Efficient Resource Allocation with Flexible Channel
Cooperation in OFDMA Cognitive Radio Networks

Hong Xu, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto
{henryxu, bl} @eecg.toronto.edu

Abstract—Recently, a cooperative paradigm for single-channel  First, we observe that conventional user cooperation perme-
cognitive radio networks has been advocated, where primary use  ated through the cooperative diversity literature [5] aes
can leverage secondary users to relay their traffic. However, it is jhafficient when directly applied to multi-channel CCRN. It
not clear how such cooperation can be exploited in multi-channel . -
networks effectively. Conventional cooperation entails that di& implicitly postulates that data on Qne channel has to bgeela
on one channel has to be relayed on exactly the same channelOn e€xactlythe same channel, which may not be amenable to
which is inefficient in multi-channel networks with channel and relaying. Meanwhile, some other channel may have redundant
user diversity. Moreover, the selfishness of users complicatesrelay capacity to incorporate additional data with littlest
the critical resource allocation problem, as both parties target In other words, cooperation using the same channel misses th

at maximizing their own utility. This work represents the first . . L
attempt to address these challenges. We propose FLEC, a noverUIk of PU-SU cooperation opportunities, by unnecessdirily

design of flexible channel cooperation. It allows secondary userst iting the space of SU resource allocation to only the temipora
freely optimizethe use of channels for transmitting primary data dimension, as shown in Fig. 1.

along with their own data, in order to maximize performance. R AN Conventional cooperation
Further, we formulate a unifying optimization framework based subcarrier 1 e PUTSU | SU-BS [SUAP]
on Nash Bargaining Solutions tofairly and efficiently address subcarrier2  BS
resource allocation between primary and secondary networks, in  m.py 1 data% PU2SU  |SUBS| SUAP
both decentralized and centralized settings. We present an optinha  : PU 2's data m a é TRTTTTTTI T T T T -
distributed algorithm and sub-optimal centralized heuristics, and A:sU's data = /'AP FLEC
verify their effectiveness via realistic simulations. e PU1-SU SU-BS
] _ I _— >
Al . PU2-SU SU-AP
[. INTRODUCTION @ su N N e et I -
PU1 PU2 1st slot 2nd slot

_ngnitive radio, with the ability to f_leXibly adapt its trar_‘s Fig. 1. The motivating scenario fdflexible Channel Cooperation (FLEC)
mission parameters, has been considered as a revolutional

technology to dynamically access the under-utilized \ess! Our first contribution in this paper is a new design for
spectrum [1]. Recently, a new paradigm in which primar ooperatl_on among SUs and PUs, termed F_IeX|bIe Channel
users (PUs) can leverage secondary users (SUs) for their o pe_ratlofn (FSLLIJEC)’I tha:(openg up all dlmfenf]mns ?f re(s;nurc
transmissions, termedooperative cognitive radio networks?! ocaypn or s. It ta.es a,"a”tage oF channel and user
(CCRN), is advocated [2]. In CCRN, SUs cooperatively relaglversmes profoundly available in multi-channel netk®rand
data for PUs in order to access the spectrum. A single chanfLPWS SUIto flreely%p;ummﬁﬁ use of lTesources —fchanlneI;
network has been considered in [2]. The PU leases its chan‘?\gfJI time slots lease rom mLS, as well as power — forretaying
to SUs for a fraction of time in exchange for cooperativBMary data along with its own data, as long as all the prymar
transmission. SUs allocate a portion of the time fraction f§i2t@ it received can be delivered. o _
relaying primary data, and the rest for their own traffic. As- 1he basic idea of FLEC works as shown in Fig. 1. Time
suming they have better channel conditions to the primaly €dually divided into two slots among cooperating users.
receiver, cooperative relay can dramatically increasenany Us transmit in the first slot to SU, and SU transmits in

transmission rates. Meanwhile, SUs also gain opportuntoe 1€ second slot to the primary BS and to its own AP. SU
access the spectrum, resulting in a “win-win” situation. strategically customizes its use of leased resouregsit can

In this paper, we investigate cooperative cognitive radi&se subcarrier 1 solely for relaying data aggregated froth bo

networks from a new perspective. We consider a multi-chlanr'?éjbcarrier 1 and. 2 gnd use S‘.ch"?‘T"er.z solely for sengiing
cellular network based on OFDMA, such as IEEE 802.1 own datq as in F'g 1. The mtwnqn is that, if subca_Lr_rler

[3] and 802.22 [4], with multiple SUs assisting PUs on th& s superior conditions on SU-BS link but poor conditions
uplink as shown in Fig. 1. Multi-channel networks impos@n SU-AP link, it is much more efficient optimizing it to

unigue challenges of realizing the cooperative paradignwe relay_data from .bOth subcarriers. Such charmshppingor
narrate in the following, along with our original contrilurs shuffling results in boosted SU throughput, as well as larger
to precisely address thém relay capacity for PU, since the overall spectral efficiergy

improved. Spectral efficiency gain can in turn be translated
This work is supported by NSERC Discovery, CRD and Strat&gjiants more _COOperann opportunities, as well as increased mktwo
(RGPIN 238994-06, CRDPJ 379623-08, STPGP 364910-08). capacity and performance.



The preceding description of FLEC assumes a decentral- Il. AN OPTIMIZATION FRAMEWORK
ized setting where the primary and secondary networks ate system Model
independent. Subcarriers are assigned to PUs bya Bfiori

to SU cooperation, and only those assigned to the helped\]Ne start by introducing the system model. We consider the

uplink of a single-cell OFDMA network. A number of SUs are

PUs are leased to the respective helping SUS. In Cen'dall% cated in the cell and perform cooperative transmissioiPfds

setting where SU cooperation becomes an integral part of ttff access the primary spectrum. We assume that PUs and SUs

scheduling performed by the primary BS, it becomes IOOSSIthave infinite backlogged data to send and the OFDM frames

to assignany subcarrier to a helping SU, to further improve X o - . )
the performance. We also consider the centralized FLEC i synchronized. Decode-and-forward multi-hopping [S] i

our paper. Note that in both settings, it is still possibleuse Ziﬁfje\\//:;?: v%iltf r;eol‘:‘ey E(?Tiis?ilcg?ég C'\(I)%tii t/r]dagcr(1)|3i2ersr2l;eesmare
one channel foboth relay and SU’s own data following an b 9 9

apbropriate time sharing strateqv. if the channel has kel e.g. maximum ratio combining at the destination based on the
pprop g 9y, signals received in both slots (instead of multi-hopping). [

conditions on both SU-BS and SU-AP links. We will firstHere we focus on decode-and-forward multi-hopi v f
assume this possibility, and later show that surprisingly, .~ . . i i -hopping only for
restricting toexclusivechannel usage,e. one channel is used .S|mpI|C|'ty of presentanqn. Ogr analysis and aIgonthmsmd-
for either relaving orimary data or sending secondary da ily applicable to scenarios with more complex coding/décgd
- ying primary dat: 9 y ’ schemes.
optimality of the solution is still preserved. We model the fading environment by large scale path loss and
Given FLEC, thesecondunique challenge in multi-channelshadowing, along with small scale frequency-selectivel&gly
CCRN is how to schedule the transmissions and allocate fgding. The coherence bandwidth is in the order of the width
sources, in order to maximize performance gains while émgur of a few subcarriers so that adjacent subcarriers haveasimil
fairness among all users. A SU may assist several PUs #innel conditions. Fading between subcarriers in diftere
in Fig. 1) while a PU may also be paired up with severdtames is independent, and remains stable during each frame
SUs, complicating the resource allocation problem. Moeeov We assume techniques for channel estimation are employkd an
in reality, PUs and SUs are selfish and have conflict of interesfull channel side-information (CSI) is available, which kea
If relaying is beneficial, PUs have a natural tendency to@kpl the optimization possible. Such assumptions about thendadi
SUs as much as possible by leasing more channels, while &gsironment and CSI are commonly used as in [7]-[10]. Noises
striving to maximize their own throughput will no longer beare modeled as i.i.d. circularly symmetric complex Gaussia
willing to relay, given their depleted power budget. Adalitt noisesCA (0, NoW ).
ally, PUs compete among themselves when one SU resides in ®here are a total ofS subcarriers,Np primary users and
suitable position to relay for all of them; likewise SUs ca@t® Ng secondary users in the network. L¥t= Np + Ng. One
among themselves if one channel has good conditions on allsebcarrier can be allocated to one PU only, and can be leased
them. Our main objective in this paper, therefore, is to tigve to one SU only. For a given PW ¢ [1, Np], if subcarrierc
efficient yet fair resource allocation algorithms for FLER iwith bandwidthT¥ and complex channel gaih is allocated
multi-channel networks. for direct transmission, the achievable throughput is:

To this end, oursecondcontribution is a unifying opti- . . e . |h¢|?
mization framework based on Nash Bargaining Game [6]. Our i,n+1 = Wlog (1 +pf - g7) ,whereg; = TN 1)
framework jointly considers relay and subcarrier assigmmne
relay strategy optimization, and power control. The soluti
found, called the Nash Bargaining Solution (NBS) [6], i .
a unigue Nash Equilibrium point with NBS fairness amon%e allocated power. W'thOUt loss Of. generality equals 1

C . : . the subsequent analysis. If PlUdecided to lease to SU
PUs and SUs, which is a generalized proportional fairness

notion. We consider both decentralized and centralizedGZLEé € [Np + 1, N] for cooperative transmission, then in the first

as introduced above. In the decentralized case, we obtain e slot, the achievable throughput on PU-SU link is

optimal distributed algorlthm bgsed on dual decomposition RS, = llog (14 2p565,) )
to allow PUs to bargain with neighboring SUs autonomously. 2

In the centralized case, cooperation opportunities areeto &ince the effective power and throughput should take into
carefully invented and engineered rather than distributively account the two-slot structure of cooperative transmisst@r
harvestedWe identify the NP-hardness of the problem, desig8U j in the second time slot, under FLEC, it can freely decide
a three-step heuristic via a decoupling approach, and gheve whether to use: solely for relay, or solely for its own data, or
approximation ratio for the decoupled subcarrier assigrtmgointly for both purposes in a time sharing manner. W.L.Q.G.
algorithm. Both algorithms are highly efficient in that theyet a§ € [0, 1] denote its relay strategy. Theis throughput for
can meet typical scheduling deadlines5fl0 ms [3] in real relay and its own transmission is as follows, respectively:
OFDMA systems. Thus we believe our work sheds light on 1 —a¢ ac

the design and implementation of OFDMA based cooperative; p = 7 L log (14 2p5g5 p) , RS = 7] log (14 2p5g5) -
cognitive radio networks. 3)

The subscript(N + 1) is used to denote the direction trans-
mission model is the coding gap to capacity apg denotes




Note that with conventional protocol$t? ; = Rf , holds for support. The goal is to maximize ail,, simultaneouslyR™"
any ¢ PU i leases to SUi. With FLEC, this does not have torepresents the minimal performance requirement. For Rids, t
hold for every leased subcarrier. The only requirement & thminimal requirement will be the optimal average throughput
SU j should deliver all data from the cooperating PUs, a they could obtain should they choose not to cooperate with

total flow conservation requirement as follows: SUs, given by a multi-user uplink scheduling algorithm [11]
K Np K For SUs, their minimal requirement is simply zei®.is the
ZZREJ < ZRj,P’Vj € [Np + 1, N]. 4) feasible set of resource allocation with FLEC that satisfies

R, > R™® ¥n. The problem, then, is to find th_e NB&e.
to solve the optimization problem (5) witR,, and R™i",
The product terms in (5) make the problem difficult to solve.

We present the salient concepts and results from Nagfe first show that mathematically, it is equivalent to sodvin
Bargaining Solutions, which are used in the sequel. Forildetahe following:

we refer readers to [6]. N
The basic setting is as follows: LaW = {1,2,...,N} Zln (R Rmin)
n — flp .
n=1

c=1i=1 c=1

B. Basics of Nash Bargaining Solutions

(6)

be the set of players, including PUs and SUs. ISetbe ReS. Box Rmin

a closed and convex subset & to represent the set of

feasible payoff allocations that players can get if they alihis utility maximization problem has to be solved in every
work together. LetR™" be the minimal payoff that theth scheduling epoch as channel qualities change over time. It
player would expect; otherwise, he will not cooperate. $gpp has been shown that maximizing the aggregatgginal util-

(R, € S|R, > R™" ¥n € N} is a nonempty bounded setity > U'(R,) - R, at each epoch achieves long-term utility

Define R™» = (Rmin _ Rwin) then the pair(S, R™") is maximization [12]. Therefore, separating the terms for PUs
called aN-person bargaining problem. and SUs, the basic resource allocation framework for OFDMA
Within the feasible se, we first define the notion of ParetoC00perative cognitive radio networks at each epoe
optimality as a selection criterion in a typical game settin Ne. p_ pmin N R
Definition 1: The point(Ry, ..., Ry) is said to bePareto max Z—, e + Z _ (D)
optimal if and only if there is no other allocatiof®!, such RESR-0 Ri(t) — R™™(t) L= Ri(t)

that R/, > R,,VYn, and R, > R,,3n, i.e. there exists no
other allocation that leads to superior performance foreso
user without inferior performance for some other user.
The question that arises is: at which of (infinitely many)'s , i : :
Pareto-optimal points should we operate the system? Algessi eqwrement, Wh'_Ch can be obtained by running a mult|-us_er
further criterion is the fairness of resource sharing. Iis thschedu_lmg algorlthm_ at each_epoch, such as [11], and using
paper, we use the NBS fairness axioms from game theory. 'IIHS weighted averaging technique.
intuitive idea is that after the minimal requirements a_lret foe IIl. OPTIMAL DISTRIBUTED ALGORITHM
all users, the rest of the resources are allocategortionally
to users according to their conditions.
Definition 2: ¥ is a NBS, i.e. T = ¢(S,R™"), if the We first consider a decentralized setting where the secgndar
following axioms are satisfied=easibility, Pareto Optimality, network is independent from the primary network, and cannot
Independence of Irrelevant Alternatives, Independendeiref be controlled by the primary BS. Thus, BS allocates resaurce

r{ﬁi,Ri(t),Rj,Rj(t) denote the instantaneous and average
throughput for PU4 and SU j at epocht, respectively.
yfmin,R;“i“(t) are the instantaneous and average throughput

A. Problem Formulation

ear Transformationsand Symmetnj6]. to PUsa priori to any cooperative transmission, and SUs have
Theorem 1:There is a unique solution functiap(S, R™") to “negotiate” distributively with PUs in order to have ceop
that satisfies all axioms iDefinition 2such that [6] eration taking place. In other words, cooperative transiois
N serves as an add-on component to the existing primary nietwor

#(S,R™") € arg max H (Rn _ Rglin) . (5) and is_opportgnist_icaltharvest_ed. This may correspond to the
RES, R, >Rmin most immediate implementation scenario of CCRN that does
not call for any change in the existing primary infrastruetu
and therefore is of great practical interest.
For our problem, we wish to considéng-termNBS fair-  Resource allocation problem in this setting, includingayel
ness, which depends on the average throughput gain fre@gsignment, SU subcarrier assignment, SU relay strategy op
cooperation. For elastic traffic, long-term fairness notyontimization using FLEC, and PU-SU power control within the

faithfully reflects users’ perceived performance, but @s®s pasic framework in Sec. II-C can be expressed succinctly as:
more flexibility to exploit multi-user diversity. As discssd N N
P

above, the cooperative game in an OFDMA based CCRN can tif . ) R; — Rinin R;
: , istributed: _ max _—t Z _

formulated as follows. Each user, being primary or secondar RP-0a R;(t) - Ri"™(t) 4~  R;(t)

has R,,, the average throughput, as its objective function. It = - . I=Npt

is bounded above and has a nonempty, closed, and convex stP-1" =p™ R eC(P,a), (8)

n=1

C. An Optimization Framework Based on NBS




where pmax = [pmax . puax]T js the power constraint Therefore, the problem can be decomposed iAtoper-
vector,P is an N x K matrix such thatP”$ denotes the power subcarrier problems. Recall that each subcarrier is ajread
expended by usen in subcarrierc, a is an Ng x K matrix assigned to a PU by the BS, the per-subcarrier problem then
such thato denotes the FLEC strategy of Stbnc, andC(-) reduces to finding the optimal helping SU and the optimal
denotes the achievable rate region gimanda (Eq. (1)—(3)), resource allocation, and can be shown alternatively asvist|

with the flow conservation constraint at each SU (Eq. (4))c8i

R ; RC
only one PU and one SU can be active on each subcarrier, #er-subcarrier: max p— J
column vectoP¢ has at most two non-zero entries, and it also dviwges Ri(t) — R (t ) R;(t)
specifies relay and subcarrier assignments. — Aip§ — Ajp§ + 1y (R P )
C
B. Dual Decomposition SRS, Bj € C(pi, pj, o). (11)

The decentralized problem (8) is essentially a mixed intege- Solving the Per-Subcarrier Problem

program, with the objective function being neither convex Next we show the per-subcarrier problem can be solved effi-
nor concave. However, in an OFDMA system with mangiently via an exhaustive search over all SUs and transafissi
narrow subcarriers, the optimal solution is always a convexrategies (direct or cooperative). To enable such exivaust

function of p™*, because if two sets of throughputs usingearch, we need to derive solutions under direct or codperat
two different sets o> anda are achievable individually, their transmission modes for a given subcardewith its PU .

linear combination is also achievable by a frequency-ativis
multiplexing of the two sets of strategies. In particulasing
the duality theory of [13], the following is true:

Proposition 1: The decentralized resource allocation prob- max }Og(l + g)?gf )
lem (8) has zero duality gap in the limit as the number of p (Ri(t) — R™n(¢
OFDM subcarriers goes to infinity, even though the discr
selection of subcarriers, SUs and relay strategies ardviewo

This proposition allows us to solve non-convex problems in 1 1 +
their dual domain. Note that although the proposition rezgii P = iy (R(t) — Rmin(t)) | (13)
the number of subcarriers to go to infinity, in reality the litya AT v
gap is very close to zero as long as the number of subcarrler§> Cooperative Transmission
is large [9].

Introduce Lagrangian multiplier vectots, i to the power
and flow conservation constraints and the Lagrangian begom

> Direct Transmission
If PU 4 chooses direct transmission, (11) becomes

— N, 12
5 P (12)

e{ﬁe solution of which is readily available by simple calailu

Substituting the rate formulas (2)—(3) into (11) and regrou
|ng the terms, the objective (11) becomes

1Og(1 + 2ngl,]) :u‘J IOg(]. + 2ngz,])

N, min = 7min - - )"Lpzc
LR, P, A 1) :ii+ Z 2(Rilt) — R (1)) 2
— R, (1) — R0 (¢ P R;( aslog(l+2pSg5)  py(1—af)log(l + 2p5g5 p) e
QRJ' (t) 2 iPj
+ Z Ai < an> The first three terms, denoted &$j, \;, 11,), represent PU's

K Np benefit by having Sy as its relay, discounted by possible vio-
c lation of flow conservation with price,; and power expenditure
C 9 j
+ ;Huj (Z Rip (z::l ; R”) © with price A;. b; (4, A, 11;) can be easily optimized byas only
= o p¢ is involved:
The dual function becomes

+
max L(R,P,a,\p .1 1 1
g p) = { F;PE’O‘ R(E (P, ) ) (10) P = 2 [ N(Ri(t) — Rinin(t)) A 95 (14)
To solveg(), s) with given A, p, it is equivalent to solving the The last three terms, denoted B, Aj, ), represent SU
problem with the following objective: J’s benefits from transmitting bo_th its own a_nd P4 datr_:l,
discounted by the power expenditure with price Two opti-
Ne o NAL YR mizing variablesa¢ and p¢ are involved here. Notice that the
Z Z Z W Z ( terms are essentially a convex combination withy we have
c=1 i=1 j= Nerl =Np

the following theorem establishing the optimality of exsilte

Np N
. . . . channel usage on SUs.
- Z)‘ipi o Z Ajpj§ + _ Z Z“J‘ (Rny - Ri,j)) Theorem 2:For the distributed resource allocation problem
= J=Np+1 J=Np+li=1 (8), the optimal solution can be found, where every subearri

Notice that in the first term of the objectivg,could beN +1 ¢ leased to SU is exclusivelyused for either relaying primary
which corresponds to the possibility of direct transmissio  data or sending its own data.



Proof: It follows from applying the fact that the convexand the optimal value of its benefii@(j, i, it5). The optimal
combination of two functions is upper bounded by the max&§, 5 can be obtained by Sy only with its local information
mum of the two functionsi.e., as in (15). Then the optimal value of SU’s benebiféi, A;, 11;)

needs to be passed to RUAfter calculatingb;(j, A;, ;) and

afi(z) + (1 = a)fo(z) < max (fi(@), fo(@)), @ € [0,1]. collecting b; (i, \;, ;) from all SUs,i can solve (11§)by an
The per-subcarrier problem (11) can be solved optimalljwiexhaustive search to maximizg(j, iy ) + b (5 Ajs f15)-
a$ = {0,1}, hence the dual and the primal problem (8).m The subgradient updates can be easily performed by each and

Theorem 2greatly simplifies the optimization problem asevery primary and secondary users. While the dual variaple
well as implementation since no complicated time sharing is kept at each user privately and serves as a price signal to
needed to achieve optimal performance. Hence wexfet=  regulate its power consumptiop, is exchanged between PUs
{0, 1}. Maximization ofb; (i, A;, 1;) can be obtained by settingand SUs and serves as a relay price signal to coordinatevitle le
orJ to 0 and 1, derrvrng the optimal; respectively as shown of cooperation. When the relay traffic demza@f,1 Zl 1 RﬁJ

in the following, and comparing the objectrve values. Tias € from PUs exceeds the supp&j from j, i.e. PUs
be broken arbitrarily. over-exploit j, j increases its relay bricerj for the next
L Th L1t ~ round of bargaining to suppress the excessive demand, as
. 2 [ﬁ - g;_yp} ; whenas = 0, (15) she{wn in (18). Srmrlar% ifj has redundant relay capacity
Pi = 1 [ 1 1}* N SE R, > YK SV Re it will decrease the relay
2| = = WhenOlc»Zl. _cl 3, P c=1 i=1 Z
2 [ NRi @) 97 price u; to attract more relay traﬁrc and therefore obtain more

To summarize, the per-subcarrier problem (11) can be eff?annels to use. The process continues until it convergéto
ciently solved via exhaustive search over a finite set definyed OPtimal resource allocation.
the transmission strategies, SUs, and SU relay strategtbs Wlgorithm 1 Distributed Bargaining
FLEC as discussed above. The size of this discrete set is very
limited, making it feasible for a practical network.

Each primary user initializes the power prr&é) Each
secondary user initializes both power and relay prices
D. A Distributed Algorithm /\( ),u( )

We have shown that the dual function can be decomposed GivenA® ,u®, each PUi bargains with each neighboring
into K per-subcarrier problems, the optimal solutions of which SU j concurrently to solve the per-subcarrier resource
can be obtained efficiently through exhaustive search. ;Tthen allocation problem (11) using (13)-(15).
primal problem (8) can be optimally solved by minimizing the 3- PU 7 performs a subgradient update faf, and SU j

dual objective: performs a subgradient update for, 11; as in (18) respec-
o tively.
minimize  g(A, p) 4. Return to step 2 until convergence.
subject to A, p > 0. (16)

Subgradient method can be used to solve this dual problemThe complete bargaining algorithm is showAlgorithm 1.
The updating rules are as follows: We now analyze the amount of message exchanges and

complexity here. For each pair of PU-SU, two messages

+
A i, b5(4, Aj, ;) need to be exchanged. They can easily be pig-
)‘r(rlﬂ) - l) T ’/(l (Z P )] ’ an gf/baékedjln g[r)re probing packets from SU to PU to measure the
channel gain, resulting in zero message exchange overhikrad.
complexity of solvingK per-subcarrier problems by exhaustive
search isO(K Ng). The complexity of the subgradient update
is polynomial in the dimension of the probleid. Therefore,
Following a diminishing step size rule for choosin§),x®, the complete algorithm has complexity polynomial iiN.
the subgradient method above is guaranteed to converge to\tthile this may render it infeasible for real-time scheduling
optimal dual variables. The optimal primal variables caenth within 5—-10 ms when the network scales, the distributed nature
be easily found. of the algorithm makes it possible for each PUctmcurrently
Observe that, because of the dual decomposition, dual @olve the per-subcarrier problem, reducing the completaty
timization by a subgradient method can be done imist only O(Ng). Further, in reality, only a few SUs residing in
tributed fashion. The algorithm can be perceived as an iteratitlee neighborhood of the PU can potentially help and thus have
bargaining process. During each iteration, the per-suigcar to be considered. Therefore from the network point of view,
problems (11) can be solved simultaneously by the PU efch round of bargaining has complexi®y1). Careful readers
the subcarrier exchanging information with neighboringsSUmay be concerned with the slow convergence of the subgradien
though the objective jointly involves PU and SU’s benefitaipdates. We comment that since each PU only needs to bargain
Specifically, from (14), the PU needs to know the currentyrelavith neighboring SUs, the convergence complexity becomes
“price” p; from j in order to calculate the optimal powgf, polynomial in the limited size of the neighborhood. We obser

+

(+1) _ (18)

Hj

P K
)+ ) <Z DR - RiP)
c=1

c=1i=1




in simulations — shown later in Sec. V-C — that the algorithrtime-sharing on this channel. Assuming each SU can only help
converges within about 20 iterations in most cases. one distinct PU, the optimal relay assignment under thecbasi

framework in Sec. II-C can be determined by:
IV. NEAR-OPTIMAL CENTRALIZED ALGORITHMS

We now proceed to the centralized setting. We consider the ax % NZH - ( 7Ri,j —f??““ ﬂjz )
scenario where the SU cooperative transmission becomes a# ;e{0,1} Y\ Ri(t) — R () R;(t)
integral part of primary BS scheduling, and SUs abide by the 1
scheduling decisions, provided that the resource allogat s.t.R;; = 3 min (log(1 + 2p***g; ;),log(1 + Qp;?“a"gjf)) ,
fair as reflected by the NBS fairness. With centralized FLEC,

we have an additional dimension to optimient subcarrier
assignment to PUs and SUs

i=1 j=Np+1

1 max —
Rji = 5 log(1 + 2p;™*g;)

+
log(1 + 2p**™*gi ;) ]
2 )

~ log(1+2p7*g; p)

While the problem can be formulated in a similar way as the ,
. ) o Vj € [Np +1,N],
decentralized problem (8) and solved via dual decompuasitio e el P,+ ]
and subgradient update, it is computationally prohibitivedo Ri N1 = log(1+p;"gi), Rn41,i = 0, By (1) = 00

so. At each iteration, the solution of the per-subcarr@bpr ere »; . is the binary variable denoting the relay assignment
lem now has to exhaustively search all possible combinatiogs SU j to PUi. Note again tha can beN + 1 to denote

of PUs and their neighboring SUs, which has a complexityirect transmission.

of O.(KNP) since distributed concurrent _optimization. iS NOt The above relay assignment can be optimally solved by
possible. Moreover, because of the global impact of cérédl \yejghted bipartite matching. Construct a bipartite graph=
subcarrier assignment, thé-dimensional andVs-dimensional (Vi x Vo, E) whereV; and V, correspond to the set of PUs
dual variables\, p have to be numerically updated, the conz,q sys respectively. We patch void verticeslioto make
vergence of which is too slow to be useful for scheduling W5 = [Vi| = Np, since the number of SUs is typically
a fast time scale as will be shown in Sec. V-C. Given th@thaller. The edge sdf corresponds taV2 edges connecting

the simpler primary user scheduling without SU cooperatiof) nossible pairs of users in the two vertex sets. Each edge
is extremely difficult in itself [11], we focus on developing(i j) carries a weighty; ;, where

efficient heuristics in this section, which reduce the caxiy ‘
while exhibiting good performance. Nevertheless, the slow ws - — R;; — ™ n R;;
subgradient based centralized algorithm, catlethtralized Op- YRt — R () Ri(t)

timization hereafter, is used to derive the optimal pen‘ormanq__eOr edges connecting PUs to void SUs that we patched, the edge
as a benchmark as in Sec. V-D. . . ; o

weights have captured the maximum marginal utility given by
A. Overview of the Heuristic Algorithm direct transmission. Observe thdtis bipartite, optimal relay
ésignment is then equivalent to finding maximum weighted
Ipartite matching oml. The Hungarian algorithm is a popular
)polynomial-time algorithm to solve it optimally [14].

To make the problem more tractable, we decouple it to thr
orthogonal dimensions: relay assignment, subcarriegas®snt
with FLEC, and power control. First we derive optimal rela

assignment using bipartite matching, assuming that each gU g\ pcarrier Assignment by Randomized Rounding
is only able to help one distinct PU. This simplification is

reasonable as it ensures a certain level of fairness. Then ngor PU_S using d'rﬁCt t(;ansmlssrllon as determlneq rl])ys(l)thlmald
assume that power is equally distributed, and derive subcar relay assignment, they do not share resources wit S, an

assignment algorithms. Even with optimal relay and equﬁ? suhch cannot Eenef_lt from S”U coodpgratl’l]on.. _'I'.hcla.ril;;)re they
power assignment, this turns out to be an NP-hard problem. ¢ the same subcarriers as allocated in the initializatiep.

propose a sub-optimal algorithm based on randomized mgnd,:Or the se_t of PUsV3* that use Cgo.p eratlv_e _t_rar_lsm_lssmn, the
and prove its approximation ratio. Finally, power allooati set of their allocated subcarrief§’™ in the initialization step

is solved to maximize performance with the given subcarri?é\fJII be collected and re-assigned by the following algarith

assignment. Be reminded that as an initialization step, tﬁgr each PU and its L,‘,Qique helpir;%a)xsgl(i), we assume they

BS first performs a multi-user scheduling [11] to determin@ill use powerp; :.%7ﬁj(i) = & respeptively on each
Rmin Rmin(4) for PUs before the three component algorithmgubcarrier, wherds;; is the number of subcarriers allocatedito
run. The entire heuristic algorithm is call&@entralized Heuris- in the initialization step [11]. Such an equal power assumnpt
tic hereafter. We note that other heuristics are possible,lwhi Widely used and leads to subcarrier assignment algosithm
are beyond the scope of this paper and left as our futupdh near-optimal performance, as reported extensively,[1

research. [15] and will be shown in Sec. V-D.
. . As seen inTheorem 2assigning a subcarrier exclusively for
B. Sensible Relay Assignment relaying or transmitting SU’s own data does not lose opiiiyal

Here, we model each useras having arimaginarychannel in the decentralized case. This can also be proved similarly
with normalized channel gain to noise ratip = - >°_ g5 and the centralized case. Thus, the subcarrier assignmenteprob
powerp*. Then the optimal FLEC strategy reduces to simplean be formulated as in (19), wherg”; ;) denotes the marginal



utility (normalized to a large valuev,,.,) obtained by PU SU determined, power allocation on each pair of PU-SU is a
i on being assigned; on PU-SU link in the first time slot standard convex optimization problem and can be readilesol
(i.e. wiy,) = 0.5log(l + 2pigf})/(Ri(t) — Ri™"(t))), and by KKT conditions. We omit the details here.

wit, p denotes the marginal utility of assigning for j(i) ‘Algorithm 2 Rounding-based Subcarrier Allocation

orj SU;BS link in the §eqond SIOE(é' wity,p = 0.-51og(1 T 1. Formulate the problem using the IP above. Solve its LP
2D 9;(p,p)/ (Bi(t) — RF™(2)). wy?* denotes the normalized  relaxation withz*, ¢, 55> being relaxed tdo, 1]. Let the

K2

marginal utility of SUj on being assigned, for its own
data0.5log(1+2pjg52)/Rj(t), anda;, b; denote the aggregate
marginal utility (flow) achieved by PWand SUj respectively. solutions, %, 42, to integral valuesi', 42, wheren €
z$' is the binary variable denoting whethey is assigned to (i € NR) N {jne [Np +1, N]}. Lo

PU3 in the first time sloty;? denotes whethat, is assigned to s ’
i's helper SUj(¢) for relaying in the second time slot, arzygl2
denotes whethet; is assigned to Sy for its own transmission
in the second time slot.

~C

LP solutions bei*, 4,55 andaj, b;.
2. Adopt the following procedure to round the fractional

« For everyco, round y22 to 1 (g¢2) with probability
ge2. If n is the user to whonr, is assigned, then
92 =0,Yn # n.

c

G2 w2, ~ 502 w°2 )
N « Updated; = _Zy”liug“””,bj = Zlf_;”] , whered is a
max Z a; + Z b. (19) constant derived below. Run the LP againadh only.
ey ' =Nt / Let z;* be the solutions of the new LP. )
s _ o Forecy, roundz;* to 1 (#5*) with probability ;. If 4
st Yy -w =b;,¥j € [Np+1,N], is the PUc, is assigned to, thed = 0,Vi # i.
C26}CR
] ] - > . R
D w Wl =i Y Y wily p= e Vi €NE
c1EKR LR V. PERFORMANCEEVALUATION
Z it =1, Z yi? + Z y;?2 =1,VYer, ¢ € KR, To evaluate the performance of FLEC with proposed algo-
PENR PENE JE[Np+1,N] rithms, we adopt empirical parameters to model the fading en

veironment. There aré28 subcarriers centered at5 GHz with
above IP formulation is NP-hard tbandwidth312.5 kHz. Channel ga_in can be decomposed into
Proof: The problem can be .reduced from type-dependea Ia_rg_e-scale log normal shadowing component with standard
multiple kﬁapsack oroblem@IKP), where each set of knap_&éwatlon of5.8 and path loss exponent df and a small-scale
e . Rayleigh fading component. The inherent frequency seiggti
sacks (users) belongs to a different type (time slot and iy captured by an exponential power delay profile with delay

mary/secondary). The profit of allocating an item (subeajri éciﬁreadl.%? 1S as reported via extensive measurements [17].

Theorem 3:The subcarrier assignment problem under t

depends not only on the knapsacks but also the type of th e entired0 MHz channel is partitioned into blocks of size
The one-type MKP is known to be NP-hard and even hard %ual to the coherence bandwidi, ~ 795.6 KHz. Three

approximate [16]. Therefore our problem is NP-hard.  m independent Rayleigh waveforms are generated for eack bloc

b Gl\:jenl thg EardnesT Of. the pr:oblem, w_ehprezselnt a roundlgging the modified Jakes fading model and a weighted sum is
ased algorithm to solve it as shownAfgorithm 2. It ensures taken to calculate the SNR. A scheduling epoch issahs

that each subcarrier is assigned to at most one user for b8 ation, and an evaluation period consistd @0 scheduling
slots. We now capture the performance of the algorithm. epochs. The number of PUs is set@0, and the number of

Theorem 4:Algorithm 2_provides an approximation guar-gys varies. Such setup is commonly used in related works [9].

antee of at least — /s In (KR) with high probability,
where K is the cardinality of the subcarrier sif®. A. Overall performance of FLEC

Proof: Refer to the Appendix for a detailed proof. m We first evaluate the overall performance of distributed and
Therefore, its performance becomes better when there igentralized FLEC compared with conventional identicalncted
larger magnitude of available subcarriers to users in te&esy. cooperation (“ICC” in the figures). Resource allocation GCl
Since the number of subcarriers in a practical OFDMA systegan be similarly formulated as that of FLEC, with per-subiear
is much bigger than that of useslgorithm 2 can be expected flow conservation constraints instead of total flow conséoma
to provide good performance. (4), and our algorithms are readily applicable with minor
adjustments. We then apply a revis€éntralized Optimization
to derive theoptimal ICC performance as the benchmark here.
After all the subcarriers are allocated as above, power cemFig. 2, we plot the average throughput of both PUs (firste¢hr
be allocated to each user optimally. For PUs with direttars) and SUs (last three bars). We can see that distribntkd a
transmission, optimal power allocation is a simple watéinfj centralized FLEC, implemented witBistributed Bargaining
solution. For PUs with cooperative transmission, optin@l@r andCentralized Heuristias in Sec. IlI-1V provide20—-40% and
allocation is performed on a per-pair basis with their ueiqu30-60% improvement, respectively. It clearly demonstrates the
helping SUs. With subcarriers allocated and their use on advantage of FLEC. A similar trend is also observed for SUs,

D. Power Control
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Fig. 2. Overall throughput perforFig. 3.  Effects of topology on PU  Fig. 4. Convergence of the proposé&dy. 5. Near-optimal performance of
mances of the proposed algorithmsthroughput improvement. algorithms (Vg = 50). Centralized Heuristic

although the improvement becomes marginal when the numigéhieves a good tradeoff between performance and complexit
of SUs scales up. The reason is that, though a larger numBgg is amenable to practical implementations.

of SUs provides more and better cooperation for PUs and thusfo further understand the practicality Glentralized Heuris-
improves their throughput, it results in fewer channelséen tic, we observe the running time of its component algorithms

to each SU, and a lower degree of Optimization freedom. in our simulations. We find that all of them are of the order
of milliseconds on an Intel Xeon Quad-core CPU running at

B. Effects of Topology 3GHz with 2GB memory. Therefore usual scheduling deadlines

Next we investigate the effects of topology on FLEC. waf 5-10 ms [3] can be satisfactorily met. Due to space limit,
we omit the data here.

chooseDistributed Bargainingas the representative algorithm,
and evaluate three representative topologies, wh&reequals VI. RELATED WORK
40 and the average distance from PU to BS is controlled to 5 plethora of works has been done on spectrum shar-
be 0.8, 0'55’ and 0.5 of the cell rad|_us (topology_l, 2, anding based on cognitive radio. Generally, they fall into ére
3 respectively). We observe from Fig. 3 that while cooperdy . jigmsjnterweave, underlayand overlay[18]. The inter-
tion always results in some improvement in PU throughpyfeye naradigm insists that SUs should only transmit when
scenarios dominated by high path loss and poor shadowiggs are not, while the underlay paradigm allows them to
benefit the most (topology 1), as more cooperation Oppdi@sNi nsmit concurrently with PUs provided that their signés
can be' explorgd. SU's throughput also becomes better iret.h%%t cause harmful interference. Essentially, in both c&tds
scenarios, Wh'Ch_ We__do not show here due to space I'”Eﬁ’e transparent to PUs. Thaverlay paradigm, which is the
This observation justifies the deployment of SU cooperdion ;s of this paper, assumes PUs have side information about
throughput enhancement in primary networks with high pady;s and leverage them to improve primary network perfor-
loss and limited coverage. mance. However, most existing works on either information
theoretic analysis [19] or implementation issues [2] adapt
single-channel setting. In contrary, we consider a muigrmel
We study convergence of the algorithms proposed to rgetting with multiple PUs and SUs, and seek to provide a
alize FLEC, which affects their practicality. Fig. 4 showsgractical framework to implement cooperative cognitivelioa
the convergence oDistributed Bargainingfor two randomly networks.
chosen PUs with different number of neighboring SUs. It is Resource allocation in cognitive radio and cooperative net
clear thatDiStributedBargainin@onverges withir20 iterations, works have been extensive|y studied. For the former, most
Validating its feaSlb”lty in praCtice. The reason for thastcon- works [20], [21] consider max|m|z|ng SuUs’ throughput with
vergence, as discussed in Sec. lll-D, is mainly the limitee s constrained interference to PUs. For the latter, [9] andpoer
of neighborhood. With distributed and concurrent operetjot  yious work [10] address the problem with different primasgu
is indeed suitable for practical implementation. cooperation schemes. In a multi-channel CCRN, primary and
We also observe thaCentralized Optimizationdoes not secondary networks have to pEntly considered, aggravating
converge even after000 iterations in Fig. 4. This echos ourthe optimization pr0b|em_ Moreover, existing works |nm'm|y
concern about the complexity of centralized subgradiedat® assume that relays are obedient and altruistic to help, s th
of two vector dual variables in Sec. IV, and justifies oufio not possess their own data to transmit. In CCRN, PUs

C. Convergence of FLEC algorithms

motivation to design efficient heuristics. and SUs are selfish, and fairness between them needs to be
L . . addressed appropriately for cooperation to take place.pply a
D. Near-optimality ofCentralized Heuristic the concepts of Nash Bargaining Solutions [6] to ensure both

We now evaluate the performance loss of the sub-optimadrities benefit from cooperation, and are not taken adganta
Centralized Heuristiccompared with that ofCentralized Op- of unfairly. NBS has been applied to allocate resources in
timization As seen from Fig. 5, with respect to the averageooperative OFDMA networks [7], [8]. These works do not
throughput of both PU and SWZentralized Heuristidosses consider the inefficiency of conventional cooperation rodth
about5% in all cases. Due to the slow convergenceCehtral- in the context of multi-channel CCRN, and only heuristics
ized Optimizationwe may conclude thaCentralized Heuristic without any performance bounds are given.



VII. CONCLUDING REMARKS

S+ 3 by > K2 Substituting into (20), we have the

This work represents an early attempt to study multi-chinrf@llowing with high probability

cooperative cognitive radio networks. The central ques#d-
dressed in the paper is how to effectively exploit secondagyr
cooperation when conventional cooperation method becomes
inefficient in this scenario, which has not yet been explored
We propose FLEC, a flexible channel cooperation design to
allow SUs to customize the use of leased resources in ordm
to maximize performance. We develop a unifying optimizatio
framework based on Nash Bargaining Solutions to address the
resource allocation problem with FLEC, where relay assign[—z]
ment, subcarrier assignment, relay strategy optimizatiod
power control intricately interplay with one another. Artiopal  [3]
distributed algorithm as well as an efficient centralizedrize [4]
tic with near-optimal performance are proposed. Simutatio
studies corroborate that FLEC is efficient and improves the
performance of both primary and secondary networks.

APPENDIX [6]

Proof of Theorem 4:The proof is based on the Chernoff [7]
Bound. Forv; € [0,1] independent random variables, Igt=

> vis = E[Y", v], then
PIS < (1—8)u <e 2"
~C2,,,C2 @2

1 5:C1,,,C 2
Let (I)Z ch lewl7g(l)7‘bz - Zcz Yi wj(i),P’ J )
>, UPwi?. All @} ©F, @% are sums of R.V'sc [0,1]. With

8l

(9]

E[®?] = a;, E[®?] = b;, we have the following [10]
52&1 ~ 52{7]
P®? > (1-0)a;] > 1—e 2, P[®? > (1-0)b;] > 1—e~ = . [11]

Note that the aggregate marginal utility (flow) in the first
time slot is obtained from the flow in the rounded solutio&z]
in the second slot. Assume, g?w;gi),lg > (1—4)a;. Since
E[®}|®?] = d; = ®?/(1 — §) > a;, it can be shown that 3]

aq

1 Y RE S _ _2
P[®; > (1-6)a;|P;] >1—e 2

14
Now to ensure a net flow of at leagt — §)a; at every PU and [14]

(1 —8)b; at every SU with high probability, we need:
52a. 2 1 2
P[(I)zl,‘bzz > (1—5)&1] > (1—6_ 21> _ <1_ ]:{R) 7
P#? > (1-6)b,] > <1 e

Vo)

(15]

(16]

(17]

[18]
This results ing = /22D = %KR) Then the
approximation bound3 is given by ’ [19]
B=1-,/2In (KR)Z - 2 \ﬁ (20) [0
> ai+2j bj
e _ X [21]
ZVats vV is maximum whena, = b; = a =

Zi di‘tEj l;j
ca;+> . b . . . N
%SZ”. By the normalized weight assumption, a; +
max; {w ) Wit p}

o {wl 2
ming j {w;’ Wik, p

Z]@j < KE If ¢ > 1, then

4CNS

B>1- KR

In (KR).
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