
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021 1415

Joint Traffic-Aware Consolidated Middleboxes
Selection and Routing in Distributed SDNs

Guiyan Liu , Songtao Guo , Senior Member, IEEE, Baochun Li , Fellow, IEEE, and Chao Chen

Abstract—Software middlebox-based services can be flexibly
managed by software defined networking (SDN) and network
function virtualization (NFV). Meanwhile, traffic routing can be
simplified and the number of routing rules in the SDN-enabled
switches can be reduced through the consolidated middlebox
model. However, different network functions in middleboxes may
alter the volume of processed traffic, so high congestion may
occur in specific bottleneck links if middlebox selection and traf-
fic routing are not well jointly planned. Besides, in a statically
switch-controller configured SDN, traffic dynamics will not only
affect the link load in the data plane, but also pose a challenge
to controller load balancing. Therefore, it’s necessary to achieve
better quality-of-service (QoS) performance in both control and
data planes. In this article, we first formulate this problem as a
joint traffic-aware consolidated middleboxes selection and rout-
ing (JTMSR) problem and prove its NP-hardness. Then, we
design a two-phase algorithm to achieve the controller and link
load balancing where the first phase is to redirect selected flows
by applying wildcard rules and the second phase is to find
fine-grained routing path by a rounding-based algorithm with
bounded approximation factor. Finally, compared with the exist-
ing algorithms through extensive simulations, it demonstrates
that our method has near-optimal controller load balancing and
link load balancing performance and can improve response time
by 9.7% compared with static scheme.

Index Terms—Software defined networking, consolidated mid-
dlebox, load balancing, rounding, scalability.

I. INTRODUCTION

CURRENTLY, software defined networking (SDN) has
been well accepted for network resource management

owe to the separation of control and data planes, and dis-
tributed controller architectures have been widely adopted
to improve the scalability of SDN [1]. To improve network
performance and realize a series of network policies such
as intrusion detection system, traffic engineering (TE), and

Manuscript received March 20, 2020; revised October 5, 2020 and
December 7, 2020; accepted December 22, 2020. Date of publication
December 30, 2020; date of current version June 10, 2021. This work was sup-
ported by the National Key R&D Program of China (2018YFB0803400), the
National Natural Science Foundation of China (No. 61772432, 61772433),
the Technological Innovation and Application Demonstration Projects of
Chongqing (cstc2018jszx-cyztzxX0014), the Fundamental Research Funds
for the Central Universities (2019CDYGZD004) and Fundamental Research
Funds for the Central Universities (2020CDCGJSJ071,2020CDCGJSJ038).
The associate editor coordinating the review of this article and approving
it for publication was C. Assi. (Corresponding author: Songtao Guo.)

Guiyan Liu, Songtao Guo, and Chao Chen are with the College of
Computer Science, Chongqing University, Chongqing 400044, China (e-mail:
songtao_guo@163.com).

Baochun Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON M5S3G4, Canada.

Digital Object Identifier 10.1109/TNSM.2020.3047391

quality-of-service (QoS) control, network service providers
may apply middlebox based services such as firewall and deep
packet inspection. However, traditional middlebox is a stan-
dalone physical device that typically performs one network
function and difficult to add new functionality, so it is a sig-
nificant challenge to manage middleboxes [2]. Along with
network function virtualization (NFV), middleboxes are inte-
grated and implemented into SDN-capable network [3]–[5],
which provides the efficient and flexible management for soft-
ware middleboxes by moving management functions out of
the hardware and placing them in a centralized controller.
Therefore, middlebox functions can be quickly and effectively
established and added on demand in the network.

Currently, NFV framework can be divided into three
forms including thread-based one, VM-based one and others
such as element-based framework and host-based framework.
CoMb [3] is a pioneer NFV framework that can host VNFs
contained in threads while Slick [6] implemented VNFs as
a chain of functions placed across the network. But VM-
based NFV frameworks are studied most because they contain
VNFs in VMs for isolation, which is an important property
for both performance and cloud security [7]. Middleboxes
can also be implemented using VMs that can be flexibly
installed at the physical machines (PMs) and virtualization
enables implementation of the consolidated middleboxes [3],
where a flow receives all of its required service functions at a
single machine. The consolidated middlebox model can sim-
plify traffic routing and reduce the number of routing rules
in the switches. Thus, numerous works such as optimization
strategies for middlebox scheduling [4], [8]–[12] and place-
ment [13]–[21] have been extensively done by research
communities.

However, there still remain some challenges when schedul-
ing middleboxes. Generally, the same type of middleboxes
are usually deployed with multiple copies at various loca-
tions in a large-scale network, so the hardware resources such
as CPU and memory cannot be amortized across multiple
flows [22], [23]. Some existing works [9]–[12] designed and
proposed middleboxes selection and routing strategies with
different optimization objectives to avoid high congestion in
specific bottleneck links, but when selecting middleboxes, one
important point is neglected for these works that most middle-
boxes are traffic processing devices which may significantly
change the volume of processed flows [13]–[15]. For example,
Citrix CloudBridge WAN optimizer may compress traffic to
20% of its original volume before sending to the next hop and
stateless transport tunneling (STT) proxy adds 76 bytes to each

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6491-9556
https://orcid.org/0000-0001-6741-4871
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2094-9734

1416 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 1. Illustration of different methods for routing f3 to avoid a hot spot among controllers and link congestion in SDN middlebox-based network. The
network is mainly composed of two parts: a set of controllers {C0,C1,C2} and six OpenFlow enabled switches {V1,V2,V3,V4,V5,V6}. PM is located
at each switch via high-speed optical link. The processing capacity of controller is 1500 request time unit and there are three flows to be routed. The dotted
grey line indicates the connection between the switch and its master controller. The blue, red and green lines respectively indicate the request paths of flow
f1, f2, f3. (a) f3 handled by C1 (b) f3 handled by C2, V4 reports to C2 (c) f3 handled by C2, V5 reports to C2.

processed packet. Another point is that these strategies mainly
focused on optimizing QoS in a single controller which has
limited processing capacity and easily becomes bottleneck of
SDN, further blocking flows and degrading user experience.

To address above limitations, multiple controllers are used to
cooperatively manage amount of switches/flows in the network
to avoid single-controller failure and improve scalability. But
one key challenge in multiple SDN controllers is how to avoid
load imbalance caused by the uneven distribution of network
traffic. Static mapping between switches and controllers results
in long and highly varying controller response time [24],
so dynamic assignment or switch migration [24]–[27] has
been proposed to balance controller overhead, but the cost
of switch migration is actually high (e.g., long latency and
complex migration protocol) and frequent manipulation is not
allowed [28]. To avoid switch migration cost, another way
to overcome controller load imbalance is deploying wildcard
rules on switches in advance to implement flow redirecting,
which refers to redirect matched flows to other switches that
will report the header of packets of this flow to the associ-
ated controllers [29]. In Fig. 1(a), f1 and f3 are handled by
C1 while f2 can be handled by C2 by pre-installing wildcard
rules on V2 and V4, but this may cause a hot spot on C1.
Furthermore, f3 can be handled by C2 depicted in Fig. 1(b)
through pre-installing wildcard rules on V4, but congestion
may occur on the bottleneck link (V2,V4) when some mid-
dlebox functions in VMs alter the flow sizes. Therefore, it’s
necessary to take both controller load balancing and link load
balancing into account. The work [28] explored load balance
in both control and data planes but they ignored the network
policy.

Different from above works, we study both controller load
balancing and link load balancing while taking the traffic rate
effect of middleboxes into account. The key contributions are
summarized as follows.

1) First, we formulate the load balance problem as a joint
traffic-aware consolidated middleboxes selection and
routing (JTMSR) problem and prove its NP-hardness.
The traffic rate changing of middleboxes is considered
when formulating JTMSR problem.

2) Then, we design a two-phase RL_RFRD (Flow
Redirecting by Root Controller (R_FR) and Rounding-
based Flow Directing by Local Decision Controller
(L_RD)) algorithm to solve JTMSR where the first phase
properly adopts wildcard rules to redirect selected flows
and proposes R_FR algorithm while the second phase
formulates a sub-problem of JTMSR called s-JTMSR
and proposes a fast heuristic rounding-based algo-
rithm L_RD to find fine-balanced middleboxes selection
and routing path for each flow. The approximation
performance of both R_FR and L_RD is respectively
analyzed.

3) Finally, we evaluate the performance of the proposed
algorithm in ITALYNET and Fat-tree topologies.
Simulation results show that RL_RFRD has near-
optimal load-balancing performance, and it can reduce
average response time by about 9.7% compared with
other existing algorithms.

The rest of this article is organized as follows. Section II
surveys some related works. Then, system model and
detailed problem formulation are described in Section III.
In Section IV, we propose a two-phase algorithm to solve
problem and analyze the approximate performance. Next,
we evaluate the performance of the proposed algorithm in
Section V. Finally, Section VI concludes this article and
discusses the future work.

II. RELATED WORK

In this section, we will discuss the existing related works
on TE in middlebox-supported physical networks and switch
migration in multiple controllers.

A. TE in Middlebox-Supported Physical Networks

SIMPLE [4] presented a SDN-based policy enforcement
layer for middlebox specific traffic steering, but the number
and position of middleboxes are fixed after network initial-
ization, leading to inefficient resource utilization in traffic
changing. So some works on SDN-based middlebox placement
are emerged. Ma et al., [13]–[15] formulated this problem

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1417

TABLE I
OBJECTIVE-BASED CLASSIFICATION OF MIDDLEBOX PLACEMENT AND ROUTING APPROACHES

and designed a placement solution, Liu et al., [16] also stud-
ied this problem to improve service chaining performance and
Bari et al., [32] tried to optimize network operational cost
where middlebox functions refer to VNFs and operational
cost includes deploy cost, energy cost and cost of forward-
ing traffic. In [20], Kuo et al. proposed a chain deployment
algorithm to follow the guidance of the link and server usage
and explored each VNF in service chain whether to use addi-
tional server resources while in [21], Luizelli et al. proposed
a deployment algorithm for service chains by minimizing the
actual cost of virtual switching and mentioned the switching
cost of a given service chain and [34] evaluates switching cost
when performing service chain.

In addition, some works on joint VNF placement and rout-
ing are also studied with different objectives such as minimize
the VNF deployment cost [33], maximize the amount of pro-
cessed requests [30] and aggregate throughput [31]. Moreover,
in [9] and [10], the authors addressed resource constraints
in the network and proposed SDN-based routing with mid-
dleboxes. Furthermore, Alqarni et al., [8] considered load
balance of middleboxes with the objective of minimizing the
communication energy cost of VM pairs, Huang et al., [11]
studied a joint optimization of middlebox selection and rout-
ing problem to maximize the throughput in SDN network and
Duan et al., [12] proposed a software-based middlebox scheme
to minimize transmission latency. In addition, the authors
in [17]–[19] aimed not only to determine the optimal location
for placing VNFs, but also minimize the resource utilization
with different objectives. Table I summarizes above works with
different objectives.

There are also some pioneering works on virtual network
embedding (VNE), but the problem of VNE is a little different
from our work, where the problem refers to allocate efficient
substrate resource to incoming network functions while the
consolidated middleboxes in this article are placed at the fixed
locations and the aim is to select middleboxes and find the
routing path in multiple SDNs.

B. Switch Migration in Multiple Controllers

Switch migration or dynamic assignment can avoid the
controller load imbalance in multiple SDN controllers by per-
mitting one switch to change its connected controller from
the original one to the target one. In [25], Cheng et al.
designed the maximum resource utilization migration algo-
rithm and randomly selected a switch to migrate by overloaded
controller, but this overloaded controller may be overloaded
again after migration. Wang et al., [26] pursued the effi-
ciency of switch migration, but the controller response time
will increase caused by selecting a reasonable migration pair-
ing. In addition, Wang et al., [24], [35] proposed a dynamic
SDN controller assignment scheme in data center networks

with the aim to balance the controller load while keeping the
controller response time low. But these works ignored the over-
head caused by switch migration. Xu et al., [27] designed a
dynamic switch migration method to achieve controller load
balance with small migration cost. However, the cost of switch
migration is actually high and frequent manipulation is not
allowed [28].

Besides, some other researchers proposed to deploy default
paths in advance to minimize controller response time [29]
and designed an efficient optimization strategy associated with
NFV to overcome resilience among multiple controllers [36],
and He et al., [37] designed dynamic controller plane by
considering controller migration and switch reassignment and
solved this problem in an online way with the advantage of
simulated annealing technique. Motivated by [29], wildcard
rules are chose and applied in this article to achieve both con-
troller load balancing and link load balancing. The authors
in [28] have also explored a new scheme to achieve both con-
troller and link load balancing in SDN, but routing policy
requirement is ignored when scheduling flows in this work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will describe the system model,
define joint traffic-aware consolidated middleboxes selection
and routing (JTMSR) problem and prove its NP-Hardness.
Commonly used variables and notations in this article are
summarized in Table II.

A. System Model

Our system model is built on the hierarchical control plane
structure [38], which requires a global view of the network to
achieve an optimal allocation of controller resource as shown
in Fig. 1. The control plane includes a root controller (RC)
and a set of local controllers, and each switch in data plane is
connected to one master local controller (LC). RC will peri-
odically determine the set of flows to be redirected and assign
the wildcards to corresponding SDN-enabled switches based
on the statistics information, e.g., link load and the number of
flow entries, collected by each LC while each LC will dispatch
user requests by allocating optimal routing path, installing for-
warding rules into the forwarding tables in the switches, and
assigning the middleboxes for the requests to PMs. Note that
the proposed strategy in hierarchical control plane structure
can also be employed in flat control plane [39] by applying
a leader election algorithm to choose the central controller,
which will be discussed in Section IV-C.

1) Network Model and Resources: In control plane, it con-
sists of a RC C0 and set of local controllers C associated with
C0. Each LC c ∈ C has the processing capacity denoted as
αc in terms of the number of requests it can handle at one

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1418 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

TABLE II
LIST OF COMMONLY USED VARIABLES AND NOTATIONS

time unit. From the view of data plane, the network topology
can be modeled by G = (V,E), where V and E are the node
set and edge set, respectively. Each node u ∈ V denotes a
SDN-enabled switch while each edge (u,v) ∈ E represents a
link from switch u to switch v. For each LC c ∈ C, the set of
its connected switches is denoted by V c .

Let Vp denote the set of switches that directly connect to the
PMs and are able to implement middleboxes as VMs. Since
each switch usually connects to PM through a high-speed opti-
cal link, the latency between them is negligible. We assume
that the attached PM for a switch will be used interchange-
ably. Each switch u ∈ V is equipped with a TCAM forwarding
table that can accommodate at most Tu rules for flow routing
and let τf be the number of rules in the routing solution for
flow f. Additionally, each PM attached to a switch u ∈ Vp

has limited capacity resource Pu . If switch u ∈ V \Vp , then
Pu = 0. Similarly, each link (u, v) ∈ E has a bandwidth
capacity B(u,v) ≥ 0, i.e., the available bandwidth.

2) Network Workflow: Following [14], [29], we concen-
trate on the persistent and large-size elephant flows in this
article. This is because large size flows play a major role
in the network traffic and it is beneficial to help balance the
entire network by optimizing them efficiently while mice flows
are transient and may leave network before the calculated
optimization scheme. In the network, a set of macroflows is
denoted by F and each macroflow f ∈ F is represented as a
4-tuple (sf , tf , df ,nf), where sf and tf are source and des-
tination switches, respectively, df is the initial traffic rate at

the ingress point and nf is the number of flow requests to be
handled. Each flow f will be assigned a set of potentially redi-
recting paths Pf which are pre-calculated by root controller.
A set of feasible paths Pf from sf to tf is defined as follows:
if |sf v ′|+ |v ′tf | ≤ (1 + �)|sf tf |, then the path p’ from sf to
tf via switch v’ belongs to Pf , i.e., p′ ∈ Pf , where � is pre-
defined constant, such as 0.5, and |sf tf | is the minimum hop
number between two switches sf and tf . Generally, these fea-
sible paths which can be found by the shortest path algorithm
are non-loop paths.

3) Network Functions: Virtualization enables implementa-
tion of the consolidated middleboxes and it assumes that all
required network functions of each flow are obtained at a sin-
gle PM and represented by a service chain mf which denotes
a sequence of network functions that are chained together and
has to be traversed in the specified order. Following [3], [4],
[9], [10], [40], we assume that each middlebox function in mf
is running at a single VM and different VMs serving different
requests can be consolidated to a single PM. Specifically, when
the flow f arrives at the PM hosting the VM for its service
chain mf , it will be directed to the VM and the functions in mf
are applied in the specified order. Thus, performing the func-
tions in mf will consume the computing network resource Pu

f
for f of a PM attached to the switch u ∈ Vp . Let Vm ⊆ Vp

be the set of switches that can perform mf .
Additionally, it is noted that some middlebox function may

alter the traffic rate of flow on the link load [10], [13], [14].
In other words, traffic rate of flow increases if encryption
is applied, while it decreases if compression is applied. We
thereby define εf > 0 as the ratio between the traffic rate
of f before and after processing by VM, where the value of
εf is given and can be derived from historical traffic [41].
We use du−

f and du+
f to denote the traffic rate of flow f

before entering and leaving switch u, respectively. Note that
dsf −
f = df . If service chain mf is processed by VM at switch

u for short, then du+
f = du−

f · εf . For convenience, we use

d (u,v)
f = du+

f = dv−
f to represent the traffic rate of f on its

path link (u,v). Therefore, admission of flow f involves rout-
ing the traffic from sf to tf via a path l ∈ Pf subject to the
constraints df and mf .

4) Controller Load Model: Following [24], [29], we con-
sider a discrete time model where the length of time slot
matches the timescale when switch requests can be precisely
recorded. Each flow request is required to be sent to at least
one controller, so the number of flows, that will be reported
to the associated controller c ∈ C by switch u in slot t, is
denoted by λu(t). Then, the load of controller c is

θc(t) =
∑

u∈V c

λu(t) (1)

Without confusion, we omit the parameter t in the variables λ
and θc in the following description.

B. Problem Formulation

In order to formally define JTMSR problem, we will first
introduce some variables, and then give the objectives and
constraints.

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1419

Generally, middlebox functions mapped on the switches that
directly connected to PMs are given in advance, and the same
type of middleboxes are deployed with multiple copies at var-
ious locations. This scenario is practical in reality [11]. We
define a binary variable xul

f as follows to indicate whether the
switch u along path l that is able to perform mf for flow f is
selected,

xul
f =

⎧
⎨

⎩

1, if mf is running on switch u ∈ Vm

along path l .
0, otherwise.

(2)

Generally, the optimal routing path l for each flow is
assigned by controller. However, to reduce the controller
response time, the wildcards are wildly used for large size
flows, and potentially flow redirecting path set Pf can be
pre-calculated [29]. Thus, the path l for each flow generally
consists of two parts: flow redirecting path and flow direct-
ing path. For uniform description, a special path φf is added
to set P f , in order to denote whether this macroflow is redi-
rected. If φf is selected, it means that this flow will not be
redirected. In this case, the φf is the flow directing path for
flow f. Therefore, we define a binary variable y l for routing
path selection as follows:

y l =
{

1, if path l is selected for flow routing.
0, otherwise. (3)

For each flow f, it will be routed through one potential path
by controller at most, which is denoted as

∑

l∈Pf

y l = 1 ∀f ∈ F (4)

Then, the number of processing flows that will be reported
to each LC by switch u ∈ V is represented by

λu =
∑

u=last(l):l∈Pf

y l · nf ∀u ∈ V ∀f ∈ F (5)

where last(l) denotes the last switch of path l, and the number
of processing flows on each LC cannot exceed the capacity,
which is expressed as

θc =
∑

u∈Vc

λu ≤ αc ∀c ∈ C (6)

Thus, the maximum load difference ratio η1 among con-
trollers is calculated by

η1 =
|C|∑
c∈C θc

(max θc −min θc) ∀c ∈ C (7)

Note that the max and min values indicate the maximum and
minimum load of controller. They are calculated and identified
by root controller (RC) and not linearized to LP version. LP
version is used to solve link load balancing in the data plane
via L_RD algorithm and the controller load balancing is solved
by R_FR algorithm.

With respect to service chain mf , it will be processed by at
least one switch along this path l, which is denoted as

∑

u∈Vm

xul
f ≥ y l ∀l ∈ Pf ∀f ∈ F (8)

Besides, if middlebox function is running on VM placed at
switch u, the traffic rate on a link (u,v) is denoted as

d (u,v)
f = du−

f · εf · xul
f ∀(u, v) ∈ E l ∈ Pf ∀f ∈ F

(9)

and available processing capacity of each middlebox should
not be exceeded, which is denoted as

∑

f ∈F

∑

u∈l :l∈Pf

xul
f · Pu

f ≤ Pu ∀u ∈ Vp (10)

Additionally, if a path l ∈ Pf is selected, the number of
installed rules on each switch u ∈ V should not exceed Tu

∑

f ∈F

∑

u∈l :l∈Pf

y l · τf ≤ Tu ∀u ∈ V (11)

Thus, for a link (u,v), its load ratio should be less than or
equal to the optimization objective η2.

∑
f ∈F

∑
(u,v)∈l :l∈Pf

y ld (u,v)
f

B(u,v)
≤ η2 ≤ 1 ∀(u, v) ∈ E

(12)

The goal of JTMSR problem is to minimize maximum link
load ratio while balancing the load among controllers. Hence,
we apply a weight factor ω ∈ [0, 1] in the objective function.
Mathematically, we have the following formulation.

min ωη1 + (1− ω)η2

s.t.: (4)− (12)

xul
f , y l ∈ {0, 1} (13)

η1 and η2 respectively indicate the maximum load difference
ratio among controllers and link load ratio. Note that different
from the existing works on middlebox scheduling, on the one
hand, the model considers that most middleboxes are traffic
processing devices, which may significantly change the vol-
ume of processed flows. On the other hand, it considers the
scenario of multiple distributed SDNs to address the limitation
of a single controller which has limited processing capacity
and easily becomes bottleneck of SDN.

C. NP-Hardness

Before proving the NP-hardness of JTMSR, we first give the
definition of Identical Parallel Machines Scheduling Problem
(IPMSP), which has been proved to be NP-hard [42] and the
reduction is based on the NP-complete Partition problem [43].

Definition 1 (IPMSP): Given m parallel machines, q inde-
pendent jobs, each job with a processing time ui on each
machine with 1 ≤ i ≤ q , find a schedule where each job
is assigned to one of the machines so as to minimize the
makespan.

Theorem 1: The JTMSR problem is NP-hard.
Proof: In order to prove that JTMSR problem is a NP-hard

problem, we consider a simple example of JTMSR problem.
In the control plane, there are one root controller and two local
controllers while in the view of data plane, network topology
can be modeled by G = (V ,E). There are q flows to be

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1420 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 2. A special example of the JTMSR problem.

directed in the network shown in Fig. 2, and the capacities
of links (V0,Vi) and (Vi ,V ′

0) with 1 ≤ i ≤ m are set as
B(V0,Vi) and ∞, respectively. After determining the LC for
handling each flow from Sj to S ′

j with 1 ≤ j ≤ q , we only
need to choose another feasible path except pre-calculated path
as default path where wildcard rules are assigned to available
switches. To simplify the problem, we assume that network
computing resources in Vp are enough and middlebox function
of service chain for each flow is performed correctly, then
we will choose one remaining feasible path for each flow to
forward its traffic amount, ui · B(V0,Vi), so as to minimize
maximum traffic link load ratio in a network.

By regarding each flow from Sj to S ′
j and each link

(V0,Vi) as a job j and a machine i, the processing time for

each job j is
ui ·B(V0,Vi)

B(V0,Vi)
= ui , so this is an instant of IPMSP

problem. If the paths are determined for transmitting flows,
then the link load ratio can be calculated in the polynomial
time. Therefore, the JTMSR problem can be reduced to the
IPMSP problem in the polynomial time. Since IPMSP problem
is NP-hard problem, our JTMSR problem is also NP-hard. This
completes proof.

IV. ALGORITHM DESIGN

Due to the NP-hardness of JTMSR problem, a heuristic
algorithm with polynomial time is designed and sub-optimal
solution is obtained. In this section, we propose a two-phase
heuristic algorithm RL_RFRD which consists of two parts,
flow redirecting (R_FR) by root controller and flow direct-
ing (L_RD) by local decision controller (LDC). Particularly,
we will first introduce R_FR and L_RD in detail and analyze
the approximate performance respectively, and then give some
discussions on our proposed algorithm.

A. Flow Redirecting by Root Controller

RC is responsible for assigning the wildcard rules to redi-
rect macroflows in advance to achieve load balance of local
controllers and reduce the controller response time, and then
it determines a LC with least controller load as LDC to dis-
patch these flow requests to reduce the link congestion in
the data plane. RC will send the state information of other
local controllers and flow redirecting path to LDC. The traffic

Algorithm 1 Flow Redirecting by Root Controller (R_FR)
Require: Controllers C0 and C in control plane, network

topology G = (V ,E) in data plane, set of flows F and
set of feasible paths Pf for each flow f ∈ F .

Ensure: LDC Cmin
f and the switch v ∈ V Cmin

f that reports

flow requests to Cmin
f .

1: Generate the set of local candidate controllers for flow f
denoted as C cad

f according to feasible paths by C cad
f ←{

c|u ∈ V c ,∀u ∈ l :l ∈ Pf

}

2: Select the controller with minimum controller load as
Cmin

f among C cad
f where Cmin

f ← minc∈C cad
f
{θc}

3: Select the switch v in V Cmin
f that will report

the flow request of flow f to LDC by v ←
arg min(u,v)∈Pf

L(u,v),∀u ∈ V\V Cmin
f , v ∈ V Cmin

f

4: Judge whether there is a switch on current redirected path
satisfying middlebox capacity constraint

5: Update network information including controller capacity,
link capacity and middlebox capacity

sizes in the current time slot can be predicted through some
prediction schemes, which will be discussed in Section IV-C.
Take Fig. 1(c) as an example, to balance the load of con-
trollers, f3 from V3 to V6 will first be redirected by switch
V5, and LC C2 will be chose as the LDC to handle this flow.
Algorithm 1 describes this process.

In Algorithm 1, RC C0 first generates the set of local can-
didate controllers as C cad

f according to feasible paths of flow
f and then tries to find out the LDC with minimum controller
load as Cmin

f among C cad
f shown in lines 1-2. Then LDC will

handle the flow request of f by assigning routing rules to the
corresponding switches described in IV-B. In Fig. 1(c), LDC
C2 will assign feasible path V5 → V4 → V6 to complete rout-
ing for f3 to minimize the link load under the link bandwidth
capacity, switch memory and middlebox capacity constraints.

Then, in line 3, RC will determine the switch v ∈ V Cmin
f on

link (u, v) with the least link load to report flow requests to
Cmin

f , where L(u,v) is the link load of (u, v). Since wildcards
are installed in advance, the flow f can be directly redirected to
switch v. Next, judge whether there is a switch on current redi-
rected path satisfying middlebox capacity constraint in line 4.
If this is no corresponding switch, it is required to find one
switch in the remaining path to meet this constraint, other-
wise, this flow will be dropped. Finally, in line 5, update the
network information both in control and data planes, including
controller capacity, link capacity and middlebox capacity.

Thus, for a flow in flow set F , the computing complexity
of Algorithm 1 is O(k2) at the worst where k is the num-
ber of local candidate controllers in the network and k ≤ |C|.
Then, it can be proved that load difference among local candi-
date controllers can be minimized after choosing the controller
whose load is minimum.

Theorem 2: For each flow f, suppose that there is k local
candidate controllers in C cad

f and the current load of con-
trollers in the network is θC cad

1
≥ θC cad

2
≥ · · · ≥ θC cad

j
· · · ≥

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1421

θC cad
i
· · · ≥ θC cad

k
with 1 < j ≤ i < k , the current maximum

load difference η2 among controllers depends on θC cad
1
−θC cad

k

according to Eq. (7). After choosing C cad
k to handle flow

requests nf , the load difference among controllers can be
totally minimized.

Proof: Suppose the controllers whose load more than θC cad
j

cannot handle the flow request of f, i.e., θC cad
j−1

+nf ≥ αC cad
j−1

,

so in this case, we should choose controllers whose capacity
is enough to handle this flow request. These controllers can
be divided two categories, the controller whose current load is
minimum and rest of controllers except overloaded controller,
i.e., C cad

k and C cad
i with j ≤ i < k . Let η̂2 = θC cad

1
−

θC cad
k

. Then, we can compare the load difference with η̂2 after

choosing C cad
i and C cad

k , respectively.
Case 1: For C cad

i with j ≤ i < k being chose, the minimum
load difference among controllers
ηC cad

i
is

ηC cad
i

=

{
θC cad

i
+ nf − θC cad

k
, if θC cad

i
+ nf ≥ θC cad

1
,

θC cad
1
− θC cad

k
, otherwise.

It is obvious that
ηC cad
i
≥ η̂2 when choosing C cad

i with
j ≤ i < k .

Case 2: For C cad
k being chose, let i = k − 1, then the

minimum load difference among controllers
ηC cad
k

is

ηC cad
k

=

⎧
⎪⎨

⎪⎩

θC cad
k

+ nf − θC cad
i

, if θC cad
k

+ nf ≥ θC cad
1

,

θC cad
1
− (nf + θC cad

k
), ifθC cad

k
+ nf ≤ θC cad

i
,

θC cad
1
− θC cad

i
, otherwise.

Obviously,
ηC cad
k
≤ η̂2 when choosing C cad

k with i = k−1.
Therefore, it is best to choose the local candidate controller

whose current load is the minimum.

B. Flow Directing by Local Decision Controller

Shortest path scheme widely adopted to find the routing
path for each flow is not suitable and high congestion may
occur in specific bottleneck links if middlebxoe selection and
traffic routing are not well jointly planned [11]. As shown
in Fig. 1(b), the routing path for flow f3 is V3 → V2 →
V4 → V6 which balances the controller load but the link
congestion cannot be avoided while in Fig. 1(c), the path is
V3 → V2 → V5 → V4 → V6 which balances the controller
load and avoids link congestion simultaneously. Therefore,
after obtaining LDC to handle flow request f and switch
v to report flow request by Algorithm 1, LDC will search
the remaining fine-grained paths from v to tf to route the
flow demand df so as to minimize the maximum link load
ratio under the constraints of link capacity, switch memory
and middlebox capacity. This process can be formulated as a
sub-problem of JTMSR called s-JTMSR.

1) s-JTMSR Problem Formulation: For many flow requests
in practice, their fine-grained candidate paths are generally
not specified, i.e., the forwarding rules are decided by LDC.
Therefore, we define a binary variable y l

(u,v) to indicate

Fig. 3. An example of path searching.

whether link (u, v) is selected by path l,

y l
(u,v) =

{
1, if link (u, v) is on the path l .
0, otherwise. (14)

The path searching process is represented by con-
straints (15)-(17). For ∀l ∈ Pf ∀f ∈ F ,

∑

(sf ,u)∈E

y l
(sf ,u) −

∑

(u,sf)∈E

y l
(u,sf)

= 1 (15)

∑

(u,tf)∈E

y l
(u,tf)

−
∑

(tf ,u)∈E

y l
(tf ,u) = 1 (16)

∑

(u,v)∈E

y l
(u,v) −

∑

(v ,w)∈E

y l
(v ,w) = 0 ∀v ∈ V\{sf , tf

}

(17)

Specifically, constraints (15) and (16) enforce that each flow
f starts and ends at its source node sf and destination node
tf , respectively. Constraint (17) guarantees flow conservation
at each intermediate node on the path, i.e., the number of
incoming links should be equal to the number of outgoing
links. Take Fig. 3 as an example, a path is shown in solid
arrow from source node s to destination node d. If a path is
selected, for s, the number of outgoing links minus that of
incoming links equals to 1, otherwise, their differences should
be 0, and the same constraint is imposed for d. As for each
intermediate node such as v, the number of incoming links
should be equal to that of outgoing links.

Constraints (18) and (19) impose to avoid loop paths, where
z l
(u,v) is an integer variable to indicate the sequence number

of the link along path l, i.e., (u,v) is the z l
(u,v)-th link along

the path l.

0 ≤ z l
(u,v) ≤ y l

(u,v) · (|V| − 1)

∀(u, v) ∈ l ∀l ∈ Pf ∀f ∈ F (18)
∑

(v ,w)∈E

z l
(v ,w) −

∑

(u,v)∈E

z l
(u,v) =

∑

(v ,w)∈E

y l
(v ,w)

∀v ∈ V\{tf
} ∀l ∈ Pf ∀f ∈ F (19)

Particularly, if the link (u,v) is not on path l, i.e., y l
(u,v) =

0, the value of z l
(u,v) should be 0. Otherwise, the difference

between the sequence numbers of two consecutive links on the

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1422 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Algorithm 2 Rounding-Based Flow Directing by Local
Decision Controller (L_RD)

Require: Problem formulations with integer variables y l
(u,v),

xul
f ∈ {0, 1}

Ensure: Solutions ỹ l
(u,v), x̃ul

f of the original problem.

1: Obtain the solutions ŷ l
(u,v) and x̂ul

f of optimization prob-
lems by relaxing all integer variables

2: for all f ∈ F do
3: for all l ∈ Pf do
4: ỹ l

(u,v) ← RoutingPathSearch (ŷ l
(u,v), f , l)

5: x̃ul
f ← MFuncSelection (x̂ul

f , ỹul
f , f , l)

6: end for
7: end for

path should be 1. Therefore, if link (u,v) is on path l, z l
(u,v)

is between 0 and |V| − 1.
With respect to service chain, it always shall be guaran-

teed that middlebox function should be processed on and only
on the switches along the selected paths, which is shown in
constraints (20)-(21)

xul
f ≤

∑

(u,v)∈E

y l
(u,v) +

∑

(v ,tf)∈E

y l
(v ,tf)

∀u ∈ Vm

∀l ∈ Pf ∀f ∈ F (20)
∑

u∈Vm

xul
f ≥

∑

(sf ,v)∈E

y l
(sf ,v) ∀l ∈ Pf ∀f ∈ F (21)

Additionally, if a path l ∈ Pf is selected, the number of
installed rules on each switch u ∈ V should not exceed Tu

∑

f ∈F

∑

u∈l :l∈Pf

y l
(u,v) · τf ≤ Tu ∀u ∈ V (22)

Similarly, available processing capacity of each middle-
boxes should not be exceeded, which is given by

∑

f ∈F

∑

u∈l :l∈Pf

xul
f · Pu

f ≤ Pu ∀u ∈ Vp (23)

And for a link (u, v), its link load ratio should be less
than or equal to the optimization objective η2. Thus, the
constraint (12) is rewritten as (24).

∑
f ∈F

∑
l∈Pf

y l
(u,v)d

(u,v)
f

B(u,v)
≤ η2 ≤ 1 ∀(u, v) ∈ E (24)

Thus, s-JTMSR can be formulated as follows.

min η2

s.t.: (9) and (15)− (24)

y l
(u,v), x

ul
f ∈ {0, 1} (25)

The s-JTMSR problem is also NP-hard because each IPMSP
instant is a special case of s-JTMSR. Because of the NP-
hardness of the s-JTMSR, we propose a fast heuristic algo-
rithm L_RD shown in Algorithm 2 by using relaxation and
rounding techniques to solve the problem in (25).

Algorithm 3 RoutingPathSearch

Require: LP solution ŷ l
(u,v)(∀(u, v) ∈ E), flow index f and

path index l
Ensure: The rounded solutions ỹ l

(u,v)

1: ỹ l
(u,v) ← 0,∀(u, v) ∈ E

2: Sort Ω =
{

(u, v)|ŷ l
(u,v) > 0

}
as χ1, ..., χ|Ω| such that

ŷ l
χ1
≥ ... ≥ ŷ l

χ|Ω|
3: j = 1, Ψ← ∅
4: while j ≤ |Ω| do
5: Ψ← Ψ ∪ {

χj
}

6: if ŷ l
(u,v)�,∀(u, v) ∈ Ψ satisfy (15), (16) and (17)

then
7: ỹ l

(u,v) ← 1,∀(u, v) ∈ Ψ
8: break
9: end if

10: j = j + 1
11: end while

Algorithm 4 MFuncSelection

Require: LP solution x̂ul
f , ỹ l

(u,v) from Algorithm 3, f and l
Ensure: The rounded solutions x̃ul

f

1: x̃ul
f ← 0,∀u ∈ Vm ,∀f ∈ F

2: Sort Ω =
{

(u,mf)|x̂ul
f > 0

}
as χ1, ..., χ|Ω| in a decreas-

ing order of x̂ul
f

3: Λ←
{

(u, v)|ỹ l
(u,v) = 1,∀(u, v) ∈ E

}

4: j = 1, Ψ← ∅
5: while j ≤ |Ω| do
6: (u ′,mf

′)← χj

7: if u ′ ∈ Λ and ∀(u,mf) ∈ Ψ,mf
′ �=

mf and
∑

∀(u′,mf)∈Ψ Pu′
mf

+ Pu′
mf

′ ≤ Pu′ and∑
∀(u′,mf)∈Ψ τf + τf ′ ≤ Tu′ then

8: Ψ← Ψ ∪ {
χj

}

9: if Vm ⊆ ∪∀(u,mf)∈Ψ

{
mf

}
then

10: x̃ul
f ← 1,∀(u,mf) ∈ Ψ

11: break
12: end if
13: end if
14: j = j + 1
15: end while

2) Rounding-Based Flow Directing by Local Decision
Controller (L_RD): In Algorithm 2, we first solve the
optimization problem by relaxing all integer variables, and
then obtain feasible solutions by invoking RoutingPathSearch
shown in Algorithm 3 and MFuncSelection algorithms shown
in Algorithm 4. In Algorithm 3, all (u, v) links are sorted
in a decreasing order according to values of ŷ l

(u,v) and they
are maintained in set Ω. Then, the feasible solutions satisfy-
ing constraints (15)-(17) will be found in the while loop from
lines 4 to 11.

Similarly, to find feasible solutions of xul
f in Algorithm 4,

we first sort the values of x̂ul
f in a decreasing order and

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1423

maintain feasible solutions in set Ω. Then, all nodes belonging
to the routes obtained from Algorithm 3 are maintained in set
Λ. Next, each element χj = (u ′,mf

′) in Ω is sequentially
checked, and will be included in Ψ if it satisfies the following
conditions: i) node u’ is in Λ, ii) service function mf

′ does
not show in a (u,mf)-tuple in Ψ, and iii) the remaining space
on node u’ can accommodate allocated rules τf as well as
capacity of mf

′ in the while loop from lines 5 to 15.
Theorem 3: The time and space complexity of

Algorithm 2 is O(k2 + |E | + |V | · ∑
f ∈F |Vm ||Pf |)

and O(|E |∑f ∈F |Pf |+ |V |
∑

f ∈F |Vm ||Pf |), respectively.
Proof: The worst computational complexity of Algorithm 3

and 4 is O(|ŷ l
(u,v)|) = O(|E |) and O(|x̂ul

f ||Λ|) =
O(|V ||Vm ||Pf |), respectively. Therefore, the overall time
complexity can be derived as follows.

O(Alg . 2) = O

⎛

⎝
∑

f ∈F

∣∣Pf

∣∣× (O(Alg . 3) + O(Alg . 4))

⎞

⎠

= O

⎛

⎝|E |+ |V | ·
∑

f ∈F
|Vm |

∣∣Pf

∣∣

⎞

⎠

The space complexity is determined by the number of vari-
ables y l

(u,v) and xul
f where y l

(u,v) is defined with respect

to the number of paths and links and xul
f is defined with

respect to the number of paths and switches that can perform
service chain. In the model, they are respectively calcu-
lated as |E |∑f ∈F |Pf | and |V |∑f ∈F |Vm ||Pf |. Since the
set of switches V, the set of switches that perform service
chain Vm and the set of links E in the network are deter-
mined, variables y l

(u,v) and xul
f are linear with the number

of paths. Therefore, the model has a linear number of vari-
ables. In addition, by summing up the number of all these
variables and the corresponding rounded ones, the total space
is O(|E |∑f ∈F |Pf |+ |V |

∑
f ∈F |Vm ||Pf |).

3) Approximate Performance Analysis: Assume that the
minimum link capacity of all links is Bmin

(u,v). We define three
constant values as follows:

α0 = min

⎧
⎨

⎩
Bmin

(u,v)

d (u,v)
f

, f ∈ F

⎫
⎬

⎭

α1 = min{Tu , u ∈ V}
α2 = min

{
Pu , u ∈ Vp

}
(26)

Under many practical cases, α0 ≥ 1 because the size of
each flow is usually less than the link capacity. Besides, Tu

and Pu are much larger than 1. Thus, it is reasonable to assume
that α1 ≥ 1 and α2 ≥ 1 [44]. In the following, we give the
approximation performance of the proposed L_RD algorithm.

Lemma 1 (Link Capacity Constraint): The proposed L_RD
algorithm guarantees that the total traffic on any link (u,v) will
not exceed the traffic load on the fractional solution by a factor
of 4 log |V|

α0
+ 3.

The proof of Lemma 1 has been relegated to Appendix A.
Lemma 2 (Flow-table Size Constraint): After the rounding

process in the L_RD algorithm, the number of required flow

entries on any switch u will not exceed the constraint Tu by
a factor of 3 log |V|

α1
+ 3.

The proof of Lemma 2 has been relegated to Appendix B.
Lemma 3 (Middlebox Capacity Constraint): After the

rounding process in the L_RD algorithm, the capacity required
on any switch u ∈ Vp will not exceed the middlebox capacity

constraint Pu by a factor of 3 log |Vp |
α2

+ 3.
The proof of Lemma 3 has been relegated to Appendix C.

Approximation Factor: According to the above analysis, we
get conclusion as follows.

Theorem 4: The L_RD algorithm can guarantee that, the
link capacity will hardly be violated by a factor of 4 log |V|

α0
+3,

the flow-table size constraint will not be violated by a factor
of 3 log |V|

α1
+3, and the middlebox capacity constraint will not

be violated by a factor of 3 log |Vp |
α2

+3 for s-JTMSR problem.
In most practical situations, the L_RD algorithm can reach

almost the constant approximation in terms of link capacity
constraint, flow-table size constraint and middlebox capacity
constraint. For example, the link capacity of today’s network
will be 10Gbps and the maximum size of flow may reach
10Mbps by observing the practical traffic traces. Under two

cases,
Bmin

(u,v)

d
(u,v)
f

will be 103 and the value of α0 will be 103.

Considering a network with 1000 switches, then we have
log |V| = 10. Based on the Lemma 1, the approximation factor
for the link capacity is 3.04. This also fits for the flow-table
size constraint and middlebox capacity constraint. In other
words, the L_RD algorithm can achieve the constant tri-criteria
approximations for the s-JTMSR problem in many situations.

C. Discussion

1) The proposed algorithm can guarantee the correctness of
original optimization problem. Mathematically, Eq. (13)
which consists of two parts coordinated by parame-
ter ω can be expressed as min ωη1 + min(1 − ω)η2.
Technically, in hierarchical SDN-based network, select-
ing inter-domain routing path divides two steps, i.e., find
the LDC by RC and calculate routing path by LDC.
Thus, by ignoring the parameter ω, it is reasonable in the
algorithm design to solve two sub-problems and convert
it into min η1 and min η2 for the sake of simplicity.

2) Additionally, this article aims to select paths based
on the assumption that the switches are working nor-
mally. In fact, node in the SDN-based network that fails
before path selection will not be selected in routing
path and the node that fails during path selection may
involve other issues, such as consistent flow forwarding
rules updates [45] and failure detection and recovery
mechanisms [46], which are beyond the scope of this
article.

3) In some practical scenarios, the flow size of each flow is
unknown before arriving. However, the flow size of each
new-arrival in JTMSR is assumed to be known when RC
assigns wildcard rules for these flows. It is reasonable
to assume that the size and distribution of flows in the
network can be predicted with bounded error [29] and

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1424 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 4. Simulation network structure.

many previous works [47]–[49] addressed the issue of
flow size prediction can be applied in our system.

4) What’s more, in the flat control plane, a RC can be found
by applying leader election algorithm, which makes
decision on installing wildcards for flow redirecting and
finding the LDC for each flow. The effect of hierar-
chical control plane structure on performance is mainly
reflected in the communication delay between RC and
local controllers, which further affects the response time
for each flow, but it has no effect on performance of data
plane.

V. PERFORMANCE EVALUATION

This section will discuss the experiment setup and evaluate
the performance of proposed algorithms.

A. Simulation Setup

We run all algorithms on a PC running on a Windows 64-
bit with 12GB memory and a single Inter i5-7200U CPU
using Python 2.7. All algorithms use a single processor core.
ITALYNET topology [50] and Fat-tree topology [51], which
is an architecture widely used in data centers, are adopted
to measure the effectiveness of proposed algorithms. There
are one root controller and four local controllers in the con-
trol plane and the network are divided into four domains. In
ITALYNET, it consists of 21 switches and 10 additional mid-
dleboxes in the data plane. The processing capacity of each
middlebox and the link capacity are all set to 150Mbps, and
the processing capacity of controller is set to 1600 flows/s. In
the experiment, the flows from the same source to the same
destination switch are aggregated as a macroflow to route at
each time slot. For each timeslot, there are [8, 20] macroflows
and the traffic rate of each flow is generated within the range
[12, 30] Mbps.

In Fat-tree, the number of pod is 8 with total 80 switches
and 128 hosts. There are 20 additional middleboxes. The traf-
fic processing capacity of each middlebox is set to 2000
Mbps. Besides, the link capacities between two connected
switches are uniformly set to 2 Gbps and the processing
capacity of each controller is 18K flows/s. At each time
slot, the number of macroflows is set with the range of
[20, 40] and the number of aggregated small flows is set
with the range of [100, 300]. The request arrival rate fol-
lows the flow inter-arrival time distribution measured in
real-world data center [52]. In both topologies, the number

Fig. 5. Controller fairness index vs. Flows redirect ratio.

of types of middleboxes are set to 4 and each PM asso-
ciates with middlebox functions ranging from 1 to 4. When
redirecting flows, the shortest path is utilized by default and
each selected flow is provided with candidate paths ranging
from 3 to 10.

We compare our algorithm with the following schemes,
i) RL_RFRD where flow redirecting is implemented by RC
and the remaining path is determined by local controller;
ii) MAT where the objective of formulation in [11] is adjusted
to load factor and candidate routing paths are provided by a
single controller; iii) RDMAR [28] where the static scheme
between switches and multiple controllers is used without redi-
recting flows; iv) OPT where multiple SDNs are considered
and routing path is solved by optimizer. For controller load
balancing, RDMAR is the baseline where the static scheme is
used while the OPT and MAT are the baselines for link load
balancing. The flows for each timeslot are handled at the same
time in multiple SDNs. All mathematical programming formu-
lations are solved by Gurobi optimizer [53] and an example of
Gurobi model is available.1 The experiment carries out 30 runs
for total 600 timeslots. The demonstrated results are averaged
over 20 instances with the 95% confidence level and standard
deviation is included in all graphs.

B. The Performance of Control Plane

We mainly evaluate the effect of average response
(AveResponse) time and controller fair index (CFI) [29] over
the flows redirect ratio, which indicates the percentage of flows
that has been selected to redirect. CFI refers to the load distri-
bution among all controllers in the network and it is calculated

by CFI = (
∑

c∈C θc)2

|C |·∑c∈C θc
2 . Following [29], AveResponse time of

controller c can be derived by RTc = 1
αc−θc

O(n2) where n
is the number of network switches. The value of O(n2) can
be measured through running a routing algorithm (e.g., OSPF)
with n nodes. The number of macroflows for each timeslot is
set to 20.

Fig. 5 plots the load distribution among multiple controllers
and it shows that both RL_RFRD and RDMAR can achieve
good balance distribution. As shown in Fig. 5(a) and Fig. 5(b),
CFI has improved 8.1% in ITALYNET and 4.2% in Fat-tree
compared with RDMAR scheme after redirecting 20% flows.
This is because in RDMAR, the mapping between switches
and controllers is static and flows are waited to be handled

1https://github.com/iris0102/ModelTest

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1425

Fig. 6. Average response time vs. Flows redirect ratio.

Fig. 7. Flows accept ratio vs. Number of flows.

when the current controller has no efficient capacity, but for
RL_RFRD, some flows will be redirected to the controller
with largest remaining processing capacity. Besides, as shown
in Fig. 6(a) and Fig. 6(b), the average response time has
improved 9.7% in ITALYNET and 14.1% in Fat-tree after redi-
recting 20% flows compared with RDMAR. In addition, Fig. 6
shows that MAT has more than 2x response time compared
to RL_RFRD and RDMAR, because the controller capacity in
MAT is bottleneck resource and it handles flows one by one.

C. The Performance of Data Plane

Since the Gurobi model is formulated to solve link load
balancing, the optimum (OPT) value where the routing path
is solved by Gurobi model is added in ITALYNET to evaluate
the performance of data plane.

Fig. 7 depicts the ratio of number of flows requests accepted
over the number of flows. Assume that the flows in the
network can last for long time, it can be observed that MAT
accepts more flows than that of multiple SDNs. This is because
although MAT handles flow requests one by one, resource will
be released after finishing routing so that MAT will have effi-
cient network capacity to find the suitable routing path for each
flow. In addition, RL_RFRD has higher flows accept ratio than
RDMAR and it has closer performance with the OPT, when
the number of flows is 14 in Fig. 7(a) and 24 in Fig. 7(b).

Fig. 8(a) and Fig. 8(b) plot the average routing path length
over the number of flows in both topologies. Obviously,
MAT has the shorter path length than that of multiple SDNs
because it handles flow request one by one and always tries
to find the short routing path for each flow under the network
constraints. Compared with RDMAR, RL_RFRD will make
flows to communicate in a longer way with light-loaded con-
trollers. Thus, RL_RFRD generally has longer routing path
length than RDMAR and MAT. Generally, when there is the

Fig. 8. Average path length vs. Number of flows.

Fig. 9. Maximum link utilization vs. Number of flows.

Fig. 10. Maximum flow rules utilization vs. Number of flows.

switch attached middlebox in redirecting flow path satisfy-
ing the network functions for this flow, RL_RFRD may have
the chance to outperform RDMAR in terms of path length,
otherwise, it may take longer path to meet the routing policy.

Fig. 9 shows the maximum link utilization over the num-
ber of flows in both topologies. It can be observed from
Fig. 9(a) and Fig. 9(b) that the link utilization will increase
with the number of flows increasing as indicated by MAT, and
more links will be occupied. With the advantage of balancing
maximum link load, we observe that RL_RFRD has closer
performance to OPT compared with RDMAR. This is because
default path is properly assigned in advance when redirecting
flows, so the maximum link load of RL_RFRD can be smaller
than that of RDMAR.

It can be also observed from Fig. 10(a) and Fig. 10(b) that
with the number of flows increasing, MAT requires more flow
entries and it always keeps the higher maximum flow rules
utilization compared with RL_RFRD and RDMAR. This is
because MAT handles flow requests one by one and it takes
more response time to assign routing path for flows, which
may result in some flow entries expired and new flow rules
to be installed. Similarly, Fig. 11(a) and Fig. 11(b) show that
MAT has maximum middlebox utilization with the increasing
number of flows.

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1426 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 11. Maximum middlebox capacity utilization vs. Number of flows.

TABLE III
THE AVERAGE RUNNING TIME FOR EACH TIME SLOT (SECONDS)

D. The Performance of Running Time

Table III shows the average running time for each time slot
of three algorithms. Obviously, OPT has the highest running
time compared with other three algorithms, because it searches
the optimal solution in the global feasible set. Compared with
MAT and RDMAR, RL_RFRD has lower running time since
default paths for selected flows are deployed in both topolo-
gies. Compared with MAT, RL_RFRD and RDMAR are only
responsible for its local controlled switches, which can reduce
the range for routing decision. Besides, Fat-tree has higher
time efficiency than that of ITALYNET where time efficiency
is calculated over the running time of MAT, because Fat-
tree can also reduce the input size for routing decision once
the source and destination nodes are determined. This also
indicates that RL_RFRD may also be applied in large-scale
network.

VI. CONCLUSION AND FUTURE WORK

For the reason that traffic dynamics will not not only pose
a severe challenge to controller load balancing, but also affect
the link load in the data plane, and network functions in mid-
dleboxes also may change the volume of processed traffic
as well, this article focus on both controller load balancing
and link load balancing with consolidated middleboxes. This
problem is formulated as an integer programming optimization
with the objective to minimize maximum controller load and
link load, and the problem is proved to be NP-hard. In order
to solve this problem, we have proposed a two-phase algo-
rithm. The first phase is to redirect selected flows to controller
with maximum processing capacity and the second phase is to
find the fine-balanced middleboxes selection and routing path
for each flow by rounding-based algorithm. Finally, numerical
results show that our proposed RL_RFRD algorithm outper-
forms other algorithms in terms of load-balancing performance
and response time. In future work, the path length can be
included in the optimization objective because longer paths
will consume large amount of network resources, so there is
a tradeoff between load balancing and shortening path length.

APPENDIX A
PROOF OF LEMMA 1

We give two famous lemmas for probability analysis.
Lemma 4 (Chernoff Bound): Given n independent vari-

ables: x1, x2, . . . , xn , where ∀xi ∈ [0, 1]. Let μ = E[
∑n

i=1 xi].

Then, Pr[
∑n

i=1 xi ≥ (1 + ε)μ] ≤ e
−ε2μ
2+ε , where ε is an

arbitrarily positive value.
Lemma 5 (Union Bound): Given a countable set of n

events: A1,A2, . . . ,An , each event Ai happens with possibil-
ity Pr(Ai). Then, Pr(A1 ∪A2 ∪ · · · ∪An) ≤∑n

i=1 Pr(Ai).
Proof: The first step of L_RD algorithm will derive a frac-

tional solution ŷ l
(u,v) for the relaxed s-JTMSR problem. Using

the randomized rounding method, for each flow f ∈ F , only
one path in Pf will be chosen as its directing path. Thus, the
traffic load of link (u,v) from flow f is defined as a random
variable χ(u,v),f , which is expressed

χ(u,v),f =

⎧
⎪⎨

⎪⎩

d (u,v)
f , with probability of∑

(u,v)∈l :l∈Pf
ŷ l
(u,v)

0, otherwise

According to the definition, χ(u,v),f , with f ∈ F are
mutually independent. Thus, the expected traffic load on link
(u, v) is:

E

⎡

⎣
∑

f ∈F
χ(u,v),f

⎤

⎦ =
∑

f ∈F
E

[
χ(u,v),f

]

=
∑

f ∈F

∑

(u,v)∈l :l∈Pf

ŷ l
(u,v) · d

(u,v)
f ≤ B(u,v)

(27)

Combining Eq. (27) and the definition of α0 in Eq. (26),
we have

⎧
⎨

⎩

χ(u,v),f ·α0

B(u,v)
∈ [0, 1]

E

[∑
f ∈F

χ(u,v),f ·α0

B(u,v)

]
≤ α0

(28)

Then, by applying Lemma 4, assume that ρ is an arbitrary
positive value, it follows

Pr

⎡

⎣
∑

f ∈F

χ(u,v),f · α0

B(u,v)
≥ (1 + ρ) · α0

⎤

⎦ ≤ e
−ρ2α0
2+ρ

Now we assume that

Pr

⎡

⎣
∑

f ∈F

χ(u,v),f

B(u,v)
≥ (1 + ρ)

⎤

⎦ ≤ e
−ρ2α0
2+ρ ≤ H

|V|2 (29)

where H is the function of network-related variables such as
the number of switches |V|, and H → 0 when the size of
network grows.

The solution for Eq. (29) is expressed as:

ρ ≥ log |V|2
H +

√
log2 |V|2

H + 8 · α0 log |V|2
H

2 · α0
, |V| ≥ 2 (30)

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1427

Then, set H = 1
|V|2 . Eq. (29) is transformed into:

Pr

⎡

⎣
∑

f ∈F

χ(u,v),f

B(u,v)
≥ (1 + ρ)

⎤

⎦ ≤ e
−ρ2α0
2+ρ ≤ 1

|V|4 ,

where ρ ≥ 4 log |V|
α0

+ 2

By applying Lemma 5, we have

Pr

⎡

⎣
∨

(u,v)∈E

∑

f ∈F

χ(u,v),f

B(u,v)
≥ (1 + ρ)

⎤

⎦

≤
∑

(u,v)∈E

Pr

⎡

⎣
∑

f ∈F

χ(u,v),f

B(u,v)
≥ (1 + ρ)

⎤

⎦

≤ |V|2 · 1
|V|4 =

1
|V|2 , ρ ≥ 4 log |V|

α0
+ 2 (31)

Note that the second inequality in Eq. (31) holds since there
are at most |V|2 links in the network. Thus, Eq. (29) is
guaranteed with 1 + ρ = 4 log |V|

α0
+ 3, which concludes

the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: We define a random variable zu,f to formulate
the required flow entry on a switch u ∈ V for directing
flow f ∈ F ,

zu,f =

{
τf , with probability of

∑
u∈l :l∈Pf

ŷ l
(u,v)

0, otherwise

By the definition, zu,f , with f ∈ F , are also independent.
Thus, we have

{ zu,f ·α1

Tu
∈ [0, 1]

E

[∑
f ∈F

zu,f ·α1

Tu

]
≤ α1

(32)

Similar to the proof for the link capacity constraint, we have
a general form of proving: the number of required flow entries
on any switch u will not exceed the flow-table size constraint
Tu by a factor of 1+ϕ if and only if there exists H satisfying

Pr

⎡

⎣
∨

u∈V

∑

f ∈F

zu,f · α1

Tu
≥ (1 + ϕ) · α1

⎤

⎦ ≤ H (33)

where ϕ is the function of network-related variables such as
the number of switches |V|, and H is defined the same as that
in Eq. (29). By applying Lemma 5, Eq. (33) is relaxed to:

Pr

⎡

⎣
∨

u∈V

∑

f ∈F

zu,f · α1

Tu
≥ (1 + ϕ) · α1

⎤

⎦

≤
∑

u∈V

Pr

⎡

⎣
∑

f ∈F

zu,f · α1

Tu
≥ (1 + ϕ) · α1

⎤

⎦ ≤ H

By applying Lemma 4 and Eq. (32), we can assume:

Pr

⎡

⎣
∑

f ∈F

zu,f · α1

Tu
≥ (1 + ϕ) · α1

⎤

⎦ ≤ e
−ϕ2α1
2+ϕ

≤ H|V| , |V| ≥ 2

Then, we get the result:

ϕ ≥
log |V|

H +
√

log2 |V|
H + 8 · α1 log |V|

H
2 · α1

, |V| ≥ 2 (34)

Set H = 1
|V|2 . Apparently H → 0 as |V| → ∞. With respect

to Eq. (34), we set

ϕ =
log |V|

H + log |V|
H + 4 · α1

2 · α1

=
6 log |V|+ 4 · α1

2 · α1
=

3 log |V|
α1

+ 2 (35)

Thus, Eq. (33) is guaranteed with a factor of 1+ϕ = 3 log |V|
α1

+
3 and H = 1

|V|2 , which concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

Proof: We define a random variable ωu,f to indicate the
resource consumed on a switch u ∈ Vp for directing flow
f ∈ F ,

ωu,f =

{
Pu

f , with probability of
∑

u∈l :l∈Pf
ŷ l
(u,v)

0, otherwise

By the definition, ωu,f , with f ∈ F , are also independent.
Thus, we have

{ ωu,f ·α2

Pu
∈ [0, 1]

E

[∑
f ∈F

ωu,f ·α2

Pu

]
≤ α2

(36)

Similar to the proof for the flow-table size capacity, we
have a general form of proving: the resource consumed on
any switch u ∈ Vp will not exceed the middlebox capacity
constraint Pu by a factor of 1 + σ if and only if there exists
H satisfying

Pr

⎡

⎣
∨

u∈Vp

∑

f ∈F

ωu,f · α2

Pu
≥ (1 + σ) · α2

⎤

⎦ ≤ H (37)

where σ is the function of network-related variables such as
the number of switches |Vp | that directly connected to PMs,
and H is defined the same as that in Eq. (29). By applying
Lemma 5, Eq. (37) is relaxed to:

Pr

⎡

⎣
∨

u∈Vp

∑

f ∈F

ωu,f · α2

Pu
≥ (1 + σ) · α2

⎤

⎦

≤
∑

u∈Vp

Pr

⎡

⎣
∑

f ∈F

ωu,f · α2

Pu
≥ (1 + σ) · α2

⎤

⎦ ≤ H

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

1428 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

By applying Lemma 4 and Eq. (36), we can assume:

Pr

⎡

⎣
∑

f ∈F

ωu,f · α2

Pu
≥ (1 + σ) · α2

⎤

⎦ ≤ e
−ϕ2α2
2+ϕ

≤ H
|Vp | ,

∣∣Vp

∣∣ ≥ 2

Then, we get the result:

ϕ ≥ log |Vp |
H +

√
log2 |Vp |

H + 8 · α2 log |Vp |
H

2 · α2
,
∣∣Vp

∣∣ ≥ 2

(38)

Set H = 1
|Vp |2 . Apparently H → 0 as |Vp | → ∞. With

respect to Eq. (38), we set

ϕ =
log |Vp |

H + log |Vp |
H + 4 · α2

2 · α2

=
6 log

∣∣Vp
∣∣ + 4 · α2

2 · α2
=

3 log
∣∣Vp

∣∣
α2

+ 2 (39)

Thus, Eq. (37) is guaranteed with a factor of 1 +
σ = 3 log |Vp |

α2
+ 3 and H = 1

|Vp |2 , which concludes
the proof.

REFERENCES

[1] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),” Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2017.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” in Proc. ACM SIGCOMM 2012 Conf. Appl.
Technol. Archit. Protocols Comput. Commun., 2012, pp. 13–24.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc. 9th
USENIX NSDI Conf. Netw. Syst. Design Implement., 2012, pp. 323–336.

[4] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” Comput.
Commun. Rev., vol. 43, no. 4, pp. 27–38, 2013.

[5] Y. Chang, G. Petri, S. Rao, and T. Rompf, “Composing middlebox and
traffic engineering policies in SDNs,” in Proc. IEEE INFOCOM Conf.
Commun. Workshops, Atlanta, GA, USA, 2017, pp. 1–9.

[6] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. 1st ACM SIGCOMM Symp. Softw. Defined
Netw. Res., 2015, pp. 1–13.

[7] X. Li and C. Qian, “A survey of network function placement,” in
Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC),
Las Vegas, NV, USA, 2016, pp. 948–953.

[8] M. Alqarni, A. Ing, and B. Tang, “LB-MAP: Load-balanced mid-
dlebox assignment in policy-driven data centers,” in Proc. 26th Int.
Conf. Comput. Commun. Netw. (ICCCN), Vancouver, BC, Canada, 2017,
pp. 1–9.

[9] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in
SDN-enabled networks with consolidated middleboxes,” in Proc.
ACM SIGCOMM Workshop Hot Topics Middleboxes Netw. Funct.
Virtualization (HotMiddlebox), 2015, pp. 55–60.

[10] M. Huang, W. Liang, Z. Xu, M. Jia, and S. Guo, “Throughput
maximization in software-defined networks with consolidated middle-
boxes,” in Proc. IEEE 41st Conf. Local Comput. Netw. (LCN), Dubai,
UAE, 2016, pp. 298–306.

[11] H. Huang, S. Guo, J. Wu, and J. Li, “Joint middlebox selection and
routing for software-defined networking,” in Proc. IEEE ICC Int. Conf.
Commun., Kuala Lumpur, Malaysia, 2016, pp. 1–6.

[12] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware dynamic
middlebox scheduling,” in Proc. 24th Int. Conf. Comput. Commun. Netw.
(ICCCN), Las Vegas, NV, USA, 2015, pp. 1–8.

[13] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Atlanta, GA, USA, 2017, pp. 1–9.

[14] W. Ma et al., “SDN-based traffic aware placement of NFV middle-
boxes,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3, pp. 528–542,
Sep. 2017.

[15] W. Ma, J. Beltran, D. Pan, and N. Pissinou, “Placing traffic-changing
and partially-ordered NFV middleboxes via SDN,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1303–1317, Dec. 2019.

[16] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve service chain-
ing performance with optimized middlebox placement,” IEEE Trans.
Services Comput., vol. 10, no. 4, pp. 560–573, Jul./Aug. 2017.

[17] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang,
K. K. Ramakrishnan, and T. Wood, “Virtual function placement
and traffic steering in flexible and dynamic software defined networks,”
in Proc. 21st IEEE Int. Workshop Local Metropolitan Area Netw.,
Beijing, China, 2015, pp. 1–6.

[18] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in Proc. Conf. Comput. Commun.,
Kowloon, Hong Kong, 2015, pp. 1346–1354.

[19] B. Kar, E. H.-K. Wu, and Y.-D. Lin, “Energy cost optimization in
dynamic placement of virtualized network function chains,” IEEE Trans.
Netw. Service Manag., vol. 15, no. 1, pp. 372–386, Mar. 2018.

[20] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in Proc. IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput.
Commun., San Francisco, CA, USA, 2016, pp. 1–9.

[21] M. C. Luizelli, D. Raz, and Y. Sa’ar, “Optimizing NFV chain deploy-
ment through minimizing the cost of virtual switching,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Honolulu, HI, USA, 2018,
pp. 2150–2158.

[22] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet inspec-
tion as a service,” in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp.
Technol. (CoNext), 2014, pp. 271–282.

[23] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw. (HotSDN), 2013, pp. 19–24.

[24] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller assign-
ment in data center networks: Stable matching with transfers,” in
Proc. IEEE INFOCOM 35th Annu. Int. Conf. Comput. Commun., San
Francisco, CA, USA, 2016, pp. 1–9.

[25] G. Cheng, H. Chen, Z. Wang, and S. Chen, “DHA: Distributed decisions
on the switch migration toward a scalable SDN control plane,” in Proc.
IFIP Netw. Conf., Toulouse, France, 2015, pp. 1–9.

[26] C. Wang, B. Hu, S. Chen, D. Li, and B. Liu, “A switch migration-based
decision-making scheme for balancing load in SDN,” IEEE Access,
vol. 5, pp. 4537–4544, 2017.

[27] Y. Xu et al., “Dynamic switch migration in distributed software-
defined networks to achieve controller load balance,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 515–529, Mar. 2019.

[28] H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang, “Load-balancing
routing in software defined networks with multiple controllers,” Comput.
Netw., vol. 141, pp. 82–91, Aug. 2018.

[29] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in SDNs,” IEEE/ACM
Trans. Netw., vol. 26, no. 1, pp. 562–575, Feb. 2018.

[30] G. Sallam and B. Ji, “Joint placement and allocation of virtual
network functions with budget and capacity constraints,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Paris, France, 2019, pp. 523–531.

[31] O. Alhussein et al., “A virtual network customization framework for
multicast services in NFV-enabled core networks,” IEEE J. Sel. Areas
Commun., vol. 38, no. 6, pp. 1025–1039, Jun. 2020.

[32] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. C. M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Trans. Netw. Service Manag., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[33] J. Shi, J. Wang, H. Huang, L. Shen, J. Zhang, and H. Xu,
“Joint optimization of stateful VNF placement and routing schedul-
ing in software-defined networks,” in Proc. IEEE Int. Conf.
Parallel Distrib. Process. Appl. Ubiquitous Comput. Commun.
Big Data Cloud Comput. Soc. Comput. Netw. Sustain. Comput.
Commun. (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne,
VIC, Australia, 2019, pp. 9–14.

[34] M. C. Luizelli, D. Raz, Y. Sa’ar, and J. Yallouz, “The actual cost of
software switching for NFV chaining,” in Proc. IFIP/IEEE Symp. Integr.
Netw. Serv. Manag. (IM), Lisbon, Portugal, 2017, pp. 335–343.

[35] T. Wang, F. Liu, and H. Xu, “An efficient online algorithm for dynamic
SDN controller assignment in data center networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 2788–2801, Oct. 2017.

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TRAFFIC-AWARE CONSOLIDATED MIDDLEBOXES SELECTION AND ROUTING IN DISTRIBUTED SDNs 1429

[36] H. Li, R. E. De Grande, and A. Boukerche, “An efficient CPP solu-
tion for resilience-oriented SDN controller deployment,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), Lake Buena
Vista, FL, USA, 2017, pp. 540–549.

[37] M. He, A. Varasteh, and W. Kellerer, “Toward a flexible design
of SDN dynamic control plane: An online optimization approach,”
IEEE Trans. Netw. Service Manag., vol. 16, no. 4, pp. 1694–1708,
Dec. 2019.

[38] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN con-
trol,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined
Netw. (HotSDN), 2013, pp. 121–126.

[39] L. Dan, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: State distribution trade-offs in software defined
networks,” in Proc. 1st ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw. (HotSDN), 2012, pp. 1–6.

[40] J. Martins et al., “ClickOS and the art of network function virtualiza-
tion,” in Proc. USENIX Conf. Netw. Syst. Design Implement. (NSDI),
2014, pp. 459–473.

[41] C. H. Chi, J. Deng, and Y. H. Lim, “Compression proxy server:
Design and implementation,” in Proc. 2nd Conf. USENIX Symp. Internet
Technol. Syst. (USITS), 1999, pp. 1–12.

[42] X. Chen, M. Sterna, X. Han, and J. Blazewicz, “Scheduling on parallel
identical machines with late work criterion: Offline and online cases,”
J. Sched., vol. 19, no. 6, pp. 729–736, 2016.

[43] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide
To The Theory of NP-Completeness. San Francisco, CA, USA: W. H.
Freeman, 1979.

[44] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Joint optimization
of flow table and group table for default paths in SDNs,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1837–1850, Aug. 2018.

[45] P. Li, S. Guo, C. Pan, L. Yang, G. Liu, and Y. Zeng, “Fast
congestion-free consistent flow forwarding rules update in software
defined networking,” Future Gener. Comput. Syst., vol. 97, pp. 743–754,
Aug. 2019.

[46] A. Capone, C. Cascone, A. Q. T. Nguyen, and B. Sansò, “Detour plan-
ning for fast and reliable failure recovery in SDN with openstate,” in
Proc. 11th Int. Conf. Design Rel. Commun. Netw. (DRCN), Kansas City,
MO, USA, 2015, pp. 25–32.

[47] M. Chen, X. Yu, and Y. Liu, “PCNN: Deep convolutional networks
for short-term traffic congestion prediction,” IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 11, pp. 3550–3559, Nov. 2018.

[48] V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in
Proc. 16th USENIX Conf. Netw. Syst. Design Implement. (NSDI), 2019,
pp. 565–580.

[49] Y. Yao, S. Guo, P. Li, G. Liu, and Y. Zeng, “Forecasting assisted VNF
scaling in NFV-enabled networks,” Comput. Netw., vol. 168, pp. 1–13,
Feb. 2020.

[50] H. Huang, D. Zeng, S. Guo, and H. Yao, “Joint optimization of task
mapping and routing for service provisioning in distributed datacenters,”
in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, NSW, Australia, 2014,
pp. 4196–4201.

[51] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM Conf. Data
Commun., 2008, pp. 63–74.

[52] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM SIGCOMM Conf. Internet
Meas. (IMC), 2010, pp. 267–280.

[53] Gurobi Optimizer Reference Manual, Gurobi Optim., Beaverton, OR,
USA, 2015.

Authorized licensed use limited to: The University of Toronto. Downloaded on June 14,2021 at 07:20:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

