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Abstract—Many cloud services nowadays are running on top
of geographically distributed infrastructures for better reliability
and performance. They need an effective way to direct the user
requests to a suitable datacenter, depending on factors including
performance, cost, etc. Previous work focused on efficiency
and invariably considered the simple objective of maximizing
aggregated utility. These approaches favor users closer to the
infrastructure. In this paper, we argue that fairness should be
considered to ensure users at disadvantageous locations also enjoy
reasonable performance, and performance is balanced across the
entire system. We adopt a general fairness criterion based on
Nash bargaining solutions, and present a general optimization
framework that models the realistic environment and practical
constraints that a cloud faces. We develop an efficient distributed
algorithm based on dual decomposition and the subgradient
method, and evaluate its effectiveness and practicality using real-
world traffic traces and electricity prices.

I. INTRODUCTION

Internet-scale online services are becoming increasingly
essential to our everyday life, with important applications
including web search, video streaming, and online gaming.
The burgeoning of cloud computing platforms, such as Ama-
zon AWS, further enables small enterprises to rapidly deploy
cloud services at scale. Almost all of these cloud services
are built atop geographically distributed infrastructures, i.e.
datacenters located in different regions as shown in Fig. 1, to
provide reliability and performance. They need an effective
way to direct clients across the wide area to an appropriate
datacenter. Usually, cloud services handle datacenter selection
by deploying mapping nodes, which are typically DNS servers,
to customize the IP address(es) returned to different clients.
Alternatively, they can also outsource datacenter selection to
third-parties [1], [2] or the cloud provider [3].

Mapping 
Requests

Mapping 
nodes 
(DNS)

Datacenters

Clients

Fig. 1. An example of a cloud service running atop a geographically
distributed cloud infrastructure.

An efficient datacenter selection algorithm is imperative to
the operation of cloud services. Many previous works exist
in this area. The problem can be cast as an optimization
that maximizes the total utility or minimize the total cost,
both of which can be defined in different ways depending on
how the cloud services define performance. The formulated
problems and their solutions are focused on the efficiency
issue. These approaches thus tend to favor clients closer
to the infrastructure, because prioritizing them in assigning
datacenter capacity improves system utility. This results in
poor performance for disadvantaged users far away from the
infrastructure, and can potentially lead to substantial revenue
losses. For instance, Amazon reports that every 100 ms delay
in page load time decreases sales by 1 percent [4].

Many fairness criteria have been considered in the tra-
ditional context of traffic engineering in wired networks,
and resource allocation in cellular networks. Max-min and
proportional fairness models are arguably the most widely
used in the literature [5]–[7]. However, in the context of
cloud computing, cloud services usually have distinct Service
Level Agreements (SLAs) that need to be satisfied. This
requirement cannot be accommodated by neither the max-min
nor the proportional fairness model. Moreover, the max-min
approach deals with the worse-case scenario and penalizes
clients with better conditions, thus unnecessarily reducing the
system efficiency.

In this paper, our main contribution is a general optimization
framework for datacenter selection based on the fairness
criterion stemming from the concept of Nash bargaining games
in game theory [8]. Essentially, we can view the problem as
a cooperative bargaining game amongst the mapping nodes.
Each node, serving requests aggregated from a specific area,
has a minimum utility requirement for clients it serves based
on the SLA, and they compete (“bargain”) cooperatively for
the cloud resources. The solution of this game, called the
Nash bargaining solutions (NBS), is a unique Nash equilibrium
point with NBS fairness among mapping nodes, which is a
generalized proportional fairness notion. It strives to satisfy the
minimum utility requirements first, and allocates the remain-
ing datacenter capacity proportionally among mapping nodes
according to their conditions. Therefore it is able to achieve
high system efficiency with good fairness.

Our framework is general in the sense that it models
practical environments that cloud operators face. The utility



2

abstraction encompasses many possible performance consid-
erations, including throughput and latency, as well as policy
preferences, such as datacenter load, user locality, etc. It is
a function of user-datacenter tuples in order to model the
location diversity of performance. We also consider the cost of
serving requests and model the price diversity of datacenters,
since recent works have recognized the benefit of location-
dependent electricity price in terms of minimizing the energy
bill of datacenters [9].

By using dual decomposition, our optimization formulation
can be decentralized to the mapping node level. Specifically,
the problem can be decomposed into many subproblems,
each solvable by an individual mapping node itself. This
enables us to develop efficient distributed implementations of
our datacenter selection algorithm to find the optimal node-
datacenter assignment, based on the subgradient method. We
also point out that our algorithms remain relevant in and
are applicable to other request direction scenarios, such as
a commercial CDN.

We evaluate the effectiveness and practicality of our de-
centralized implementation using the real-world traffic traces
collected from UUSee [10], a commercial Video-on-Demand
provider in China, as well as real-world electricity prices col-
lected from the U.S. Federal Energy Regulatory Commission
[11]. Results show that our algorithm achieves better fairness
with satisfactory performance in terms of total utility and
cost, and is amenable to practical implementations, since it
converges within 20 iterations.

The rest of the paper is structured as follows. In Sec. II
we introduce the concept of NBS and present our formulation
of the datacenter selection problem. In Sec. III we develop
distributed algorithms to solve the optimization problem based
on dual decomposition. Numerical results are provided in
Sec. IV. In Sec. V we summarize related work. Finally, we
conclude the paper in Sec. VI.

II. AN OPTIMIZATION FRAMEWORK BASED ON NBS

In this section, we present our optimization framework
based on NBS.

A. System Model

We start by introducing the system model. We consider a
cloud infrastructure with M geographically distributed dat-
acenters. The cloud deploys N mapping nodes (e.g. DNS
servers) at different locations to direct client requests to the
appropriate datacenters as determined by the datacenter selec-
tion algorithm. Since the request traffic fluctuates dynamically,
the datacenter selection algorithm has to be run periodically
to optimize performance.

We assume that the cloud operator employs learning tech-
niques [12], [13] to predict the traffic demand of each node
Di in each epoch with satisfactory accuracy. We also assume
that the electricity price at each datacenter Wd is available
at the beginning of an epoch, and remains static throughout
the entire epoch. This is a practical assumption in today’s
electricity market. If the local electricity market of datacenter

d is a regulated utility region, the electricity price is fixed.
If on the other hand the datacenter is in a deregulated market
region, such as California and Texas, there is a forward market
with settlements of various kinds, such as day-ahead and hour-
ahead, for customers to lock in the price [11]. W = [Wd] is
called the cost matrix.

We use an abstract utility notion Uid to capture the perfor-
mance of the cloud service, when a request from node i is
directed to datacenter d. This notion allows us a considerable
amount of expressiveness. For example, if the cloud service is
an interactive application and seeks minimal latency, Uid can
be a decreasing function of the round trip time (RTT), directly
measured or estimated by various means. If the cloud service
is a bulk transfer application and seeks good throughput, Uid
can be a decreasing function of the network congestion level
or the link utilization. This utility function can be any shape—
e.g. a convex function of the latency or throughput. For more
discussion of the generality of the utility notion one can refer
to [2]. Finally, U = [Uid] is called the performance matrix in
the following.

B. Basics of Nash bargaining solutions

We present the salient concepts and results from Nash
bargaining solutions here, which are used in the sequel. For
details we refer readers to [8].

The basic setting is as follows: Let N be the set of mapping
nodes. Let S be a closed and convex subset ofRN to represent
the set of feasible utility allocations. Let Umin

i be the minimal
utility that the i-th node require. In our datacenter selection
problem, this is obtained from clients’ SLAs. Suppose {Ui ∈
S|Ui ≥ Umin

i ,∀i ∈ N} is a nonempty bounded set. Define
Umin = (Umin

1 , . . . , Umin
N ), then the pair (S,Umin) is called

a N -node bargaining problem.
Within the feasible set S, we first define the notion of Pareto

optimality as a selection criterion in a typical game.
Definition 1: The point (U1, . . . , UN ) is said to be Pareto

optimal if and only if there is no other allocation U ′i such that
U ′i ≥ Ui,∀i ∈ N , and U ′i > Ui,∃i ∈ N .
That is, there exists no other allocation that leads to superior
performance for some node without inferior performance for
some other node.

Our next selection criterion is the fairness of resource
sharing. In this paper, we use the NBS fairness axioms from
game theory.

Definition 2: r̄ is a NBS, i.e. r̄ = φ(S,Rmin), if the
following axioms are satisfied: Feasibility, Pareto Optimality,
Independence of Irrelevant Alternatives, Independence of Lin-
ear Transformations, and Symmetry [8].

Theorem 1: There is a unique solution function
φ(S,Umin) that satisfies all axioms in Definition 2 such that
[8]

φ(S,Umin) ∈ argmax
U∈S,U�Umin

∏
i∈N

(
Ui − Umin

i

)
. (1)

NBS fairness naturally fits to the datacenter selection prob-
lem. Umin

i correspond to the specific SLA of the mapping
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node to guarantee performance of clients. After the minimal
requirements are met for all nodes, the rest of the resources are
allocated proportionally to nodes according to their conditions,
so that every node obtains a fair share. When Umin

i = 0 for
all i, NBS fairness reduces to proportional fairness [7].

C. An Optimization Framework based on NBS

Now we formally introduce our optimization framework.
For our datacenter selection problem, we wish to consider
long-term NBS fairness which depends on the average utility.
Long-term fairness not only faithfully reflects clients’ perfor-
mance, but also gives more flexibility to exploit location diver-
sity of the cloud infrastructure. As discussed, the datacenter
selection problem can be viewed as a bargaining game. Each
mapping node has the average utility Ūi as its objective. The
goal is to maximize all Ūi cooperatively. Each node also has
Umin
i that represents the minimal utility requirement based on

the SLAs with the cloud. In the general case, different nodes
can have different SLAs depending on their locations and thus
different Umin

i . Note that the SLAs have to be satisfied in each
epoch, instead of statistically over time. The problem at epoch
t, then, is to find the NBS, i.e. to solve for the optimization
problem

max
U(t)�Umin

N∏
i

(
Ūi(t)− Umin

i

)
. (2)

Mathematically it is equivalent to the following objective:
N∑
i

ln
(
Ūi(t)− Umin

i

)
. (3)

Note that Ūi(t) is a function of the instantaneous utility Ui(t),
typically obtained by using an exponentially weighted low-
pass time window:

Ūi(t) = (1− ρw)Ūi(t− 1) + ρwUi(t).

ρw = (Ts/Tw) where Ts is the slot length and Tw is the length
of the time window to calculate the average.

This is difficult to solve because the logarithm function is
not linear. It has been shown in the seminal work [14] that
maximizing the total marginal gain of

∑
i V
′
i (X̄i(t−1))Xi(t)

at each t achieves long-term maximization of
∑
i Vi(X̄i(t))

asymptotically. Thus, we can greatly reduce the computational
complexity by transforming (3) to the following linear objec-
tive:

N∑
i

Ui(t)− Umin
i

Ūi(t− 1)− Umin
i

. (4)

Note that without considering long-term performance, the
optimization must guarantee fairness in each epoch. How-
ever, when a time window is used, the fairness requirement
is relaxed to the time window length. This provides more
flexibility to improve the system efficiency, by making the
current datacenter selection related to previous ones. The term
Ūi(t−1)−Umin

i in the denominator of (4) serves as a weight
factor to adjust the priority of node i. If the node has an
unfairly large utility gain from previous epochs, its priority

is lower in obtaining a good datacenter in the current epoch.
Therefore the long-term fairness model encourages nodes to
share the cloud resources cooperatively, and in turn gain more
when it needs more help. In general it helps to achieve better
system performance while enforcing the fairness notion over
long run.

Without loss of generality, we use Ū−i to denote Ūi(t− 1),
and drop the time index t in all notations and the constant
term Umin

i in the numerator of the objective function (4). The
optimization problem at each epoch then can be formulated as

DC-FAIR: max
U

N∑
i

Ui

Ū−i − Umin
i

(5)

s.t. Ui =

M∑
d

pidUid,∀i, (6)

M∑
d

pidUid ≥ Umin
i ,∀i, (7)

M∑
d

pid = 1,∀i, pid ≥ 0,∀i, d, (8)

N∑
i

pid ≥ Pd,∀d, (9)

N∑
i

pidDi ≤ Cd,∀d, (10)

M∑
d

N∑
i

WdpidDi ≤ B. (11)

The decision variables are pid, i.e. the proportion of requests
directed to datacenter d from node i. The equality (6) calcu-
lates the total utility Ui given by the datacenter selection pid
and the performance matrix Uid. Constraint (7) is the basic
SLA requirement for each node i. Constraint (8) corresponds
to the simple facts that all the requests at node i should
be served and that the decision variable pid is non-negative.
Constraint (9) models the possible load balancing requirement
of the cloud service such that datacenter d should at least
handle Pd ∈ [0, 1] out of the total requests. (10) is the capacity
constraint at d, and (11) captures the cost constraint that the
total cost of serving all the requests should not exceed the
budget B.

Some may argue that some QoS parameters defined in a
SLA, such as fee, responsibility, and security level, cannot
be captured by utility. We comment that though this is the
case, its effect on our framework is minimal. Typical cloud
services do not have QoS guarantees on security and privacy,
which cannot be feasibly realized currently and still remains
an active research topic. Even when these QoS parameters do
need to be considered, they can be easily incorporated as addi-
tional constraints on the request direction matrix, because the
requests of a mapping node can only be directed to datacenters
that satisfy the responsibility and security requirements.
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III. A DECENTRALIZED IMPLEMENTATION

The optimization problem DC-FAIR is essentially a LP, and
can be solved in polynomial time. However, this requires a
central coordinator which introduces a single point of failure
and is vulnerable to attacks. Further, the complexity of solving
the LP also increases significantly when the problem size
scales up, since the number of variables is NM and the
number of constraints is 2N+3M . A centralized solution also
makes it less adaptive to sudden changes in traffic demand in a
flash crowd scenario. Thus, for reasons of reliability, security,
scalability, and performance, we are motivated to develop
distributed solutions in which the mapping nodes iteratively
solve the DC-FAIR problem.

A. Dual Decomposition

Substituting (6) into the objective function (5), and relax
the constraints (9)–(11), we can obtain the Lagrangian of DC-
FAIR:

L(p,λ,µ, ν) =
∑
i

∑
d

pidUid

Ū−i − Umin
i

+
∑
d

λd

(∑
i

pid − Pd

)

+
∑
d

µd

(
Cd −

∑
i

pidDi

)
+ ν

(
B −

∑
d

∑
i

WdpidDi

)
,

where λ,µ,ν � 0 are the Lagrange multipliers associated
with the load balancing, capacity, and cost constraints, respec-
tively. The dual function is then

g(λ, µ, ν) =

{
max
p

L(p,λ,µ, ν)

s.t. p � 0, U i � Umin
i

(12)

To solve g(λ, µ, ν), it is equivalent to solving the problem
with the following objective∑

i

∑
d

pid

(
Uid

Ū−i − Umin
i

+ λd − µdDi − νWdDi

)
where the constant terms in L(p, λ, µ, ν) can be safely re-
moved. The key observation here is that it can be decomposed
into N per-node maximization sub-problems

max
pid≥0

∑
d

pid

(
Uid

Ū−i − Umin
i

+ λd − µdDi − νWdDi

)
s.t.

∑
d

pid = 1,
∑
d

pidUid ≥ Umin
i ,

(13)
The per-node sub-problem naturally embodies an economic

interpretation. Each mapping node i strives to maximize the
total utility of serving the requests, discounted by the costs of
violating the load balancing, capacity, and budget constraints,
as priced by the Lagrange multipliers λ, µ, ν. The SLA
constraint prevents the node from directing all its requests to
the most “economical” datacenter, and forces it to distribute
the requests among datacenters with good performance. This
balances the cloud operator’s interest in minimizing its costs
and the client’s interest in maximizing its performance.

Note that the decomposition greatly reduces the complexity
of the optimization. The per-user sub-problem has only M

variables and 2 constraints. In a typical production cloud, the
number of datacenters M is much smaller than the number
of mapping nodes N , which can be hundreds. It is essentially
a small-scale linear program that can be solved efficiently by
standard optimization solvers.

B. A Distributed Algorithm

We have shown that the dual function of DC-FAIR can be
decomposed into N per-node maximization problem, which
is a simple linear program. Now we need to solve the dual
problem

min
λ,µ,ν

g(λ,µ, ν)

s.t. λ,µ � 0, ν ≥ 0. (14)

Subgradient method [15] can be used to solve the dual
problem. The updating rules for the dual variables are as
follows:

λ
(l+1)
d =

[
λ
(l)
d + δ

(l)
d

(
Pd −

∑
i

pid

)]+
,∀d, (15)

µ
(l+1)
d =

[
µ
(l)
d + ε

(l)
d

(∑
i

pidDi − Cd

)]+
,∀d, (16)

ν(l+1) =

[
ν(l) + σ(l)

(∑
d

∑
i

WdpidDi −B

)]+
, (17)

where [x]+ represents max{0, x}, and δ, ε, σ are the step
sizes. According to [15], the above procedure is guaranteed
to converge as long as the following condition is satisfied.

Proposition 1: The subgradient updates as in (15)–(17)
converge to the optimal dual variables if a diminishing step
size rule is followed for choosing δ, ε, σ [15].

Observe that, because of the dual decomposition, dual opti-
mization by subgradient method can be done in a distributed
fashion. First, in each iteration, the per-node problems (13)
can be solved simultaneously by the mapping nodes, with
λ,µ, ν given by datacenters. Second, subgradient updates can
also be distributively performed by each mapping node. The
algorithm can be perceived as an iterative bargaining process.
The dual variables λ,µ are transmitted from datacenters to all
nodes. They serve as price signals to coordinate the resource
consumption and load balancing. For example, when the
total traffic routed to datacenter d exceeds its capacity, i.e.∑
i pidDi > Cd, d increases its price µd for the next round

of bargaining to suppress the excessive demand. Similarly, if
d has not reached its minimum load Pd, i.e.

∑
i pid < Pd,

it increases the reward price λd to attract more traffic and
therefore balance the load1. The process continues until it
converges to the optimal resource allocation.

The update method of the other dual variable ν, i.e. the
budget price, is also worth mentioning. While λd and µd can
be independently updated by each datacenter with only local
information, ν needs to be updated with global information

1Note that λ is a positive term in (13).
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from all datacenters. This can be done in a distributed way as
follows. Initially, the previous ν(l) is made common knowl-
edge among the datacenters. First, a datacenter is randomly
chosen and given a token with the total budget B. It calculates
its own monetary cost of serving the requests

∑
iWdpidDi,

and deduct this amount from B. It puts a mark in the token,
and pass it on to the next datacenter, who also updates the
remaining budget, marks the token, and passes it further down.
A datacenter determines it is the last one in the loop by
examining that except itself, everyone else has marked the
token. It thus updates the remaining budget, calculates the
updated budget price ν(l+1), and broadcasts to every mapping
node and datacenter.

Algorithm 1 Optimal Distributed Datacenter Selection

1. Each datacenter initializes λ(0)d , µ
(0)
d . ν(0) is initialized to

0.
2. Each mapping node collects λ(l), µ(l), ν(l), and indepen-

dently solves the per-node problem (13) using standard
optimization solvers and obtain pid.

3. Each datacenter d collects its load pid from all nodes,
and perform a subgradient update for the load and ca-
pacity price λ

(l)
d , µ

(l)
d as in (15) and (16). The updated

λ
(l+1)
d , µ

(l+1)
d are broadcast to every mapping node.

4. A datacenter is randomly chosen and given a token with
the budget B.

5. The datacenter deducts its cost
∑
iWdpidDi from the

remaining budget in the token, marks it, and passes it
down.

6. Repeat step 5 until the last datacenter calculates the final
remaining budget, updates ν(l) as in (17), and broadcasts
to every datacenter and mapping node.

7. Return to step 2 until convergence.

The complete bargaining algorithm is shown in Algorithm 1.
Since it optimally solves the dual problem (14), it optimally
solves the primal problem DC-FAIR because the duality gap
for linear programs is zero.

Theorem 2: The distributed bargaining algorithm as shown
in Algorithm 1 always converges, and when it converges its
solution optimally solves the datacenter selection problem DC-
FAIR.

C. Discussions

We discuss some implementation issues related to our
distributed datacenter selection algorithm.

First, step (2) and (3) of Algorithm 1 need to be performed
in a synchronized fashion across the mapping nodes, which
may be of concern to some readers for practical implementa-
tion. We comment that this can actually be done efficiently.
Note that the synchronization requirement is loose in the sense
that we only require each node to have the complete dual
variables before solving (13) in step (2), and that step (3) to
be performed after step (2) is completed for each node. This
can be readily achieved without any need of explicit or implicit

time synchronization, by having each node to wait for all the
updated dual variables λ(l), µ(l)λ(l), µ(l)λ(l), µ(l), ν(l) at round l to be received
completely before attempting to solve the per-node optimiza-
tion, and by having each datacenter to wait for all the updated
solutions p(l)id to be received completely before updating its
own dual variables. Therefore the entire procedure is naturally
a self-synchronizing solution. The concept of round does not
need any synchronization or central coordination either, since
each node and datacenter knows for how many times it has
solved the per-node problem or updated the dual variables.

Second, we examine the message exchanging overhead of
Algorithm 1. Each datacenter needs to share its load and
capacity price to all nodes, which implies O(MN) mes-
sages in total, each of size 2. Each node needs to share
its selection decision of size M with all datacenters, which
implies O(MN) messages, each of size O(M). Thus in each
round, O(MN) messages are exchanged each of size O(M).
The overhead scales linearly with the number of nodes and
datacenters, which is practical.

IV. EVALUATION

We present our simulation studies in this section.

A. Setup

1) Demand matrix: To represent the request traffic for a
cloud service, we use the real-world traces collected from
UUSee Inc. [10], a major commercial Video-on-Demand
provider with servers distributed geographically in China. The
dataset contains, among other things, the bandwidth demand
for UUSee video programs sampled every 10 minutes, in
a 12-day period during the 2008 Beijing Olympics, from
14:51:58, Friday, August 8, 2008 (GMT+8) to 23:43:56,
Tuesday, August 19, 2008 (GMT+8). Although the scale of
the UUSee infrastructure is not as large as that of a cloud
provider, we believe the traces faithfully reflect the traffic
demand distribution for a cloud service, and it is appropriate
to use them for the purpose of benchmarking the performance
of our datacenter selection algorithm.

The prediction of traffic demand can be done accurately
as demonstrated by previous work [12], [13], and in the
simulation we simply adopt the measured traffic demand as
the predicted demand matrix D. We use the traffic demand
of distinct video channels to represent demand of distinct
mapping nodes. We simulate a cloud with 100 mapping nodes.
Fig. 2 shows a sample of traffic demand for 3 mapping nodes.
Since the data is collected every 10 minutes, the optimization
epoch is also set to 10 minutes.

2) Datacenter placement and cost matrix: To capture the
location diversity of the cloud infrastructure and electricity
market, we assume the datacenters are deployed across the
continental U.S. According to the Federal Energy Regulatory
Commission (FERC), the U.S. electricity market is consisted
of multiple regional markets as shown in Fig. 3 [11]. Each
regional market has several hubs with their own pricing.
Therefore for the ease of exploration, we assume that there
is one datacenter deployed in a randomly chosen hub in each



6

1 25 50 75 100
0

5

10

15

20

Time (epochs)

D
em

an
d 

(M
bp

s)

 

 
Node 1
Node 2
Node 3

Fig. 2. A 100-epoch sample of traffic demand for 3 mapping nodes.

regional market. We use the 2011 annual average day-ahead
on peak price ($/MWh) published online by FERC as the
electricity price for each datacenter, i.e. Wd, as summarized
in Table I [11]. The capacity of each datacenter is randomly
set such that their total capacity is 15000 Mbps.

Fig. 3. The U.S. electricity market and our cloud datacenter map. Source:
FERC [11].

TABLE I
2011 ANNUAL AVERAGE DAY AHEAD ON PEAK PRICE ($/MWH) IN

DIFFERENT REGIONAL MARKETS. SOURCE: FERC [11].

Region Hub Price
California NP15 $35.83
Midwest Michigan Hub $42.73

New England Mass Hub $52.64
New York NY Zone J $62.71
Northwest California-Oregon Border (COB) $32.57

PJM PJM West $51.99
Southeast VACAR $44.44
Southwest Four Corners $36.36

SPP SPP North $36.41
Texas ERCOT North $61.55

3) Performance matrix: Finally, we consider a latency-
critical cloud service, whose utility can be defined by the
negative Euclidean distance between the mapping nodes and
the datacenters. To calculate the performance matrix, we first
obtain the longitude and latitude of ten randomly chosen
counties in the area covered by each of the ten hubs as
the exact locations of our datacenters in the U.S. We then
randomly choose another 100 counties as the locations of the

100 mapping nodes. All the location information is obtained
from [16]. The Euclidean distance between any given pair of
mapping node and datacenter then can be readily calculated,
which constitutes the performance matrix U . Without loss of
generality, we assume that serving 1 Gbps per epoch, i.e. 10
minutes, consumes 10 kWh electricity. The SLA constraint for
each node Umin

i is set to be 30% lower than the best utility i
may obtain among all datacenters.

B. Effectiveness

We first evaluate the effectiveness of our distributed datacen-
ter selection algorithm. The budget B is set to $5 per epoch.
Fig. 4 shows the per-node average utility with total demand for
a 100-epoch period of time. We observe that when the average
utility stands at −520 most of the time, i.e. on average the
request is directed to a datacenter 520 km away, unless the total
demand shoots beyond around 1200 Mbps. This demonstrates
that when demand is low, our algorithm matches mapping
nodes to their closet datacenters, thus directing requests to
the best available datacenters.

The consistent performance can be better explained by
Fig. 5 that shows the total cost of serving requests versus total
demand under the same setting. Clearly the total cost figure
closely follows the total demand, and is below the $5 budget
limit all the time. Thus, the budget constraint is inactive, which
corresponds to a scenario where the cloud operator has ample
financial resources to optimize performance without having
to consider the extra cost involved in doing so. This results
in a constant average utility curve amid fluctuating demand.
When the demand becomes significant, it becomes necessary
to direct some requests to distant datacenters to conform the
budget constraint, which explains the performance degradation
in epochs 74–84.

To see the effectiveness of our algorithm on guaranteeing
SLAs, we plot Ui−Umin

i for each mapping node at three sam-
pled epochs, 10, 75, and 77 in Fig. 6. Epoch 10 corresponds
to a low demand epoch, and epoch 75 and 77 correspond to
extremely high demand periods. We observe that no matter the
demand, the SLA is always satisfied for each node because the
curves stay above 0. It can also be seen that each node enjoys
a better utility when demand is low in epoch 10, which is
intuitive to understand.

Now to see the effectiveness of our algorithm on guaran-
teeing the budget, we evaluate the effect of budget on the
performance of datacenter selection. We run our algorithm
with a reduced budget of $4, while keeping the other settings
unchanged. Compared to Fig. 4, Fig. 7 shows that now the
performance swings widely along with the demand curve,
and degrades to less than −600 when demand pikes over
1000 Mbps. Fig. 8 also shows that the total cost is reduced
compared to Fig. 5. It is thus evident that a tighter budget
negatively affects the performance, but helps reducing the
operating costs of the datacenters.

Readers may notice that during the epochs from 74 to 84
with a high volume of demand, total cost is actually beyond the
$4 budget. The stringent budget constraint causes the problem
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Fig. 4. Average utility and total demand, B = 5.

1 25 50 75 100
0.4

0.6

0.8

1

1.2

1.4

10
00

 M
bp

s

Time (epoch)

 

 

2

2.8

3.6

4.4

5.2

6

$ 
pe

r 
10

 m
in

ut
es

Total demand
Total cost

Fig. 5. Total cost and total demand, B = 5.
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Fig. 6. Ui − Umin
i at sampled epochs, B = 5.
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Fig. 7. Average utility and total demand, B = 4.
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Fig. 8. Total cost and total demand, B = 4.
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Fig. 9. Ui − Umin
i at sampled epochs, B = 4.

to be infeasible for those epochs with extremely high demand.
In our implementation, we set a stopping criterion to be related
to the absolute change of the objective values, so that our
algorithm satisfies the budget constraint whenever it is feasible
to do so, and still produces sensible results with an infeasible
budget constraint. The SLA constraint is always satisfied as
shown in Fig. 9, however, because it is not relaxed in the
per-node problem (13).

C. Efficiency and fairness

To demonstrate the efficiency and fairness achieved with our
algorithm, we use a simple LP, called DC-OPT, that shares all
the same constraints with our DC-FAIR problem, but uses the
total utility

∑
i Ui as the objective function instead of (5) as

the benchmark. Therefore it does not consider fairness. DC-
OPT can also be solved by the same method of distributed
subgradient updates.

Fig. 10 first shows the fairness comparison of DC-FAIR
and the simple DC-OPT. We use the standard deviation of
Ūi(t) − Umin

i , i.e. the time average surplus utility, across
nodes at each epoch t as the fairness measure. A fair selec-
tion algorithm yields a proportional surplus utility allocation
among nodes with a smaller standard deviation, whereas a poor
algorithm without considering fairness produces an allocation
with a larger standard deviation. We can observe from Fig. 10
that in most of the time, DC-FAIR achieves a much smaller
standard deviation for the surplus utility, which translates
to much better fairness among nodes. Fairness is generally
improved over time except for the high demand epochs, which
demonstrates the effectiveness of our long-term NBS based
fairness model.

The performance and cost comparisons between our DC-
FAIR and the DC-OPT algorithms are shown in Fig. 11

and Fig. 12. DC-OPT performs better than our DC-FAIR in
terms of per-node average utility along the time line, which is
expected since the sole objective of DC-OPT is to maximize
the aggregated utility without considering fairness. In terms of
cost, our DC-FAIR algorithm achieves slightly better results.

Overall, DC-FAIR attains a different performance-fairness
trade-off with much better fairness among nodes, at the cost
of system-wide performance. As we discussed, fairness is a
critical requirement of the datacenter selection problem, since
clients served by a particular mapping node wish to obtain a
fair share of the available cloud resources after the minimum
SLAs are satisfied. Our algorithm thus achieves the fairness
requirement with satisfactory performance.

D. Speed of convergence
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Fig. 13. Histogram of the conver-
gence speed, B = 5.
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Fig. 14. Histogram of the conver-
gence speed, B = 4.

Finally, we evaluate the convergence speed of the DC-FAIR
algorithm. Fig. 13 and Fig. 14 show the histograms of the
number of iterations the algorithm takes to converge to the
optimal solution for different budgets. Clearly, we observe that
it usually takes 19–20 iterations, and never takes more than
20 iterations to finish. For a problem with 10 datacenters and
100 nodes, the speed of convergence should be considered
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very satisfactory. Thus we believe that our algorithm is also
practical for real-world problems with larger scales.

V. RELATED WORK

The topic of datacenter selection and load direction for
a geo-distributed cloud has started to gain attention in the
research community. Qureshi et al. [9] introduced the idea of
utilizing the location diversity of electricity spot price to intel-
ligently direct requests to datacenters with lower prices. Wen-
dell et al. [2] developed a decentralized datacenter selection
algorithm for cloud services, and evaluated its performance
using a prototype and realistic traffic traces. Rao et al. [17]
considered a joint load balancing and power control problem
for Internet datacenters to exploit the time and location diver-
sity of electricity price. [18] specifically considered the effect
of geographical load balancing on providing environmental
gains by encouraging the use of green energy. [19] studied a
complementary problem of data placement in a geo-distributed
cloud, considering the data locality, WAN bandwidth costs,
and datacenter capacity. These works, however, do not con-
sider fairness in their problem formulation.

The concept of Nash bargaining games has been applied
to networking problems in other domains. [20] applies it to
ensure fairness in a network flow control problem. Kelly in [6]
has shown that Nash bargaining ensures proportional fairness
in a TCP setting. [7] studied a fair multiuser channel allocation
scheme for OFDMA networks based on Nash bargaining
solutions and coalitions. [21] applied NBS to a resource
allocation problem in cooperative cognitive radio networks.
We consider a new context of cloud computing, the specifics
of which are not captured in these works.

VI. CONCLUDING REMARKS

In this paper, we presented a general optimization frame-
work to solve the datacenter selection problem for cloud
services. Our framework is based on the concept of NBS
fairness to proportionally allocate the available cloud resources
across the mapping nodes, after the minimum SLA require-
ments are met. We adopted a dual decomposition approach
to develop a distributed algorithm based on the subgradient
method. Our work can be extended in many directions. One
possible direction is to consider the online datacenter selection
with fairness consideration, which is more difficult than the
offline problem we solved here. The other direction is to take

into account the stochastic nature of the request traffic, and
provide stochastic performance guarantee amid such random
traffic.
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