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Abstract—Big data analytics are practiced in many fields to extract insights from massive amounts of data. With exponential growth

in both the volume and variety of data, analytic queries have expanded from those executed in a single datacenter to those requiring

inputs from multiple datacenters that are geographically separate or even globally distributed. Unfortunately, the software stack that

supports data analytics is designed originally for a cluster environment and is not tailored to execute global analytic queries, where

resources such as inter-datacenter networks may vary on the fly. Existing optimization strategies that determine the query execution

plan before its execution are not able to adapt to resource variations at query runtime. In this article, we present Turbo, a lightweight

and non-intrusive global analytics system that can dynamically adjust query execution plans for geo-distributed analytics in the

presence of time-varying resources and network bandwidth across datacenters. Turbo uses machine learning to accurately predict

the time cost of a query execution plan so that dynamic adjustments can be made to it when necessary. Turbo is non-intrusive in the

sense that it does not require modifications to the existing software stack for data analytics. We have implemented a real-world

prototype of Turbo, and evaluated it on a cluster of 33 instances across eight regions in the Google Cloud Platform. Our experimental

results have shown that Turbo can achieve an accuracy of 95 percent for estimating time costs, and can reduce the query

completion time by 41 percent.

Index Terms—Data analytics, distributed systems, machine learning
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1 INTRODUCTION

MAJOR global organizations host their services on data-
centers that are geographically distributed across con-

tinents to reduce the service latency to end-users at the edge
of the Internet. Terabytes (TBs) of data, such as user activity
and system operational logs, are recorded at these geo-
distributed datacenters on a daily basis. The capability of
deriving insights from such vast volumes of geo-distributed
data is critical to business intelligence, personalization,
online advertising and system operation optimization.

Although data analytics are widely practiced within the
context of a single datacenter with frameworks such as
Spark [2] and Hive [3], analyzing data across multiple geo-
distributed datacenters requires additional mechanisms
that carefully control the bandwidth cost and latency,
mostly due to the limited available bandwidth for data
transmission between datacenters.

Recent studies [4], [5], [5], [6], [7] have pointed out that
centralizing all data at one datacenter for data analytics may
not be efficient due to the usage of excessive bandwidth. In
response to solving the challenge of geo-distributed data ana-
lytics, several decentralized solutions have been proposed:

Clarinet [4] and Geode [5] have advocated that computation
(such as filter and scan operations) should be pushed
closer to data in local datacenters and that data transfers
should be carefully optimized during the reduce phases
(such as joins) across datacenters.

Unfortunately, most of these existing decentralized solu-
tions [4], [6], [8], [9] require re-engineering the full stack of the
underlying data processing utility, including mechanisms for
data replication, reducer placement, task scheduling, and
query execution strategy selection. These schemes are not
only reinventing the wheels, but solving joint optimization
problems across multiple layers in the design space will also
lead to significant overhead and delayed response to runtime
dynamics, such as fluctuations in bandwidth availability.
Geode [5] has proposed an alternative solution that estimates
the volume of the shuffling traffic between datacenters by
simulating the query execution in a single datacenter. How-
ever, this sandbox-like approach incurs quite a significant
overhead, aswell. It will not be accurate if a query is not recur-
ring or if the inter-datacenter network bandwidth is time-
varying. These facts have hindered the deployment of these
state-of-the-art decentralized solutions to geo-distributed
analytics in production environments.

In contrast to the existing literature, we advocate that
decentralized query execution for global analytics must be
orchestrated dynamically at runtime to release its promised
potential. An “optimal” static query execution plan (QEP) is
typically predetermined through cross-layer optimization or
simulation. Such static QEPs are unlikely to remain optimal
during query execution on large tables, since resources in the
datacenter network, especially the inter-datacenter band-
width, naturally vary over time during query execution.
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In this paper, we propose Turbo, a lightweight and non-
intrusive system that orchestrates query execution plans for
geo-distributed analytics, by dynamically altering query
execution plans on-the-fly in response to resource varia-
tions. At the core of our system is a carefully designed
machine learning algorithm that can accurately estimate the
time cost and the intermediate output size of any reduce
and shuffle stage (e.g., joins) of the query execution. Such
estimates are performed online, given the size of the input
tables, the instantaneously measured bandwidth, hardware
(e.g., memory and CPU) configurations, as well as other
observable parameters in the underlying distributed com-
puting engine. Our system offers a non-intrusive solution,
which does not require modifications to any lower-layer
functionalities regarding task placement, task scheduling,
data replication or query operator optimization. Through
machine-learning-based runtime cost prediction and query
orchestration, Turbo works effectively on top of any existing
underlying data analytics utility, such as Spark and Hive.

Toward a realistic design and implementation of Turbo,
we have made the following original contributions:

Measurements of Real-World Queries Executed in a Geo-Dis-
tributed Cloud. We measured the Google Cloud platform,
and our results suggest that inter-datacenter bandwidth
could fluctuate dramatically within several minutes, a time
span that is comparable to or even shorter than the typical
time to run a global analytics query. We conduct case stud-
ies based on the TPC-H benchmark [10] dataset, which con-
tains realistic data tables and queries with a broad
industrial relevance. We observe that for a typical query in
TPC-H executed on geo-distributed datacenters, dynami-
cally reordering the joins during query execution can reduce
the query completion time by as much as 40 percent.

Machine Learning for Runtime Cost Prediction. A common
existing technique for estimating the time cost of data shuf-
fling in geo-distributed analytics is to solve a reducer place-
ment problem to minimize the longest link finish time [6] or
the sum of finish times [4], under some assumed models for
network transfer times. In reality, it is cumbersome to solve
these optimization problems whenever bandwidth varies.
The actual bandwidth used by system frameworks, such as
Spark, is not the same as the bandwidth available on the
link in question. Furthermore, the shuffle time also critically
depends on the specific execution and sorting algorithms
adopted, such as broadcast joins versus hash joins. Rather
than using empirically assumed models and joint optimiza-
tion, we apply a machine learning approach to predict the
cost of any decentralized table joins based on the character-
istics of the input tables, the underlying system as well as
the network. In particular, we have designed a large nonlin-
ear feature space for both the data and the system, and lev-
eraged the ability of statistical and machine learning
methods, such as LASSO and Gradient Boosting Regression
Tree (GBRT) to sort out the most relevant features. Our
machine learning based cost prediction is not only fast, but
overcomes the limitation of any empirically assumed mod-
els and avoids the complications of joint optimization of
task placement, scheduling, and query execution.

Non-Intrusive Query Execution Plan Orchestration. Based on
the lightweight lookahead cost prediction mentioned above,
in Turbo, we further design a logic-layer query orchestration

mechanism to adjust the join orders in a QEP dynamically in
response to changes in runtime dynamics. Turbo greedily
chooses the next join it will execute to be the one with the
least predicted cost, in terms of three different policies: 1) the
least completion time, 2) the maximum data reduction, and 3)
the maximum data reduction rate. By focusing on forward-
looking join reordering based on cost prediction, Turbo is
orthogonal to and complements any mechanisms in the
lower-level distributed computing engine. Turbo can be used
on top of off-the-shelf query optimizers, such as Calcite [11],
taking advantage of the existing expertise developed for
query optimization over the last few decades.

We have implemented a prototype of Turbo and deployed
it on a fairly large Google Cloud cluster with 33 instances
spanning eight geographical regions. Our experimental
results have suggested clear evidence that Turbo can achieve
a cost estimation accuracy of over 95 percent and reduce the
query completion time by up to 41 percent.

2 BACKGROUND AND MOTIVATION

We first review how modern data analytics frameworks,
e.g., Spark [2] and Hadoop [12], execute SQL queries in a
geo-distributed setting, and then use measurements and
case studies based on the TPC-H benchmark [10] dataset
including 15K records to show the inefficiency of all existing
static solutions to geo-distributed analytics.

Processing and Optimizing SQL Queries. In Hive [3] and
Spark SQL [13], a SQL query is first parsed into a tree called a
query execution plan, consisting of a series of basic relational
operations, such as filter, scan, sort, aggregate, and join. These
relational operations are subsequently transformed by a dis-
tributed computing engine, such as Spark, to parallel map
and reduce tasks, which are logically organized in a directed
acyclic graph (DAG) and executed in stages following the
dependencies dictated by the DAG. For instance, operators
such as SELECT, JOIN and GROUPBY are transformed into
individual map-reduce stages in the DAG.

Essentially, any SQL query involving multiple tables can
be parsed into multiple feasible QEPs. Though these QEPs
have the same analytic semantics, they have different order-
ings of joins, or different strategies and algorithms to exe-
cute joins. Then, the query optimizer selects an optimal QEP
based on either predefined rules (i.e., rule-based optimiza-
tion) or cost models (i.e., cost-based optimization).

Query optimizers play a critical role in database technol-
ogies and have been extensively studied for decades [14],
[15], [16], [17], [18]. Modern query optimizers in state-
of-the-art products, e.g., Apache Calcite [11] and Apache
Phoenix [19], are well suited for centralized or parallel data-
bases within a single datacenter. In massively parallel proc-
essing (MPP) databases, high-performance data warehouse
frameworks—such as AWS RedShift [20], Apache Hive [21]
and Apache HBase [22]—can select a low-latency query exe-
cution plan using a wide range of sophisticated optimization
techniques involving both rule-based planning and cost-
based modeling. These optimization techniques will make a
wide variety of informed choices, such as between range
scans and skip scans, aggregate algorithms (hash aggregate
versus stream aggregate versus partial stream aggregate), as
well as join strategies (hash join versusmerge join).
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Optimizing Geo-Distributed Data Analytics. Yet, existing
query optimization technologies designed for a single data-
center, such as Calcite [11] and Phoenix [19], may not per-
form well in geo-distributed analytics, mainly due to the
heterogeneous network capacity in wide-area networks.

To address such a design deficiency, Geode [5] extends
Apache Calcite [11] to Calcite++. Geode adopts the query exe-
cution plan (including the order of joins) generated by Calcite.
It incorporates additional statistics to choose the optimal join
strategies (e.g., hash joins and broadcast joins) and reduce the
cost of shuffle across wide-area networks. To estimate the size
of network transfers in any QEPs, it uses pseudo-distributed
execution to simulate running the QEP in a centralized data-
center. Geode uses measurements from the simulation to
optimize site selection and data replication decisions to
reduce the volume of inter-datacenter traffic. However, such
a “sandbox” approachmay lead to high overhead and subop-
timal performance if the same queries are not recurring, or if
the network link cost fluctuates at runtime.

Clarinet [4] further explicitly minimizes query execution
times in geo-distributed analytics in a staticmanner, by choos-
ing the shortest running QEP with the optimal join ordering
among many feasible candidate QEPs. Since the traffic
between datacenters depends on the placement of reduce
tasks in each stage of a QEP, Clarinet proposes to optimize
both reducer placement and task scheduling jointly. It decou-
ples the complex optimization problem in each stage using
various heuristics to minimize the QEP execution time. Clari-
net greedily selects the QEP with the shortest execution time.
As a “clean slate” design, Clarinet re-engineers the full spec-
trumof the design space of data analytics. Since existing state-
of-the-art query optimizers and parallel databases cannot
reuse such design, Clarinetmay not be amenable to evolution-
ary deployment in practice.

2.1 The Need for Dynamic Query Planning

We now show through measurements that significant band-
width variations exist on inter-datacenter links. Therefore,
even an initially optimal QEP may become suboptimal dur-
ing query execution. We argue that QEPs need be adjusted
dynamically at runtime in response to bandwidth changes
instantaneously, especially for those queries involving mul-
tiple shuffle stages with multiple JOIN operators.

A major challenge in geo-distributed analytics is that data
shuffling in reduce stagesmust traverse links inwide-area net-
works. Since cloud providers do not provide performance
guarantees for inter-region traffic on the public Internet [23],
[24], the available bandwidth on these links is fluctuating in

nature [7], especiallywhenflows of different applications share
the links. To demonstrate such variations in inter-datacenter
bandwidth availability, we measured inter-region bandwidth
for two hours on Google Cloud, by launching two instances
in separate geographic regions, asia-east1 (Taiwan) and
us-central1 (Iowa). Each instance has a large ingress or
egress bandwidth cap that is well above 2Gbps.

To saturate the bandwidth between the two instances and
measure the amplitude and frequency of bandwidth varia-
tions, we executed iperf -t10 -P5 for 10 seconds involving
five parallel connections and repeated the command once
every 50 seconds. Fig. 1 shows that both the total available
bandwidth and the available bandwidth in each connection
changed rapidly at the frequency of minutes. In particular,
the per-connection bandwidth fluctuated between 14 Mbps
and 147 Mbps, while the total bandwidth fluctuated between
222Mbps and 726Mbps. Moreover, we found that the round-
trip time (RTT) between the two instances during the mea-
surement was consistently between 152 and 153 milliseconds.
Such stable RTTs indicate that the routing path between the
two instances remained unchanged. Therefore, we conclude
that the variations of available bandwidth were due to the
contention and sharing among flows (of different applica-
tions), which is common in thewide-area networks.

We illustrate the benefit of adjusting QEPs dynamically
with a simple example based on real-world data. We ran a
SQL query, as shown in Fig. 3a, which joins four tables of
data realistic data generated by TPC-H benchmark [10]. The
tables are stored on four separate sites with heterogeneous
inter-site bandwidth capacities, as shown in Fig. 2. Note
that the bandwidth within each datacenter is 12 Gbps,
which is much larger than inter-site bandwidth.

We executed this query with four different strategies for
QEP selection: 1) the centralized mode, in which all the
tables will be moved to DC3 for aggregation, and the com-
putation is only performed at DC3;

1 2) the distributed base-
line, in which a static QEP is pre-determined by the default
query optimizer of Spark SQL; 3) Clarinet2 [4], which selects
a static distributed QEP by jointly optimizing task place-
ment and scheduling; 4) a dynamically adjusted and distrib-
uted QEP, which adjusts the QEP at runtime in response to
bandwidth fluctuations.

Fig. 1. Wide-area bandwidth fluctuations between two geographic regions on the Google Cloud platform.

1. It should be noted that the data movement time is part of the query
completion time since data is initially distributed on different sites.

2. We have only reproduced the query selection of Clarinet since the
source code of its task scheduling and network management is not
open-sourced.
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For the purpose of illustration, we conducted this experi-
ment in a controlled geo-distributed cluster of four sites [25]
with stable dedicated links between the sites. To emulate
bandwidth variations which would otherwise have been
observed in the wide-area network, we replayed the real-
world bandwidth traces collected from Google Cloud, as
shown in Fig. 3c. Specifically, we periodically updated the
Linux tc traffic control rules on both sides of the link
between DC1 and DC2, while other links in our cluster
remained stable during the experiment.

For each of the four compared strategies, we ran the same
query five times under the same bandwidth configuration.
The query completion times in Fig. 3b showed that the cen-
tralized mode took 611.7 seconds on average to finish. The
baseline took 524.5 seconds on average to finish, while Clar-
inet took 497.5 seconds on average. In contrast to the other
methods, adjusting QEP at runtime only took 420.7 seconds
on average, which was the fastest.

Let us now analyze the QEPs chosen by the four strate-
gies, which explain the performance gaps. The centralized
mode spent as long as 176 seconds transferring data to one
site and is thus inferior to other distributed methods in gen-
eral. Since the baseline (default Spark) was oblivious to net-
work bandwidth, its chosen QEP may inadvertently have
joined two large tables over a narrow link such as the 150
Mbps link between DC2 and DC3. In contrast, Clarinet was
aware of the heterogeneity of link capacities in the wide-
area and selected the (static) QEP that was optimal only for
the initial bandwidth availability. However, the bandwidth
changes between DC1 and DC2 soon rendered the selected
QEP a suboptimal solution, delaying the join between DC1

and DC2 significantly. With runtime adjustments during
query execution enabled, although the initial QEP was the
same as the one selected by Clarinet, after the join of 2.3 GB
partsupp table and the 15 GB lineitem table, the execu-
tion plan was changed to the third one in Fig. 3d. The
adjusted QEP avoided transmitting a large volume of data
over the link between DC1 and DC2, when the bandwidth
on the link dropped below 150 Mbps.

Abrupt bandwidth changes are not uncommon in a pub-
lic cloud shared by many applications. Furthermore, such
bandwidth changes, as illustrated by the example above,
may occur multiple times during the execution of a geo-
distributed query, especially for large data-intensive jobs.
Therefore, an initially optimal QEP is not necessarily opti-
mal throughout the job.

3 OVERVIEW

It is significantly challenging to adjust a distributed query
execution plan at runtime dynamically. First, recomputing

the optimal query execution plan with complex optimiza-
tion methods, such as Clarinet [4] or Iridium [6], is not fea-
sible at runtime—once a new solution is computed, the
bandwidth availability would have changed again. More-
over, since these solutions often involve a joint optimiza-
tion problem of reducer placement and task scheduling,
they require modification to lower layers in the data ana-
lytics engine.

We present Turbo, a lightweight non-intrusive layer that
dynamically orchestrates distributed query execution. Fig. 5
provides an overview of Turbo’s architecture. Turbo works
independently on top of and complements existing distrib-
uted data analytics engines such as Spark. It reduces query
completion times by switching the order at which different
distributed tables should be joined, in response to network
bandwidth changes. We have designed a machine learning
engine judiciously to enable the online lookahead reorder-
ing of join operations. The machine learning engine predicts
the time cost as well as the output data size (cardinality)
of joining a pair of tables distributed on two different data-
centers, based on network statistics and tables to be joined.
We also introduce a lightweight bandwidth measurement
scheme, which can probe instantaneous inter-datacenter
link bandwidth in a non-intrusive manner. Note that Turbo
leaves any lower-layer decision intact as is in existing sys-
tems, including task scheduling, reducer placement and
specific join algorithms.

Typically, Hive and Spark SQL convert a QEP into a
DAG of map-reduce stages. The tasks within a stage are

Fig. 3. An example SQL query and its QEP choices.

Fig. 2. The cluster setup in our example showing the benefits of runtime
QEP orchestration.
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atomic threads executing exactly the same code, yet apply-
ing to different blocks of data. There are two types of map-
pings between operators and stages: an operator applied
to only a single table is mapped to a single map stage, and
an operator involving two tables is mapped to two map
stages and a reduce stage. For example, a SELECT operator
sprice> 100ðordersÞ is interpreted as a map stage filter

(order o => (o.price>100)), while a natural join cus-

tomer ffl orders is interpreted as two map stages, map
(customer c => (c.custkey, c.values)) and map

(order o => (o.custkey, o.values)), as well as a
reduce stage reduce(custkey, values).

In Turbo, the smallest unit for an adjustment we will
focus on is a pairwise join. A geo-distributed analytics
query can be parsed into a series of pairwise joins. Each
pairwise join involves only two tables as well as some affili-
ated map stages in the join due to operators on every single
table such as selection (s) and projection (p). On an abstract
level, each pairwise join is interpreted with map and reduce
stages, as shown in Fig. 4, with the additional details on
query optimization and execution strategy optimization
hidden. Turbo aims to adjust a QEP dynamically at runtime
by reordering the pairwise joins in it during query execution.
For the sake of speeding up geo-distributed data analytics,
it is critical to concentrate on operators that trigger data
shuffles in the network such as JOIN, while leaving the
optimization of map stages performing local computations
to the lower-level system. We show that by focusing on
smart online join reordering, query execution times can be
reduced significantly for real-world workloads.

As in Fig. 5, the architecture of Turbo consists of three
components:

Model Training. The abstraction of a query into a series of
pairwise joins makes cost estimation feasible through
machine learning. Turbo trains two machine learning mod-
els, LASSO and Gradient Boosting Regression Tree, to pre-
dict the time cost and output cardinality of a pairwise join
involving two tables. The input features come from the
tables, the underlying platform, hardware configurations, as
well as the bandwidth probed on WAN links. The training
can be done based on samples collected from past execu-
tions. In our experiment, we have created a labelled dataset
of 15,000 samples containing both the target cost values and
features, by running a series of realistic pairwise joins on
datasets of TPC-H benchmark [10] under a variety of hard-
ware and software settings. The models can be trained offline
or updated incrementally, with new samples added to the
training dataset. The underlying philosophy of our model
training engine is to handcraft a range of relevant features,
using feature crossing to introduce non-linearity and to
extend the feature space (Section 4.2). And we filter out the
irrelevant features with the model selection capability of
LASSO and Gradient Boosting Regression Tree. Our machine
learning model yields a prediction accuracy of 95 percent on

queries of TPC-H benchmark [10], which is sufficiently accu-
rate for online join reordering to exhibit its benefits.

Cost Estimator. During query execution, the trained
machine learning models will predict the cost of a pairwise
join directly. When the two tables involved in the join each
reside on a different datacenter, the machine learning mod-
els predict the cost based on instantaneously measured run-
time dynamics, including the available bandwidth between
datacenters probed by a lightweight non-intrusive band-
width prober. However, note that the records in a table may
be distributed in several datacenters, e.g., if these records
are intermediate results of a previous reduce stage, due to
shuffling. If at least one input table of the pairwise join in
question is distributed in more than one datacenter, we fur-
ther propose a scheme in Section 5.1 to estimate the cost of
this pairwise join. Our cost estimator uses the trained
machine learning model as a fundamental building block
and generalizes it to the case of distributed input data based
on an abstract model of parallel execution.

Runtime QEPAdjustment.Turbo reuses the query processor
(including a query parser and a query optimizer) of Hive or
Spark SQL to parse SQL semantics. Complicated SQL query
dependencies are parsed into tree-like QEPs by the query pro-
cessor. Turbo first examines all QEP candidates produced by
the query processor, and then only considers the pairwise
joins found in the QEP candidates. The objective of runtime
QEP adjustment is to minimize the overall completion time of
a data-intensive query in an unstable geo-distributed environ-
ment. However, at any point in time, given the parts of the
query that have already been executed, the search space for
the optimal ordering of remaining joins is still exponentially
large. To enable swift decision making, Turbo continuously
adapts the QEP to runtime dynamics by greedily choosing the
next pairwise join with the least lookahead cost. In Section 5.2,
we propose three greedy policies, evaluating such lookahead
cost in three different perspectives. Although the proposed
greedy policies are still suboptimal—the optimal dynamic
policy is impossible to be derived without knowing the entire
bandwidth time series before query execution. Yet, these poli-
cies are fast and can keep up to instantaneous bandwidth
changes. We show that they can effectively make positive
online adjustments to reduce query completion time in real
experiments based on real-world data.

4 BUILDING COST MODELS

In this section, we describe our machine learning models
based on LASSO and Gradient Boosting Regression Tree.

Fig. 5. The overview of Turbo.

Fig. 4. Interpreting a pairwise join to map-reduce stages.
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And we introduce the extensive feature crafting for predict-
ing the time cost and output cardinality of each pairwise
join between tables, which will serve as a basis for our
dynamic QEP adjustment schemes. We created a dataset of
15K samples by running the realistic TPC-H benchmark
queries and collecting the corresponding statistics, which
we call features.

Our basic idea is to consider all raw features relevant to
the running time and output size as well as all intuitively
possible nonlinear interactions across these raw features,
and then rely on LASSO, a powerful dimension reduction
tool, to pick out only the key (derived) features. These
selected features are further input to GBRT to characterize
their nonlinear contribution toward the target to be pre-
dicted. We show that the proposed models can achieve a
prediction accuracy of over 95 percent on this dataset.

4.1 Dataset Creation

We built a new dataset of 15K samples, each recording the
time it took to run a (possibly complex) query from TPC-H
benchmark [10] and its output size, as well as several fea-
tures related to the query execution. Each query in the data-
set takes two tables generated by TPC-H dbgen [10] as the
two input tables, each located on a different datacenter.
Since the shuffling during reduce stages forms a major bot-
tleneck in geo-distributed analytics, we focus on JOIN-like
operators between the pair of tables such as Cartesian prod-
uct, natural join and theta-join, which lead to heavy network
shuffle traffic.

We ran different types of pairwise joins under varied com-
binations of input features. These features are related to the
query itself, the input tables involved, and the running envi-
ronment, the latter including hardware configuration, net-
work bandwidth and parameter settings in the underlying
Spark system. These features are summarized in Table 1. The
feature, total_executor_num, represents the number of
executors involved in the execution of the join and dictates the
maximum number of tasks executed simultaneously. The fea-
tures, cpu_core_num and mem_size, are the upper bounds
of computing resources that each worker can utilize. The fea-
ture, avail_bw, indicates the available bandwidth between
the two sites storing the two tables. During dataset creation,
the varying bandwidth was obtained via tc rule-based
bandwidth regulation. tbl1_size, tbl2_size are the
actual sizes of the generated tables, ranging from 300MB to 12
GB, as we focus on large tables and data-intensive jobs.
Finally, hdfs_block_num indicates both the input data
size and the number of parallel tasks, i.e., the parallelism of
data processing.

Once a model is trained offline based on the created
dataset, we can estimate the cost of executing any pairwise
joins online, based on instantaneous measurements of these
features in the runtime system. All the features selected
can be easily measured or acquired online during query
execution in a non-intrusive manner without interfering
with query execution. In particular, in Section 5, we will
introduce our lightweight and non-intrusive scheme for
online bandwidth probing. Besides, it is also easy to incre-
mentally expand the training dataset by including statistics
from recently executed queries. And the models can easily
be retrained periodically.

4.2 Crafting the Nonlinear Feature Space

Since the query completion time and output cardinality may
depend on input features in a nonlinear way, we further
leverage the intuitions about geo-distributed analytics to
craft some derived features based on the interaction of raw
features. Our additional handcrafted nonlinear features are
also shown in Table 2. Furthermore, we apply feature cross-
ing to both raw features and handcrafted features to obtain
polynomial features, which significantly expand the dimen-
sion of the feature space. For example, the degree-2 polyno-
mial features of a 3-dimensional feature space ½a; b; c� are
1; a; b; c; a2; ab; ac; b2; bc; c2. Finally, we rely on machine
learning models to sort out the key features for dimension-
ality reduction and to characterize their nonlinear contribu-
tion toward the metrics to be predicted.

The rationale of using handcrafted features and feature
crossing is to incorporate important nonlinear terms that
may possibly help decide the completion time. For example,
in a broadcast join, minðtbl1 size; tbl2 sizeÞ=avail bw

may decide the shuffle time, since the smaller table will be
sent to the site of the larger table for join execution. Similar
ideas of using such intuitive predictors have been adopted
in Ernest [26], which performs a linear regression of nonlin-
ear interactions between system parameters to predict the
time to execute a data analytics job in a cluster. Similarly,
the optimization-based methods in Clarinet [4] and Irid-
ium [6] have also assumed that the data transmission time
depends on the table sizes divided by the available band-
width in a linear way. However, it is worth noting that the
available bandwidth is only loosely related to data transmis-
sion time. On the one hand, the available bandwidth only
defines an upper bound of bandwidth. On the other hand,
the distributed computing engine can hardly saturate the
bandwidth due to the reasons mentioned in Section 1.

Our statistical feature engineering and selection approach
is a generalization of the above ideas—wefirst expand the fea-
ture space to as large as possible to incorporate all intuitively
possible nonlinear interactions between relevant parameters,
and then rely on the ability of LASSO to select only the

TABLE 1
The Raw Features

Raw Features Range

total_exec_num 1� 16
cpu_core_num 1� 8 per executor
mem_size 1� 4 GB per executor
avail_bw 5� 1000Mbps per link
tbl1_size, tbl2_size 0:3� 12 GB per table
hdfs_block_num 1� 90

TABLE 2
The Handcrafted Features

Handcrafted Features

tbl size sum := sumðtbl1 size; tbl2 sizeÞ
max tbl size :=maxðtbl1 size; tbl2 sizeÞ
min tbl size :=minðtbl1 size; tbl2 sizeÞ
1/avail_bw, 1/total_exec_num, 1/cpu_core_num
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relevant ones statistically. Our machine learning approach
abstracts away the excessive details in the underlying Spark
system, including task placement and scheduling decisions,
whichwould otherwise have to be considered by an optimiza-
tionmethod like Clarinet [4] and Iridium [6].

However, the common weakness of such optimization-
based approaches is the limited robustness to bandwidth fluc-
tuation, because optimization algorithms typically depend on
the estimation of available bandwidth. However, unlike the
available bandwidth, the actual bandwidth consumed by a
distributed computing engine such as Spark relies on several
underlying factors, such as the number of concurrent connec-
tions and the data volume for each connection. Furthermore,
the detailed traffic pattern also depends on the specific join
algorithms used, e.g., hash join versus broadcast join, which
may not be known before the query is executed. Our general-
ized machine model overcomes these difficulties by first
expanding the feature space to as large as possible and rely
on the power of models to discover the nonlinear depen-
dencies of the completion time on different features from
data, abstracting away the excessive details in the underlying
Spark system.

4.3 Machine Learning Models

To keep Turbo lightweight and efficient, our chosen models
must be accurate and fast.

LASSO regression augments linear regression to perform
sparse feature selection by introducing an L1 norm penalty
to the least-squares cost function (Eqn. (1)). Compared to
linear regression, it can effectively suppress overfitting by
picking out only the relevant features from the large polyno-
mial feature space we have created. When minimizing the
cost function, the L1 penalty forces the coefficients of irrele-
vant features to zero. After the degree-2 polynomial feature
crossing, we have obtained more than 200 derived features.
We input all these features into LASSO, which automati-
cally selects the relevant key features (usually fewer than
10) and discards the rest [27].

min
ww

Xm

i¼1

ðyi � wwTxxiÞ2 þ �kwwk1; (1)

where ww is the coefficients assigned to each feature, m is
the number of training samples, yi is the label of the sam-
ple xxi, � is regularization parameter and kwwk1 is the L1

penalty norm.
We select highly correlated features to reduce the

dimensionality of ML training. We apply the LASSO path
algorithm [27] to regularize the coefficient estimates. When
jointly minimizing the least-squares cost function and the
L1 penalty term, some of the coefficient estimates are forced
to be exactly equal to zero with the tuning parameter �
becoming sufficiently large. Hence, LASSO obtains the most
relevant features and discard others. Moreover, LASSO is
interpretable, stable and visualizable. The LASSO path intu-
itively reflects the selected features and ignored ones [28].

We plot the LASSO paths as the weight placed on the L1

penalty decreases (Fig. 6). As more weights are placed onto
the L1 penalty, the coefficients of some features become
zero, where only the most important features have non-zero
coefficients. For query completion time, the key features

selected by LASSO are max_tbl_size, tbl_size_sum,
min_tbl_size, cpu_core_num, max_tbl_size/bw, 1/
bw2, total_exec_num, and mem_size. For query output
size, the key features selected are max_tbl_size,
tbl1_size, tbl_size_sum, and min_tbl_size2.

Gradient Boosting Regression Tree (GBRT): we find that for
output size prediction, LASSO can already perform well.
However, for prediction on query completion time, even if
the key features are selected, the completion time still
depends on these selected features in a nonlinear way.
GBRT is a nonlinear machine learning technique that uses
an ensemble of weak regression trees to produce a single
strong model [29]. GBRT improves the model generalizabil-
ity and avoids overfitting by combining a large number of
simple binary or ternary regression trees. GBRT algorithm
seeks for finding the function F ðxxÞ that is composed of
weighted regression trees hmðxx; umÞ

F ðxxÞ ¼
XM

m¼1

gmhmðxx; umÞ;

where M is the number of regression trees, gm is the corre-
sponding weight for each learner, um is the set of parameters
of a regression tree.

When building the model, GBRT progressively fits a new
regression tree hmðxx; umÞ to the residual of the previously
fitted model Fm�1ðxxÞ in a stage-by-stage fashion, and
updates the current model FmðxxÞ by adding in the new tree

FmðxxÞ ¼ Fm�1ðxxÞ þ gmhmðxx; umÞ:

Fig. 6. Feature selection by LASSO path.

1378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:27:13 UTC from IEEE Xplore.  Restrictions apply. 



Each tree hmðxxÞ is fitted to the error gradient of Fm�1ðxxÞ on
the training samples xx. The regression tree hmðxx; umÞ and
its associated weight gm are trained to minimize the loss
function L

hmðxx; umÞ; gm ¼ argmin
h;g

XN

i¼1

Lðyi; Fm�1ðxxiÞ þ ghðxxi; umÞÞ;

where N is the number of training samples.
In our evaluation in Section 6.1, the GBRT we build con-

tains 500 ternary regression trees. The depth of each tree is
three. And the inputs to the GBRT only contain the relevant
(derived) features selected by LASSO, which can reduce the
prediction variance of GBRT.

LASSO regression and GBRT are statistic models that
have much fewer parameters than neural network models.
The computation complexity has been further reduced
after feature selection by LASSO. Training the two models
on the 15K dataset only takes a few minutes on a CPU-
based server.

5 DYNAMIC QUERY ADJUSTMENT

In this section, we present the detailed policies used by
Turbo to adjust query execution plans dynamically at run-
time. During the execution of a QEP, given the parts of the
query that have already been executed, adjusting the
remaining part of the QEP still involves exponentially
many possibilities of join reordering. To avoid a large deci-
sion space and to make the system respond fast to resource
availability fluctuations, Turbo greedily selects the pair-
wise join with the lowest estimated cost to be executed
next, according to various proposed policies. The cost of
each candidate join is predicted by our lookahead cost pre-
dictor as described below.

In a real-world deployment of geo-distributed data ana-
lytics, the geographical data sources and the data depen-
dencies jointly determine the database design, including
logical schemas and storage structures. The logical schema
defines the rows and columns of tables, and the storage
structure determines the storage partitioning of tables.
There are mainly two table partitionings: a table can be par-
titioned either within a single datacenter as in [4] and [5] or
across multiple geo-distributed datacenters as in [30]
and [6]. We argue that partitioning a table across multiple
geo-distributed datacenters makes it thorny to keep data
consistent and up-to-date. Turbo supports pairwise joins of
tables partitioned by both partitionings. A divide-and-con-
quer heuristic is proposed for tables partitioned geo-
distributedly.

5.1 Lookahead Cost Prediction

Let us first explain how the cost of each candidate join oper-
ation in the remaining QEP can be predicted. Note that
when a series of joins are to be executed, the output results
from a current join, which serve as the input to the next join
operation, may not reside on a single datacenter. An inter-
mediate table is usually spread across multiple sites because
the reduce tasks that generated such intermediate results
were placed on multiple sites by the system.

If the two input tables of a pairwise join to be evaluated
are indeed located on two sites, respectively, we can directly
use the trained machine learning models as described in
Section 4 to predict the duration of this join. The instan-
taneously measured features of the trained models include
the bandwidth between two sites, the sizes of the two tables,
as well as several other parameters pulled from the runtime
system into the models as features.

On the other hand, however, if at least one of the two
input tables of the pairwise join is spread across multiple
sites, as a result of the previous computation, the way that
this join is physically executed will not strictly match the
joins logged in the training dataset. In this case, we need to
introduce additional mechanisms to be able to leverage the
trained models in the presence of distributed input data.
To address this issue, we use a divide-and-conquer approach
that splits the pairwise join that involves distributed input
data into multiple sub-joins, each between a subset of the
left table and a subset of the right table, where each subset
only contains a part of the left table or the right table
stored on a single site.

In particular, our divide-and-conquer approach handles
two cases, as shown in Fig. 7. If only one table is distributed
across multiple sites, we cascade the sub-joins sequentially
to predict the duration of the join, as shown in Fig. 7a. If,
however, two input tables are both distributed across multi-
ple sites, e.g., involving 3� 3 ¼ 9 sub-joins as shown in
Fig. 7b, the total duration for the join can be predicated as
T ¼ maxðt1 þ t2 þ t3; t4 þ t5 þ t6; t7 þ t8 þ t9Þ. Turbo exe-
cutes the sub-joins involving the same subset of the left table
sequentially in a cascaded way while executing sub-joins
involving different subsets of the left table in parallel.

We perform a real-world query across multiple nodes to
verify the query duration approximated by the divide-and-
conquer heuristic. The query joins two tables lineitem

and partsupp, which are generated by TPC-H dbgen. For
the case that only one table is distributed across multiple
sites, we split the lineitem data into three partitions and
store them separately on different nodes. As Fig. 8a, we

Fig. 7. The divide-and-conquer heuristic.
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obtain the query duration T and the duration t1, t2 and t3 of
sub-joins. The query duration T is 421.2 seconds, and the
total duration of sub-joins, t1 þ t2 þ t3, is 436 seconds.
t1 þ t2 þ t3, the duration approximated by the divide-and-
conquer heuristic, is larger than T because we iteratively
save the result of a sub-join as a new table and join the new
table with the next table partition, which enforces the
sequential sub-joins but introduces extra I/O time.

For the case that both two tables are distributed to multi-
ple sites, we split both partsupp and lineitem into three
partitions and store them separately on different nodes, as
in Fig. 7b. Similarly, as in Fig. 8b, we obtain the query dura-
tion T is 163.1 seconds, while the duration of the sub-joins,
maxðt1 þ t2 þ t3; t4 þ t5 þ t6; t7 þ t8 þ t9Þ, is 175.9 seconds,
which also involves the extra I/O time. The duration of
pairwise joins predicted by our GBRT model does not
involve the extra I/O time, with which the divide-and-con-
quer heuristic estimates closer durations.

5.2 Runtime QEP Adjustment

By focusing on join reordering, Turbo’s query optimizer is a
shim layer that wraps the default query optimizer (or any
advanced query optimizer) of the underlying distributed
computing engine such as Hive and Spark SQL, deployed

on the master node of the distributed computing engine.
During query execution, the cost of each candidate join
operation to be executed next can be estimated according to
the lookahead cost predictor described above. Such esti-
mates are fed into the query optimizer that chooses the next
join in terms of three different policies, to greedily reduce a
query’s overall completion time. The greedy nature of deci-
sion making, together with the ability to predict the costs of
pairwise joins online prior to their execution, enables Turbo
to make fast and timely decisions regarding QEP adjust-
ments, to respond to runtime dynamics.

Turbo performs the iterative process of cost prediction
and QEP adjustment in a stage-by-stage pipelined fashion.
During the map stage of an ongoing pairwise join, Turbo
probes the available WAN bandwidth in the network to
avoid bandwidth contention, since map stages are not band-
width-intensive and can also finish fast. During the reduce
stage of the ongoing pairwise join, Turbo collects the distri-
bution of the reduce tasks. It can be used to estimate the
input data distribution for the next join, since the input of a
next join consists of the output data from the ongoing join
(s) and possibly some new table. The measured available
bandwidth information, as well as the estimated input data
distribution, are used to estimate the time cost of a next join
operation using the method mentioned above.

5.3 Adjustment Policies

When adjusting a QEP, Turbo respects both the semantics of
the SQL query and the context of the underlying distributed
computing engine. The semantics of the SQL query define
the set of all candidate pairwise joins. The execution context
limits the choices for the next join: the next join must be cho-
sen to preserve the part of the QEP that has already been
executed. After pruning unqualified pairwise joins, Turbo
explores three greedy policies to select the next pairwise
join, based on the estimated durations and/or output sizes
of all candidate joins:

Shortest Completion Time First (SCTF) selects the next pair-
wise join to be the one that is predicted to have the least
completion time. This policy is intuitive because the overall
query completion time is the summation of the completion
time of each pairwise join.

Maximum Data Reduction First (MDRF) selects the next
pairwise join to be the one that is predicted to lead to the
maximum difference in volume between the input data and
output data. The maximum data reduction implies that less
data will be transferred over the network later on, thus sav-
ing the query execution time in a geo-distributed setting.

Maximum Data Reduction Rate First (MDRRF) selects the
next pairwise join to be the one that is predicted to maxi-
mize the data reduction rate, which is defined as the volume
of data reduced per unit time for the operation. The rate is
calculated by the difference in volume between the input
data and output data, then divided by the predicted join
completion duration. This policy takes into account both
data reduction and the time needed to achieve that amount
of data reduction.

Turbo makes extremely fast decisions, in fact within less
than one second, for the choice of the next join to be exe-
cuted. Once the machine learning models are maintained,
the predictions are instantaneous, and the number of

Fig. 8. Justifying the divide-and-conquer heuristic.
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candidate joins to be compared is not large due to the SQL
semantic and execution context constraints. In an environ-
ment where significant bandwidth fluctuations are only
observed over minutes, Turbo is perfectly competent to gen-
erate valid QEP adjustments dynamically.

However, severe bandwidth fluctuations might happen
between datacenters during one pairwise join operation,
and Turbo will not revoke the ongoing pairwise join opera-
tion, even though it is not the optimal plan. We argue that
revoking the ongoing operation and running a new QEP
will lead to a waste of resources, including computation
and bandwidth. It is still an open question to deal with
highly frequent bandwidth variations during the execution
of a geo-distributed data analytic task, such as a pairwise
join operation.

6 IMPLEMENTATION AND EVALUATION

We implemented the prototype of Turbo in Scala 2.11 and
Python 2.7. The machine learning module is developed
with scikit-learn 0.19 and the query optimizer is built
on Spark SQL 2.0.2. The interfaces between the machine
learning module, the query optimizer and the Spark sched-
uler are implemented by Apache Thrift (scrooge 4.13 for
Scala and thrift 0.10 for Python). We have developed a
toolkit3 for collecting training data with the RESTful APIs of
the Spark’s history server. We have also extended the HDFS
command put to specify data nodes for data partitions of
different tables.4

We launch a 33-instance cluster across the eight regions
of Google Cloud Compute Engine [31]. Each of the instances
has four vCPU cores, 15 GB memory and 120 GB SSD and
runs Ubuntu-16.04 with Oracle Java 1.8.0. We build the data
analytic frameworks with HDFS 2.7.3 as the persistent stor-
age backend, Hive 1.2.1 as the structured data warehouse
and Spark 2.0.2 as the data processing engine.

The duration prediction of our tuned GBRT model on the
testing dataset is up to 94.5 percent and the output size pre-
diction by LASSO on the testing dataset is up to 95.8 percent.
Our experiments with trained GBRT and LASSO models
show that Turbo can effectively adjust QEPs in correspond-
ing to fluctuating WAN conditions and reduces the query
completion times from 12.6 to 41.4 percent.

6.1 Model Evaluation

We evaluate both the machine learning models on the 15K
dataset created and select the most accurate model for pre-
dicting durations and output sizes, respectively.

We use randomly selected 10 percent of the 15K samples
as the test set and the remaining 90 percent as the training
set. Table 3 presents the root-mean-squared error (RMSE) of
each model for predicting the durations and output sizes of
pairwise joins in the test set. The root-mean-squared errors
(RMSEs) of LASSO are 54.14 seconds for predicting the
durations and 301.49 KB for predict output sizes, while the
RMSEs of GBRT are 9.41 seconds for durations and 282.4
KB for output sizes.

We then analyze the test error distribution of different
models in terms of the absolute percentage error (APE),
which is calculated as APEi ¼ jyi � hðxiÞj=yi � 100%:

We show the tuning process of GBRT in Fig. 9. The two
major hyper-parameters of GBRT are the number of regres-
sion trees and the max tree depth. By performing grid
search over the hyper-parameter space, we find that the
GBRT model with 500 ternary regression trees and max
depth as three achieves the lowest APE of 5.5 percent. Pre-
dicting duration with an accuracy of 94.5 percent is suffi-
ciently accurate to make online join reordering decisions for
query performance benefits.

Fig. 10a and 10b present the box plots of the test APEs for
duration predictions and output size predictions. GBRT-raw
denotes the GBRT model taking all raw features as input,
which have not been selected by LASSO. By comparing the
average APEs achieved by GBRT and GBRT-raw, it demon-
strates that using features selected by LASSO improves the
model accuracy. As we can see, for duration prediction,
GBRT achieves much lower errors compared to the other
two models. For the output size prediction, LASSO achieves

TABLE 3
The Absolute Test Errors

Model RMSE

Duration (s) Output Size (KB)

LASSO 54.14 301.49
GBRT 9.41 282.4

Fig. 9. Tune the number of regression trees and max tree depth in
GBRT.

Fig. 10. Model test errors.
3. https://github.com/chapter09/sparkvent
4. https://github.com/chapter09/hadoop/tree/putx
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an average APE of 4.2 percent and effectively keeps APEs
under 16 percent, which performs better than the other two
models, though its RMSE is bit higher than that of GBRT.
Fig. 11a and 11b present the CDFs of test APEs for duration
predictions and output size predictions respectively. By
jointly considering the RMSEs and APEs in Fig. 11, we
choose GBRT to predict durations of pairwise joins and
LASSO to predict output sizes in Turbo.

We further investigate the correlation between test errors
and the predicted targets. Through the scatter plots in
Fig. 11c, 11d, 11e, and 11f, we observe a decreasing trend of
the absolute percentage error in general as the true duration
or the true output size of the pairwise join increases. How-
ever, the absolute errors do not increase much as the true
durations and output sizes scale up to large values. This
fact indicates that our machine-learning-based method has
a higher accuracy when handling large tables, which are
common in big data analytics.

Finally, we note that the models can achieve higher accu-
racy as the size of the training set increases. We test the
GBRT model and the LASSO model trained on datasets of
different sizes, which are subsets of the 15K dataset. As
shown in Fig. 12a and 12b, as the training dataset becomes
larger, the APEs of both models decrease significantly.

6.2 Turbo Performance

Benchmark and Metrics. We use the dataset from the TPC-H
benchmark [10], which contains eight relational tables. The
tables are stored as structured data in Hive with the HDFS

as the storage backend. The data distribution is maintained
as a metadata attribute in Hive. We evaluate Turbo with
both table partitionings: tables partitioned within a region
and across multiple regions.

TPC-H benchmark [10] contains 22 queries with broad
industry-wide relevance. Among the 22 queries, we ignore
those queries that process only one or two tables, as there is
no alternative joins when performing the QEP adjustment.
We run the remaining 10 TPC-H queries (Q2, Q3, Q5, Q7,
Q8, Q9, Q10, Q11, Q18 and Q21) under the following five
schemes to evaluate Turbo. The first two schemes are used
for comparison. The other three schemes are Turbo config-
ured with the three greedy policies, respectively.

� Baseline: the default query optimizer [13] of Spark
SQL, which is agnostic to the fluctuating band-
widths. It only considers the cardinalities of tables
when selecting the join algorithms.

� Clarinet: the optimal query plan is determined by the
bandwidths and data distribution when the query is
submitted. This is an approximation5 to Clarinet [4].

� Turbo-(SCTF, MDRF and MDRRF): With awareness
of network bandwidth and data cardinalities, Turbo
applies three different greedy policies to choose the
next join to run.

Tables Partitioned Within a Datacenter. The data distribu-
tion is as Table 4 that each of the eight tables is partitioned
within a single region. As in Fig. 14, we run the ten queries
on the cluster including 33 instances across the eight regions
under the five schemes. Each region contains four instances,
and the extra instance is configured as the master node. For
each of the five schemes, we run the ten queries for five
times and record the query completion times.

Fig. 15a shows baseline and Clarinet both have severe
long tail delay on pairwise join completion times. As in
Fig. 15b, compared to the baseline, the overall query comple-
tion times is reduced by 25.1 to 38.5 percent for Turbo-SCTF
(32.6 percent on average), 12.6 to 37.1 percent for Turbo-
MDRF (27 percent on average) and 25.2 to 41.4 percent for
Turbo-MDRRF (34.9 percent on average).

We plot all the stage completion times in Fig. 13. Com-
pared to the baseline and Clarinet, the three policies of
Turbo have reduced the maximum stage completion times

Fig. 11. Analysis of model test errors.

Fig. 12. The test errors of models trained on datasets of different sizes.

5. It should be noted we do not perform bandwidth reservation and
task placement. The bandwidth reservation is performed by Clarinet’s
WAN manager, a component that is privileged to operate MPLS-based
or SDN-basedWAN.
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for most stages, which indicates there are less delayed
stages. Turbo-MDRF fails to choose the right join when run-
ning query Q10.

Then we perform an in-depth case study on query Q21.
We run query Q21 from the TPC-H benchmark under the
five schemes to show how Turbo adapts a QEP to the fluctu-
ating WAN. The query Q21 processes four tables, line-
item, orders, nation and supplier. We launch six
clusters of the same hardware configuration, as mentioned.
Each cluster is composed of four instances from four
regions, respectively, i.e., Brazil, Taiwan, Sydney and Vir-
ginia. Five of the clusters run query Q21 simultaneously in
terms of the five schemes. The remaining one cluster runs
iperf to periodically measure bandwidths between the
four regions, which avoids contending bandwidths with the
five clusters running Q21.

As shown in Fig. 16, we plot a Gantt chart to show the
progress of the query Q21 running under the five schemes,
dealing with WAN fluctuations. Two colours are used to
distinguish different stages of the running query. We also
plot the bandwidths between the four regions, according to
the timeline of the query execution. The fluctuating links
are marked in black. As we can see from the Gantt chart,
Turbo-SCTF and Turbo-MDRRF adjust the QEP plan to
react the bandwidth fluctuation between Taiwan and Syd-
ney around 5:25. Turbo-MDRF does not change the QEP
since it only considers the volume of data reduction.

From this case study, we have observed that the band-
width between datacenters is changing at a frequency of
sub-seconds. Turbo reorders pairwise joins based on the rel-
ative bandwidths between different datacenters, which
change slowly at minutes or hours. If the relative band-
widths remain unchanged within one pairwise join opera-
tion as in Fig. 16, the QEP by Turbo will still be beneficial.

Tables Partitioned Geo-Distributedly. We run the query Q21
to evaluate Turbo performance when tables are partitioned
geo-distributedly. We evaluate two partitioning scales: each
of the four tables is partitioned across two regions without
overlap as lineitem (Taiwan and Singapore), orders

(Sao Paulo and Belgium), nation (Northern Virginia and
Frankfurt) and supplier (Sydney and Oregon), where
each region runs four instances, and each table is hosted by

the eight instances of the two regions; the other scale is that
all tables are partitioned across all regions, and each table is
also hosted by eight instances from the eight regions
respectively.

We compare the Q21 completion time achieved by differ-
ent QEP adjustment schemes under different partitioning
scales in Fig. 17, where Clarinet is absent, due to its lack of
support for tables partitioned across multiple regions. Clari-
net assumes a table is hosted within a single region. Com-
pared to the baseline, the Q21 completion time is reduced
by 27.1 percent (13.1 percent) for Turbo-SCTF, 14.7 percent
(14.6 percent) for Turbo-MDRF and 37 percent (25.9 percent)
for Turbo-MDRRF when each table is partitioned to two
regions (all eight regions). We have also observed a higher
performance variation when tables are partitioned to all
eight regions.

7 RELATED WORK

A number of recent studies have attempted to improve the
performance of geo-distributed data analytics (GDA). Turbo
adds to the rich literature on query optimization in both dis-
tributed database systems and big data analytics frame-
works. Essentially, Turbo shows how to enable the query
optimizer to react to runtime dynamics.

The sub-optimality of static query execution plans has
been a thorny problem. For traditional databases, progres-
sive optimization (POP) [16], [17] has been proposed to
detect cardinality estimation errors at runtime. For data ana-
lytics within a single datacenter, PILR [9] executes part of
the query as a “pilot run” for dynamic cost estimation.
RoPE [8] enables the re-optimization of query plans by
interposing instrumentation code into the job’s dataflow.

TABLE 4
Benchmark Data Locations

Table Location Table Location

lineitem Taiwan customer Frankfurt
region Singapore orders Sao Paulo
supplier Sydney nation Northern Virginia
part Belgium partsupp Oregon

Fig. 14. Query completion times.

Fig. 13. The completion time distributions of pairwise joins.
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Turbo leverages the interpretation from pairwise joins to
map-reduce stages and orchestrates query execution plans
across datacenters without refactoring the existing data ana-
lytic frameworks.

Most existing work has explored low-layer optimizations
to improve GDA query performance, such as data placement
and task scheduling. Iridium [6] seeks a tradeoff between data
locality and WAN bandwidth usage by data movement and
task scheduling. Geode [5] jointly exploits input data move-
ment and join algorithm selection to minimize WAN

bandwidth usage. WANalytics [30] optimizes and replicates
data to reduce total bandwidth usage. JetStream [7] uses data
aggregation and adaptive filtering to support data analytics.
SWAG [32] coordinates job scheduling across datacenters to
take advantage of data locality and improves GDA perfor-
mance. Graphene [34] packs and schedules tasks to reduce job
completion times and increases cluster throughput.

The solutions based on storage systems improve the perfor-
mance of GDA in terms of data locality, such as [5], [6], [7], [30].
They seek a tradeoff between data locality and WAN band-
width usage bymaking data placement decisions. The solutions
based on data processing engines such as [6], [30], [32], [33],
[34], [36] try to incorporate the awareness of underlying resour-
ces into task placement and job scheduling. The solutions based
on query optimizers such as [4], [5], select an optimal QEP from
candidate equivalent QEPs that differ in, e.g., their ordering of
joins in the query, according to the utilization and availability of
key resources such as network bandwidth. We summarize the
existingwork into the three categories, as in Table 5.

The closest work to us is Clarinet [4] andQOOP [35]. Clari-
net selects the optimal query execution plan based on the
WAN condition before the query is executed. Once a plan is
selected, Clarinet leaves it unchanged even under a varying
runtime environment. QOOP performs dynamic query re-
planning in reaction to resource changes of a single cluster,
while Turbo focuses on queries across multiple datacenters.
Turbo is a lightweight and non-intrusive system, while
QOOP refactors the whole data analytics stacks—cluster
scheduler, execution engine and query planner.

However, most of the existing solutions require the full
stack of the original data processing frameworks to be re-
engineered. Turbo has carefully designed amachine learning

Fig. 15. CDF of completion times.

Fig. 16. The Gantt chart of the query Q21.

Fig. 17. The Completion time of query Q21 on tables partitioned in two
geo-distributed scales.

TABLE 5
Related Work on Distributed Wide-Area Data Analytics

Related Work Data
Placement

Task
Scheduling

Plan
Optimization

Working
Mode

Geode [5] @ @ static
WANalytics
[30]

@ @ static

Iridium [6] @ @ static
SWAG [32] @ static
JetStream [7] @ static
Clarinet [4] @ @ static
Lube [33] @ dynamic
Graphene [34] @ static
QOOP [35] @ @ dynamic
Turbo @ dynamic
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module to enable online query planning non-intrusively. A
few efforts have been made to perform resource manage-
ment with machine learning techniques [36], [37], workload
classification [26], cluster configuration [38] and database
management system tuning [39].

8 CONCLUSION

In this paper, we have presented our design and implementa-
tion of Turbo, a lightweight and non-intrusive system that
orchestrates query planning for geo-distributed analytics. We
argue that, in order to optimize query completion times, it
is crucial for the query execution plan to be adaptive to
runtime dynamics, especially in wide-area networks. We
have designed a machine learning module, based on careful
choices of models and fine-tuned feature engineering. The
model can estimate the time cost as well as the intermediate
output size of each reduce and shuffle stage (including joins)
during query execution given a number of easily measurable
parameters, with an accuracy of over 95 percent. Based on
quick cost predictions made online in a pipelined fashion,
Turbo dynamically and greedily alters query execution plans
on-the-fly in response to bandwidth variations. Experiments
performed across geo-distributedGoogle Cloud regions show
that Turbo reduces the query completion times by up to 41
percent based on the TPC-H benchmark, in comparison to
default Spark SQL and state-of-the-art optimal static query
optimizers for geo-distributed analytics.
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