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Abstract—Federated learning (FL) has been gaining popular-
ity as a way to provide privacy-preserving data sharing for
the Internet of Medical Things (IoMT). As a complementary,
blockchain technology is used in recent literature to make FL
secure. However, existing blockchain-based FL (BFL) solutions
do not perform well when data in a BFL cluster are sparse. A
direct solution is to collect as many devices as possible to estab-
lish a large BFL cluster. However, these devices may locate in
geographically distant areas and be separated by great distance,
which further results in high communication latency. The high
latency will lead to BFL’s low system efficiency due to frequent
communications in the blockchain consensus. In this article, we
propose that the large cluster should be divided into multiple
smaller clusters, each in its own geographical area and organized
with a BFL. In this context, we propose CFL, a cross-cluster FL
system facilitated by the cross-chain technique. CFL connects
multiple BFL clusters, where only a few aggregated updates are
transmitted over long distances across clusters, thus improving
the system efficiency. The design of CFL focuses on a cross-chain
consensus protocol, which guarantees the model updates to be
exchanged securely across clusters. We carry out extensive exper-
iments to evaluate CFL in comparison with BFL, and show both
CFL’s feasibility and efficiency.

Index Terms—Blockchain, cross-chain technology, federated
learning (FL), Internet of Medical Things (IoMT).

I. INTRODUCTION

NOWADAYS, a growing number of medical devices are
connected to build a new network, namely, Internet of

Medical Things (IoMT) [1]. By aggregating the data gen-
erated in different devices, IoMT is expected to contribute
to a valuable machine learning (ML) model, which can be
useful in multiple scenarios, such as health monitoring, aux-
iliary diagnoses, and pathophoresis prediction [2]. However,
the health-related data in an IoMT device are usually closely
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related to people’s privacy, which cannot be shared or aggre-
gated casually [3]. To address it, federated learning (FL) can
be utilized [4], which enables the on-device training with-
out transferring the data outside the device. On the other
hand, the conventional FL framework relies on a central server
to aggregate the model updates and orchestrate the training
tasks, which is vulnerable to the malfunction of the central
server. Fortunately, the emerging blockchain technology makes
a complementary to it [5]. With a blockchain, the aggregation
of model updates and the orchestration of the training tasks
can be conducted in a distributed and secure manner [6].

However, the existing studies to combine the blockchain and
FL [blockchain-based FL (BFL)] mainly focus on the system
design and algorithm optimization [7], which ignore a critical
problem of data sparsity in a BFL cluster [8]. For example,
when the IoMT in a hospital comes into service for the first
time, it can only hold sparse data samples in its early stage.
Before the data accumulating to a large amount, the devices
in the hospital are incapable of acquiring a good model or
benefiting from ML. Besides, if the number of IoMT devices
in the hospital is small, it would be too long for the BFL
cluster to accumulate enough data.

A direct solution to enrich the data samples is to enlarge the
size of a BFL cluster, which covers as many devices as possi-
ble. These devices may locate in different hospitals, which are
far away from each other. Therefore, network latency between
devices may be very high. On the other hand, the blockchain
system deployed in the cluster requires frequent network com-
munications to reach a consensus. Taken together, resulted
from the frequent and high-latency communications, the con-
sensus efficiency and the corresponding system efficiency can
be fairly low. Besides, BFL requires the model updates to be
disseminated across the FL cluster. As Wang et al. pointed out,
the privacy data could be partially recovered from the model
updates [9]. As a result, the larger the cluster scope, the larger
the probability of data privacy leakage, especially when the
cluster is established across multiple hospitals.

To deal with the data sparsity and privacy leakage prob-
lems while providing high system efficiency, we propose a
cross-cluster FL framework via cross-chain technique (CFL)
in this article. Multiple small clusters instead of a large cluster
are built for geographically distant areas (e.g., hospitals). In
each cluster, BFL is conducted with the model updates being
aggregated. The aggregated updates are then exchanged across
clusters, which actually enriches the updates for each cluster.
Compared with the massive communications in BFL, only a
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few aggregated updates are transmitted over a long distance in
CFL. Therefore, the system efficiency can be improved largely.
Besides, the aggregated updates conceal the detailed updates
of each node, which can protect the data privacy better.

To enable the secure cross-cluster model exchange, we
design two consensus mechanisms of the blockchain, namely,
hasty consensus (HstCon) and deferred consensus (DefCon).
Both HstCon and DefCon involve two subprotocols, i.e., the
single-chain consensus and the cross-chain consensus. HstCon
can be considered as the basis of DefCon and easy to under-
stand, while it suffers from low system efficiency. The DefCon
mechanism is proposed to improve the system efficiency. In
particular, DefCon periodically elects a cluster representa-
tive to conduct the model aggregation, thus decreasing the
frequency of slow cross-chain consensus.

To evaluate our system, we implement the prototypes of
CFL and BFL, and make a comparison between them. The
experimental results demonstrate that CFL can increase the
model accuracy from 39.3% to 75.8% since it feeds more
updates into the model. Besides, CFL can speed up the model
convergence if the same amount of data is fed into the model.
The reason for it is that CFL aggregates the computing power
of multiple clusters in a training round.

In summary, our major contributions include the following.
1) We identify the difficulty in the existing BFL solutions,

namely, the problem of data sparsity and the problem of
low efficiency plus privacy leakage.

2) We propose CFL to deal with the difficulty by extending
the single-cluster FL to cross-cluster FL, which takes
advantage of cross-chain technology to provide secure
communications across clusters.

3) Prototypes of CFL are implemented and extensive exper-
iments are conducted to demonstrate its feasibility and
efficiency.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the preliminary background
of this article. Following that, we present the reason why the
existing BFL schemes cannot meet the requirements in the
IoMT scenario.

A. Background

With the availability of various wearable devices, medical
monitors, and environmental sensors, a new network named
IoMT comes into existence. As time goes by, IoMT plays a
more and more important role in the healthcare field, espe-
cially when it is integrated with the ML technology. However,
the conventional ML technology requires a collection of data
from different devices, which may lead to serious privacy leak-
age in the IoMT scenario, where the data are quite privacy
sensitive.

To protect users’ data privacy in IoMT, the FL technol-
ogy comes into researchers’ consideration. FL is envisaged
to conduct ML in a distributed manner without collecting the
data together [4]. Taking a round-by-round workflow, FL asks
each node to do a local training task in each round and then
aggregates the model updates for the next-round training. In

the vanilla design of FL, a centralized server is specified to
orchestrate the training tasks and aggregate the model updates.
However, this renders some centralization-related issues, such
as single-point failure and malicious behaviors.

To tackle the issues of a central server, blockchain tech-
nology is introduced to FL [10]. Stemmed from Bitcoin [11],
blockchain technology is expected to organize the peers to
cooperate in a decentralized fashion [5]. With the blockchain
system, the orchestration of training tasks and aggregation of
model updates can be conducted distributedly via the con-
sensus algorithm [12]. Besides, since the blockchain can be
considered as a tamper-evident ledger, the model updates
recorded on it are auditable and traceable, which will dis-
courage a peer from behaving arbitrarily. The BFL can be
modeled as follows. Assuming BFL is run in a hospital and
all the devices in the hospital make up a cluster. In the follow-
ing, we interchangeably use the term “node” to mean IoMT
“device” and “cluster” to mean “hospital.” Suppose the train-
ing data set is distributed among K nodes in a BFL cluster,
with each node ek possessing nk samples, where 1 ≤ k ≤ K.
The training objective of node ek is to minimize fk(w)

fk(w)
def= 1

nk

nk∑

m=1

l
(
xkm , ykm , w

)
(1)

where (xkm , ykm) denotes the sample indexed by m in node ek

and l(xkm , ykm , w) is the loss function to do the prediction on
this sample. Particularly, when the learning model is a deep
learning model, the gradient descent algorithm is utilized to
reduce the model loss. The calculation process is shown as
follows:

wt+1 ← wt − η∇fk(wt) (2)

where t and η denote the step number and learning rate of
gradient descent, respectively. ∇fk(wt) computes the gradients
of fk(wt).

Based on the model updates acquired by single-node learn-
ing, BFL tries to aggregate all the updates from all the nodes
in the cluster. Its training objective is set as follows:

g(w)
def=

K∑

k=1

nk

n
fk(w) (3)

where n is the total size of training data set samples. To find
the value of w which minimizes the loss function g(w), a gra-
dient aggregation method is proposed. To be more specific,
in this method, each node submits its local gradient, which is
aggregated by other nodes to generate a new model

wt+1 ← wt − η

K∑

k=1

nk

n
∇fk(wt). (4)

B. Motivation

In the scenario of IoMT [1], BFL is usually taken under
consideration in a limited space. A commonly taken example
is to deploy BFL in a hospital where all the devices are close to
each other and connected via a high-speed local area network
(LAN).
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Fig. 1. Simple solution to do BFL across two hospitals.

However, the BFL system designed for a limited space may
encounter some issues. First, there may be insufficient data set
samples to acquire a good model in such a small space, espe-
cially when the IoMT devices have just been put into use for a
short time. In this regard, the new devices have to experience a
long period, during which they cannot gain the benefits of ML
technology. To address it, an area with insufficient data could
probably turn to other areas for data supplement. Second, in
terms of an ML task, more data usually bring a better model.
Since there may be multiple areas holding the data with simi-
lar feature space or sample space, they can cooperate to create
a better model than any single-area one.

The issues above entice researchers to utilize data from dif-
ferent areas. A simple solution is to establish a large BFL
cluster, which collects massive devices dispersed in different
areas/hospitals, as exemplified by Fig. 1. The communication
between devices can be divided into two types: 1) intrahos-
pital and 2) interhospital. The former is implemented via the
high-speed LAN within a hospital, while the latter is supported
via the low-speed wide area network (WAN) across the hos-
pitals. In the BFL system, the blockchain consensus must be
done among the devices located in different hospitals. Since
interhospital communication may bring a long latency, it may
take a long time to reach the consensus and result in the slow
FL process. Therefore, establishing a large BFL cluster across
multiple hospitals seems to be impractical.

Fortunately, maybe we can look at the problem from another
angle. Since the BFL framework is more practical in a small
area (e.g., a hospital) to provide high efficiency, a poten-
tial direction is to run BFL in each hospital separately and
exchange BFL learning models across hospitals. In this regard,
the long-latency communications between hospitals can be
reduced by a substantial margin.

III. CFL DESIGN

To address the difficulties of data sparsity and high-latency
communication in BFL, we propose a cross-cluster FL frame-
work (i.e., CFL), which connects multiple BFL clusters to
build a learning model. Fig. 2 shows the system overview of
CFL, which also takes the scenario of two hospitals as an
example. More specifically, an instance of BFL is run in each
hospital and all the devices in a hospital make up a cluster.

Fig. 2. System overview of CFL across two hospitals.

At the end of each training round in FL, the model updates
are exchanged between clusters. In this section, we start with
a mathematical model of CFL. After that, we expand on the
design of the CFL framework. To facilitate the secure data
exchange, two sets of consensus mechanisms are proposed,
namely, HstCon and DefCon. The former can be considered
as the basis of the latter, while it suffers from low system effi-
ciency. In contrast, DefCon improves the system efficiency by
deferring and merging the consensus processes.

A. Mathematical Model

In our proposed CFL, we unite the model updates (e.g., gra-
dients in the deep learning model) of multiple BFL clusters
and thus exploit more data features to generate a better model.
Compared with the BFL made up of all the nodes across clus-
ters, CFL is expected to gain comparable model performance,
while it can work more efficiently. In this section, we describe
the mathematical model of CFL, which is based on the BFL
model presented in Section II-A.

Consider that there are M BFL clusters, each of which Ci

has a training data set containing ni samples, where 1 ≤ i ≤
M. In the following, we build the CFL model to connect M
BFL clusters. From the view of the whole cluster, the training
objective of CFL is the same as (3). To find the optimal w,
the gradient descent algorithm is also utilized. At each step
of gradient descent, w is computed by BFL in each cluster
according to (4). w is then exchanged between clusters, which
is aggregated by each cluster.

Compared with the gradient updates generated by (4) in
BFL, these aggregated updates in CFL are given by

wt+1 ← wt − η

M∑

i=1

ni

n

Ki∑

k=1

nik

ni
∇fik(wt)

= wt − η

M∑

i=1

Ki∑

k=1

nik

n
∇fik(wt)

= wt − η

K∑

k=1

nk

n
∇fk(wt) (5)
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Fig. 3. Example of cross-cluster gradient aggregation.

where Ki and K represent the number of nodes in Ci and
the total number of nodes across the clusters, respectively.
Besides, n denotes the number of samples in all the clusters.
Therefore, n =∑M

i=1 ni and K =∑M
i=1 Ki. By comparing the

last expression in (4) and (5), we can observe that the gradient
descent process in CFL is the same as that in BFL. In other
words, CFL can generate a model comparable to that of BFL
if they are run on top of the same data set samples.

B. Our Proposed Architecture

Fig. 3 depicts the overview of CFL, which demonstrates the
cross-cluster gradient aggregation between two hospitals. All
the IoMT devices in a hospital make up a cluster to conduct
FL and a permissioned blockchain system is deployed in each
cluster.

1) Cross-Cluster Gradients Aggregation: As exemplified in
Fig. 3, the gradients generated in hospital A are transmitted to
hospital B and then aggregated in the latter. Concretely speak-
ing, each device/node in hospital A does the on-device training
to generate a local model update (➊ FL training). Gradients
of the model update are then disseminated within the hospital,
which are then recorded on the blockchain ledger via the intra-
chain consensus for FL (➋ FL consensus). The gradients from
different devices are aggregated during the consensus process.
In fact, the above three steps experience a round of BFL in
hospital A.

Then, the aggregated updates are transmitted from hospi-
tal A to hospital B (➌ gradient exchange). Once receiving
the updates, the device in hospital B will do a dual valida-
tion against the updates, whose details will be presented in
Section IV. The correctness of the updates is confirmed by the
intrachain consensus for acceptance (➍ acceptance consensus),
which will be recorded as a transaction (receipt transaction)
on the blockchain ledger in hospital B. The receipt indicat-
ing the confirmation will be transmitted back to hospital A
(➎ receipt exchange), which is then validated by the devices
in hospital A. The validation results from different devices
are coordinated via the intrachain consensus for receipt (➏
receipt consensus), whose consensus results will be recorded
as another transaction on the ledger in hospital A.

Fig. 4. Structures of transactions.

2) Data Structures: Since the data structures related to
ML are identical to that in the conventional one, we focus on
the structures relevant to the blockchain system here. There
are mainly four types of transaction structures (i.e., gradient
transaction, confirmation transaction, application transaction,
and reward/punishment transaction), corresponding to different
consensus targets in CFL. The latter two types of transactions
are closely correlated with the DefCon protocol, which will be
presented in Section III-D. In general, different types of trans-
actions can be packaged in a block, where all the transactions
are organized as a Merkle tree.

The gradient transaction is proposed by each device after the
local on-device training, which contains the gradient updates,
as shown by ① in Fig. 4. It should be pointed out that
apart from the original gradient transactions proposed by the
devices, there is an additional transaction containing the aggre-
gated gradients, as the red part in ① shows. The confirmation
transaction is proposed by the block packager, which is used
for either the acceptance consensus or the receipt consensus.
Accordingly, a transaction of the confirmation type can include
either the gradients or receipts, as shown by ② and ③ in Fig. 4,
respectively.

C. Hasty Consensus: HstCon

The consensus process in CFL includes two subprotocols,
namely, the intrachain consensus and the interchain consen-
sus. The former can be implemented by the conventional
single-chain blockchain consensus (e.g., practical Byzantine
fault tolerance (PBFT) [13]), while the latter is implemented
by a two-phase cross-chain consensus (2PCC) mechanism.
2PCC enables the secure data exchange between two clusters,
which is inspired by the two-phase commit (2PC) protocol in
the database field [14]. The combination of the conventional
single-chain consensus and 2PCC is named as the HstCon pro-
tocol, since nodes in this protocol take action in haste once
they receive the model updates.

Fig. 5 demonstrates the workflow of the HstCon protocol.
Taking a close look at the 2PCC mechanism, it consists of
two phases: 1) prepare and 2) merge/discard. In the prepare
phase, for each cluster, the model updates received from the
other cluster are validated through the single-chain consensus.
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Fig. 5. Workflow of the HstCon algorithm.

More precisely, each device will validate the received updates
on the local data set, and send a merge/discard decision to
the remote cluster. Next, the devices in a cluster will do the
consensus based on the local validation result and the decision
from the remote, which starts the merge/discard phase. If both
the local result and the remote decision indicate the acceptance
of the received updates, the local updates and the received
updates will be merged as the parameters for the next-round
training. Otherwise, the local updates and the received updates
will not be merged. In this regard, the received updates will be
discarded by the cluster, and only the local updates are input
to the next-round training.

D. Deferred Consensus: DefCon

Although CFL with HstCon seems to work, it encounters
the serious challenge of low system efficiency. As can be seen
from Fig. 5, each round in HstCon involves three local con-
sensuses in each cluster. One consensus process is responsible
for aggregating the updates from different nodes in a clus-
ter, while the other two play the parts of the cross-cluster data
exchange. Since the consensus process in the blockchain takes
a long time, especially when the number of nodes is relatively
large, the system efficiency of CFL with HstCon can be quite
low.

To deal with this challenge, DefCon is proposed, which
introduces a representative for each cluster and devises a
corresponding reward/punishment mechanism. In general, to
weaken the bad effects of frequent consensuses, DefCon elects
a representative in each cluster to orchestrate intracluster
learning and coordinate intercluster learning. To prevent the
representative from doing evil, DefCon asks the representative
to mortgage some assets and establish the reward/punishment
mechanism according to its acts.

1) Election of Representative: The representative is elected
every k rounds. In other words, the tenure of a representative
is k rounds. At the end of a tenure, each peer can apply to
be the representative of the next tenure. By issuing an appli-
cation transaction, a peer becomes a representative candidate.

Fig. 6. Workflow of the DefCon algorithm.

The candidate has to mortgage some assets in the applica-
tion transaction. The mortgage value is in connection with
two aspects. First, the reward/punishment amount is positively
associated with the mortgage value, which will be detailed in
Section III-D3. Second, the election process of the representa-
tive relies on the mortgage value. Assume that the ith candidate
takes the assets of value mi as the mortgage, and all the mort-
gage values constitute a set Sm. Sm is then sorted by comparing
the mortgage values. Following this, the top t elements are
picked out to form a nomination pool. From the nomination
pool, the representative is finally selected with a random algo-
rithm. Presently, the random algorithm is simply implemented
by taking the hash of the last block to modulo t. All the
application transactions will be recorded in the blockchain, to
make the election process verifiable and traceable. Compared
with the gradient or confirmation transactions, the data struc-
tures of the application transactions add two additional fields.
One denotes the value mortgaged by the node, and the other
represents the number of terms this node is running for.

2) Workflow With DefCon: Fig. 6 depicts the DefCon
workflow with the representative to improve system efficiency.
The workflow is divided into successive cycles, each of which
corresponds to the tenure of a representative. A cycle con-
sists of k rounds of tentative cross-cluster learning tasks and
a modified 2PCC (i.e., 2PCC*) process. The latter is used to
confirm the results of tentative learning tasks in this cycle.
Different from a cross-cluster FL round in HstCon, a round
in DefCon involves neither the intrachain consensus nor the
interchain consensus. Instead, the representative is responsible
for aggregating the updates from different nodes in this clus-
ter. Besides, it also makes the decision to merge or discard
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the updates from the remote cluster. Since there is no ineffi-
cient consensus in a round, the system efficiency of CFL with
DefCon is expected to be improved largely.

At the end of a cycle, a 2PCC* process is conducted to
examine the acts of the representative in this cycle. As the
gray box in Fig. 6 shows, the 2PCC* process involves two
steps, which is similar to the original 2PCC process. Both of
these two steps rely on the local consensus in a cluster. In the
“prepare” step, all the peers in a cluster cooperate to reach a
consensus to accept or reject all the representative’s operations
in the past k rounds. To be more specific, each peer will do
two validations. One validates the model before the starting
of this cycle, while the other validates the model at the end
of this cycle. If the latter validation results are better than the
former ones, the peer will vote to accept all the past operations.
Otherwise, the peer will vote to reject it. Besides, the election
of the new representative is conducted in the prepare step.

The consensus results in the prepare step will be sent to
the remote cluster, which brings the system into the second
step (i.e., “commit/rollback” step). If both of the consensus
results from local and remote clusters indicate an acceptance,
the operations in the past cycle will be committed, and the
system will enter into a new cycle. Otherwise, the operations
in the past cycle will be rolled back, and all the operations
in the past cycle will be invalid. It should be noted that the
rollback is not a fork on the blockchain. Only the updates in
the past cycle are discarded, while all the operations in the
past cycle are kept on the blockchain ledger.

3) Reward/Punishment Mechanism: To stimulate the repre-
sentative to behave honestly, a reward/punishment mechanism
is introduced in DefCon. As presented in Section III-D1, the
representative has to mortgage some assets on the blockchain.
Let the value of mortgage assets as v. Recall the prepare step in
Section III-D2, each peer will figure out two validation results.
The validation results will be aggregated via the blockchain
consensus. Let the two validation results after consensus be tb
and ta, respectively. If tb is larger than ta and the difference
is more than a threshold value λ, the representative’s opera-
tions will be sentenced as useless, and all the mortgage value
will be confiscated. If tb is larger than ta while the differ-
ence is less than λ, the operations of the representative will
also be sentenced as useless while the mortgage value will not
be confiscated. The reason for it is that the validation results
may include some errors, which should not be blamed on the
representative. If ta is larger than tb, the rewards to the rep-
resentative are positively associated with both the mortgage
value and the difference value of ta and tb. The calculation
of the reward/punishment value rp is expressed more clearly
by (6), where μ is a factor to affect the value

rp =
⎧
⎨

⎩

−v, tb − ta > λ

0, 0 ≤ tb − ta ≤ λ

μ · v · (ta − tb), ta > tb.
(6)

IV. SECURITY ANALYSIS

In this section, we do the analysis of both system secu-
rity and data security. As for the former, we analyze if CFL
can resist the attacks, in particular, the poisoning attacks. In

terms of the latter, we investigate if CFL can provide higher
protection of data privacy.

The problem of poisoning attacks within a BFL cluster
has been studied in Krum [15] and FABA [16]. Therefore,
we mainly consider the poisoning attacks across the clusters.
To protect the model from potential poisoning attacks, CFL
demands the representative to do dual validations. One recurs
to the verifiability of the blockchain system, while the other
relies on the local validation of ML.

CFL takes the aggregated updates as a leaf node to build
a Merkle tree, as shown in Fig. 4. When performing a round
of cross-cluster FL, the Merkle branches related to the aggre-
gated updates are exchanged between clusters. With the aid
of the Merkle branch, the updates received from the remote
cluster can be verified locally. Since there may be an eclipse
attack, the representative is asked to validate the updates from
the perspective of model performance. If the validation result
is poor, the updates will be discarded by the representative
directly. Otherwise, the updates will be merged with the local
updates. In this regard, the possibility of poisoning attacks can
be reduced to a very low level.

According to the findings of Wang et al. [9], data pri-
vacy could be partially recovered from the model updates
exchanged between devices. In BFL of a large cluster, which
covers devices in geographically distant areas (e.g., hospitals),
the model updates of each device have to be disseminated
across the cluster. For example, the health status recorded by
a device in a hospital has to be transmitted to another hospital,
which increases the probability of privacy leakage. In con-
trast, CFL only transmits the aggregated updates rather than
the original ones outside the hospital, the updates detail of a
particular device are concealed. In this way, the data privacy
of the devices can be protected better.

V. NUMERICAL RESULTS

To evaluate our framework’s effectiveness, we have
implemented prototypes of CFL on our server machines.
Corresponding to different consensus mechanisms designed
for CFL, two prototypes are implemented, respectively,
namely, CFL-HstCon and CFL-DefCon. Since CFL-DefCon is
more efficient than CFL-HstCon, our experiments are mainly
conducted on CFL-DefCon. For the rest of this section, unless
otherwise stated, we refer to CFL-DefCon as CFL for short.

Each machine plays as a node/device in our experiments,
which is consisted of two eight-core Intel Xeon E5-2670
CPUs, 64-GB memory, and 8-TB hard disks, with CentOS
7.2 as the operating system. The nodes are located in two
racks, each of which represents a hospital and contains 13
nodes. Nodes in a rack are connected via the gigabit network,
while the nodes across racks are connected via the simu-
lated 100-Mb network. To simulate the long distance between
two groups/hospitals, an extra latency of 200 ms is added to
the cross-rack network. The blockchain system deployed is a
permissioned blockchain, with PBFT as the consensus algo-
rithm [13]. We take image recognization as the learning task,
which is a common requirement in the scenario of IoMT. In
our experiments, we run AlexNet [17] on the CIFAR-10 data
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Fig. 7. Comparison of model performance. (a) Accuracy by the rounds.
(b) Loss by the rounds.

set.1 The evaluation of CFL is conducted from three aspects,
including model performance, convergence speed, and system
latency.

A. Model Performance

In this section, we compare the model performance between
BFL and CFL. The CIFAR-10 data set is divided into two
shards, each of which is fed into a rack. In a rack, the data set
shard is distributed among 13 nodes at random. As for BFL,
we establish clusters of different sizes, namely, BFL-13 and
BFL-26. The former comprises 13 nodes in a rack, while the
latter covers all the 26 nodes in two racks. In contrast, CFL
is established by connecting two systems of BFL-13, each of
which is run in a rack. In this way, the size of the data set in
CFL is the same as that of BFL-26, while it is about twice as
large as that of BFL-13. Each group of experiments is repeated
five times to decrease experimental errors.

Fig. 7 shows the experimental results, including a subfigure
for the accuracy and a subfigure for the loss. Each subfigure
plots the average value of five experiments, with the round
number as the x-axis and the testing result as the y-axis.
Compared with BFL-13, it is easy to find that the model
performance can be improved by CFL by a substantial mar-
gin. More specifically, the accuracy increases from 39.3% to
75.8%, while the loss decreases from 1.65 to 0.73. The main
reason for the improvement is that the data in different racks
can be utilized by CFL to acquire a better model. Besides, by
comparing CFL with BFL-26, we can find that their model
performance is close to each other. That is to say, CFL is
comparable to BFL of the same size.

B. Convergence Speed

To show if the CFL framework can accelerate the model
convergence, we have the data set in a single BFL be the same
as the data set in CFL. We feed the entire CIFAR-10 data set to
CFL, BFL-13, and BFL-26 systems separately. In each system,
the data set is also distributed among all the nodes randomly.
We also repeat each group of experiments five times, whose
average results are shown in Fig. 8.

As can be seen from Fig. 8, after a long training period, all
of CFL, BFL-13, and BFL-26 can bring the model to a similar
accuracy and a close loss. The reason is that either CFL or
BFL possesses the same data set. However, it takes BFL-13
over 315 rounds to achieve the model convergence, while the
time taken by CFL is about 150 rounds, which is similar to

1https://www.cs.toronto.edu/kriz/cifar.html

Fig. 8. Comparison of the convergence speed. (a) Accuracy by the rounds.
(b) Loss by the rounds.

BFL-26. To sum up, CFL can speed up the model conver-
gence, compared with the BFL of a small size. The reason is
that CFL aggregates the efforts from multiple racks/hospitals,
which equivalently boosts the computing power for the model.
Although BFL-26 also converges the model quickly from the
view of rounds, it takes a long time to finish each round, which
reduces the overall system efficiency.

C. System Latency

This section compares the overall system latency between
different models. The system latency is defined as the elapsed
time for the specific number of training rounds to finish.

We compare the latency taken by BFL-26, CFL-HstCon, and
CFL, as the learning process goes on. Fig. 9 depicts the elapsed
time in function of the rounds, which is divided into three
parts: 1) training time; 2) consensus time; and 3) other time.
The consensus time involves the consensus processes both in
a chain and across the chains. By comparing bars of different
systems, we can find that BFL across two racks (i.e., BFL-26)
takes the highest latency, while CFL takes the lowest. In par-
ticular, when 80 rounds of training are finished, the latency
taken by CFL is only 30.6% as large as that by BFL-26.
The reason for BFL’s high latency is its frequent communi-
cations between racks, which are required by the consensus
algorithm. This can also be demonstrated by the consensus
time of BFL-26 in Fig. 9. In contrast, CFL reduces the cross-
rack communication by a substantial margin, which decreases
the system latency. Besides, by comparing the system latency
between CFL-HstCon and CFL, we can find that CFL also
outperforms CFL-HstCon largely, which mainly optimizes the
consensus time. This bears out the effectiveness of the DefCon
protocol.

VI. RELATED WORK

There are already several studies to combine FL and
blockchain technologies. However, almost all of these works
only take the system integration or algorithm optimization into
consideration, which ignores the problem of data sparsity. On
the other hand, the existing cross-chain technology cannot be
directly adopted to connect different FL clusters, on account
of its inefficiency or centralization problem. In this section,
we summarize these works and talk about the gap between
them and ours.

A. Blockchain-Based FL

Due to its decentralization and traceability, blockchain tech-
nology has been widely studied to make complements to FL.
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Fig. 9. Comparison of the system latency.

The application scenarios where BFL is applied vary from
Internet of Vehicles (IoV) [18], through Industrial Internet of
Things (IIoT) [19] to mobile-edge computing (MEC) [20],
whose design objectives include robustness improvement [21]
and the privacy protection [19].

In particular, Pokhrel and Choi [18], Bao et al. [21],
and Kim et al. [22] proposed an architecture to enable FL
in a totally distributed manner, respectively. By introducing
the compensation mechanism, Kim et al. further encouraged
devices with more data to contribute more to the global model.
However, all of them ignore the fundamental problem that
all the devices in a cluster may possess a small number of
data samples. Lu et al. [19] unified the FL tasks and consen-
sus computing tasks to implement the privacy-preserved data
sharing in IIoT. However, they only consider the algorithm
optimization, without thinking about the possible problem of
data sparsity in an FL cluster.

To sum up, all the existing works make a hypothesis that
the data in a cluster are abundant enough to build a good
model. Unfortunately, this hypothesis cannot always be satis-
fied. Moreover, existing works try to collect all the nodes into
a cluster and organize them as a single blockchain. This can
bring higher communication overhead since the nodes may
scatter over a large area.

B. Cross-Chain Technology

To exchange data among different blockchain systems,
various cross-chain technologies are proposed [23]. These
technologies can be divided into three categories: 1) notary;
2) sidechain/relay; and 3) hash-locking [24].

The notary scheme relies on a group of notaries to coor-
dinate the actions in different chains. However, it brings
the additional problem of centralization. In particular, if the
notaries fail to work or behave maliciously, the state in differ-
ent chains would be inconsistent. The sidechain/relay scheme
enables one chain to monitor the actions on another chain and
takes the corresponding actions. Each action in a chain must be
agreed upon by the consensus before the other chains accept
it. This reduces the efficiency of the interchain operations
largely since the consensus usually brings a long latency. The
hash-locking scheme supports cross-chain atomic operations
without relying on any third-party entities. However, it has

a limited usage scenario, which can particularly facilitate the
assets exchange. In conclusion, the existing cross-chain tech-
nologies cannot be adopted in our cross-cluster FL directly,
due to the problems of either centralization or inefficiency.

VII. CONCLUSION AND DISCUSSION

BFL technology is expected to open up massive possibili-
ties for the IoMT scenario. However, the existing BFL schemes
suffer from the problems of data sparsity and poor efficiency.
In this article, we put forward to divide the nodes scattered
over a large area into multiple small BFL clusters and pro-
pose CFL to connect these clusters. The aggregated updates
are exchanged between clusters to enrich the data samples for
each cluster. Since the size of aggregated updates is small, the
communication overhead is reduced and the system efficiency
is improved largely.

From another point of view, although BFL and CFL can
improve the training results by exchanging model updates,
they may bring heavy burdens of computation and communica-
tion on these devices. In contrast, most IoMT devices usually
possess constrained resources, which can hardly bear these
burdens. To deal with this problem, the technology of edge
computing [25], [26] could be a good option. In other words,
maybe we can attempt to combine CFL and edge computing
technology in our future work.
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