
SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 1

iAware: Making Live Migration of Virtual
Machines Interference-Aware in the Cloud

Fei Xu, Fangming Liu, Member, IEEE, Linghui Liu, Hai Jin, Senior Member, IEEE, Bo Li, Fellow, IEEE,
Baochun Li, Senior Member, IEEE

Abstract—Large-scale datacenters have been widely used to host cloud services, which are typically allocated to different virtual
machines (VMs) through resource multiplexing across shared physical servers. While recent studies have primarily focused on
harnessing live migration of VMs to achieve load balancing and power saving among different servers, there has been little attention
on the incurred performance interference and cost on both source and destination servers during and after such VM migration. To
avoid potential violations of service-level-agreement (SLA) demanded by cloud applications, this paper proposes iAware, a lightweight
interference-aware VM live migration strategy. It empirically captures the essential relationships between VM performance interference
and key factors that are practically accessible, through realistic experiments of benchmark workloads on a Xen virtualized cluster
platform. iAware jointly estimates and minimizes both migration and co-location interference among VMs, by designing a simple multi-
resource demand-supply model. Extensive experiments and complementary large-scale simulations are conducted to validate the
performance gain and runtime overhead of iAware in terms of I/O and network throughput, CPU consumption and scalability, compared
to the traditional interference-unaware VM migration approaches. Moreover, we demonstrate that iAware is flexible enough to cooperate
with existing VM scheduling or consolidation policies in a complementary manner, such that the load balancing or power saving can
still be achieved without sacrificing performance.

Index Terms—Cloud computing, virtualization, live migration, performance interference.

F

1 INTRODUCTION

V IRTUALIZATION is widely deployed in large-scale
datacenters, due to its ability to isolate co-

located application workloads, and its efficiency for re-
source multiplexing. Most real-world Infrastructure-as-a-
Service (IaaS) cloud platforms [1], such as Amazon Elas-
tic Compute Cloud (EC2) [2], take advantage of virtu-
alization to provide flexible and economical computing
capacity for tenants, while statistically guaranteeing the
service-level-agreement (SLA) in terms of throughput,
delays, and the successful requests served. In particular,
live migration of running virtual machines (VMs) [3]
across distinct physical machines (PMs) serves as the
cornerstone of realizing load balancing [4] and power
saving [5]–[7] functions in such modern datacenters.

There are two types of underlying performance inter-
ference that cannot be overlooked, on both the migration
source and destination servers, during and after live mi-
grations. (1) Migration interference. It has been observed
from realistic applications that during the migration pro-

• Fei Xu, Fangming Liu, Linghui Liu and Hai Jin are with the Services
Computing Technology and System Lab, Cluster and Grid Computing
Lab in the School of Computer Science and Technology, Huazhong Uni-
versity of Science and Technology. The corresponding email address is
fmliu@mail.hust.edu.cn.

• Bo Li is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology. His email address is
bli@cse.ust.hk.

• Baochun Li is with the Department of Electrical and Computer
Engineering, University of Toronto. His email address is
bli@eecg.toronto.edu.

Manuscript received September XX, 2012; revised August XX, 2013.

cess of VM(s), the migrated VM(s) and the other running
VMs hosted on both source and destination PMs could
undergo severe performance degradation [8], [9]. (2)
Co-location interference. Current virtual machine monitor
(VMM) like Xen [10] only provides resource isolation
among co-located VMs by CPU core reservations and
static partition of memory and disk capacities. However,
it has been shown that resource isolation does not imply
performance isolation between VMs [11]. Meanwhile,
resources like cache space, memory bandwidth and the
interconnection network are very hard to be isolated
in practice [12]. Hence, even with built-in performance
isolation mechanisms across VMs, it is not uncommon
for the resumed VM after migration and other co-located
VMs at the destination PM to suffer from additional
performance losses [5], due to potential resource con-
tention. As a result, it is essential to make correct VM
migration decisions, such that both migration and co-
location interference can be alleviated in a holistic manner,
in order to avoid potential violations of the cloud SLA.

Recently, there have been a number of studies on VM
migration, which primarily focused on the migration
costs of an individual migrated VM, in terms of the
duration, downtime, bandwidth and power consump-
tion [13], as well as SLA violations on the migrated
VM [7], [14]. There has been little attention on the mutual
interference among a cluster of VMs across migration
source and destination PMs, during and after the mi-
gration. There have also been investigations on VM mi-
gration and VM co-location interference separately, with
respect to multi-dimensional resources such as the cache,

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 2

memory bandwidth [15] and network bandwidth [16].
However, there has been no systematical study on jointly
measuring, analyzing and mitigating both the VM mi-
gration interference and co-location interference. As a
result, though a VM migration operation itself might
not incur considerable cost, it is possible that the VMs
hosted on a chosen destination PM result in performance
interference with the migrated VMs during and after
the migration process, which brings additional costs
eventually.

To address these challenges, in this paper, we present
iAware, a lightweight interference-aware VM live migra-
tion strategy. It empirically captures the essential rela-
tionships between VM performance interference and key
factors that are practically accessible, through realistic
experiments of benchmark workloads on a Xen virtual-
ized cluster platform. iAware jointly estimates and mini-
mizes both migration and co-location interference among
VMs, by designing a simple multi-resource demand-supply
estimation model that unifies the key factors. Such fac-
tors include multi-dimensional resource utilization mea-
sured at both PMs and VMs, the number of co-located
VMs, network interrupts inside VMs, cache miss ratios in
PMs and VMs, as well as the I/O and VCPU scheduling
mechanisms adopted in the VMM (e.g., Xen).

We conduct extensive experiments and complemen-
tary large-scale simulations to evaluate the performance
and runtime overhead of iAware in terms of I/O and
network throughput, CPU consumption and its scala-
bility, compared with traditional interference-unaware
VM migration approaches. We demonstrate that under a
mix of representative workloads, iAware can qualitatively
estimate VM performance interference, and improve:
(1) I/O and network throughput by 65% for network-
intensive workloads, and (2) execution durations and
the total amount of successfully served requests by
16%-28% for workloads that are CPU, memory and
network-intensive, in comparison to the First-Fit De-
creasing (FFD) [7] and Sandpiper [4] algorithms. Mean-
while, the runtime overhead of iAware in terms of CPU
consumption and network I/O usage is shown to be
practically acceptable, even when it scales to thousands
of VMs.

To the best of our knowledge, iAware represents the
first attempt to design and implement an interference-
aware VM live migration strategy, with a particular
focus on characterizing and minimizing the performance
interference during and after the migration of VMs.
Moreover, our strategy is sufficiently flexible to cooper-
ate with existing VM scheduling or consolidation poli-
cies in a complementary manner, in order to achieve
load balancing [17] or power saving [18]–[20] without
sacrificing performance.

2 UNDERSTANDING VM INTERFERENCE

In this section, we first seek to understand the following
questions: how severe the performance interference could be

TABLE 1: Representative benchmark workloads of datacenters.

Workloads Type Programs

SPECCPU2006 [21] CPU, memory-intensive gobmk, mcf
netperf [22] Network-intensive netperf TCP
Hadoop [23] CPU, network-intensive TeraSort

NASA parallel CPU, memory, and ft
benchmark [24] network-intensive

SPECweb2005 [25] CPU, memory, and banking
network-intensive

during and after the migration of VMs, and what are the key
factors that impact such performance interference?

We build a Xen [10] virtualized cluster platform based
on 10 enterprise-class PMs to capture VM performance
interference, under a variety of typical datacenter appli-
cation workloads as characterized in Table 1. Specifically,
each PM is equipped with 2 quad-core Intel Xeon E5620
2.40 GHz processors, 12 MB shared last level cache, 24
GB memory, 800 GB network file system (NFS) storage,
and two 1 Gbps Ethernet interfaces used for the NFS
storage traffic and VM application traffic (including the
VM migration traffic), respectively. All PMs are con-
nected to a 1 Gbps network switch, forming a one-tier
tree network topology. The PMs are running CentOS 5.5
distribution and the Linux 2.6.18.8-Xen kernel patched
with Xen 4.1.1 [10], which is an open-source VMM re-
sponsible for creating multiple guest domains (i.e., VMs)
on a PM. The VMs are running CentOS 5.5 with Linux
2.6.18.8 kernel, and they can access the resources of PMs
via a privileged domain called domain-0. All image files
of VMs, which maintain the operating system and user
data of VMs, can be accessed through NFS storage.

TABLE 2: VM types and parameter setting of Xen Credit Scheduler [26].

VM Type VCPUs Memory weight cap
Small VM instance 1 1.7 GB 256 100

Large VM instance 4 7.5 GB 256 400

domain-0 1 2 GB 512 0

In accordance to the production standard of VM in-
stances in Amazon EC2 [2], the VMs in our platform
are configured as two representative classes: the standard
small VM instance with 1 virtual CPU core (VCPU) and
1.7 GB memory versus the standard large VM instance
with 4 VCPU cores and 7.5 GB memory. The domain-
0 runs on 1 VCPU core and 2 GB memory. To share
the physical CPU cores (PCPUs) among VMs including
domain-0, we adopt the Xen Credit Scheduler [26] with
the setting of weight and cap parameters listed in Table 2.
In particular, to ensure that domain-0 gets enough CPU
time for serving I/O requests from VMs, we assign a
double weight (i.e., 512) than other types of VMs and zero
upper cap of CPU cycles to domain-0 [27]. Meanwhile,
as Xen does not support memory over-subscription in
production, we allocate an amount of non-overlapped
memory to each domain as in [28].

Without loss of generality, we use a four-tuple ar-
ray V U 〈V Uc, V Um, V Ui, V Uo〉 to denote the multi-
dimensional virtual resource utilization ratio (including
CPU, memory, network in- and out-throughput) and as

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 3

0 100 200 300 400
0

200

400

600

800

1000

Time (seconds)

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t

(M
b
p
s)

vm01 in

vm01 out

vm03 in

vm03 out

Migration Process

Fig. 1: Network throughput of the netperf TCP
application hosted on two large VM instances,
during the live migration of another large idle
VM instance.

0 100 200 300 400
0

20

40

60

80

100

Time (seconds)

C
P

U
,
M

em
o
ry

 U
ti

li
za

ti
o
n
 (

%
)

CPU

memory
Migration Process

Fig. 2: V U of the large VM instance hosting
the mcf application on the migration source
PM, during the live migration of a large VM
instance running the mcf application.

0 50 100 150 200 250
0

20

40

60

80

100

C
P

U
,
M

em
o
ry

 U
ti

li
za

ti
o
n
 (

%
)

Time (seconds)

0 50 100 150 200 250
0

200

400

600

800

1000

N
et

w
o
rk

 T
h
ro

u
g
h
p
u
t

(M
b
p
s)CPU

memory

receive I/O

send I/O

Migration Process

Fig. 3: V U of the domain-0 on the migration
source PM, during the live migration of a large
VM instance running the mcf application.

a ratio of the maximal resource capacity of a VM, where
V Uc, V Um, V Ui, V Uo ∈ [0, 1]. Correspondingly, we use
another four-tuple array PU 〈PUc, PUm, PUi, PUo〉 to
denote the multi-dimensional physical resource utilization
ratio and as a ratio of the maximal resource capacity of
a PM, where PUc, PUm, PUi, PUo ∈ [0, 1]. For simplicity,
we calculate PU as the ratio of the aggregate resource
consumption of all hosted VMs (including domain-0) to
the corresponding physical resource capacity of the PM.

We develop a resource tracing tool to record V U
inside each VM, by acquiring the resource utilization
information of CPU, memory and network bandwidth
from the Linux ’proc’ file system (including ’/proc/stat’
file, ’/proc/net/dev’ file and ’/proc/meminfo’ file). Fur-
thermore, we capture the statistics of cache misses and
cache requests in PMs and VMs using the system-
wide statistical profiler for Linux systems, called Oprofile
v0.97 [29], patched with the xenoprof (Oprofile-0.95-xen-
patch) [30] customized for Xen VMs. In particular, the
cache miss ratio is calculated as the statistics of cache
misses divided by that of cache requests in PMs or VMs.

2.1 VM Migration Interference
We measure VM migration interference with represen-
tative applications categorized in Table 1. To reserve
bandwidth for other VM applications, we enable the rate
limiting mechanism [3] in Xen, by restricting the network
bandwidth for VM migration within 300-600 Mbps.

To emulate a network-intensive scenario, we launch
two large VM instances denoted by vm01 and vm02 on
one PM. Specifically, vm02 is idle and vm01 is running
the netperf [22] application to transmit a TCP stream to
another large VM instance vm03 hosted on another PM.
Fig. 1 plots the network throughput of vm01 and vm03,
when vm02 is migrated to the PM hosting vm03. We
observe that the V Uo of vm01 and the V Ui of vm03 have
dropped substantially, from 925 Mbps to around 600
Mbps, during the live migration process of vm02. Such
performance degradation lasts for up to 203 seconds due
to the memory transmission of a large idle VM instance,
and it will become worse when migrating a VM with a
high memory dirtying rate. Even the migration of one
small idle VM instance can last for about 54 seconds
in this scenario. This quantitatively shows the severe
VM migration interference on both migration source and
destination PMs, even with the rate limiting mechanism
enabled in Xen. Though [11] has achieved performance

isolation of network bandwidth between VMs, it actu-
ally sacrifices the performance of some victim VMs. In
case that the network bandwidth for VM migration is
restricted as a victim, the migrated VM could undergo
a long period of migration process and downtime, and
thus experience severe performance degradation.

We further examine VM migration interference in the
CPU and memory-intensive scenarios, by carrying out
the mcf application of SPECCPU2006 [21] in vm01, vm02
and vm03. To exclude the co-location interference, we pin
VCPUs of vm01 and vm02 separately to the two CPU
processors on the source PM. After the live migration of
vm02, the VCPUs of vm02 and vm03 are correspondingly
pinned to the two CPU processors on the destination
PM. Our experimental result has shown that the execu-
tion durations of the mcf application on vm01 and vm03
are extended by 45-50 seconds due to the live migration
of vm02. Furthermore, Fig. 2 reveals that the V Uc of
vm01 is moderately affected by the migration of vm02,
while the V Um of vm01 remains unchanged during the
migration process. As a result, we infer that VM live
migration has a moderate impact on the performance of
CPU and memory-intensive workloads on the migration
source and destination PMs.

While the experiments above illustrate VM migration
interference from the viewpoint of guest domains (i.e.,
a black-box way), Fig. 3 takes a closer look into the
V U of the domain-0 on the migration source PM during
the migration of a large VM instance running the mcf
application (i.e., a white-box way). We observe that the
V Um of the domain-0 on the source PM remains nearly
zero and the V Uc of the domain-0 varies from 6%-25%. In
sharp contrast, the V Uo varies from 31%-92% even with
the rate limiting mechanism enabled in Xen. In addition,
the V Uc and V Um of the domain-0 on the destination PM
are almost the same as that on the source PM, and the
V Ui of the domain-0 can also vary from 31%-91%.

In summary, our findings above capture the migra-
tion interference in both black- and white-box manners,
rather than treating it as a constant value of application
performance degradation (e.g., the increase in response
time) from the viewpoint of guest domains [7], [31]. In
essence, VM live migration can be treated as a network-
intensive and CPU-moderate application in domain-0,
and it interferes with the VMs running network or
CPU-intensive workloads on both migration source and
destination PMs. The rationale is that, the aggregated

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 4

2 4 6 8 10
0

40

80

120

Number of Co−located VMs

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

gobmk

mcf

netperf

Over−subscription

Fig. 4: The performance degradation of the
gobmk, mcf, and netperf TCP applications, as
the number of co-located VMs increases from
1 to 11, due to VM co-location interference.

2 4 6 8 10
0

10

20

30

40

Number of Co−located VMs

V
C

P
U

 Q
u
eu

ei
n
g
 T

im
e

(%
)

gobmk

mcf
N

vcpu
 : N

pcpu
 − 1

Fig. 5: The percentage of VCPU queueing
time in the execution duration of gobmk and
mcf applications, with different numbers of co-
located VMs on the PM.

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

Number of Co−located VMs

C
ac

h
e

M
is

s
R

at
io

gobmk

mcf

Fig. 6: The cache miss ratio of the PM with
different numbers of co-located VMs hosting
the gobmk and mcf applications.

network bandwidth and CPU computation “demand” of the
domain-0 and other co-located VMs cannot be satisfied by the
resource “supply” on the source and destination PMs.

In order to avoid the severe migration interference on
the network I/O resource, the best practices for sev-
eral commercial virtualization platforms (e.g., VMware
vSphere [32]) have recently recommended a dedicated
network for live VM migration. To emulate such a cloud
platform, we configure our experimental setup so that
the migration traffic passes through the Ethernet inter-
face for the NFS storage traffic, and re-run our experi-
ments above. As expected, the migration interference on
the network I/O resource is completely alleviated. How-
ever, the migration interference on the CPU resource and
migrated VMs still exists, similar to the shared network
scenario. We will consider the case with a dedicated
migration network in the iAware model in Sec. 3.1.

2.2 VM Co-location Interference

Next, we measure and analyze VM co-location interfer-
ence to answer two questions: (1) What is the relationship
between VM co-location interference and the number of co-
located VMs? (2) What are the key factors that can reflect
VM co-location interference? In the next experiment, we
use Ph to denote the PM that hosts multiple VMs,
and Nvm to denote the number of co-located VMs on
Ph. Specifically, we take the small VM instance as an
example and vary Nvm from one to eleven. The VMs
are running the gobmk, mcf and netperf workloads as
in Sec. 2.1. To quantify VM co-location interference, we
define a performance degradation metric as the ratio of the
degraded performance, in terms of the increase of exe-
cution durations or the decrease of network throughput,
to the original performance when the respective VMs are
running alone on Ph.

Fig. 4 depicts the performance degradation with the
gobmk, mcf and netperf TCP applications in co-located
VMs, as Nvm increases from 1 to 11. We observe that
VM co-location interference is highly correlated to Nvm.
The more VMs Ph hosts, the more severe VM co-location
interference becomes. The rationale is that, the aggregated
shared resource “demands” of co-located VMs increase dra-
matically as Ph hosts more VMs, which far exceeds the fixed
amount of shared resource “supply” on Ph. In more detail,
(1) VM co-location interference under CPU and memory-
intensive applications (e.g., gobmk, mcf) is roughly linear
to Nvm. In particular, the co-location interference with

VM over-subscription (Nvm > 8) is more severe than that
without VM over-subscription (Nvm ≤ 8). (2) Moreover,
the co-location interference of mcf applications is gen-
erally more severe than that of gobmk applications. (3)
Finally, the co-location interference of network-intensive
applications (e.g., netperf) can be empirically quantified
as 1− 1

Nvm
. As a result, the simple factor Nvm can be used

to estimate VM co-location interference among similar
types of co-located workloads.

Essentially, observation (1) can be explained by the
VCPU scheduling mechanisms of the Xen Credit Sched-
uler [26]. Specifically, to share the physical CPU re-
sources, each PCPU maintains two local queues (i.e., over
and under) of active VCPUs. The VCPUs with negative
credits join the over queue, while the VCPUs with positive
credits join the under queue. Each VM (VCPU) is allocated
with an amount of credits. At every scheduling time, the
VCPU at the head of the under queue is scheduled to run
on the PCPU, which consumes credits of the scheduled
VCPU. Accordingly, the more active VMs (VCPUs) the
PM over-subscribes, the longer time VCPUs have to
wait in the queue, which hence results in severe VM
interference. As shown in Fig. 5, the VCPU queueing
time is nearly zero when there is no over-subscription
(Nvm ≤ 8). When over-subscription occurs (Nvm > 8),
the VCPU queueing time shows a roughly linear increase.
In particular, the percentage of VCPU queueing time
in the execution duration of applications is capped by
Nvcpu

Npcpu
− 1, where Nvcpu and Npcpu denote the number of

VCPUs and PCPUs hosted on Ph, respectively.
Next, observation (2) can be explained by: the heavy

contention on cache space and memory bandwidth will
lead to severe co-location interference [15], [33]. Specifi-
cally, we use the cache miss ratio and physical memory
utilization PUm to estimate the cache and memory band-
width contention on a PM, based on the rationale that the
severe cache and memory bandwidth contention will be
likely to cause more cache misses and higher memory
utilization. As shown in Fig. 6, the cache miss ratios
of the PM Ph for both the gobmk and mcf applications
basically follow the trend of their respective performance
degradation in Fig. 4 without VM over-subscription.
In addition, our resource tracing tool reveals that the
memory utilization PUm of Ph is linear to Nvm, which
can also explain the performance degradation of gobmk
and mcf applications in Fig. 4.

Finally, observation (3) is explained by Xen I/O mech-

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 5

anisms [27]: the Xen backend driver in domain-0 man-
ages the I/O rings from the running VMs in a simple
round-robin manner [10]. Virtual hardware (i.e., network)
interrupts of VMs are sent to the backend driver through
the event channel, and such events are processed in
strict round-robin order in the backend driver to en-
sure fairness [27]. Accordingly, the Nvm co-located VMs
running netperf applications on a PM roughly share
the total network bandwidth Bm of the PM. Hence,
the network throughput of each VM is around Bm

Nvm
.

Since the netperf application tends to make full use of
Bm when it runs alone on the PM, the performance
degradation of Nvm co-located VMs can be quantified
as (Bm − Bm

Nvm
)/Bm = 1 − 1

Nvm
. In summary, the three

explanations above inspire us to utilize not only V U
and PU but also the cache miss ratio and VM network
interrupts as the key factors, in order to reflect VM co-
location interference, as we will elaborate in Sec. 3.

3 A SIMPLE ESTIMATION MODEL OF VM IN-
TERFERENCE

Based on the empirical understanding above, how can
we effectively estimate both VM migration interference and
VM co-location interference in a holistic manner? As evi-
denced by Sec. 2, both VM migration and co-location
interference can be essentially viewed as the mismatch
between aggregated resources “demands” of co-located
VMs (including the migrated VM and domain-0) and
shared resources “supply” provided by the migration
source and destination PMs. In response, we design
a simple multi-resource demand-supply model [34] in
iAware, which unifies the key factors that are previously
identified in Sec. 2. The notations used in our estimation
model are summarized in Table 3.

3.1 Demand-Supply Model of VM Migration Interfer-
ence
As demonstrated in Sec. 2.1, VM live migration can be
viewed as a network-intensive and CPU-moderate appli-
cation in domain-0, which implies that migrating VMs on
the PMs with heavy I/O and CPU contention will cause
severe migration interference. This inspires us to model
VM migration interference as a function of network I/O
contention and CPU resource contention on both migration
source and destination PMs, which highly depends on
Xen I/O mechanisms [27] and VCPU scheduling mech-
anisms [26], as we elaborated in Sec. 2.2.

We first estimate the network I/O interference among
VMs based on Xen I/O mechanisms [27]. Specifically,
we use the number of network interrupts inside a VM
to reflect its network I/O “demand.” As the virtual inter-
rupts from all VMs on a PM are eventually handled by
the backend driver in domain-0, the number of network
interrupts in domain-0 can be regarded as how many I/O
“demands” from all VMs are “satisfied” by the hosting
PM. Accordingly, we characterize the network I/O con-
tention by using a notion of demand-supply ratio of the

TABLE 3: Key notations in our estimation model.

Notation Definition

υj Estimated network I/O interference on a PM Pj

ρj Estimated CPU resource contention on a PM Pj

ti Estimated migration time of a VM Vi
ωj Estimated migration interference on a PM Pj

γid
Estimated network I/O interference caused by a
migrated VM Vi co-located on a PM Pd

θid
Estimated CPU resource contention caused by a
migrated VM Vi co-located on a PM Pd

ξid
Estimated cache and memory bandwidth interference
caused by a VM Vi co-located on a PM Pd

κx
Normalized parameter for a variable x with respect
to its maximum values in one round of migration

M,N, T
Estimated VM migration interference, VM co-location
interference, and the overall performance interference

total number of network interrupts observed in VMs to
that observed in domain-0. Intuitively, the higher such
a demand-supply ratio is, the more severe the network
I/O contention becomes. Furthermore, we observe that
the network throughput of VMs tends to fluctuate wildly
under severe network I/O contention. To capture such
effects, we also take into account the variation coefficient
of network throughput of VMs, which is defined as the
ratio of the standard deviation to the mean of network
throughput of VMs.

We assume that time t is slotted (e.g., one second
per slot). During a period of τ time slots, the network
throughput of VM Vi is sampled as Hi(t, τ) = {Hi(t −
τ), Hi(t − τ + 1), . . . ,Hi(t − 1)}. Likewise, the number
of network interrupts of Vi is sampled as Ii(t, τ) =
{Ii(t− τ), Ii(t− τ + 1), . . . , Ii(t− 1)}. Then, we calculate
the mean µih and standard deviation σih of Hi(t, τ), and
the mean µit of Ii(t, τ) for each VM, including the mean
µ1t for the domain-0 (i.e., V1). Suppose we have αj VMs
hosted on the PM Pj including domain-0, we estimate
their network I/O interference υj on the PM Pj as Eq. (1),
which will be qualitatively validated in Sec. 5.1.

υj = fυ(σih, µih, µit) ≈
αj∑
i=2

σih
µih

+

αj∑
i=2

µit

µ1t
. (1)

We next estimate the CPU resource contention among
VMs based on the VCPU scheduling mechanisms [26].
As demonstrated in Sec. 2.2, more active VMs (VCPUs)
hosted by a PM will lead to heavier CPU resource con-
tention, which can be characterized by another ratio of
the total CPU “demands” of co-located VMs to the CPU
“supply” of the hosting PM. Specifically, we calculate
the sum of the CPU utilization and percentage of VCPU
queueing time observed in a VM as its CPU “demand,”
and the number of PCPUs on the hosting PM as its CPU
“supply.” Accordingly, the CPU resource contention ρj
on a PM Pj is estimated by

ρj = fρ(V Uic, Qi, Ni, Nj) ≈

αj∑
i=1

(V Uic +Qi) ·Ni

Nj
, (2)

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 6

where V Uic and Qi denote the CPU utilization and
percentage of the VCPU queueing time observed in a
VM Vi, respectively. Ni is the number of VCPUs hosted
by Vi, and Nj is the number of PCPUs hosted by Pj .

By combining the two essential models above, we
estimate the migration interference ωj on co-located VMs
hosted by a migration source or destination PM Pj as

ωj = fω(υj , ρj) ≈ κυ · υj + κρ · ρj , (3)

where κυ and κρ are the parameters that normalize the
variables υj , ρj with respect to their respective maxi-
mum values obtained across all migration source and
destination PMs during one round of VM migration. In
particular, κυ is set to zero if the datacenter adopts a
dedicated migration network, as discussed in Sec. 2.1. κρ
is set to zero if the datacenter statically pins the VCPU(s)
of domain-0 to non-shared PCPU(s). We will validate the
effectiveness of the iAware model in a cloud platform
with a dedicated migration network in Sec. 5.2.

In addition, to evaluate the migration interference on
the migrated VMs, we also incorporate another key
factor, the VM migration time, into our estimation model.
Specifically, the major factors impacting VM migration
time are the memory size mi, memory dirtying rate Di

of the VM to be migrated Vi, and the available network
bandwidth Ri [13] for Vi as well as the number of
concurrent migrations ci [8] with Vi. For simplicity, we
approximately calculate the migration time ti as

ti = ft(mi, ci, Ri, Di) ≈
mi · ci
Ri −Di

. (4)

In summary, the VM migration interference M on the
migration source PM Ps and destination PM Pd as well
as the migrated VM Vi can be characterized as

M = fM (ωs, ωd, ti) ≈ ωs + ωd + κt · ti, (5)

where ωs and ωd are the migration interference on Ps
and Pd, respectively. Similar to κυ and κρ in Eq. (3), the
parameter κt normalizes the VM migration time ti with
respect to its maximum value of all possible choices of
VMs to be migrated in one round of VM migration.

3.2 Demand-Supply Model of VM Co-location Inter-
ference
According to our key findings in Sec. 2.2, VM co-location
interference is mainly caused by the contention of shared
and constrained network bandwidth, CPU, as well as
the cache and memory bandwidth, with the condition
of non-overlapped memory allocated to each active VM.
This guides us to model VM co-location interference
as a function of network I/O contention, CPU resource
contention, cache and memory bandwidth contention on mi-
gration destination PMs. We assume that the datacenter
is provisioned with homogeneous or similar types of
PMs [35].

First, we estimate the network I/O interference caused
by a migrated VM Vi co-located on the destination PM

Pd. Based on Xen I/O mechanisms [27], we can infer
that if a VM with heavy network I/O “demand” is mi-
grated to a destination PM with constrained bandwidth
“supply” and severe network I/O contention (i.e., υd),
then the I/O throughput of other co-located VMs on the
destination PM is more likely to deteriorate. Specifically,
we use the mean value of network interrupts µit inside
Vi as its network I/O “demand,” the maximum network
interrupts µdt that Pd can sustain per time slot as its
network I/O “supply.” The network I/O contention υd
on Pd is estimated by Eq. (1). Accordingly, we estimate
the network I/O interference γid by

γid = fγ(µit, µdt, υd) ≈
µit
µdt

+ υd. (6)

We next estimate the CPU resource contention caused
by a migrated VM Vi co-located on the destination PM
Pd. The VCPU scheduling mechanisms [26] elaborated in
Sec. 2.2 implies that a VM with a large amount of CPU
computation “demand” migrated to a destination PM
with scarce CPU resource “supply” will lead to heavy
CPU resource contention. Similar to Eq. (6) above, we
estimate the CPU resource contention θid as

θid = fγ(di, Nd, ρd) ≈
di
Nd

+ ρd, (7)

where di denotes the CPU resource “demand” of Vi. Both
the number of PCPUs Nd and CPU resource contention
before migration ρd denote the CPU resource “supply”
of Pd. Specifically, as in Sec. 3.1, di is calculated as the
CPU utilization plus the percentage of VCPU queueing
time observed in Vi, and ρd can be calculated by Eq. (2).

We finally estimate the cache and network bandwidth
interference caused by a migrated VM Vi co-located
on the destination PM Pd. Guided by the analysis in
Sec. 2.2, we infer that the contention on cache space
and memory bandwidth tends to become severe, if a VM
with large cache and memory bandwidth consumption
is migrated to a destination PM with scarce remaining
cache and memory bandwidth resource. Accordingly, we
construct two demand-supply ratios of the cache space
and memory bandwidth “demands” of Vi to the remain-
ing cache space and memory bandwidth “supplies” on
Pd, respectively, which are combined together to estimate
the cache and memory bandwidth interference ξid as

ξid = fξ(PUm, V Um, sdp, siv) ≈
V Uim

1− PUdm
+
β · siv
1− sdp

, (8)

where V Uim and PUdm denote the memory utilization
on Vi and Pd, respectively. siv and sdp denote the cache
miss ratio on Vi and Pd, respectively. In particular, β ∈
(0, 1] is a scale factor of siv to estimate the “demand” of
cache space consumption in Vi (i.e., the cache miss ratio
obtained in Vi running alone on a PM). We empirically
set the factor β as one minus the cache miss ratio of the
migration source PM.

Combining the three essential models above, VM co-
location interference N caused by a migrated VM Vi on

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 7

the destination PM Pd is estimated as

N = fN (γid, θid, ξid) ≈ κγ · γid + κθ · θid + κξ · ξid, (9)

where κγ , κθ and κξ are the parameters that normalize
each variable γid, θid, ξid with respect to their respective
maximum values, obtained across all possible choices of
VMs to be migrated and their corresponding migration
destination PMs in one round of VM migration. In
particular, κθ is set to zero if the datacenter assigns each
active VM with non-shared PCPU(s). We will qualita-
tively validate the model above in Sec. 5.1.

In summary, the overall VM performance interference
T can be considered as a function of the estimated VM
migration interference M in Eq. (5) and VM co-location
interference N in Eq. (9), which is given by

T = fT (M,N) ≈ a · (κM ·M) + b · (κN ·N). (10)

For numerical stability, the parameters κM and κN nor-
malize interference values M , N with respect to their
respective maximum values, obtained across all possible
choices of VMs to be migrated and their corresponding
migration destination PMs in one round of VM migra-
tion. In particular, a and b are the relative weights of VM
migration interference versus VM co-location interfer-
ence, respectively, and a+ b = 1. By tuning the values of
a and b, our iAware VM live migration strategy is flexible
enough to selectively switch our design choices between
different aspects of performance interference during and
after VM migration, as demonstrated in Sec. 5.2.3.

4 AN INTERFERENCE-AWARE VM MIGRATION
STRATEGY

Based on both the empirical understanding and simple
estimation model of VM performance interference in
previous sections, we present iAware in Algorithm 1
for making decisions on which candidate VMs are to be
migrated to which PMs, in order to jointly mitigate both
the VM migration interference and co-location interfer-
ence in a holistic manner. In particular, when or whether
to migrate VMs can be periodically evaluated by load
balancing, power saving or any other VM (or server)
managements in datacenters, rather than by iAware.

When one or multiple VMs V need to be migrated
for achieving load balancing or power saving in dat-
acenters, iAware first selects a subset C of candidate
VM(s) with the least estimated migration interference on
the running VMs hosted by source PM(s). Then, iAware
decides which PM(s) can serve as the potential migration
destination for those candidate VM(s) in C, by further
estimating VM co-location interference. Specifically, for
each pair of VM in C and available PM, iAware infers
whether the PM can host the VM, according to the VM
assignment constraint on the memory capacity [28]. Only
capable PMs are the candidate destinations worthwhile
for jointly calculating both the estimated migration in-
terference and co-location interference, according to our
simple multi-resource demand-supply model in Sec. 3.

Algorithm 1: iAware: interference-aware VM live mi-
gration strategy.

Input: (1) k potential candidate VMs for migration
V = {V1, V2, · · · , Vk}, (2) l available PMs P = {P1, P2, · · · , Pl}.

Output: Selected VM to be migrated and migration destination PM.
Symbol: (1) M , N , T , ωj , ti, κx are listed in Table 3, (2) the subset

of candidate VMs for migration C.
Step a). Select candidate VM(s) with the least estimated migration

interference on the migration source PM(s).
1: Initialize ωmin ← inf , C← ∅;
2: for all VM Vi ∈ V do
3: ωs ← Eq. (3) for computing migration interference on the

source PM hosting Vi;
4: if ωmin > ωs then
5: ωmin ← ωs; C← Vi;
6: else if ωmin == ωs then
7: C← C ∪ {Vi};
8: end if
9: end for

Step b). Identify a pair of VM to be migrated and destination PM by
jointly minimizing VM migration and co-location interference.

10: Initialize Tmin ← inf , Vmin ← −1, Pmin ← −1;
11: for all VM Vi ∈ C do
12: for all PM Pj ∈ P capable of hosting Vi do
13: ωd ← Eq. (3) with (Vi, Pj) for computing migration

interference on the destination PM;
14: M ← ωmin + ωd + κt · ti according to Eq. (5);
15: N ← Eq. (9) with (Vi, Pj) for computing co-location

interference on the destination PM;
16: T ← a · (κM ·M) + b · (κN ·N) according to Eq. (10);
17: if Tmin > T then
18: Tmin ← T ; Vmin ← i; Pmin ← j;
19: end if
20: end for
21: end for
22: return Vmin and Pmin as the selected VM and PM indices in V

and P, respectively.

After iteratively electing the appropriate destination PM
for each VM in C, iAware can identify a pair of VM and
PM with the minimum overall performance interference.

Given the detailed notations in Algorithm 1, the com-
plexity of the iAware strategy is determined by the
number of candidate VMs for migration |C| and the
number of available PMs l. Suppose the total number of
PMs in the datacenter is m, the worst-case for strategy
computation is in the order of O(m · k), when the total
k VMs in V are selected as the candidate VMs for
migration (i.e., C = V), and all PMs in the datacenter are
available for migration (i.e., l = m). In practice, given
the average number of VMs hosted on a PM Nvm in the
datacenter, we have m ≈ k

Nvm
. Hence, the complexity

of the iAware strategy can be further simplified as: (1)
O(m · k) ≈ O(k2) in the scenario of a PM hosting less
than tens of VMs on average, e.g., Nvm = 5 without VM
over-subscription, or (2) O(m · k) ≈ O(k) in the scenario
of a PM hosting hundreds of VMs on average, e.g.,
Nvm = 100 by VM over-subscription. We will validate
the computational complexity of iAware in Sec. 5.3.

The iAware strategy can be iterative if multiple rounds
of VM migrations are required for reaching a given
degree of load balancing or power saving χ. As we will
demonstrate in Sec. 5.2, iAware is flexible and lightweight
enough to be incorporated into existing VM migration

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 8

t

0

t

0

+T

c

t

0

+2T

c

t

0

+3T

c

.

t

0

+8T

c

T

c

T

m

t

m

(a) start

t

m

+T

m

(d) sleep(c) migration

Time

alg1

(b)

t

m

+T

a

+T

mig

t

m

+T

a

Fig. 7: Timing and operation process of iAware, where Tc and Tm are
the communication interval and migration decision interval, respectively:
(a) first, when or whether to migrate VMs is evaluated by VM (or server)
managements in datacenters at tm, (b) Algorithm 1 execution, which
is enabled based on the resource utilization information of PMs and
VMs collected in the last communication interval [t0, t0 + Tc], takes a
processing time of Ta to make the migration decision, (c) following the
decision, the live migration is performed with a duration of Tmig , (d)
then, Algorithm 1 sleeps for Ts until the next migration decision interval.

and consolidation policies (e.g., [4], [7]) in a complemen-
tary manner, for mitigating extra performance loss in
the cloud. To avoid excessive rounds of VM migrations,
the iteration of the iAware strategy terminates when any
of the following three simple conditions holds: (1) the
total rounds of VM migrations exceed a threshold which
is equal to the number of potential candidate VMs for
migration k, (2) the degree of load balancing or power
saving χi for i-th iteration is worse than χi−1 for the
previous iteration, (3) χi surpasses the target χ given
by datacenter operators. The iteration-exit conditions of
iAware will be validated in Sec. 5.2. Please also refer
to the online supplementary material for detailed pseu-
docode and additional experimental results.

More Specifically, Fig. 7 illustrates the timing and
operation process of the iAware strategy with two types
of time intervals: (1) the aforementioned communication
interval Tc for periodic information collection, and (2)
the migration decision interval Tm for one round of
the iAware strategy execution, which consists of the
processing time Ta of Algorithm 1, migration time Tmig
of the migrated VM and sleep time Ts of Algorithm 1
after the VM migration. To avoid frequent and noisy
migrations, the migration decision interval, which can
be flexibly determined by the system administrator, is
relatively longer than the communication interval, such
as ranging from minutes (e.g., 5 minutes in VMware
Distributed Resource Scheduler (DRS) [36]) to one hour.

5 PERFORMANCE EVALUATION

In this section, we carry out a series of experiments using
mixed types of representative workloads in Table 1, to
evaluate the effectiveness of our estimation model of VM
performance interference and VM migration strategy of
iAware. Specifically, we demonstrate the performance
gain and runtime overhead of iAware, in comparison
to both the First-Fit Decreasing (FFD) [7] and Sand-
piper [4] algorithms. Furthermore, complementary large-
scale simulations are conducted to validate the scalability
of iAware.

We implement a prototype of iAware with 3, 600 lines
of C code, based on our Xen virtualized cluster platform
illustrated in Fig. 8, which includes: (1) Enterprise-class
PMs (described in Sec. 2) that host running VMs. Inside

Xen Virtualized

Cluster

PM

Xen VMM

VM0 VMn

Xenoprof Tracing tool

Central Server

Estimation of VM interference

via multi-resource demand-supply

model

iAware

Interference-aware VM migration

VM migration decision

PM

Xen VMM

VM0 VMn

PM

Xen VMM

VM0 VMn

PM

Xen VMM

VM0 VMn

PM

Xen VMM

VM0 VMn

Fig. 8: Implementation of iAware upon a Xen virtualized cluster.

each VM (including domain-0), we use our aforemen-
tioned tracing tool together with xenoprof [30] to record
V U , PU , the cache miss ratio. In addition, the number
of network interrupts is measured using the Linux tool
“vmstat”, and VM memory dirtying rate can be obtained
by tracking the shadow page tables in Xen as in [13]. (2)
Central server(s) with iAware that periodically commu-
nicates with all active VMs to collect the information
of multi-dimensional resource consumption in our Xen
virtualized cluster. To reduce the communication and
computation overhead of servers, we set the communica-
tion interval to 10 seconds, and simply input the average
of resource utilization of PMs and VMs during the last
communication interval in the iAware strategy. When one
or multiple VMs need to be migrated for load balancing
or power saving, iAware on the central server(s) will
estimate VM performance interference through the sim-
ple multi-resource demand-supply model in Sec. 3, and
apply the interference-aware strategy in Sec. 4 to make
VM migration decisions accordingly.

5.1 Validating Estimation Models of VM Interference
We first validate the iAware model of network I/O inter-
ference in Sec. 3.1. To this end, we use IxChariot console
version 5.4 and endpoint version 5.1 [37], which are the
leading testing tools for real-world network applications,
to generate network I/O demands in three co-located
VMs on a PM for emulating different network I/O
contention scenarios. Specifically, we statically set the
network throughput of vm01 and vm02 to 200 Mbps
and 400 Mbps, respectively, and gradually vary the
network throughput of vm03 from 100 Mbps to 1, 000
Mbps with the step of 100 Mbps. We record their actual
I/O throughput and network interrupts for 10 seconds
to estimate the network I/O interference υj by Eq. (1),
and calculate the overall I/O throughput degradation
of the three co-located VMs according to the perfor-
mance degradation metric defined in Sec. 2.2. As shown
in Fig. 9(a), the estimated network I/O interference
follows the trend of actual I/O throughput degradation
of the three VMs, which validates the effectiveness of
our estimation model of network I/O interference.

Next, we validate the iAware model of co-location
interference caused by the migrated VM at the desti-
nation PM in Sec. 3.2. In particular, we conduct exper-
iments with two PMs (i.e., pm01, pm02), which act as
the migration source and destination PMs, respectively.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 9

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Network Throughput of vm03 (Mbps)

In
te

rf
er

en
ce

 V
al

u
e

Degradation

Est. Interference

(a)

2 4 6 8 10

1.5

2

2.5

3

Number of VMs on pm02

E
s
t.

 I
n

te
rf

e
re

n
c
e
 V

a
lu

e

(b)
Fig. 9: Validation of the estimation model: (a) The estimated network I/O
interference and actual I/O throughput degradation of the three VMs, as
the network throughput of vm03 varies from 100 Mbps to 1, 000 Mbps.
(b) The estimated co-location interference caused by vm01 migrated
from pm01 to pm02, as the number of VMs on pm02 varies from 1 to 10.

pm01 hosts the VM vm01 to be migrated, and pm02
hosts various numbers of VMs from 1 to 10. Each VM
runs the mcf application of SPECCPU2006 [21]. We
record PU , V U and cache statistics in PMs and VMs,
and estimate VM co-location interference N caused by
vm01 migrated on pm02 by Eq. (9). As the number of
VMs on pm02 increases in Fig. 9(b), we observe that
migrating vm01 on pm01 to pm02 would incur severe
VM co-location interference, which captures the actual
trend of performance degradation experienced by the
mcf application in Fig. 4. Furthermore, the effectiveness
of the iAware strategy using such qualitative estimations
will be further demonstrated by Sec. 5.2.

5.2 Effectiveness and Overhead of iAware
We further examine the effectiveness and runtime over-
head of iAware under mixed types of benchmark work-
loads in Table 1. Specifically, we use W1, W2, W3, W4,
and W5 to denote the VMs hosting SPECCPU2006 [21],
netperf v2.5.0 [22], Hadoop v0.20.203.0 [23], NASA paral-
lel benchmark (NPB) v3.3.1 [24], and SPECweb2005 [25],
respectively. By assigning each type of workloads with a
group of 10 VMs, we have 50 VMs in our Xen virtualized
cluster in total. The VMs are configured as small or large
VM instances as elaborated in Sec. 2. We use WxL to
denote a large VM instance hosting a workload x, and
Wx∼y to denote a sequence of VMs from Wx to Wy ,
where x, y ∈ {1, 2, 3, 4, 5} and x < y. Fig. 10 shows
the initial placement of VMs and workloads across PMs,
where the CPU resource of P1, P2, P4, P5 and P6 is over-
subscribed for hosting VMs.

In particular, the workload performance is measured
as network throughput, application execution durations
or the number of successfully served requests. Specif-
ically, the performance results of SPECCPU and net-
perf are the average across the instances hosting them
on the migration source and destination PMs, whereas
Hadoop, NPB, and SPECweb retrieve their performance
results from their respective “master” instances, which
coordinate other “slave” instances to finish the assigned
jobs. To make performance evaluation accurate, we run
workloads 5 times when examining each VM migration
strategy, and illustrate our performance results with
error bars of standard deviations. We initially set the
execution duration of workloads to 450 seconds.

P

1

P

2

P

3

P

4

P

5

P

6

P

7

P

8

P

9

W

1~5,1

W

1~5

W

1~5

W

1~5

W

1~5

W

2~5

W

2~4

W

1,1,1

W

2L

W

1L

W

5,5

W

4,5L

W

3L

W

3,4,4

W

2,3,5

W

2

Fig. 10: Initial placement of VMs and workloads on each PM in our Xen
virtualized cluster with CPU over-subscription.

5.2.1 Performance Comparison of Different Strategies
We first consider a general scenario for VM migration, by
setting the VMs hosted on P2 as the potential candidate
VMs for migration and {P1, P3, P4, · · · , P9} as the avail-
able PMs. Fig. 11 illustrates the VM migration decisions
made by the FFD [7] algorithm for power saving and the
Sandpiper [4] algorithm for load balancing, compared to
iAware in Algorithm 1. We observe that: (1) both FFD
and Sandpiper select the large VM instance W1L as the
candidate VM to be migrated from P2, while iAware
selects a small VM instance W3. (2) FFD and Sandpiper
choose P3 and P7 as the migration destination PMs,
respectively, while iAware chooses another PM P8.

P

2

P

2

P

7

W

1~5

W

1~5

W

3,4,4

W

1L

P

2

P

8

W

1,1L,2,4,5

W

2~4

W

3

FFD Sandpiper iAware

P

3

W

1~5,5,5

W

1L

Fig. 11: VM migration decisions made by FFD, Sandpiper and iAware
strategies.

The rationale is that FFD prefers to migrate the VM
with the largest CPU and memory size to the first-fit
PM, according to the VM assignment constraint on the
memory capacity [28]. Sandpiper prefers to migrate the
most loaded VM to the least loaded PM. In particular, the
most loaded VM is actually the VM with the maximum
volume-to-memory-size ratio [4], where the volume of
a VM is calculated with its virtual resource utilization
as 1

(1−V Uc)·(1−V Um)·(1−V Un)
. Our tracing tool reveals that

W1L consumes almost 100% of CPU usage and 90%
of memory, and hence it is selected by Sandpiper to
be migrated to P7, which is the least loaded PM ac-
cording to 1

(1−PUc)·(1−PUm)·(1−PUn)
[4]. In contrast, by

estimating that W3 has the least estimated VM migration
interference on the source PM, iAware chooses it to be
migrated to P8 with the least estimated VM co-location
interference, so as to jointly minimize VM performance
interference both during and after VM migration.

Fig. 12(a) compares the normalized performance of
representative benchmark workloads with FFD, Sand-
piper and iAware strategies in one round of VM mi-
gration. We observe that iAware is able to improve the
performance by around 45%-65% for network-intensive
workloads (i.e., netperf), and 16%-28% for workloads
that are CPU, memory and network-intensive (i.e., SPEC-
CPU, Hadoop, NPB and SPECweb), as compared to
FFD and Sandpiper. To look into the performance gain
obtained by iAware, we further examine the performance
of VMs over time during and after VM migration in
Fig. 12(b) and Fig. 12(c). We observe that both FFD and

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 10

SPECCPU netperf Hadoop NPB SPECweb
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 FFD
 Sandipiper
 iAware

(a)

0 100 200 300 400
0

200

400

600

800

N
et

w
o

rk
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (seconds)

FFD

Sandpiper

iAware

Migration starts

(b)

0 100 200 300 400

20

40

60

80

100

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (seconds)

FFD

Sandpiper

iAware

Migration starts

(c)

SPECCPU netperf Hadoop NPB SPECweb
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 FFD
 Sandipiper
 iAware

(d)
Fig. 12: Workload performance comparison with FFD, Sandpiper and iAware VM migration strategies. We show the aggregated performance
(normalized by using FFD as a baseline) in a cloud platform with (a) a shared network and (d) a dedicated migration network. We also show the
performance of VMs over time on both the migration source and destination PMs, in terms of (b) network throughput (i.e., netperf) and (c) CPU
utilization (i.e., NPB) during and after VM migration.

Sandpiper severely degrade the network throughput and
CPU utilization of VMs compared to iAware.

The rationale is that, the VMs for migration selected by
FFD and Sandpiper (e.g., W1L) have a large VM size and
a high memory dirtying rate. Moreover, the migration
destination PMs selected by FFD and Sandpiper (i.e.,
P3, P7) have constrained CPU, memory and network
resources. Such migration decisions would incur more
severe CPU, memory and network I/O interference on
both the source and destination PMs, and thus affect
VM performance for a longer duration than iAware. In
contrast, iAware chooses to migrate W3 on P2 to P8,
which leads to the least CPU, network I/O and memory
bandwidth contention during and after VM migration.

In addition, we examine the effectiveness of iAware in
the cloud platform with a dedicated migration network.
Both FFD and Sandpiper make the same migration de-
cisions as in the cloud platform with a shared network,
since they do not distinguish these two platforms. Using
the migration interference model Eq. (3) in Sec. 3.1,
iAware is adaptive to the cloud platforms with and
without a dedicated migration network. As explained in
Sec. 2.1, the dedicate migration network could eliminate
the migration interference on the network I/O resource.
In such a scenario, it would cause the least perfor-
mance interference for iAware to migrate W3 (i.e., a CPU-
moderate workload) on P2 to P9, which has constrained
network resources and a sufficient amount of CPU
resources. Fig. 12(d) shows the normalized workload
performance in a cloud platform with a dedicated mi-
gration network. We observe that the performance gain
for netperf application is almost eliminated, compared
to that in the platform with a shared network shown
in Fig. 12(a). Such an observation is consistent with our
analysis in Sec. 2.1. In contrast, the performance gain for
the other workloads still exists, as migration interference
on the CPU resource and co-location interference are
both minimized by the iAware strategy.

5.2.2 Strategy Cooperation for Load Balancing and
Power Saving
Moreover, we examine whether iAware can cooperate
with existing VM migration policies in a complementary
manner. We first conduct an experimental case study for
achieving load balancing by incorporating iAware into
Sandpiper [4] (denoted as iAware-Sandpiper). To allow

multiple VM live migrations, we extend the running
durations of workloads to 1050 seconds. Given that one
migration process lasts for 60 – 200 seconds as shown
in Sec. 2.1 and the sleep time of iAware after migration
is empirically set as 60 seconds in our platform, the
running time of 1050 seconds can support up to 4 – 8
(i.e., b 1050

200+60c = 4, b 1050
60+60c = 8) live migrations, which

meets our requirement to examine the effectiveness of
iAware in load balancing and power saving scenarios.
Essentially, our experiment results can be generalized to
the other scenarios for VM migration in datacenters, such
as hardware update and server maintenance.

We employ the hotspot detection strategy from Sand-
piper [4] to trigger VM migration, according to the set-
ting of CPU usage threshold (i.e., 75%). Under the initial
VM placement in Fig. 10, the CPU consumption on P1

and P2 exceeds the CPU usage threshold, and thus one
or multiple VMs on P1 and P2 need to be migrated for
load balancing on CPU usage in our cluster. We choose
those VMs with their PCPU utilization greater than 75%
on P1 and P2 as the set of potential candidate VMs
for migration V. Accordingly, the original Sandpiper
chooses to migrate W1L on P2 to P7, and W1 on P1

to P8, respectively, while iAware-Sandpiper chooses to
migrate W4 on P2 to P8, and W4 on P1 to P9, sequentially.
Hence, the total rounds of migration under both iAware-
Sandpiper and the original Sandpiper are 2, which shows
that the iteration rounds of our strategy can be well-
controlled by the exit conditions as elaborated in Sec. 4.

Fig. 13(a) compares the normalized workload perfor-
mance with the original Sandpiper, iAware-Sandpiper
strategies and the base case without VM migration. We
observe that iAware-Sandpiper outperforms the original
Sandpiper by 7%-32%. However, the performance of net-
perf application under Sandpiper and iAware-Sandpiper
becomes worse than that in the base case. The reason
is that the network-intensive workload (i.e., netperf) is
significantly affected by VM live migration process, as
we have analyzed in Sec. 2.1. The performance of NPB
workload under iAware-Sandpiper is much better than
that with the original Sandpiper and the base case, as
iAware-Sandpiper migrates the two VMs W4 (i.e., NPB)
to the least loaded PMs P8 and P9, respectively, which
incurs the least contention on CPU, cache and mem-
ory bandwidth resources. After these VM migrations
have been performed, the standard deviations of CPU

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 11

SPECCPU netperf Hadoop NPB SPECweb
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Base case
 Sandpiper
 iAware-Sandpiper

(a)

SPECCPU netperf Hadoop NPB SPECweb
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce FFD

 iAware-FFD

(b)
Fig. 13: Workload performance comparison: (a) under Sandpiper and iAware-Sandpiper VM
migration strategies, for achieving load balancing on CPU usage in the datacenter; (b) with FFD
and iAware-FFD VM consolidation strategies, for achieving power saving in the datacenter.

SPECCPU netperf Hadoop NPB SPECweb
0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 OC and MFC
 OM
 EMC

Fig. 14: Performance comparison of representa-
tive benchmark workloads using the iAware VM
migration strategy with various design choices,
i.e., OM, EMC, OC and MFC.

utilization of all PMs in our cluster under Sandpiper
and iAware-Sandpiper have become 0.1634 and 0.1422,
respectively. This implies that iAware-Sandpiper can bal-
ance the CPU utilization of all PMs across the cluster as
well as the original Sandpiper, while mitigating an addi-
tional performance loss during and after VM migration.

Furthermore, iAware is also able to cooperate with
existing VM consolidation policies for achieving power
saving, such as the classic FFD [7] algorithm. Specifically,
we incorporate iAware into FFD (denoted as iAware-
FFD) and compare the workload performance with the
original FFD and iAware-FFD. In particular, this power
saving scenario can be viewed as a special case of iAware,
as all the VMs hosted on under-utilized PMs should be
migrated. Then, iAware-FFD does not need to choose the
cost-effective VMs for migration. It only needs to choose
the cost-effective destination PMs among available PMs.

Under the initial VM placement in Fig. 10, both FFD
and iAware-FFD choose to migrate the VMs on P7 to
other PMs, as P7 is the least loaded PM in the cluster
according to 1

(1−PUc)·(1−PUm)·(1−PUn)
[4]. Suppose that

all PMs except the source PM P7 could serve as the
candidate destination PMs under FFD and iAware-FFD.
iAware-FFD migrates W3 to P8, W4 to P9 and another W4

to P8, sequentially, with the least estimated performance
interference. In contrast, FFD migrates W4 to P1, another
W4 and W3 to P3, sequentially, as P1 and P3 are the first-
fit PMs for these VMs to be migrated. The total rounds of
migration under both FFD and iAware-FFD are 3 as the
three VMs on P7 need to be migrated for power saving.

Fig. 13(b) compares the normalized workload perfor-
mance with FFD and iAware-FFD strategies. We observe
that all the workloads achieve much better performance
under iAware-FFD than that with the original FFD by
15%-30%. This is because FFD is oblivious to VM perfor-
mance interference and greedily consolidates VMs on a
PM, which makes P1 and P3 over-subscribe more VMs.
Accordingly, the workloads on the two PMs will take
more time to complete. In particular, the performance
of NPB and netperf applications is much better than the
other workloads. The rationale is that, FFD migrates two
VMs of W4 (i.e., NPB) to the most loaded PMs P1 and P3,
respectively, which would incur severe VM performance
interference on CPU and network I/O resources. In
contrast, iAware-FFD seeks to alleviate such performance
loss during VM consolidation by selecting PMs with the
least estimated performance interference for W3 and W4.

To examine the power efficiency of the cluster handled
by FFD and iAware-FFD VM consolidation strategies, we
estimate the power consumption of clusters as a roughly
linear function of the average CPU utilization ut of PMs,
which is empirically verified by the realistic statistics in
Google datacenters [38]. Specifically, the power function
is given by P (ut) = F (n) + n · (Ppeak −Pidle) · (2ut− urt),
where n is the number of PMs in a datacenter; the factor
r is an empirical constant equal to 1.4; Fn, Ppeak and Pidle
are constant values. As captured by our resource tracing
tool, the average CPU utilization of PMs after VM mi-
grations with FFD and iAware-FFD is 0.5116 and 0.5456,
respectively. Accordingly, the variable part (2ut − urt)
of the power consumption P (ut) with FFD and iAware-
FFD is 0.6319 and 0.663, respectively, which implies that
the cluster power consumption under iAware-FFD tends
to be slightly higher than that under FFD. As a result,
iAware-FFD can achieve better workload performance
with an acceptable cost of power consumption, as com-
pared to greedy VM consolidation strategies.

5.2.3 Flexible Design Choices of iAware

In addition, iAware can provide flexible design choices
for cloud service providers by fine tuning the relative
weights of VM migration interference versus VM co-
location interference, denoted as a and b in Eq. (10)
of Sec. 3. By treating the VMs on P2 as the potential
candidate VMs for migration, we examine the migration
decisions and workload performance under the iAware
strategy with four representative design choices: (1)
EMC: a = 0.5, b = 0.5, equally considering VM migration
and co-location interference; (2) OM: a = 1, b = 0,
only considering VM migration interference; (3) OC:
a = 0, b = 1, only considering VM co-location interfer-
ence; (4) MFC: a = 0.3, b = 0.7, jointly considering VM
migration and co-location interference while putting an
emphasis on the latter. We observe that iAware migrates
W3 on P2 to P8 and W5 on P2 to P7 under EMC and
OM configurations, respectively. For both OC and MFC
configurations, iAware migrates W4 on P2 to P9.

Fig. 14 shows that different choices of a and b are suit-
able for different types of workloads: (1) OC and MFC
configurations achieve slightly better performance of
CPU-intensive workloads (i.e., SPECCPU) than OM and
EMC configurations. (2) The performance of network-
intensive workloads (i.e., netperf) under the OM config-
uration outperforms that under the EMC, OC and MFC

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 12

configurations by 6%-32%. (3) EMC configuration im-
proves the performance of workloads that are both CPU
and network-intensive (i.e., Hadoop, NPB, SPECWeb) by
3%-13% compared with OM, OC and MFC configura-
tions. These design implications can be adopted by cloud
service providers to adjust the iAware strategy to adapt
to various types of application workloads on demand.

5.2.4 Overhead of iAware
Finally, we evaluate the runtime overhead of iAware in
terms of CPU and network I/O consumption on both
the central server(s) and VMs in our Xen virtualized
cluster. First, we periodically record the total amount of
network communication traffic on the central server(s),
which is around 35600 bytes every 10 seconds. This is
marginal for a 1 Gbps network switch in a datacenter.
Second, we examine the CPU usage of our prototype,
incurred by the iAware strategy in Algorithm 1 and our
resource tracing tool as elaborated in Sec. 5. Specifically,
we compare the performance of benchmark workloads
with and without our iAware prototype which disables
the VM migration function. We find that the benchmark
scores of CPU-intensive workloads (i.e., mcf of SPEC-
CPU2006 [21]) are affected by around one second due to
the CPU overhead of iAware. These collectively show that
iAware incurs marginal CPU and network I/O overhead
for strategy computation and information collection of
multi-dimensional resource utilization of PMs and VMs.

5.3 Validating Scalability of iAware
To examine the scalability of iAware and obtain com-
plementary insights, we also conduct trace-driven sim-
ulations using the realistic WorldCup98 Web trace [39].
By replaying 50, 000 seconds of such trace starting from
1998/06/01 22:00:01 to 1998/06/02 11:53:21 on a small
VM instance hosting the RUBiS Web server [40], we
record the resource utilization per second. Then, we
extract each continuous 10 seconds of such measured
resource utilization to represent the resource consump-
tion for different VMs. With these input into the central
server of our iAware prototype, we increase the scale of
the datacenter by: (1) setting the average number of VMs
hosted on a PM (i.e., Nvm) to 5 or 16 and varying the
number of PMs from 7 to 1, 000, (2) setting Nvm to 100
and varying the number of PMs from 5 to 50. Thus, we
not only check the running time of the iAware strategy
by varying the number of potential candidate VMs for
migration from 10 to 5, 000, but also sample the memory
consumption of the iAware strategy by varying the total
number of VMs in the datacenter from 10 to 5, 000.

As shown in Fig. 15(a), the running time of iAware
increases quadratically as the number of potential can-
didate VMs for migration increases when Nvm = 5 or 16,
while the running time of iAware is linear to the number
of potential candidate VMs for migration when Nvm
increases to 100, which is consistent with our complexity
analysis in Sec. 4. Specifically, iAware can be finished

1000 2000 3000 4000 5000
0

1

2

3

4

Number of Potential Candidate VMs for Migration

R
u
n
n
in

g
 T

im
e

(s
ec

o
n
d
s)

5 VMs per PM

16 VMs per PM

100 VMs per PM

(a)

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

Number of VMs in the Datacenter

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

5 VMs per PM

16 VMs per PM

100 VMs per PM

(b)
Fig. 15: Scalability of the iAware strategy in Algorithm 1: (a) running time
of the iAware strategy under different numbers of potential candidate
VMs for migration, and (b) memory consumption of the iAware strategy
under different numbers of VMs in the datacenter, where the number of
VMs varies from 100 to 5, 000 in the scenarios from 5 VMs per PM to
100 VMs per PM, respectively.

within 1 second when the datacenter scales up to 2, 500
VMs. Fig. 15(b) shows that the memory consumption
of the iAware strategy in the three scenarios are almost
linear to the scale of the datacenter, as iAware requires
additional memory to store the collected information of
resource utilization of PMs and VMs for its computa-
tion. In more detail, the iAware strategy only consumes
around 3 MB memory at the central server, even when
the datacenter scales up to 5, 000 VMs.

6 RELATED WORK

6.1 VM Migration Interference
There have been works on measuring and studying VM
migration interference in CPU and memory-intensive
scenarios. For instance, [41] quantified VM migration
interference as a linear function of the total amount of
memory allocated to the VMs to be migrated. [31] con-
ducted offline measurements of VM migration interfer-
ence for representative multi-tier Web applications. Com-
plementary to such works, our study comprehensively
measures and analyzes VM migration interference under
CPU, cache and memory, and network-intensive scenar-
ios, with and without a dedicated migration network
(Sec. 2.1). In particular, we carry out an in-depth exam-
ination of the multi-dimensional resource consumption
of VM migration in domain-0, which has been seldom
studied in existing works. Based on the measurements,
our multi-resource demand-supply model identifies a set
of fine-grained factors associated with the CPU, memory,
network I/O contention and migration time (Sec. 3.1),
which are more specific and complete than the existing
resource contention model [8]. Moreover, the iAware
model estimates VM migration interference online, while
prior models (e.g., [8]) mostly work offline and require
pre-runs of application workloads and VM migration.

6.2 VM Co-location Interference
There have been several studies on VM co-location in-
terference by VM resource contention. For instance, [5]
illustrated the severity of co-location interference among
three VMs. [42] examined the relationship between the
co-location interference of two VMs and their resource
utilization. A recent study [6] quantified the co-location
interference of two VMs by the correlation of their

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 13

resource utilization, for the consolidation of scientific
workloads. While such existing works analyzed VM co-
location interference at a relatively small scale, i.e., 2-3
VMs, our work further measures the co-location interfer-
ence among multiple co-located VMs and utilizes critical
factors such as the network interrupts inside VMs, VCPU
queueing time, and cache miss ratios in both PMs and
VMs (Sec. 2.2), in order to achieve the simple yet effective
estimation of VM co-location interference.

There were also works on guaranteeing performance
isolation across co-located VMs on shared resources. For
example, [33] alleviated cache and memory bandwidth
interference by compensating the impacted VMs for re-
served CPU resource. [43] summarized the VM isolation
techniques on the network resource, such as installing
multiple network adapters, implementing static band-
width allocation for VMs in the domain-0 [28], or in net-
work adapters and switches. Different from these works,
iAware alleviates the shared memory and network band-
width interference with optimized placement of VMs,
rather than relying on resource compensating and band-
width capping techniques, which either require reserved
CPU (or network adapter) resources or adapt poorly to
a dynamic number of VMs in datacenters [43]. Another
approach [11] restricted CPU utilization of some victim
VMs in domain-0 to guarantee the network performance
of other co-located VMs. Commercial virtualization so-
lution of Microsoft allocated the network bandwidth
among a dynamic number of VMs, by incorporating a
rate controller into Hyper-V [16]. Orthogonal to these VM
performance isolation solutions, we focus on mitigating
the performance impact during and after VM migration.

6.3 VM Migration and Consolidation Strategies

There exist a number of VM migration and consolidation
strategies for load balancing [4] and power saving [5]–
[7]. Yet, few of them devoted adequate attention to the
overall VM performance interference across migration
source and destination PMs, during and after the mi-
gration of VMs. They either considered VM migration
interference [8], [41] or co-location interference [5], [6],
[12] in an isolated manner (as discussed in Sec. 6.1
and Sec. 6.2). In contrast, the iAware strategy seeks to
mitigate overall VM performance interference by jointly
measuring, analyzing and minimizing the migration and
co-location interference during and after VM migration.

A latest work on VMware DRS [36] also considered the
VM migration cost on the migration source and destina-
tion PMs, and the resource contention cost. However, it
did not explicitly present a model on such performance
cost. Our work further differs from DRS in that: (1) DRS
only considers the migration cost on CPU and memory
resources. (2) DRS makes a certain migration decision as
long as its performance benefit exceeds its cost, while
iAware identifies the migration decision with the mini-
mum estimated overall performance interference.

7 CONCLUSION

In this paper, we have presented our design and im-
plementation of iAware, a lightweight interference-aware
VM live migration strategy to avoid violations of perfor-
mance SLAs in the cloud. iAware jointly measures, ana-
lyzes and mitigates both VM migration and co-location
interference in a holistic manner on the source and desti-
nation servers during and after VM migration. Based on
a Xen virtualized cluster platform, we show extensive
experiments of representative benchmark workloads,
conducted to practically reveal the essential relationships
between VM performance interference and key factors
from servers and VMs. Such an empirical understanding
further guides us to develop a simple multi-resource
demand-supply model to estimate and minimize both
VM migration and co-location interference. Extensive
experiments and complementary large-scale simulations
have demonstrated that iAware can qualitatively estimate
VM performance interference, and improve I/O and
network throughput and execution durations, by 65% for
network-intensive workloads and by 16%-28% for work-
loads that are CPU, memory and network-intensive,
as compared to the FFD and Sandpiper algorithms. In
addition, the runtime overhead of iAware in terms of
CPU consumption and network I/O is very well con-
tained, even as it scales to thousands of VMs. Finally, we
advocate that iAware cooperates well with existing VM
migration or consolidation policies in a complementary
manner, so that load balancing or power efficiency can
be achieved without sacrificing performance.

ACKNOWLEDGMENTS
The corresponding author is Fangming Liu. The research
was supported in part by a grant from NSFC under grant
No.61370232, by a grant from National Basic Research Program
(973 program) under Grant of 2014CB347800. Prof. Bo Li’s
work was supported in part by a grant from RGC under the
contract 615613, a grant from NSFC/RGC under the contract
N HKUST610/11, and a grant from ChinaCache Int. Corp.
under the contract CCNT12EG01.

REFERENCES

[1] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C. Lui, “Falloc:
Fair Network Bandwidth Allocation in IaaS Datacenters Via a
Bargaining Game Approach,” in Proc. of IEEE ICNP, 2013.

[2] Amazon Elastic Compute Cloud (Amazon EC2). [Online].
Available: http://aws.amazon.com/ec2/

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proc. of NSDI, May 2005.

[4] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and Gray-box Strategies for Virtual Machine Migration,” in
Proc. of NSDI, Apr. 2007.

[5] F. Y.-K. Oh, H. S. Kim, H. Eom, and H. Y. Yeom, “Enabling
Consolidation and Scaling Down to Provide Power Management
for Cloud Computing,” in Proc. of HotCloud, Jun. 2011.

[6] Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware Consolidation of
Scientific Workflows in Virtualized Environments,” in Proc. of SC,
Nov. 2010.

[7] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migra-
tion Cost Aware Application Placement in Virtualized Systems,”
in Proc. of Middleware, Dec. 2008.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 14

[8] S.-H. Lim, J.-S. Huh, Y. Kim, and C. R. Das, “Migration, Assign-
ment, and Scheduling of Jobs in Virtualized Environment,” in
Proc. of HotCloud, Jun. 2011.

[9] A. Koto, H. Yamada, K. Ohmura, and K. Kono, “Towards Unob-
trusive VM Live Migration for Cloud Computing Platforms,” in
Proc. of APSys, Jul. 2012.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. of SOSP, Oct. 2003.

[11] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
Performance Isolation Across Virtual Machines in Xen,” in Proc. of
Middleware, Nov. 2006.

[12] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bian-
chini, “DeepDive: Transparently Identifying and Managing Per-
formance Interference in Virtualized Environments,” in Proc. of
ATC, Jun. 2013.

[13] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance
and Energy Modeling for Live Migration of Virtual Machines,”
in Proc. of HPDC, Jun. 2011.

[14] D. Breitgand, G. Kutiel, and D. Raz, “Cost-Aware Live Migration
of Services in the Cloud,” in Proc. of HotICE, Mar. 2011.

[15] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying Effects of Shared On-chip Resource Interference for
Consolidated Virtual Machine,” in Proc. of SOCC, Oct. 2011.

[16] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the Data Center Network,” in Proc. of NSDI, Mar. 2011.

[17] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, C. Lui, and H. Jin, “Carbon-
aware Load Balancing for Geo-distributed Cloud Services,” in
Proc. of IEEE MASCOTS, 2013.

[18] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang, “On Arbitrating
the Power-Performance Tradeoff in SaaS Clouds,” in Proc. of IEEE
INFOCOM, 2013.

[19] W. Deng, F. Liu, H. Jin, and C. Wu, “SmartDPSS: Cost-Minimizing
Multi-source Power Supply for Datacenters with Arbitrary De-
mand,” in Proc. of IEEE ICDCS, 2013.

[20] W. Deng, F. Liu, H. Jin, B. Li, and D. Li, “Harnessing Renewable
Energy in Cloud Datacenters: Opportunities and Challenges,”
IEEE Network Magazine, 2013.

[21] SPEC CPU2006. [Online]. Available: http://www.spec.org/
cpu2006/

[22] Netperf. [Online]. Available: http://www.netperf.org/
[23] Hadoop. [Online]. Available: http://hadoop.apache.org/
[24] NASA Parallel Benchmark. [Online]. Available: http://www.nas.

nasa.gov/Resources/Software/npb.html
[25] SPEC Web2005. [Online]. Available: http://www.spec.org/

web2005/
[26] Credit Scheduler. [Online]. Available: http://wiki.xen.org/wiki/

Credit Scheduler
[27] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in Virtual

Machine Monitors,” in Proc. of VEE, Mar. 2008.
[28] S. K. Barker and P. Shenoy, “Empirical Evaluation of Latency-

sensitive Application Performance in the Cloud,” in Proc. of
MMSys, Feb. 2010.

[29] Oprofile. [Online]. Available: http://oprofile.sourceforge.net/
[30] Xenprof. [Online]. Available: http://xenoprof.sourceforge.net/
[31] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,

“A Cost-Sensitive Adaptation Engine for Server Consolidation of
Multitier Applications,” in Proc. of Middleware, Dec. 2009.

[32] “Vmware vsphere vmotion architecture, performance and best
practices in vmware vsphere 5,” White Paper, VMware, Aug.
2011.

[33] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-Clouds: Manag-
ing Performance Interference Effects for QoS-Aware Clouds,” in
Proc. of Eurosys, Apr. 2010.

[34] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li, “Novasky: Cinematic-
Quality VoD in a P2P Storage Cloud,” in Proc. of INFOCOM, Apr.
2011.

[35] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin, “A Cooperative
Game Based Allocation for Sharing Data Center Networks,” in
Proc. of IEEE INFOCOM, 2013.

[36] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger,
and X. Zhu, “VMware Distributed Resource Management: De-
sign, Implementation, and Lessons Learned,” VMware Technical
Journal, vol. 1, no. 1, pp. 45–64, 2012.

[37] IxChariot. [Online]. Available: http://www.netiq.com/support/

[38] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the Electric Bill for Internet-Scale Systems,” in Proc. of
SIGCOMM, Aug. 2009.

[39] WorldCup98. [Online]. Available: http://ita.ee.lbl.gov/html/
contrib/WorldCup.html

[40] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel, “Performance Comparison of Middleware Ar-
chitectures for Generating Dynamic Web Content,” in Proc. of
Middleware, Jun. 2003.

[41] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
Resource Scaling for Multi-Tenant Cloud Systems,” in Proc. of
SOCC, Oct. 2011.

[42] R. C. Chiang and H. H. Huang, “TRACON: Interference-Aware
Scheduling for Data-Intensive Applications in Virtualized Envi-
ronments,” in Proc. of SC, Nov. 2011.

[43] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall:
Performance Isolation for Cloud Datacenter Networks,” in Proc. of
HotCloud, Jun. 2010.

Fei Xu is a Ph.D candidate in the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan,
China. His current research interests focus on cloud computing and
virtualization technology.

Fangming Liu is an Associate Professor in Huazhong University of
Science and Technology, and he is awarded as the CHUTIAN Scholar of
Hubei Province, China. He is the Youth Scientist of National 973 Basic
Research Program Project of “Software-defined Networking (SDN)-
based Cloud Datacenter Networks”, which is one of the largest SDN
projects in China. Since 2012, he has also been a StarTrack Visiting
Faculty in Microsoft Research Asia. He received his Ph.D. degree
in Computer Science and Engineering from Hong Kong University of
Science and Technology in 2011. His research interests include cloud
computing and datacenter networking, mobile cloud, green computing,
SDN and virtualization technology. He has been a Guest Editor for
IEEE Network Magazine, an Associate Editor for Frontiers of Computer
Science, and served as TPC for IEEE INFOCOM 2013-2014.

Linghui Liu is currently a Master student in the School of Computer
Science and Technology, Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests focus on cloud computing
and virtualization technology.

Hai Jin is a Cheung Kung Scholars Chair Professor of computer science
and engineering in Huazhong University of Science and Technology
(HUST), Wuhan, China. He is now Dean of the School of Computer
Science and Technology at HUST. He received his Ph.D. degree in Com-
puter Engineering from HUST in 1994. He was awarded the Excellent
Youth Award from the National Science Foundation of China in 2001.
His research interests include computer architecture, virtualization tech-
nology, cluster computing and grid computing.

Bo Li is a professor in the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology. His
current research interests include: large-scale content distribution in
the Internet, datacenter networking, cloud computing, and wireless
communications. He has been an editor or a guest editor for a dozen
of IEEE journals and magazines. He was the Co-TPC Chair for IEEE
INFOCOM 2004. He received his Ph.D. degree in the Electrical and
Computer Engineering from University of Massachusetts at Amherst.
He is a Fellow of IEEE.

Baochun Li is a Professor with the Department of Electrical and
Computer Engineering at the University of Toronto, Canada. He re-
ceived the Ph.D. degree from the Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, in 2000. He holds
the Nortel Networks Junior Chair in Network Architecture and Services
from October 2003 to June 2005, and the Bell Canada Endowed Chair
in Computer Engineering since August 2005. His research interests
include large-scale distributed systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks.

