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Abstract—We study the dissemination of common information
from a source to multiple peers within a multihop wireless net-
work, where peers are equipped with uniform omni-directional
antennas and have a fixed cost per packet transmission. While
many peers may be interested in the dissemination service, their
valuation or utility for such a service is usually private informa-
tion. A desirable routing and charging mechanism encourages
truthful utility reports from the peers. We provide both negative
and positive results towards such mechanism design. We show
that in order to achieve the group strategyproof property, a
compromise in routing optimality or budget-balance is inevitable.
In particular, the fraction of optimal routing cost that can be
recovered through peer charges cannot be significantly higher
than 1

2
. To answer the question whether constant-ratio cost

recovery is possible, we further apply a primal-dual schema to si-
multaneously build a routing solution and a cost sharing scheme,
and prove that the resulting mechanism is group strategyproof
and guarantees 1

8
-approximate cost recovery against an optimal

routing scheme.

I. INTRODUCTION

Advances in wireless technology have led to its widespread

adoption, making it the preferred choice for connectivity in

a wide variety of settings. In a wireless ad hoc network,

autonomous wireless nodes with the same resources and re-

sponsibilities, cooperate to route data in the absence of a fixed

network infrastructure. We consider a wireless ad hoc network,

formed by self-organizing peers, each equipped with an omni-

directional antenna with uniform communication range, and

a fixed transmission cost per packet. Peers are interested in

obtaining information in the form of a data service, from a

service provider. A major challenge for the service provider

is to compute an efficient routing solution that disseminates

information to peers while incurring the least transmission

costs. Simultaneously, the service provider seeks to exact

payment from the receiving peers to recover the cost of the

routing solution. Designing cost-sharing schemes that adhere

to well defined notions of fairness and economic feasibility is

a central problem in game theory [1]–[3].

Computing appropriate cost-shares becomes especially chal-

lenging when peers are self-serving agents, whose utility

obtained for receiving the service is known only to the peer

itself. These self-interested peers may misreport its willingness

to pay for the service, in the hope of being charged less.

In such a non-cooperative scenario, the goal is to design a

mechanism that ensures peers have no incentive to lie about

its utility. Such a mechanism is said to be strategyproof. A

strategyproof mechanism that is in addition robust against

collusion by peers is said to be group strategyproof. Almost

all known group strategyproof mechanisms are based on

the seminal work of Moulin and Shenker [1]. The crucial

ingredient underlying a Moulin-Shenker mechanism is a cost-

sharing scheme that is cross-monotonic. A cost-sharing scheme

is said to be cross-monotonic if the cost share of a peer does

not increase when the service set containing the peer expands.

Using a simultaneous Cournot tatonnement process, Moulin

and Shenker proved that cross-monotonic cost-shares give rise

to group strategyproof mechanisms. Moreover, under reason-

able notions of fairness, Immorlica, Mahdian and Mirrokni

showed that the converse is true as well [4]. Motivated by this,

group strategyproof mechanisms have been fashioned via the

design of cross-monotonic cost-sharing schemes for a plethora

of games, including minimum spanning tree [5] [6], facility

location [7] [8], Steiner forests [9] and multicast in wired

networks [10].

While the key to achieving group strategyproofness lies in

a cross-monotonic cost-sharing scheme, at first glance, such

a property does not seem difficult to achieve. Requiring only

cross-monotonicity, it is easy to design a cost-sharing scheme

that is either trivial (offering the service for free), or unfair

(charging everyone a fixed price that is too high). Indeed,

in most practical situations, we simultaneously require the

cost-sharing scheme to be competitive and budget-balanced.

A cost sharing scheme is competitive if no subset of peers

is charged more than the optimal cost of serving this subset

alone. Such a requirement ensures that there is no threat of

secession by some subset of peers, who may instead choose

to obtain the service from another provider charging less. The

budget-balance requirement is natural — the service provider

wishes to recoup the cost incurred from the routing solution.

From a computational perspective, we are further interested in

cost sharing schemes that are competitive and budget-balanced

with respect to the optimal or least cost routing solution.

In this paper, we design cost sharing schemes for informa-

tion dissemination in a wireless ad hoc network, when the

underlying charging scheme is required to be group strate-

gyproof. Simultaneously, we require the data delivery method

employed to be efficient in terms of routing costs. Any efficient

routing mechanism should exploit the following two important
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properties; (1) the broadcast advantage inherent in wireless

environments, and (2) the replicable property of information.

A natural data dissemination method that suggests itself is

multicast. The optimal multicast route ensures that there are

no redundant transmission by peer nodes, thus ensuring the

total cost of wireless transmissions is minimized.

We show that cross-monotonic, competitive and budget-

balanced cost sharing schemes do not exist for multicast in

wireless networks. Hence, we relax the budget-balance re-

quirement, to obtain a cross-monotonic, approximately budget-

balanced cost-sharing scheme1. This guarantees a truthful

mechanism, to the detriment of the cost recovery ratio. An

interesting question is then to find upper and lower bounds on

cost recovery.

We show that the budget-balance ratio for any cross-

monotonic cost-sharing scheme cannot be significantly higher

than 1
2 in wireless networks. In the case of uniform transmis-

sion costs, we further show that the budget-balance ratio is

not significantly higher than 2
3 . Our result hinges on a patho-

logical network construction, and we employ a probabilistic

argument similar to that of Immorlica et al. [4] and Li [10]

to derive the upper bound on cost recovery. We complement

this upper bound by showing that constant factor budget-

balanced schemes are possible. We design an algorithm that

computes a 4-approximate routing solution, and show how

we can modify this algorithm to guarantee a cost recovery

ratio of at least 1
8 of the total cost of multicast in a wireless

ad hoc network. Our technique is based on the primal-dual

schema [7], [9], [11], [12], and ensures cross-monotonicity

by continuously increasing dual variables, which occasionally

results in violated dual constraints. This results in an infeasible

dual vector. Nevertheless, we show that the recovered cost

shares is bounded with respect to the feasible dual.

The rest of this paper is organized as follows; in Section II,

we discuss related work. We introduce our network model

as well as some game theoretic definitions in Section III.

In Section IV, we argue using a probabilistic method that

perfect budget-balance in wireless networks is impossible, and

derive upper bounds on cost recovery. We design a primal-dual

based algorithm that computes cross-monotonic cost-shares for

wireless networks with uniform cost in Section V, and prove

its performance bound. We discuss our results and conclude

in Section VI.

II. RELATED WORK

The study and design of group strategyproof mechanisms

was initiated by the seminal work of Moulin [2] and Moulin

and Shenker [1], in which they showed that the Cournot

tatonnement under a cross-monotonic cost-sharing scheme

gives rise to mechanisms that are group strategyproof. Further,

they show that if the cost function is submodular, then it is

easy to achieve cross-monotonic cost sharing, e.g., through the

Shapley value method [13]. In a Moulin-Shenker mechanism,

1Relaxing the budget-balanced requirement is equivalent to relaxing the
competitiveness property. See Section III.

the service is offered in the beginning to all interested agents

at prices computed using some cost-sharing scheme. Agents

that are unwilling to meet the price imposed are removed from

the service set, new cost-shares are computed, and the service

is offered to the remaining agents. The process repeats until all

agents agree to meet the asking price of the service provider.

If the underlying cost-sharing scheme is cross-monotonic, the

dominant strategy of every agent, whether acting individually

or in conspiracy with other agents, is to report her true valua-

tion for the service. Inspired by their work, group strategyproof

mechanisms have been developed for various games through

the design of cross-monotonic cost-sharing algorithms. The

minimum spanning tree [6], the travelling salesman problem

[6], the facility location game [7], [8], single-source rent-or-

buy [7], [14], and Steiner forest [9] all constitute combinatorial

optimization games for which algorithms have been developed

for computing cross-monotonic cost-shares.

With the notable exception of the minimum spanning tree

game, a recurring theme in the cost-sharing schemes for

the previously mentioned games is the poor budget-balance

ratio. Using a novel probabilistic argument, Immorlica et

al. [4] prove upper bounds on cost recovery for various

games, including edge and vertex cover, set cover and the

metric facility location game. Further, Immorlica et al. showed

that under the reasonable assumptions of no free riders and

upper continuity, cross-monotonic cost-sharing schemes lead

to group strategyproof mechanisms.

In the context of multicast, cross monotonic cost-sharing

was also studied by Feigenbaum et al. [15]. Assuming a

fixed multicast tree, they show that proportional cost-sharing

reduces to the Shapley value, which is a submodular function,

hence giving rise to group strategyproofness. Multicast was

also studied by Penna and Ventre [16]. Using a minimum

spanning tree construction on all nodes, they modified the

Moulin mechanism to query only leaf nodes in deciding the

service set. Hence, only leaf nodes are required to pay for

service.

In contrast to the previously mentioned work, Li studied

cross-monotonic cost-sharing for the optimal multicast flow

[10]. The optimal flow was computed under assumption that

network coding [17], [18] was used for multicast. Li studied

directed and undirected networks, and provided upper bounds

on cost recovery, as well as algorithms to achieve good budget-

balance for both types of network. Similar to Immorlica et al.

[4], Li used a probabilistic technique to show the existence of

directed networks for which no cross-monotonic cost-sharing

scheme recovers more than O( 1√
k
) of the cost, where k is the

number of multicast receivers. For undirected networks, the

upper bound was shown to be O(1
2 ). In the present work, we

consider wireless networks, which can be modeled as directed

networks using a universal transformation [19], but show that

constant budget-balance is still possible.

Cost sharing schemes for multicast in wireless networks

has previously been studied by Penna and Ventre [20], as

well as Bilo et al. [21]. Both study optimal multicast in

terms of minimum energy usage. Penna and Ventre provide
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strategyproof cost sharing schemes for multicast in wire-

less networks, based on the celebrated Vickrey-Clarke-Groves

mechanism. Unlike the present work, Penna and Ventre do not

provide a method for computing cross-monotonic cost shares.

Further, they assume that the communication tree is pre-

computed. Our algorithm on the other hand, simultaneously

computes a 4-approximate routing scheme while computing

cost shares that give rise to group strategyproofness. Bilo et

al. employ Jain and Vazirani’s [6] Steiner tree approximation

method to compute a cross-monotonic cost sharing scheme

that is 1
12 -budget-balanced for wireless networks, where the

cost of transmission between nodes decays exponentially with

distance. In contrast, we focus on wireless networks with fixed

transmission costs, and our algorithm achieves a 1
8 -budget-

balance ratio.

Algorithms for cross-monotonic cost recovery in the liter-

ature are primarily based on the primal-dual method [6], [7],

[9]. Primal dual methods are attractive in that they allow the

construction of the solution by carefully controlling the growth

of dual variables. Dual variables correspond to the cost of

building the solution, and smoothly increasing this leads to

cost-shares that grow in a cross-monotonic fashion. Primal-

dual methods were first used by Goemans and Williamson to

design approximation algorithms for a class of constrained for-

est problems [11]. In the context of network design problems,

Agrawal, Klein and Ravi [22] extended this method to design

approximation algorithms for the Steiner forest problem, of

which the Steiner tree is a special case.

III. PRELIMINARIES

In this section, we will introduce the wireless network model

we use, and discuss some desirable properties of cost-sharing

schemes. We will also show that the optimal multicast in

wireless networks is not submodular, precluding the use of

the Shapley value [13] as a viable cost-sharing scheme for

group strategyproofness.

A. The Network Model

We will assume that the wireless networks we study can

be modeled by disk graphs with some uniform radius, r.

In such graphs, a wireless peer or node2 u is connected to

all nodes whose physical distance from u is less than r.

The broadcast property of wireless networks means that a

transmission by u can be heard by all other nodes within

range r of u. We will say v is in the neighbourhood of u
or is adjacent to u if v is within u’s transmission radius.

Each node has a cost to transmit a unit of information, and

we denote a node u’s transmission cost as c(u). We will use

d(u, v) to denote the cheapest cost path from node u to node

v, including the cost of u’s transmission. We will assume that

there is a distinguished source node s, with identical data to

be sent to a set of receivers T . For example, the source node

may be providing media streaming service to T . To exploit

the replicable property of information and efficiently utilize

2we will use peers and nodes interchangeably in the sequel.

bandwidth, the data delivery mechanism employed by s will

be multicast. Optimal multicast is equivalent to computing

the optimal Steiner tree in a network. Since Steiner trees are

NP-Hard to compute [23], [24], we will seek to compute an

approximately optimal Steiner tree instead.

B. Group Strategyproof Mechanisms and Cost Sharing

Schemes

Consider the following problem: a set U of agents are

interested in obtaining a service from a service provider. Each

agent i ∈ U has some private valuation for the service, vi,

and places a bid of bi for obtaining the service. Each agent

is selfish, in the sense that she always tries to maximize her

utility, ui = vi − bi. In such a scenario, the service provider is

faced with the following two problems; (1) deciding the set of

agents S ⊆ U that should receive the service, and (2) deciding

the cost share of agent i in the set S, denoted ξ(i, S). This

scenario constitutes a cooperative game [1], [3], and is widely

applicable in a variety of settings. Agents seeking to maximize

their utility may lie about their valuation, and place lower

bids. The service provider on the other hand, seeks to recover

the cost of serving the agents. A Moulin-Shenker mechanism,

coupled with a cross-monotonic cost-sharing scheme, ensures

that truthfully reporting vi by agent i is the dominant strategy,

even when agent i is acting in collusion with other agents.

Formally, a cross-monotonic cost-sharing scheme for some

agent i in the set A has the following property

ξ(i, A) ≤ ξ(i, B) ∀B ⊇ A (1)

Essentially, an agent i in some service set is guaranteed that

her current cost-share will never increase when the service set

expands, if a cross-monotonic cost-sharing scheme is used.

Let us denote COPT (S) as the cost of the optimal (or

cheapest) solution that serves S. It is further desirable that

the cost-shares computed possess the following properties

• Competitiveness To ensure agents do not switch to

another provider, the cost-sharing scheme should not

overcharge users

∑

i∈S

ξ(i, S) ≤ COPT (S)

• Budget-balance The cost-sharing scheme should recover

the full cost of the solution
∑

i∈S

ξ(i, S) ≥ COPT (S)

However, many games of interest lack cost-sharing schemes

that are simultaneously cross-monotonic, competitive and

budget-balanced [4]. One can relax the budget-balance require-

ment, to obtain an approximately budget-balanced scheme.

A cost-sharing scheme is said to be β-budget-balanced for

0 ≤ β ≤ 1 if the following holds instead

β COPT (S) ≤
∑

i∈S

ξ(i, S) ≤ COPT (S)
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Alternatively, one may relax the competitiveness requirement

instead. A α-competitive cost sharing scheme for α ≥ 1 is

one that obeys the following

COPT (S) ≤
∑

i∈S

ξ(i, S) ≤ α COPT (S)

Clearly, a β-budget-balanced cost-sharing scheme is equivalent

to a 1
β -competitive cost-sharing scheme.

C. Multicast in wireless networks is not submodular

A function f is said to be submodular if for all A ⊂ B and

for some i /∈ A, the following holds

f(B ∪ i) − f(i) ≤ f(A ∪ i) − f(i)

A cost function that is submodular intuitively means that the

marginal cost of servicing a new agent decreases as the service

set expands. Submodular cost functions imply that a cross-

monotonic and perfectly budget-balanced cost-sharing scheme

exists in the form of the Shapley value [13]. However, we show

that the cost function for multicast in wireless networks is not

submodular using a simple counterexample.

s

t1

t2

t3

Fig. 1: Multicast in wireless networks is not submodular

Consider the example wireless network shown in Fig. 1. Let

c(u) = 1 for all nodes u, and let COPT (.) represent the cost

of the optimal multicast for an arbitrary set of receivers. Then

COPT (t2 ∪ t3) = 2

COPT (t2) = 2

COPT (t1 ∪ t2 ∪ t3) = 3

COPT (t1 ∪ t2) = 2

Since

COPT (t2∪t3)−COPT (t2) < COPT (t1∪t2∪t3)−COPT (t1∪t2)

and {t2} ⊆ {t1, t2}, the multicast cost function is not

submodular in wireless networks.

IV. UPPER BOUNDS ON CROSS-MONOTONIC COST

RECOVERY

In this section, we will show that there does not exist cross-

monotonic cost-sharing schemes that are budget-balanced for

all wireless networks. We begin by showing a simple topology

that does not admit a cross-monotonic budget-balanced cost-

sharing allocation. Subsequently, we generalize the ideas in

this topology to show that the upper bound on cost recovery

in wireless networks with a uniform radius is O(1
2 + 1

2η ) where

η is a network dependent parameter.

A. Example topology with 3
4 -budget-balance bound

s

t1 t2

t3 t4

Fig. 2: 3
4 + ǫ budget-balance is not possible

Full cost recovery is impossible for any cost allocation

scheme that is cross monotonic in wireless networks. We will

show this with a simple but representative topology, which will

provide us with an intuition into why the broadcast advantage

restricts cross-monotonic cost recovery. In the subsequent sec-

tion, we will generalize this idea to general wireless networks

with uniform coverage radius.

Consider the network shown in Fig. 2. All nodes have cost

c(u) = 1 to transmit a unit of information, except for the

source, which has zero cost. Firstly, choose at random any

three from four potential receivers in {t1, t2, t3, t4} to be in

the multicast group. Consider a subset consisting of any two

adjacent receivers in the multicast group. Since we choose

randomly, each node will pay at most 1/2 in expectation

when only this subset is in the multicast group. By cross

monotonicity, the third node will also only pay at most 1/2.

The minimum cost for multicast to any three receivers is 2,

and hence, the cost recovery ratio is at most

1
2 + 1

2 + 1
2

2
=

3

4

B. Poor cost recovery for wireless networks

We now generalize the argument in the previous section

to wireless networks that can be modeled by disk graphs

with uniform radius. We construct a pathological network that

does not admit a cost-sharing scheme that is cross-monotonic

and perfectly budget-balanced for any optimal minimum cost

multicast.

Theorem 1. There exists a wireless network that can be

modeled by disk graphs with uniform radius, which does not

admit a cost-sharing scheme for optimal multicast that is

cross-monotonic and (1
2 + 1

2η + ǫ)-budget-balanced for any

ǫ > 0, where η is a network dependent parameter such that

η ≥ 3.

Proof: Let N = 2η, and let the source s have c(s) = x.

We arrange N relay nodes u with c(u) = y at equidistance

from each other along the circumference of s’s neighbourhood.

We next label these relay nodes by numbering them clockwise

in ascending order. We next place N potential multicast

receivers ti with c(ti) = y by reflecting the source node

along the axis spanned by node numbered i and (i + η − 1
mod N), for all i. Observe that by construction, each potential

multicast receiver has η relays in its neighbourhood. Moreover,
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each relay node has η potential multicast receivers within its

communication range. Additionally, note that N can be accom-

modated for any arbitrarily large η by scaling r appropriately.

We next prove the poor budget-balance ratio of a network

constructed as above. Pick a potential multicast receiver ti
at random and include the next η nodes in the clockwise

direction, and label this as the target multicast group, T .

Observe that the set consisting of the first η nodes in the

multicast group (call this A) have one common relay node

(call this rA), while the last η nodes (call this B) share a

separate common relay node (call this rB). Let ξ(ti, S) be the

cost share of node ti in some subset S ⊆ T . Since we pick

the multicast group at random, we bound the expected cost

share of each node as follows:

E[
∑

ti∈T

ξ(ti, T )] = E[
∑

ti∈A

ξ(ti, T )] + E[
∑

ti∈T/A

ξ(ti, T )]

≤ E[
∑

ti∈A

ξ(ti, A)] + E[
∑

ti∈T/A

ξ(ti, B)]

= η
x + y

η
+

x + y

η

= (x + y)(1 +
1

η
)

The first equality is from linearity of expectations. The

inequality follows from cross-monotonicity and the fact that

A ⊂ T , B ⊂ T and |A| = |B| = η. Note that COPT (T ) =
x + 2y. Hence the fraction of cost recovered is at most

(x + y)(1 + 1
η )

x + 2y

Setting x = 0 and y = 1 yields the desired result.

Theorem 1 also implies the following corollary:

Corollary 1. For wireless networks that can be modeled by

disk graphs with uniform radius, there is no cross-monotonic,

(2
3+ 2

3η +ǫ)-budget-balanced cost-sharing scheme for networks

with uniform cost.

V. CROSS-MONOTONIC COST-SHARING SCHEMES

A. A budget-balanced scheme for line graphs

s t1 t2

Fig. 3: Cross-monotonic cost-shares are easily found for

networks that can be modeled as line graphs

Consider a simple line graph, as shown in Fig. 3. One

can easily design a cross-monotonic cost-sharing scheme for

such a network. One possibility would be to charge the

receiver furthest away from the source the entire cost of the

transmission. Such a cost-sharing scheme is cross-monotonic,

since adding a receiver to any subset never causes a receiver’s

cost to increase. Further, it is perfectly budget-balanced. Yet

another possibility is a cascading charging scheme. For every

receiver t, let R(t, T ) be the set of receivers in T closer to s
than t. Then, the following cost-sharing scheme

ξ(t, T ) = d(s, t) −
∑

t′∈R(t)

d(s, t′)

which essentially charges each receiver t the added cost of the

solution for serving t, is also cross-monotonic and perfectly

budget-balanced.

B. A 1
8 -budget-balanced scheme for uniform cost networks

In this section, we will design an algorithm for computing

cost-shares that are cross-monotonic for multicast transmission

in a wireless ad hoc network. We will build a Steiner tree for

efficient dissemination of information in a multicast. However,

Steiner trees are NP-Hard to compute [23], [24]. Accordingly,

we will design an algorithm that builds a solution that is within

a constant factor of the optimal solution. At the same time,

the cost-shares we compute will recover a constant fraction of

the cost of the solution we construct. We focus on the case

when each node has uniform cost to transmit. Without loss of

generality, let c(u) = c(v) = 1, ∀u, v.

We begin with some required definitions. For a set of nodes

S, we use the proper binary function f(S) in the following

sense

f(S) =

{

1 if |S ∩ T | ≥ 1 and s /∈ S

0 otherwise

Hence, f(S) = 1 if S contains at least one multicast

receiver and does not contain the source node s. We define

a node cut of the set S as the set of nodes δ(S), where the

following conditions hold

• V − δ(S) induces a graph where S̄ is disconnected from

S
• If u ∈ δ(S), then there exists a w ∈ S such that u and

w are adjacent.

A node cut is then the set of nodes adjacent to some other set

S, which if removed disconnects S from the source.

The optimal Steiner tree in a wireless network with the set

of nodes V can be computed by solving an integer program

(IP) of the following form:

Minimize
∑

u∈V

c(u)x(u) (2)

Subject To
∑

u∈δ(S)

x(u) ≥ f(S) ∀S ⊆ V (2a)

x(u) ∈ {0, 1} (2b)

In IP (2), the binary variable x(u) indicates if node u is used

to transmit information in the optimal Steiner network. The

objective function tries to minimize the cost of the transmitting

nodes, while ensuring that each receiver t ∈ T is connected

to the source s via a path of transmitting nodes.
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Since the optimal Steiner tree problem is intractable, we

will employ the primal-dual schema [11] to solve for an ap-

proximately optimal Steiner tree. The primal-dual schema will

employ the linear program (LP) relaxation of IP (2), achieved

by first relaxing the integrality requirement to x(u) ≥ 0 for

all u, and forming the subsequent dual LP:

Maximize
∑

S⊆V

f(S)y(S) (3)

Subject To
∑

y(S):u∈δ(S)

y(S) ≤ c(u) ∀u ∈ V (3a)

y(S) ≥ 0 (3b)

The dual variables y(S) can be seen as cost-shares for the

set of nodes S. Our algorithm works in the following way;

we begin with an infeasible primal IP by setting x(u) = 0 for

all u. In line with most primal-dual approximation methods,

we will build a primal solution that is feasible by increasing

the dual variables judiciously. By complementary slackness,

x(u) = 1 implies that the corresponding constraint of (3a)

must hold with equality. Using this intuition, we will set

x(u) = 1 whenever the corresponding constraint of (3a) holds

with equality due to the dual vector y.

We will design two algorithms based on the ideas just

described. The first algorithm computes cross-monotonic cost-

shares for Steiner trees in wireless networks, and we will

refer to it as algorithm CSTW. Algorithm CSTW ensures cross-

monotonicity by increasing dual variables in a smooth fashion,

even if it results in violating dual constraints. The result is an

infeasible dual, which makes the task of bounding the ap-

proximation factor of the primal solution difficult. Therefore,

we will at the same time design another algorithm, STW, that

will be used to create the Steiner tree. We then bound the

cost-shares computed by CSTW against the primal solution

constructed by algorithm STW to obtain our budget-balance

ratio.

We begin by describing algorithm STW. To describe STW,

we require some terminology. We will say a constraint is tight

if (3a) holds with equality for some node u. A node is said

to be paid for or opened if x(u) = 1. We will use the term

component to refer to a set of nodes. In the beginning of the

algorithm, we will have |T | components, each consisting of a

receiver t ∈ T . We will associate a notion of time, τ , with our

algorithm. A component S is said to be satisfied if f(S) = 0,

i.e., S includes the source node s. Let d(s, t) be the shortest

path cost from the source node to receiver t. Let Sτ be the set

of nodes in component S at time τ . We will say a component

S is active at time τ if S has not been satisfied at time τ .

Algorithm STW proceeds in iterations. In each iteration, we

increase or grow dual variables of every active component

uniformly in time. An iteration ends when one or more

constraints of type (3a) for some set of nodes R become tight.

At this point, we stop dual growth temporarily, and we open

each node u ∈ R by setting x(u) = 1. For each open node u

that is adjacent to some component S, we will add u to the

membership of S. If two or more components have contributed

to the same node in R, or to adjacent nodes in R, we merge

these components into a new single component. Similarly,

when two or more components are satisfied, we merge these

components into a single larger component as well. The next

iteration of the algorithm then begins. This dual growing phase

ends there are no longer any active components.

One can view the dual growing phase in the following

way - each component seeks to open a path of nodes to

the source by paying for them. However, the dual variable

of a component only contributes to node cuts adjacent to a

component. This means that any point in the algorithm, all

nodes in a component have been paid for, with the possible

exception of receivers themselves. Therefore, at the end of

the algorithm, to ensure connectivity, we set x(t) = 1 for

all t ∈ T , assuming this has not already occurred. This is

required to ensure all receivers are connected to the source.

Let us make this more concrete with an example. Assume

that components S1 and S2, with receivers t1 and t2, merge

into S′ by sharing the cost of opening some node m. Assume

without loss of generality that at a later time S′ is satisfied,

with a path from s to t2. Now t1’s path to s requires t2 to be

transmitting. Hence, opening the receivers at the end of the

dual growing phase is necessary to ensure primal feasibility.

However, this has consequences for the approximation factor

of the algorithm, which we discuss later.

A by-product of the primal-dual schema we have just

described is that at the end of the dual growing phase, we

will have a number of superfluously open nodes. To ensure a

good primal solution, we will examine these open nodes and

close them, as long as this can be done without disconnecting

some receiver from the source. That is, we set x(u) = 0 for

some open node u if after doing so, every t ∈ T still has a

path of open nodes to the source. When processing nodes for

pruning, we examine them in the reverse order in which they

were opened during the course of the algorithm. When there

are ties, we break them in an arbitrary but fixed manner (for

example, by using node ids). The algorithm terminates at the

end of this pruning phase. We denote the set of open nodes in

the primal solution at the end of the algorithm W . It is easy to

see that due to the pruning phase, W will be a tree connecting

s to all t ∈ T , such that each t ∈ T will have exactly one

path to the source.

Let us now analyze the performance of algorithm STW.

First, note that at the end of the algorithm, we will have

a primal feasible solution. This must be so, since the dual

growing phase only ends when all components are connected

to the source. Further, opening receivers ensures that this

connection requirement is met, and the pruning stage ensures

it is never violated. Let W ′ = W − (W ∩ T ), i.e., W ′ is the

primal solution without the set of open receivers. The next

lemma shows that excluding receivers, the dual y computed

by algorithm STW pays for at least half of the cost of the

solution constructed, excluding the cost of receivers.
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Lemma 1.
∑

u∈W ′ 1 ≤
∑

S⊆V 2y(S)

Proof: There are two crucial ideas behind this lemma.

The first is that dual variables for components grow at uniform

rate. Second, the primal solution is a tree, and every receiver

has exactly one path to the source. Consider any point in time

during the dual growing phase on the network graph. Only

active components are increasing their duals. Increasing the

dual variable of component S never pays for nodes in the

component, only to nodes that are node cuts adjacent to S.

Now, let us shrink each active component into a single node,

and remove all other nodes outside of these components that

do not appear in W ′. The resulting graph (call it H) now

consists of nodes that are either active components, or nodes

that will be paid for at some time in the future. Let us define

the degree of an active component S, as the nodes in H
adjacent to S, and let us denote it deg(S). We claim that

the average degree of all the active components is not more

than 2. To see that this is indeed the case, recall that the final

solution is a tree. Therefore, every node in H adjacent to an

active node, must either be in a path from the active node to

the source, or to another active node. If an active node has

paths in H to more than one active node, than each of those

active nodes must have degree of 1 (otherwise, we would have

redundant paths to active nodes).

By definition, since nodes in W ′ are open, its corresponding

constraint must be tight, and so we get
∑

u∈W ′

1 =
∑

u∈W ′

(

∑

S:u∈δ(S)

y(S)
)

=
∑

S⊆V

(

∑

u:u∈W ′∩δ(S)

y(S)
)

=
∑

S⊆V

(

deg(S)y(S)
)

But from the previous argument, we know that average degree

for all active components is at most 2, so we get
∑

u∈W ′

1 ≤
∑

S⊆V

2y(S)

Recall that algorithm STW open receivers “for free” at the

end of the dual growing phase, that is, these receivers were

not paid for by the dual computed. The next lemma shows

that this weakens the approximation ratio of our algorithm by

a factor of at most 2.

Lemma 2.
∑

u∈W 1 ≤
∑

S⊆V 4y(S)

Proof: Let k = |T |. If a receiver t ∈ W is opened after

the dual growing phase, then it must be that t is required

to connect some other receiver t′ to the source, and at some

point in the algorithm, say time τm, the components containing

t and t′ were merged. In the worst case, we have to open

k − 1 receivers in the primal without having paid for it in the

dual, with receiver t1 required to connect t2, which in turn is

required to connect t3, and so on. Let each of the receivers ti
be in some component Si when they merged. Let W ′′ be the

s

Fig. 4: An almost tight example for Lemma 2

nodes in W ′ that have been paid for at the time of the merge.

The cost of the solution at time τm is then

(
∑

u∈W ′′

1) + k − 1

But we know from lemma 1 that

∑

u∈W ′′

1 ≤ 2

k
∑

i=1

y(Si)

Let α be the new bound we seek. Then

2

k
∑

i=1

y(Si) + k − 1 ≤ α

k
∑

i=1

y(Si)

Due to uniform growth rate and cost, y(Si) ≥ 1
2 And so at

worst, we get

α(
k

2
) ≥ 2(

k

2
) + k − 1

and so α ≥ 4 − 2
k . Setting α = 4 yields the bound stated in

the lemma.

It turns out that Lemma 2 is essentially almost tight.

Consider the grid network as shown in Fig. 4. Every node’s

immediate neighbours are its node cuts. In Fig. 4, the black

nodes are receivers, who wish to connect to the node marked

s. In algorithm STW, in the beginning, each node is its own

component. At time τ = 0.5, all grey nodes have been paid

for (since each node costs 1), and are declared open. This

causes all components to merge into a single component.

This component will be satisfied at time τ = 1.5, when the

algorithm ends. Assume that there are k receivers. Then the

total dual is k(1
2 ) + 1, while the actual cost of the solution is

2k − 1. Hence, the ratio of dual to the solution constructed is

k + 2

4k − 2

which goes to 1
4 for very large k.

Lemma 2 also immediately implies the following corollary

Corollary 2. Algorithm STW is a 4-approximation algorithm

to the Steiner tree problem in wireless networks with uniform

cost.

Proof: By LP duality, the optimal primal solution is lower

bounded by the dual solution. Therefore, lemma 2 immedi-

ately implies that algorithm STW constructs a 4-approximate

solution.
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While algorithm STW creates a viable primal solution, we

cannot use its dual as cost-shares. Ceasing to increase the dual

variable of a satisfied component means the dual does not grow

smoothly, and may not preserve cross-monotonicity. Instead,

we will use algorithm CSTW to compute cross-monotonic cost-

shares. Algorithm CSTW mirrors STW in every way, with the

following exception; a component S is said to be active at

time τ as long as the following condition holds

max
t∈Sτ∩T

d(s, t) ≥ τ (4)

Let the primal solution built by CSTW be the set of nodes

Z . Note that we depart from the usual primal-dual schema,

by increasing dual variables for satisfied components, as long

as the condition in (4) holds. We will call a component’s

contribution after it becomes satisfied as its ghost contribution

[7]. Note that at all times in the algorithm, only one component

is contributing ghost shares, namely, the component containing

the source.

Let us now state our cost-sharing scheme based on algo-

rithm CSTW. Let Sτ (t) be the component that t is a member

of at time τ , and let φ(t) be the time in the algorithm when

the component containing t first becomes satisfied. Our cost-

sharing scheme can then be expressed as follows

ξ(t, T ) =

∫ φ(t)

τ=0

1

Sτ (t)
dτ (5)

Lemma 3. The cost-sharing scheme described in (5) is cross-

monotonic.

Proof: Adding receivers can only lead to more receivers

being in the same component, which leads to less cost per

receiver, since the cost of that component is shared. Crucially,

a component’s dual continues to grow even after the compo-

nent is connected, for time at least as long as the shortest path

cost from every receiver in the component to the source. This

continuous growth mimics the behaviour of dual growth when

any arbitrary subset of receivers is present in the multicast set.

Hence, adding a receiver can never cause another receiver’s

cost to increase. This smooth growth of cost-shares leads to

cross-monotonic cost-shares.

Next, we bound the cost-sharing scheme of (5) against the

feasible dual vector y of algorithm STW.

Lemma 4. For every component S, we have
∑

t∈S ξ(t, T ) ≥
1
2y(S).

Proof: Without loss of generality, assume that component

S has a single receiver, since the cost of a component is shared

equally between receivers in a component. Let τ1 and τ2 be

the time when S becomes satisfied under algorithms CSTW

and STW respectively. Clearly τ1 ≤ τ2, since components

can only get satisfied earlier due to the ghost contribution.

If τ1 = τ2, this means that S did not get satisfied due to

ghost contribution, and the lemma holds trivially. Now let

τ1 + δ = τ2 for some δ > 0. Since the ghost component

and S are growing at uniform rate, y(S) ≥ δ at time τ1. The

cost share of t is therefore at least δ, while the total cost to

connect t in algorithm STW is at most 2δ, thus proving the

lemma.

Lemmas 2, 3 and 4 then allow us to state the following

theorem.

Theorem 2. Algorithm CSTW computes cost-shares that are

cross-monotonic and 1
8 -budget-balanced for building a Steiner

tree in wireless networks with uniform cost.

VI. CONCLUSION

Ensuring a mechanism is group strategyproof invariably

entails the design of cost sharing schemes that are cross-

monotonic. In this paper, we showed that cross-monotonic cost

sharing schemes that balance the budget do not exist for mul-

ticast in wireless networks. We further showed that the upper

bound on cost recovery is not significantly higher than 1
2 and

2
3 respectively for wireless networks with heterogeneous and

uniform transmission costs. On the positive side, we designed

an algorithm that guarantees a constant budget-balance ratio

when transmission costs are uniform. An important question

is whether the gap between the upper and lowed bounds on

cost recovery derived here can be decreased. In one direction,

we seek a better network construction that results in worse

upper bounds on the budget-balance ratio. In the other, it may

be possible that the primal-dual algorithm we presented can

be improved for better cost recovery. At the same time, it is

interesting to see if our algorithm can be further modified to

compute cross-monotonic cost shares for wireless networks

with heterogeneous transmission costs. We intend to pursue

these directions of research in our future work.

REFERENCES

[1] H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs:
budget balance versus efficiency,” Economic Theory, vol. 18, pp. 511–
533, 2001.

[2] H. Moulin, “Incremental cost sharing: Characterization by coalition
strategy-proofness,” Social Choice and Welfare, vol. 16, pp. 279–320,
1999.

[3] N. Nisan, T. Roughgarden, E. Tardos, and V. V. (Eds.), Algorithmic

Game Theory. Cambridge University Press, 2007.
[4] N. Immorlica, M. Mahdian, and V. S. Mirrokni, “Limitations of cross-

monotonic cost sharing schemes,” in Proceedings of the 16th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[5] K. Kent and D. Skorin-Kapov, “Population monotonic cost allocation
on MSTs,” in Operational Research Proceedings KOI, 1996.

[6] K. Jain and V. Vazirani, “Applications of approximation algorithms to
cooperative games,” in Proceedings of the 33rd annual ACM Symposium

on Theory of Computing (STOC), 2001.
[7] M. Pal and E. Tardos, “Group strategy proof mechanisms via primal-

dual algorithms,” in Proceedings of the 44th Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 2003.
[8] S. Leonardi and G. Schaefer, “Cross-monotonic cost-sharing methods

for connected facility location games,” in Proceedings of the 5th ACM

conference on Electronic Commerce (EC), 2004.
[9] J. Konemann, S. Leonardi, and G. Schafer, “A group-strategyproof

mechanism for Steiner forests,” in Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2005.

[10] Z. Li, “Cross-monotonic multicast,” in Proceedings of IEEE INFOCOM,
2008.

[11] M. X. Goemans and D. P. Williamson, “A general approximation
technique for constrained forest problems,” in Proceedings of the 3rd

annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1992.
[12] V. V. Vazirani, Approximation Algorithms. Springer-Verlag, 2001.
[13] L. Shapley, “A value for N-person games,” Contributions to the theory

of games, pp. 31–40, 1953.



9

[14] A. Gupta, A. Srinivasan, and E. Tardos, “Cost-sharing mechanisms for
network design,” in Proceedings of the 7th International Workshop on

Approximation Algorithms for Combinatorial Optimization (APPROX),
2004.

[15] J. Feigenbaum, C. Papadimitriou, and S. Shenker, “Sharing the cost
of multicast transmissions,” Journal of Computer and System Sciences,
vol. 63, pp. 21–41, 2001.

[16] P. Penna and C. Ventre, “Free-riders in Steiner tree cost-sharing games,”
in Proceedings of 12th International Colloquium on Structural Informa-

tion And Communication Complexity, 2005.
[17] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information

flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[18] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 5, pp. 782–
795, 2003.

[19] Z. Li, B. Li, and M. Wang, “Optimization models for streaming in
multihop wireless networks,” in Proceedings of IEEE ICCCN, 2007.

[20] P. Penna and C. Ventre, “Sharing the cost of multicast transmissions in
wireless networks,” in Proceedings of the 11th International Colloquium

of Structural Information and Communication Complexity (SIROCCO),
2004.

[21] V. Bilo, M. Flammini, G. Melideo, L. Moscardelli, and A. Navarra,
“Sharing the cost of multicast transmissions in wireless networks,”
Theoretical Computer Science, vol. 369, no. 1-3, pp. 269 – 284, 2006.

[22] A. Agrawal, P. Klein, and R. Ravi, “When trees collide: An approxima-
tion algorithm for thegeneralized steiner problem on networks,” SIAM

Journal on Computing, vol. 24, pp. 440–456, 1995.
[23] M. Thimm, “On the approximability of the Steiner tree problem,” in

Mathematical Foundations of Computer Science 2001, Springer LNCS
2136, 678-689, 2001.

[24] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing Steiner trees,”
in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2003.


