥ 1 −
√

4cNS

KR
ln (KR).
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