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Abstract—We study the infinite horizon dynamic pricing prob-
lem for an infrastructure cloud provider in the emerging cloud
computing paradigm. The cloud provider, such as Amazon,
provides computing capacity in the form of virtual instances
and charges customers a time-varying price for the period they
use the instances. The provider’s problem is then to find an
optimal pricing policy, in face of stochastic demand arrivals and
departures, so that the average expected revenue is maximized
in the long run. We adopt a revenue management framework to
tackle the problem. Optimality conditions and structural results
are obtained for our stochastic formulation, which yield insights on
the optimal pricing strategy. Numerical results verify our analysis
and reveal additional properties of optimal pricing policies for the
infinite horizon case.

I. INTRODUCTION

Cloud computing has recently attracted much attention from
both industry and academia. Beyond technological advances,
cloud computing also holds promises to change the economic
landscape of computing. Pricing of the cloud resources is both
a fundamental component of the cloud economy and a crucial
system parameter for the cloud operator, because it directly
impacts customer usage pattern and the utilization level of the
infrastructure.

Static pricing remains the dominant form of pricing today.
However, it is intuitive to adopt a dynamic pricing policy
in order to strategically influence demand in order to better
utilize unused cloud capacity, and to generate more revenue.
Dynamic pricing emerges as an attractive strategy to better cope
with unpredictable customer demand. A recent such example
is Amazon, whose elastic computing cloud platform (EC2) [1]
introduced a “spot pricing” feature for its instances, with the
spot price dynamically updated to match supply and demand
[2] as in Fig. 1.

Given the flexibility to change the price on the spot, a natural
question is, what is the optimal dynamic pricing policy that a
cloud provider — such as Amazon EC2 — can adopt, in terms
of maximizing its expected revenue amid fluctuating demand?
On one hand, a cloud provider has incentive to price to the
present, i.e. to set price as high as possible to extract more profit
from current customers. On the other hand, doing so increases
the risk of negatively affecting future demand especially from
low valuation customers. An important observation in cloud
computing is that computing resources, such as CPU cycles and
bandwidth, are inherently perishable: if at some point in time
they are not utilized they are of no value. That is, we should

also consider pricing to the future. It is non-trivial to balance
the intrinsic tradeoff with perishable capacity and stochastic
demand.
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Fig. 1. The history of spot prices on Amazon EC2’s large linux instances
(API name m1.large) in US-West-1 availability zone, from Jan 20 2011 to Jan
23 2011. Data are obtained via the Amazon EC2 API.

In trying to address this fundamental challenge, we adopt
a revenue management framework from economics that deals
with the problem of selling perishable resources, such as airline
seats and hotel reservations, in order to maximize the expected
revenue from a population of price sensitive customers [3].
Dynamic pricing has become an active field of the revenue
management literature, with successful real-world applications
in travel and fashion industries [4], [5].

In our previous work [6], we addressed the problem in a finite
horizon setting. In this work we extend the analysis to consider
the infinite horizon setting, where the optimal price is only a
function of the system utilization and not a function of time.
The objective is to maximize the average expected revenue rate
in the limit as time goes to infinity.

Our contributions in this paper are two-fold. First, we present
an infinite horizon stochastic dynamic program for the revenue
maximization problem in the cloud, with stochastic demand
arrivals and departures. We characterize optimality conditions
for the problem and prove important structural results, such as
the monotonicity of optimal price and relative rewards. Second,
we conduct numerical studies to verify our analysis. The
results also reveal several interesting observations regarding
the interplay between the degree of demand dynamics and the
optimal pricing policy. Dynamic pricing is more important and
rewarding when the expected dynamics is significant compared
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with the system capacity.
The remainder of the paper is structured as follows. In

Sec. II we summarize related work. In Sec. III we present
our formulation, and in Sec. IV we present analysis of the
stochastic revenue maximization problem in the infinite horizon
setting. Sec. V presents numerical results with different demand
dynamics. Finally, Sec. VI concludes the paper.

II. RELATED WORK

Research on pricing in data communication networks started
arguably from the work of Kelly [7], while there is certainly
much prior work on pricing in telecommunication networks [8].
The book by Courcoubetis and Weber [9] provides a useful
overview of the field. [10] studies congestion-based pricing
in cellular networks, and shows that static pricing achieves
good performance in general. This result is extended in [11]
and [12]. The focus of these works is on the use of pricing
to prevent congestion in large network asymptotics, and the
problem formulation assumes a single charge at the time a call
is admitted, while our formulation differs by charging on the
usage time basis.

Our study is also related to another line of research on
Internet bandwidth pricing for ISPs. The main theme here is
to understand the tradeoff among resource allocation, perfor-
mance, and social welfare implied by using flat-rate or usage-
based pricing schemes, or a combination of the two called Paris
Metro Pricing [13]–[15]. In essence, a static price is used no
matter if it is charged on a flat-rate or a usage basis, whereas
we consider dynamic prices that vary over time.

There have been some recent studies on pricing of cloud
resources. [16] argues for the importance of pricing in the
cloud computing context for distributed systems design. [17]
proposes a computationally efficient pricing scheme based on
mechanism design, and [18] adopts a genetic algorithm to
iteratively optimize the pricing policy. The most related work to
ours is [19] where a pricing strategy is developed by solving an
optimization problem for a cloud cache. These approaches are
primarily of a one-shot nature without considering the effect of
pricing on future demand and revenue.

III. PROBLEM FORMULATION

A. Model and Assumptions

We start by introducing our model and assumptions. We
focus on an infrastructure cloud provider that sells its com-
puting resources packaged in the form of virtual machines, or
instances, with a price that is dynamically changing over time.
We assume that the spot price p can take any value from the
interval [0, pmax]. Without loss of generality, we let pmax = 1
throughout the paper.

We assume that the cloud operator can influence demand by
varying its price p. Demand is determined by two independent
Poisson processes, namely the arrival process that corresponds
to the birth of new instances, and the departure process that
models the death of existing ones (when customers shut down
the instances). Here we assume that a demand arrival function

λ(p) determines the Poisson arrival rate (number of new in-
stances requested per time unit). Intuitively, as price p increases,
arrival rate strictly decreases, and thus λ′(p) < 0. The demand
departure process is also a Poisson process, whose rate is
modulated by the departure function µ(p). Clearly, µ′(p) > 0
which means that customers are more likely to leave when spot
price is higher.

Price is a function of system state, and it is charged on a
usage time basis. This means that, the provider collects pn from
each of the active instances every unit of time, if there are n
active instances running in the system. 0 ≤ n ≤ C and C
denotes the system capacity. A pricing policy is a rule that
determines which price should be advertised at any given time
as a function of the current state n. Since we are looking for a
stationary pricing policy, it is not a function of time as in our
previous work [6].

B. Formulation

The revenue maximization problem can be formulated as
follows. The goal of the cloud provider is to maximize the
average revenue per unit of time in the infinite horizon. This
quantity is denoted by J . We are interested in finding a pricing
policy ppp = {p1, p2, . . . , pC} that achieves this goal, from the
set P = {ppp|0 ≤ pn ≤ 1,∀n} of all possible pricing policies.

Under the above assumption, the system behavior follows the
dynamics of a continuous-time birth-death Markov process, and
explicit expression for the average profit J can be provided
as follows. First, we denote the steady-state probability of
state n given a pricing policy ppp as πn(ppp). The arrival and
departure rates in any state given ppp can be readily obtained,
and the calculation of the steady-state probabilities πn(ppp) is
straightforward. Due to the Poisson Arrivals See Time Averages
property, the average revenue rate is

J(ppp) =

C∑
n=0

πn(ppp) · npn, (1)

since price is charged on a usage time basis in cloud computing.
The provider’s problem is to find a pricing policy p∗p∗p∗ that

maximizes the average revenue rate denoted by J∗. Equiva-
lently,

J∗
.
= sup

ppp∈P
J(ppp). (2)

This is a finite-state, continuous-time, average reward dynamic
programming problem. Note that the set P is compact and all
states communicate, so there always exists a policy with which
we can eventually reach an arbitrary state n′ from any state
n. The demand arrival and departure functions λ(p) and µ(p)
are all continuous, and thus the transition rates and average
reward rate J are continuous in the decision variables pn.
Moreover, the reward rate and the expected holding time at
each state n, and the total transition rate out of any state are all
bounded functions of ppp. Under these assumptions, the standard
DP theory applies [20], and there exists a stationary policy
which is optimal.
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IV. OPTIMAL DYNAMIC POLICIES

A. Optimality Conditions

(2) is a complex stochastic dynamic programming problem.
To solve it, we can consider the so-called Bellman’s equations
since all the states in the Markov chain are recurrent. Bellman’s
equations are formulated for discrete-time Markov chains.
Thus, we need to discretize our Markov chain by a procedure
called uniformization, where the transition rates out of each
state are normalized by the maximum possible transition rate
v, which in our case is given by

v = max
p

λ(p) + µ(p). (3)

The uniformized Markov chain for our problem is illustrated
in Fig. 2.
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Fig. 2. The uniformized Markov chain for our problem.

With the above setup, we can obtain the Bellman’s equations
of the following form:

J∗+h(n) = max
pn∈P

[
npn +

λ(pn)

v
h(n+1)+

µ(pn)

v
h(n− 1)

+

(
1− λ(pn)

v
− µ(pn)

v

)
h(n)

]
. (4)

for n = 1, 2, . . . , C − 1. The first term in the right-hand side
is the revenue rate at state n. The second, third, and fourth
terms are contributions to the revenue if the next transition is an
arrival, a departure, or a recurrence, respectively. The unknowns
in the above equations are h(n) and J∗. J∗ represents the
optimal expected revenue per unit time as discussed, and h(n)
denotes the relative reward in state n. In particular, consider
an optimal pricing policy that attains the maximum in (4) for
every state n. If we follow this policy starting from state n′

or state n, the expectation of the difference in average rewards
over the infinite horizon is equal to (h(n′)− h(n))/v.

Note that (4) holds only for n ∈ [1, C−1]. To deal with cases
when n = 0 and C, i.e. when there is no demand departure
and arrival, respectively, we can simply let h(−1) = 0, and
h(C + 1) = h(C).

The solution to the Bellman’s equations can be computed
using classical DP algorithms such as the policy iterations or
relative value iteration [20]. The resulted prices that maximize
the right-hand side of (4) at each state n constitutes the optimal
pricing policy π∗.

B. Structural Results

Although we have found the Bellman’s equations and can
numerically solve them, obtaining a closed form solution is
quite difficult for arbitrary demand arrival and departure func-
tions. However, we are able to characterize several important
structural properties of the optimal solution to the dynamic
program (4).

Our first result is the monotonicity of the relative rewards. It
corresponds to the fact that it is more desirable to have more
active instances and thus a higher utilization of the capacity, as
they lead to higher revenue rate in the long run even though
they imply fewer revenue opportunities in the future.

Theorem 1: Monotonicity of h(n). h(n) ≥ h(n − 1) for
all n = 1, 2, . . . , C.

Proof: The proof can be carried out in similar methods as
used in the proof of Theorem 1 in [10]. Due to limited space
the details are omitted.

We can further show that the relative rewards exhibit dimin-
ishing marginal returns with respect to utilization.

Theorem 2: Concavity of h(n). h(n) is concave in n for
all n = 0, 1, . . . , C.

Proof: It suffices to show that

h(n)− h(n− 1) ≥ h(n+ 1) + h(n),∀n ∈ [1, C − 1]. (5)

We prove by constructing a feasible pricing policy that satisfies
the above inequality at equality.

Suppose p∗p∗p∗ is the optimal pricing policy that achieve the
maximum in the right-hand side of (4) for each state. Consider
two copies of the system, which we refer to as System A and
B, respectively. System A starts from state n − 1 and follows
the optimal policy. System B starts from state n + 1 and also
follows the optimal policy. Now consider a third copy of the
system, System C. It starts with state n, and at any point in
time, it sets the price as half of the sum of System A’s and
B’s prices. Let h′(n) denote the relative reward obtained from
this pricing policy. Now by construction of the policy and the
definition of h(n), we have

h′(n) =
1

2
(h(n− 1) + h(n+ 1)).

Since h(n) corresponds to the optimal relative reward, h(n) ≥
h′(n), and thus the proof.

We can now prove our main result, which is the monotonicity
of the optimal price at each state.

Theorem 3: Price Monotonicity. p∗n ≥ p∗n−1 for n =
1, 2, . . . , C.

Proof: For convenience, let us denote gn = h(n + 1) −
h(n). From Theorem 2 we know that gn ≤ gn−1. Rearranging
the terms in (4) we have

J∗ = np∗n + gn
λ(p∗n)
v
− gn−1

µ(p∗n)
v

. (6)

By definition of the optimal price p∗n for state n, any other price
cannot make the right-hand side of (6) larger, i.e.

J∗ ≥ np∗n−1 + gn
λ(p∗n−1)

v
− gn−1

µ(p∗n−1)

v
,
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which gives us

p∗n − p∗n−1 ≥
1

nv

[
gn
(
λ(p∗n−1)− λ(p∗n)

)
+ gn−1

(
µ(p∗n)− µ(p∗n−1)

)]
Similarly we can write

J∗ = (n− 1)p∗n−1 + gn−1
λ(p∗n−1)

v
− gn−2

µ(p∗n−1)

v

≥ (n− 1)p∗n + gn−1
λ(p∗n)
v
− gn−2

µ(p∗n)
v

⇒ p∗n − p∗n−1 ≤
1

(n− 1)v

[
gn−1

(
λ(p∗n−1)− λ(p∗n)

)
+ gn−2

(
µ(p∗n)− µ(p∗n−1)

)]
Thus for the two inequalities to hold, we must have

1

nv

[
gn
(
λ(p∗n−1)− λ(p∗n)

)
+ gn−1

(
µ(p∗n)− µ(p∗n−1)

)]
≤

1

(n− 1)v

[
gn−1

(
λ(p∗n−1)− λ(p∗n)

)
+ gn−2

(
µ(p∗n)− µ(p∗n−1)

)]
,

which holds only when p∗n ≥ p∗n−1 since λ′(p) < 0, µ′(p) > 0,
and 0 ≤ gn ≤ gn−1 ≤ gn−2.

Theorem 3 has natural economic interpretations. When the
system is heavily loaded, it is in the interest of the provider to
set a higher price to obtain a higher revenue from customers,
as well as to discourage future demand in order to prevent the
system from overloading. When the system is lightly utilized,
the provider can afford to adopt a lower price to attract more
customers. This key insight is also consistent with results in
our previous work [6] and related work [10].

V. NUMERICAL STUDIES

In this section, we conduct numerical studies to evaluate the
properties of the optimal pricing policy. The system capacity
C is set to 10000. This corresponds to a moderate-scale data
center, such as a single availability zone in Amazon EC2,
with several tens of thousands of virtual instances according
to anecdotal evidences [21]. We adopt the demand arrival
and departure functions of the form λ(p) = a(1 − p2) and
µ(p) = bp2, respectively. In this case, the optimal price for each
state n has a closed form solution p∗(n) = vn/2(gna+gn−1b),
where gn = hn+1 − hn as seen in Sec. IV-B.

A. Weak dynamics scenario

We first consider a relatively weak dynamics scenario, where
the maximum expected demand arrivals and departures a and
b are orders of magnitude less than the system capacity C. We
set one hour to be the unit of time, and assume that the cloud is
expected to launch and close several hundreds of instances per
hour in the weak dynamics scenario. Thus we set a and b to 100,
which is much smaller than the system capacity C = 10000.
v = 100 in this case. The results are shown in Fig. 3. The
optimal price increases with n (number of active instances)
as seen from Fig. 3(a). The relative reward hn clearly grows
with n as seen from Fig. 3(b). These observations validate our
analysis in Sec. IV-B.

Note that the optimal price does not change much when n
increases from 2500 to 10000, and is close to 1 for the interval.
This is due to the effect of small demand dynamics compared to
even a lightly loaded system (when n = 0.25C). The expected
long-term revenue can be maximized without considering much
about the future demand, i.e. setting price close to 1 to obtain a
higher revenue rate at present. To facilitate the understanding,
Fig. 3(c) shows a sample path of the optimal price, with the
corresponding system state n(t) starting from n = 5000 and
last for 0.25 unit time, i.e. 15 minutes. We can see that in this
time period, p∗(n(t)) decreases only marginally from 0.982 to
around 0.98, when n(t) slowly decreases from 5000 to about
4930.

Another observation is that the relative reward is almost
linear in n as seen in Fig. 3(a). This also can be explained
by the small dynamics the system faces. Over time, the system
state n is not expected to change much as seen in Fig. 3(c)
and price p∗(n) does not vary much with n, implying that the
long-term revenue rate is proportional to n. When the system
utilization is quite low (below x = 1000 = 0.1C), revenue
generated from future demand becomes more important, and
p∗(n) is much lower and varies with n as in Fig. 3(a).

B. Strong dynamics scenario

Now we examine the optimal pricing policy when the prob-
lem embraces a significant degree of demand dynamics. We let
a and b equal to 10000, which means the maximum number of
new instances (and vanished instances) the cloud can expect is
equal to its capacity. v = 10000 in this case. Other parameters
remain the same as in the previous experiment. The results are
shown in Fig. 4.

The optimal price and relative rewards again exhibit mono-
tonicity as expected from our analysis. Compared to the small
dynamics case, the first observation is that optimal price varies
significantly with state n for the entire range of n, and increases
much slower than it does in the small dynamics case in
Fig. 3(a). As seen from Fig. 4(a), p∗(9000) is much higher
than p∗(5000) which is in turn much higher than p∗(1000).
The reason is that when the dynamics is strong, revenue from
future demand is crucial in maximizing the long-term revenue
rate. The operator cannot set a price close to 1 in the hope
of maximizing the present revenue rate, because doing so has
detrimental effect on future revenue. The optimal policy thus is
to slowly and steadily increase the price as n grows. This also
explains the stronger concavity of h(n) as seen in Fig. 4(b),
because the marginal benefit of increasing the utilization is
diminishing, causing the revenue curve to be bent downwards.

Therefore, dynamic pricing becomes more critical in a strong
dynamics setting. We can expect the optimal price fluctuating
with the utilization, since the number of instances in the system
is expected to fluctuate quickly over time. This is demonstrated
in the sample path of the system state and price in Fig. 4(a).
Compared with Fig. 3(a), the price grows from 0.3 to around
0.5 as n also grows. It is thus reasonable to conclude that
dynamic pricing plays an important role in the strong dynamics
setting.
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Fig. 3. Numerical results with C = 10000, λ(p) = 100(1− p2), µ(p) = 100p2.
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Fig. 4. Numerical results with C = 10000, λ(p) = 10000(1− p2), µ(p) = 10000p2, and N = 105 time intervals.

VI. CONCLUDING REMARKS

In this paper, we presented an infinite horizon revenue
maximization framework to tackle the dynamic pricing problem
in an infrastructure cloud. The technical challenge compared
to previous pricing work is that prices are charged on a usage
time basis, and as a result the demand departure process has
to be explicitly modelled. An average reward dynamic pro-
gram is formulated for the infinite horizon case. Its optimality
conditions and structural results on optimal pricing policies
were presented. We showed that the relative rewards as well
as the optimal price exhibit monotonicity, which is resonant
with previous results [6], [10]. We also conducted numerical
studies to verify the analysis, and illustrated the importance
of dynamic pricing especially in the strong demand dynamics
scenarios.
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