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ABSTRACT

Peer-assisted online storage and distribution systems have
recently enjoyed large-scale deployment gaining increased
popularity for multimedia content sharing in the Internet.
Such systems typically deploy dedicated servers while effec-
tively leveraging peer bandwidth in a complementary fash-
ion, in order to guarantee adequate levels of service quality
and minimize server cost. In this paper, motivated by our re-
cent empirical study on a real-world system, FS2You, we de-
velop a mathematical model to characterize and understand
peer-assisted online storage systems serving multiple files
of different popularity. Specifically, we examine and com-
pare representative server bandwidth allocation strategies,
and investigate the critical performance metrics and factors.
We demonstrate that different server strategies may lead
to remarkably different service qualities in terms of average
downloading times, peer satisfaction levels and service qual-
ity differentiation. In particular, the current server strategy
in FS2You is able to offer system-wide average downloading
times comparable to the theoretical bound derived from our
model.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; H.4 [Information
Systems Applications]: Miscellaneous

General Terms

Performance

Keywords

Online storage, content distribution, peer-to-peer protocols,
modeling studies

1. INTRODUCTION
Web-based online storage systems, also referred to as one-

click hosting services, have rapidly become one of the most
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prevailing content sharing services over the Internet. Such
web-based services store and distribute a variety of multi-
media content to serve potentially millions of users. Via a
simple URL, they allow Internet users to share files with
other users, who can download them at a later time free of
charge. Due to its simplicity and versatility, these online
storage systems have become a favorite among users in on-
line forums, overtaking well-known peer-to-peer (P2P) file
sharing mechanisms, such as BitTorrent.

The best design philosophy for online storage systems is
to take advantage of peer bandwidth contributions in a com-
plementary fashion, even when dedicated servers are de-
ployed to guarantee adequate levels of service quality. In
our previous work, FS2You [2, 5, 8], we follow such a design
philosophy to design, implement and measure a large-scale
peer-assisted online storage system, which is actively used
in China at the time of this writing. Supported by 350
GB worth of real-world traces from over 3.3 million users
in FS2You, we have observed that around 500 GB to 1 TB
of files are routinely uploaded and shared through the plat-
form every day, among which up to 70% is accounted for by
multimedia files such as videos.

From our FS2You experience, we are convinced that —
very different from BitTorrent — the number of files being
concurrently shared in peer-assisted online storage systems
is very large. Such a large number of shared files are being
served with highly diverse popularity, with less popular ones
(with fewer peers involved) constitute more than a negligi-
ble portion of user demands. More importantly, the service
quality provided by the system in terms of downloading per-
formance is strongly correlated with file popularity, the rel-
ative proportion of popular and less popular files, and the
amount of server resources allocated across these files.

These empirical observations have motivated the following
important questions: (1) How do we mathematically charac-
terize and analyze peer-assisted online storage systems with
multiple files of different popularity? (2) What may be the
best and most practical strategies of allocating limited server
bandwidth resources across a large number of files? (3) Does
the real-world server strategy used in FS2You offer accept-
able performance, even if it is feasible to be implemented in
practice?

In this paper, we seek to address these challenges with the
following original contributions. We first develop a tractable
mathematical model based on [1, 7] to characterize and un-
derstand bandwidth allocation strategies on dedicated servers,
supporting multiple files in peer-assisted online storage sys-
tems. Within this theoretical framework, we are able to de-



rive a lower bound of the average downloading time, given
a specific amount of server bandwidth in the entire system.
In addition, we are able to quantitatively evaluate two rep-
resentative server bandwidth allocation strategies, request-
driven and water-leveling, and argue that the current server
bandwidth allocation strategy adopted in FS2You is not only
practical, but also offering a performance level that is com-
parable to the theoretical bound, which is difficult to imple-
ment in reality. Finally, we examine the effects of various
influential factors, such as file popularity, the proportion
of popular vs. less popular files, and the amount of server
bandwidth available. We believe that the insights obtained
from our study in this paper can provide important guide-
lines towards the best design of server bandwidth allocation
strategies in practical scenarios.

2. RELATED WORK
There has been a number of analytical studies on BitTorrent-

like P2P file sharing systems in the literature. Yang and Ve-
ciana [10] use a branching process model to study the service
capacity of BitTorrent-like file sharing system in the tran-
sient regime, as well as a Markovian model for the steady-
state analysis. To overcome the computation problem in
[10], Qiu and Srikant [7] develop a deterministic fluid model
to obtain simple expressions for the average file download
time in the steady-state. Extending this work to include
server provisioning, Das et al. [1] have discussed the moti-
vation and effects of server participation in BitTorrent-like
P2P file sharing systems. However, their service models are
only restricted to the case of single file. A portion of our
model is inspired by the models in [1, 7], but we further
generalize them to a unified framework that takes into ac-
count both multiple files of different popularity and server
bandwidth allocation across different files. While recogniz-
ing the significance of other modeling works on pure P2P
environments for file sharing [3, 4, 6], our work is different
from them in that we take a particular focus on the server
involvement in peer-assisted online storage and distribution
systems serving multiple files. More recently, based on real-
world traces, Wu et al. [9] have proposed an online server
capacity provisioning algorithm for multi-channel live P2P
streaming systems. In contrast, our work is customized for
peer-assisted online storage and distribution, with its own
application features and performance concerns.

3. SYSTEM MODEL
In this section, we present our mathematical model based

on [1, 7] for peer-assisted online storage systems. Different
from the single-file service model in [1, 7], our model takes
into account both multiple files of different popularity and
server bandwidth provisioning, in order to capture the essen-
tial aspects of practical peer-assisted online storage systems
such as FS2You.

3.1 Basic Model with Critical Factors
We consider a peer-assisted online storage system serving

multiple files. There are a total of M concurrent files to be
served, represented as a set F = {1, 2, . . . , M}. For any file
i ∈ F , relevant notations and assumptions in our system
model are summarized as follows:

xi(t): The number of peers who are downloading file i in
the system at time t. xi is the equilibrium value of xi(t).

yi(t): The number of peers who have finished downloading
file i but have not yet left the system at time t. yi is the
equilibrium value of yi(t).

Si: The server bandwidth assigned to file i. S =
P

Si

is the total amount of server bandwidth provisioned by the
service provider.

λi: The arrival rate of new peers in file i. We assume that
peers arrive according to a Poisson process.

fi: The size of file i.
µ: The uploading bandwidth of a given peer. We assume

that all peers have the same uploading bandwidth.
c: The downloading bandwidth of a given peer. We as-

sume that all peers have the same downloading bandwidth
and c ≥ µ.

θi: The rate at which peers abort the download of file i.
γi: The rate at which peers who have finished downloading

file i leave the system.
ηi: The file sharing effectiveness of file i. Qiu et al. [7]

defines η as the fraction of the upload capacity of peers that
is being utilized, with values in [0, 1].

Based on [1], when the system is in steady state, the num-
ber of peers who are downloading file i can be expressed as
follows:

When the downloading bandwidth is the constraint, i.e.,
if cxi ≤ µ(ηixi + yi) + Si, we have

xi =
λi

θi + c
fi

yi =
λi

γi + γiθifi

c

. (1)

When the uploading bandwidth is the constraint, i.e., if
cxi ≥ µ(ηixi + yi) + Si, we have

xi =
λi

νi(1 + θi

νi

)
−

Si

µηi(1 + θi

νi

)

yi =
λi

γi(1 + θi

νi

)
−

Siθi

fiγiηi(1 + θi

νi

)
, (2)

where 1

νi

= 1

ηi

( fi

µ
− 1

γi

).

In accordance with most of the recent Internet access
technologies and measurement studies on existing P2P sys-
tems [4, 8], we assume that c ≥ µ and peers will stay in the
system only for a short random period of time after com-
pleting the download. Hence, the uploading bandwidth of
peers in the system is most likely the constraint and we shall
focus on the case of Equation (2). Furthermore, to guaran-
tee the corresponding condition cxi ≥ µ(ηixi + yi) + Si,
the amount of server bandwidth provisioned to file i by the
service provider shall satisfy:

Si ≤ λi

 

c−µηi

νi

− µ

γi

1 + θi

νi

+ c−µηi

µηi

+ θi

γiµηi

!

. (3)

To calculate the average downloading time Ti for peers
downloading file i in steady state, we can use Little’s Law
as:

λi − θixi

λi

xi = (λi − θixi)Ti. (4)

Using Equation (2), we can obtain the average download-
ing time of file i as:

Ti =
1

νi(1 + θi

νi

)
(1 −

Siνi

λiµηi

). (5)



Similarly, to calculate the system-wide average download-
ing time in steady state, we can use Little’s Law again with
the peer arrival rate of the entire system as λ =

P

λi and the
total number of peers in steady state as x =

P

xi. Through
Equation (2), we can obtain the system-wide average down-
loading time T as:

T =

P

xi
P

λi

=
1

P

λi

 

X λi

νi(1 + θi

νi

)
−
X Si

µηi(1 + θi

νi

)

!

.

(6)
Observed from our recent measurement study on FS2You [8],

the files in such systems can be broadly classified into two
types, popular files and unpopular or less popular files. This
is a coarse categorization, which is primarily determined by
users’ collective interests in a corresponding file; yet this
categorization becomes very useful and evident in under-
standing the roles of servers. In a nutshell, unpopular files
are mainly served by servers, while peer-assistance is perva-
sive for popular files. By taking this into account, we can
refine the model by considering two types: type-1 represent-
ing less popular files and type-2 corresponding to popular
files. We further assume that files of the same type share
similar characteristics such as peer arrival rate and file size.
This allows us to focus on server strategies, the impact from
critical factors of relevance, and also helps to make the ana-
lytical model more tractable. Notations of the two types of
files are subscripted by t1 and t2, respectively. For exam-
ple, the numbers of the two types of files are Mt1 and Mt2,
respectively. Then, Equation (6) can be rewritten as:

T =
1

2
P

i=1

Mtiλti

 

2
X

i=1

Mtiλti

νti(1 + θti

νti

)
−

2
X

i=1

MtiSti

µηti(1 + θti

νti

)

!

,

(7)
where λt1 ≤ λt2 and ηt1 ≤ ηt2 (Empirically, popular files
with more peers involved usually enjoy higher file sharing
effectiveness [8]). Furthermore, we assume that no peers
would abort the download (i.e., θ = 0), and no peers would
stay in the system after finishing downloading the file (i.e.,
γ → ∞), as a conservative (pessimistic) approximation from
the service provider’s perspective. Then, Equation (7) can
be simplified to:

T =
1

Mt1λt1 + Mt2λt2

„

Mt1ft1λt1ηt2 + Mt2ft2λt2ηt1

µηt1ηt2

−
Mt1St1ηt2 + Mt2St2ηt1

µηt1ηt2

«

. (8)

Meanwhile, the corresponding condition in Equation (3) can
be simplified to:

Sti ≤ (1 −
µηti

c
)λtifti for i ∈ {1, 2}, (9)

where Sti denotes the server bandwidth allocated to a file
of type i. Thus, the maximum amount of server bandwidth
that can be assigned to a file of type-i is Smaxi = (1 −
µηti/c)λtifti.

Besides, given a specific total amount of server bandwidth
S, it is obvious that Mt1St1 + Mt2St2 ≤ S. Since Sti ≥ 0,
we have MtiSti ≤ S, or Sti ≤ S/Mti. Finally, we have

Sti ≤ min(Smaxi,
S

Mti

) for i ∈ {1, 2}. (10)

3.2 Server Bandwidth Allocation Strategies
In this section, we first derive the lower bound of the

system-wide average downloading time based on the above
model. Then we proceed to quantify and discuss two repre-
sentative server bandwidth allocation strategies.

3.2.1 Lower Bound of the Average Downloading Time

To find the lower bound of the system-wide average down-
loading time, we first rewrite Equation (8) as:

T =
1

Mt1λt1 + Mt2λt2

„

Mt1ft1λt1ηt2 + Mt2ft2λt2ηt1

µηt1ηt2

−
St1(Mt1ηt2 − Mt2ηt1) + SMt2ηt1

µηt1ηt2

«

. (11)

Based on our previous assumption that type-1 files are less
popular while type-2 files are popular, we have λt1 ≤ λt2 and
ηt1 ≤ ηt2. Furthermore, it is evident in our measurement
study [8] that the proportion of less popular files is more
than that of popular files in the system, i.e., Mt1 ≥ Mt2.
Hence, Equation (11) implies that: (1) Consistent with the
result in [1], server involvement can help decrease the av-
erage downloading time compared to a pure P2P system.
(2) Given a specific total amount of server bandwidth S,
different server bandwidth allocations across the files will
indeed lead to different average downloading times. The
challenge, however, is how to design a near-optimal alloca-
tion strategy, that is simple enough to be implemented in
practical systems. (3) To achieve the lower bound of the
system-wide average downloading time, we shall first assign
the server bandwidth to type-1 files until St1 reaches its
maximum value; then, the residual server bandwidth can be
assigned to type-2 files. That is,

St1 = min(Smax1,
S

Mt1

)

St2 = min(Smax2, max(
S − Mt1Smax1

Mt2

, 0)). (12)

This strategy to achieve the lower bound of the system-
wide average downloading time is also applicable to the gen-
eral case of multiple types of files: the server should always
satisfy the requests from the peers who are downloading the
least popular files. However, such a strategy is hard to im-
plement in reality, as it is hard for the system to establish
a priori knowledge of the popularity of files and determine
whether the server bandwidth allocated to a certain file has
reached its maximum amount.

3.2.2 Request-Driven Strategy

With a request-driven strategy, the server serves every re-
quest from peers; essentially, the server bandwidth is equally
divided among all the peers. We assume that the number of
requests for a file to the server is proportional to the peer ar-
rival rate of the file. We also assume that when the amount
of server bandwidth assigned to one of the two types of files
has reached its maximum value, the residual server band-
width will be assigned to the other type of files. Then, we
have

St1 = min(Smax1, max(
S − Mt2Smax2

Mt1

,
λt1S

λ
))

St2 = min(Smax2, max(
S − Mt1Smax1

Mt2

,
λt2S

λ
)), (13)
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Figure 1: Comparison of average downloading time
under different server bandwidth allocation strate-
gies, when the amount of server bandwidth varies.

where λ = Mt1λt1 + Mt2λt2. This strategy is easy to imple-
ment in reality, as the server simply serves all the requests
from peers without considering any file characteristics.

3.2.3 Water-Leveling Strategy

While the request-driven strategy equalizes the server band-
width across all the peers, the water-leveling strategy equal-
izes the server bandwidth across all the files by taking file
popularity into consideration. Specifically, the server serves
the requests from peers according to a certain probability
which is inversely proportional to the peer arrival rate of
the file. If we assume that the number of requests for a file
to the server is proportional to the peer arrival rate of the
file, the server will serve the same number of requests for
different files and therefore the server bandwidth is equally
allocated across all the files. Thus, we have

St1 = min(Smax1, max(
S − Mt2Smax2

Mt1

,
S

M
))

St2 = min(Smax2, max(
S − Mt1Smax1

Mt2

,
S

M
)), (14)

where M = Mt1+Mt2. This strategy is realized in FS2You [8],
in which the server maintains a file popularity index for each
file by recording the number of references for the file period-
ically, and then serves the requests from peers with a prob-
ability which is inversely proportional to the corresponding
index.

4. NUMERICAL RESULTS AND INSIGHTS
In this section, we carry out a series of numerical analysis

to compare and discuss different server bandwidth alloca-
tion strategies from different perspectives, and examine the
effects of various critical factors.

4.1 Comparison of Server Bandwidth Alloca-
tion Strategies

We first compare the downloading performance of the sys-
tem under different server bandwidth allocation strategies.
Specifically, we use the following settings: for less popular
files (type-1), we choose λt1 = 0.1, ηt1 = 0.5. For popu-
lar files (type-2), we choose λt2 = 1, ηt2 = 1. As mentioned
earlier, this is in accordance with our measurement study [8]
that less popular files have relatively lower peer arrival rates
and file sharing effectiveness. Furthermore, it is also evident
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Figure 2: Comparison of average downloading time
of different types of files under different server band-
width allocation strategies, when the amount of
server bandwidth varies: (a) for less popular files;
(b) for popular files.

that the proportion of less popular files is more than that
of popular files in the system; hence, we choose Mt1 = 10
and Mt2 = 1. Since the file size is not a major concern here,
we assume that ft1 = ft2 = 100 MB to make the download-
ing performance of the two types of files comparable. Other
parameters are set as µ = 512 Kbps and c = 1024 Kbps.

Fig. 1 plots the system-wide average downloading time
under request-driven and water-leveling strategies, together
with the theoretical lower bound derived in Section 3.2, as
a function of the amount of server bandwidth. Specifically,
S increases from 0 to 150 MB/second, which is thousands
of times of the upload capacity of normal peers. We observe
the following:

First, the average downloading time decreases as the server
bandwidth increases under different server strategies, until
the average downloading rate of peers reaches the download-
ing bandwidth constraint of c = 1024 Kbps.

Second, the performance of the request-driven strategy is
always worse than that of the water-leveling strategy. The
performance of the water-leveling strategy is very close to
the lower bound and can even reach it when there is suf-
ficient server bandwidth in the system, e.g., when S > 90
MB/second. The rationale is that with the request-driven
strategy, server bandwidth is equally divided across all the
peers. Popular files with more peers involved hence occupy
more server bandwidth. In contrast, with the water-leveling
strategy, server bandwidth is equally divided across all the
files. Since fewer peers are involved in less popular files,
each of these peers can obtain more server bandwidth. This
argument can be demonstrated by Fig. 2, which depicts the
average downloading time of both types of files. With the
request-driven strategy, as the server bandwidth increases,
the average downloading time of both popular and less popu-
lar files decreases quickly, with the former decreasing faster.
With the water-leveling strategy, as the server bandwidth
increases, the average downloading time of less popular files
decreases more rapidly, while the average downloading time
of popular files decreases more slowly. According to the
strategy to achieve the lower bound, the more server band-
width allocated to less popular files, the better the system-
wide performance is. These explain why the performance of
the water-leveling strategy is close to the lower bound and
far better than that of the request-driven strategy.

Third, the performance gaps between the lower bound and
the two strategies first expand and then shrink as the server
bandwidth increases. In other words, when the server band-
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Figure 3: Comparison of peer
satisfaction level under differ-
ent server bandwidth allocation
strategies, when the amount of
server bandwidth varies.
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Figure 4: Comparison of aver-
age downloading time under dif-
ferent server bandwidth alloca-
tion strategies, when the number
of less popular files varies.
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Figure 5: Comparison of average
downloading time under differ-
ent server bandwidth allocation
strategies, when the peer arrival
rate of less popular files varies.

width resources in the system is either constrained or suffi-
cient, the performance gaps between different server band-
width allocation strategies are not significant.

From the service provider’s perspective, in addition to the
objective of minimizing the average downloading time for
the entire system, another important concern is to guarantee
that as many peers as possible can enjoy a certain level of
promised service quality. To this end, we introduce a metric
to evaluate the peer satisfaction level as follows:

SLti = α min(Dti, Q) + β max(Dti − Q, 0) for i ∈ {1, 2},
(15)

where Dti denotes the average downloading rate of peers
that are downloading type-i files; Q denotes the promised
service quality in terms of downloading rates, which is sup-
posed to be established by the service provider; and α and β
are the weights for the downloading rates below and above
Q, respectively.

The intuition behind this metric is based on the obser-
vation that peer satisfaction should not only be directly re-
lated to the downloading rate that they obtain, but also be
relevant and sensitive to the percentage gain when peers
experience any downloading rate improvement. In other
words, the gain in peer satisfaction level is more evident
when the downloading rate jumps from 10 Kbps to 20 Kbps,
as compared to when that is changed from 90 Kbps to 100
Kbps. Hence, we use Q to differentiate the possible values
of downloading rate into two regions, whose contributions
to the peer satisfaction level are weighed by α and β, re-
spectively (then, the above example can be formulated as
SLti(Dti = 20) − SLti(Dti = 10) > SLti(Dti = 100) −
SLti(Dti = 90), given Q = 80 Kbps and α = 1, β = 0.5).
Then we can define the system-wide peer satisfaction level
as: SL =

P

2

i=1
SLtiMtiλti/

P

2

i=1
Mtiλti.

To examine the peer satisfaction levels provided by differ-
ent server bandwidth allocation strategies, we use the follow-
ing settings: Q = 1.2µ, since we expect the service quality
promised by the service provider to be slightly higher than
the downloading rate that peers can achieve without server
provisioning. We choose α = 1 and β = 0.5, which is suffi-
cient to differentiate the weights of downloading rate at dif-
ferent levels. From Fig. 3, we observe that when the server
bandwidth is constrained, the request-driven strategy can
provide a better satisfaction level. However, the gaps be-
tween different strategies are very small. When the server

bandwidth is not so constrained (e.g., above 50 MB/second),
the performance of the water-leveling strategy outperforms
that of the request-driven strategy, and the gap between
them is profound (e.g., when S = 84 MB/second, the peer
satisfaction level of the water-leveling strategy outperforms
that of the request-driven strategy by 16%).

4.2 Effects from Critical Factors

4.2.1 Proportion of Less Popular Files

It is evident in [8] that the relative proportion of popu-
lar and less popular files would affect the performance of
the system. Here we examine this effect by increasing the
number of less popular files Mt1 from 1 to 91. In order to
guarantee the number of peers arriving at the system un-
changed, we also vary the number of popular files Mt2 from
10 to 1 at the same time. Server bandwidth S is set to 250
MB/second. Other parameters are set as the same as in
previous section.

From Fig. 4, we have made the following observations. (1)
The downloading performance of the system decreases lin-
early as the proportion of less popular files increases. The
rationale is that with the same peer arrival rate of the entire
system, when less popular files become more and more dom-
inant in the system, the uploading bandwidth contributions
from peers would become lower, as the file sharing effective-
ness of less popular files is lower than that of popular files.
(2) When less popular files dominate the system, the server
bandwidth is constrained and the performance gaps between
different server strategies become smaller. This is consistent
with the result in the previous section. Again, this phenom-
enon is caused by the fact that most of the server bandwidth
is allocated to less popular files under both strategies, as less
popular files crowd the system.

4.2.2 File Popularity

Our measurement studies [5, 8] on FS2You have shown
that the downloading performance is strongly correlated with
file popularity. Here we examine this effect by varying the
peer arrival rate of less popular files (together with file shar-
ing effectiveness), as shown in Fig. 5. Specifically, ηt1 in-
creases linearly from 0.5 to 1 as λt1 increases from 0.1 to 1.
We choose S = 50 MB/second, which is quite constrained
and more similar to the case of FS2You. Other parameters
are set as the same as in Section 4.1.
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Figure 6: Service quality differentiation under dif-
ferent server bandwidth allocation strategies versus
the amount of server bandwidth: (a) for ηt1 = 0.5;
(b) for ηt1 = 0.8.

The result shown in Fig. 5 is consistent with the mea-
surement results from FS2You. In [8], we found that both
popular and less popular files experienced favorable down-
loading rates (above 80 KB/second), while semi-popular files
suffer from low downloading rates (around 40 KB/second).
In our numerical result as shown in Fig. 5, when file popular-
ity increases, the downloading performance decreases first,
and then increases again as the files become popular enough.
When file popularity is low (e.g., λt1 = 0.1), there are fewer
peers downloading the file and hence each of them can ob-
tain relatively more server bandwidth. When file popularity
is high (e.g., λt1 > 0.6), peers can enjoy high file sharing ef-
fectiveness and hence high average downloading rates. Semi-
popular files experience the worst downloading performance
in the system, as they have difficulty in both file sharing
among peers and requesting help from the server. Such a U-
shaped phenomenon is not observed for the request-driven
strategy. The rationale is that with this strategy, the server
bandwidth is equally divided across all the peers and not
affected by file popularity.

4.3 Service Quality Differentiation
Besides the system-wide downloading performance, it is

also essential to consider the differences in service quality
across peers involved in files of different popularity. We use
the standard deviation to quantify the service quality differ-

entiation as: σ =
q

P

2

i=1
Mtiλti(Tti − T )2/

P

2

i=1
Mtiλti.

Fig. 6 plots the above metric for ηt1 = 0.5 and ηt1 = 0.8, re-
spectively. In the first case, the performance of less popular
files would heavily depend on server bandwidth. In the sec-
ond case, the performance of less popular files would depend
less on server bandwidth.

We observe that: (1) As server bandwidth increases, the
service quality differentiation keeps on falling for the request-
driven strategy, as this strategy takes care of both types of
files at the same time, despite the amount of server band-
width. For the water-leveling strategy and the lower bound,
the service quality differentiation first decreases then in-
creases in scenarios when the server bandwidth is more con-
strained. The rationale is that both of these two strate-
gies prefer to allocate server bandwidth to less popular files.
When server bandwidth is sufficient, these two strategies
will assign the residual server bandwidth to popular files
and hence the service quality differentiation decreases again.
(2) When less popular files have a low file sharing effective-
ness (in Fig. 6(a)), the service quality differentiation of the

request-driven strategy is always the worst. However, a dif-
ferent result is observed when less popular files have a high
file sharing effectiveness (in Fig. 6(b)). In this case, when the
server bandwidth is not so constrained, the request-driven
strategy outperforms the other two strategies.

5. CONCLUSIONS
In this paper, we develop a mathematical model to an-

alyze peer-assisted online storage and distribution systems
serving multiple files of different popularity, and compare
representative server bandwidth allocation strategies with
regards to critical performance metrics and factors. We
demonstrate that different server strategies could result in
remarkably different service qualities in terms of the average
downloading time, peer satisfaction level and service quality
differentiation. In particular, we demonstrate that the cur-
rent server strategy in a real-world system, FS2You, could
offer the system-wide average downloading time comparable
to the theoretical bound derived from our model; however, it
may not perform well with respect to the other metrics under
certain scenarios. In addition, our results have also led to a
more in-depth understanding of the impact from critical fac-
tors. These observations provide valuable insights towards
the design of more elaborate server strategies to improve the
quality of service to end users.
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