
SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

On Arbitrating the Power-Performance Tradeoff
in SaaS Clouds

Fangming Liu, Member, IEEE, Zhi Zhou, Hai Jin, Senior Member, IEEE, Bo Li, Fellow, IEEE,
Baochun Li, Senior Member, IEEE, Hongbo Jiang, Member, IEEE

Abstract—In this paper, we present an analytical framework for characterizing and optimizing the power-performance tradeoff in
Software-as-a-Service (SaaS) cloud platforms. Our objectives are two-folded: (1) we maximize the operating revenue when serving
heterogeneous SaaS applications with unpredictable user requests, and (2) we minimize the power consumption when processing
the user requests. To achieve these objectives, we construct a unified profit-maximizing objective to jointly consider revenue and cost
in an economic view. An offline solution to maximize the supreme bound of the objective is first developed, in order to (1) justify the
validity of our theoretical model, and (2) establish a benchmark to examine the effectiveness of other control solutions. As a highlight
of our contributions, we take advantage of the Lyapunov optimization techniques to design and analyze an optimal yet practical control
framework, which makes online decisions on request admission control, routing, and virtual machine (VMs) scheduling. Our control
framework can accommodate a variety of design choices and operational requirements in a datacenter. Specifically, buffering facilities
can be introduced to alleviate the bursty admitted requests and to improve the robustness of the system, and a power budget can
be enforced to improve the datacenter performance (dollar) per watt. Our mathematical analyses and simulations have demonstrated
both the optimality (in terms of the cost-effective power-performance tradeoff) and stability (in terms of robustness and adaptivity to
time-varying and bursty user requests) achieved by our proposed control framework.

Index Terms—SaaS cloud, datacenter, power-performance tradeoff, Lyapunov optimization, online control.

F

1 INTRODUCTION

SOFTWARE-AS-A-SERVICE (SaaS) cloud platforms,
such as the Google Apps [1] and Salesforce.com [2],

have quickly ascended to the spotlight in the realm of
cloud computing platforms, surpassing Infrastructure-
as-a-Service (IaaS). With SaaS cloud services, enterprise
applications — as critical as customer relationship man-
agement (CRM) and as simple as online slide presen-
tations — can be hosted in the cloud, with large-scale
datacenters serving a wide range of applications.

With SaaS, users are typically charged for each trans-
action or request. For example, a popular cloud-based
email marketing application, called the Campaign Mon-
itor [3], charges users according to the number of pro-
cessed campaigns and delivered recipients. By following
the law of diminishing marginal utility [4] in economics,
heavy users with more subscribers (e.g., recipients of

• F. Liu, Z. Zhou, and H. Jin are with the Services Computing Technology
and System Lab, Cluster and Grid Computing Lab in the School of
Computer Science and Technology, Huazhong University of Science and
Technology, 1037 Luoyu Road, Wuhan 430074, China. E-mail: {fmliu,
zhiz, hjin}@mail.hust.edu.cn.

• B. Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon
999077, Hong Kong. E-mail: bli@cse.ust.hk.

• B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, 10 Kings College Road, Toronto, ON M5S 3G4,
Canada. E-mail: bli@eecg.toronto.edu.

• H. Jiang is with the Department of Electronics and Information En-
gineering, Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, 1037 Luoyu Road, Wuhan 430074,
China. E-mail: hongbojiang2004@gmail.com.

Manuscript received April XX, 2013; revised July XX, 2013.

11()R t

2()M
R t

()
MN
R t

1()R t
2()R t ()

M
R t

V

M

#1

V

M

#2

V

M

#M

V

M

#1

V

M

#2

V

M

#M

V

M

#1

V

M

#2

V

M

#M

Server #1 Server #2 Server #N

1()A t 2 ()A t
()

M
A t

Requests

Admission Control

Requests

Routing Control

VM

Scheduling

Fig. 1: A basic virtualized datacenter with three control decisions: (1)
admission control that accepts (or denies) arrived requests from different
applications, (2) routing control that dispatches admitted requests to
VMs hosted on different servers in a datacenter, and (3) scheduling of
VMs by switching between running and idle states.

email newsletters) will receive a more significant dis-
count on the per-request charge as the number of re-
cipients increases1. From the perspective of the SaaS
cloud, however, as requests from users arrive in an un-
predictable and even bursty fashion, such a per-request
charging model may lead to fluctuating revenues over
time.

Let us consider a typical SaaS cloud platform in Fig. 1.
Due to risks of going beyond the processing capacity, a
front-end proxy is needed to admit requests. We also
need a load dispatcher to redirect admitted requests

1. Even for long-term SaaS commitments with an upfront and flat
payment, the law of diminishing marginal utility is still applicable in
general, in the form of a discount.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

across a large pool of servers with constrained power
budgets [5], each of which is virtualized as multiple vir-
tual machines (VMs) to process requests from different
applications.

With the presence of unpredictable and bursty appli-
cation demands, the objectives of such an SaaS cloud
platform with a per-request charging model are two-
folded: (1) to maximize its profit by accepting and
processing as many application requests as possible
(system throughput), and (2) to minimize the penalty
from system congestion due to excessive requests and
the resulted power consumption of servers. To balance
such a power-performance tradeoff, three important con-
trol decisions need to be made in the SaaS cloud: (1)
how many requests from diverse applications are to be
admitted at any given time; (2) how to distribute the
admitted requests from different applications across a
large number of servers hosting the corresponding VMs;
and (3) how to schedule each VM by switching between
a running state for processing requests and an idle state
for conserving the server power.

To address these challenges, this paper takes advan-
tage of the Lyapunov optimization techniques [6], [7] to
design and analyze a new optimal online control framework,
designed to independently and concurrently make all
three decisions in the SaaS cloud. Our framework may be
used to design three simple yet effective strategies, corre-
sponding to the three decisions that need to be made: (1)
A threshold-based admission control strategy to improve
system throughput while avoiding system congestion;
(2) a “Join the Shortest Queue” request routing strategy
for balancing the server load, reducing service delays
of admitted requests; and (3) a decentralized greedy
strategy to optimally schedule VMs, i.e., which VMs are
to process incoming requests, and which are to be kept
idle for power conservation.

The upshot of our new framework is that it can be
flexibly extended to explore various design choices and
operational requirements of a realistic datacenter. From a
design perspective, to improve the robustness of the dat-
acenter system, some designers may introduce buffering
facilities to mitigate bursty admitted requests. Through
redefining the Lyapunov function to incorporate the
buffering facilities, we show that our framework can be
enhanced to accommodate such a design choice. From an
operational perspective, as most real-world datacenters
are operated within a certain power budget to improve
the performance (dollar) per watt [5], we demonstrate
how our model and framework can be extended to
accomplish this goal, by achieving a desired performance
level with a particular power budget.

With extensive simulations, we demonstrate that our
new control framework can approach a time averaged
profit that is arbitrarily close to the optimum, while still
maintaining strong stability and low congestion. Further,
it is able to quickly adapt to bursty and time-varying
arrivals of application requests, without incurring over-
whelming power consumption costs that may outweigh

the benefit of aggressively admitting a large number of
requests.

The rest of this paper is organized as follows. In
Sec. 2, we survey the related works. In Sec. 3, we
present the basic power-performance tradeoff model [8].
Different from and complementary to our preliminary
work [8], Sec. 4 maximizes the supreme bound of the
time averaged profit via an offline solution. This not only
justifies the reliability of the power-performance tradeoff
model, but also provides a profit benchmark for the sub-
sequent proposed online control framework. We further
construct a new optimal online control framework to ap-
proach a time averaged profit which is arbitrarily close to
optimum in Sec. 5. We demonstrate that our framework
can be extended to incorporate various design choices
in the datacenter power-performance tradeoff, such as
additional request buffering facilities in Sec. 6 to improve
the system robustness as compared with our preliminary
work [8], and an enforced power budget in Sec. 7.
We evaluate our proposed framework in Sec. 8 with
more comprehensive simulations than our preliminary
work [8], and conclude the paper in Sec. 9.

2 RELATED WORK

While recognizing the significance of many existing
works (e.g., [9]–[11]) on managing the two potentially
conflicting objectives related to cloud application perfor-
mance and datacenter power consumption, our study is
different from and complementary to existing works.

First, a number of existing works heavily relied on
prediction-based or statistical offline approaches. For ex-
ample, Chen et al. [12] applied a multiplicative seasonal
autoregressive moving average method to predict server
workloads in each time interval, and then made power
control decisions based on steady-state queueing analy-
sis and feedback control theory to satisfy such predicted
demands. Govindan et al. [13] characterized statistical
properties of the power needs of hosted workloads
through a measurement-driven profiling and prediction
framework. In the context of application requests in an
SaaS cloud, the common problem with such approaches
lies in the dubious feasibility of making accurate predic-
tions of future request patterns, due to the fact that they
are, in general, bursty and nonstationary.

Second, though there exist alternative online control
solutions [14]–[17] in the literature for dynamic resource
allocation and power management in datacenters, our
work differs substantially in at least two important as-
pects. (1) We take an economic viewpoint to price appli-
cation throughput with a nonlinear utility function based
on the law of diminishing marginal utility (Sec. 3.2.3),
rather than a simple linear utility function [14] that does
not reflect reality in general. (2) Our framework can be
extended to focus on improving the performance (dollar)
per watt [5] at datacenters, by achieving a desired system
throughput level with a certain power budget.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

3 POWER-PERFORMANCE TRADEOFF MODEL

In this section, we first formulate the basic datacenter
model in Fig. 1, consisting of N homogeneous servers
S = {1, 2, ..., N}, each of which is virtualized to M
virtual machines (VMs) to serve M types of heteroge-
neous applications A = {1, 2, ...,M} with diverse request
arrival rates and computing demand. Specifically, the i-
th VM hosted on server j serves the requests from the
i-th type of application instance. Inspired by the latest
modeling work on datacenters [9], we consider a discrete
time-slotted system where the time slot length can range
from hundreds of milliseconds to minutes [11]. In every
time slot t (= 0, 1, 2, ..., τ, ...), a number of requests Ai(t)
generated by the i-th type of application arrive at the
datacenter, and the time averaged rate of such an arrival
process can be denoted as λi = E{Ai(t)}.

We assume that each random variable Ai(t),∀i ∈ A, is
independent and identically distributed (i.i.d.) [6] over
time slots, and they are independent of the current
amount of unfinished workload in the system. We also
assume that there exist certain peak levels of application
requests Amax

i ,∀i ∈ A, such that {Ai(t) ≤ Amax
i ,∀i ∈

A,∀t}. However, since the workloads in a cloud com-
puting environment is highly dynamic and usually un-
predictable (e.g., demands can spike abruptly [18] and
potentially exceed the current available processing ca-
pacity of a datacenter), our model does not assume any a
priori knowledge of the statistics of Ai(t),∀i ∈ A,∀t.

3.1 Control Decisions
Under the datacenter workload model above, we focus
on three important control decisions to be made, intro-
duced in Fig. 1 and Sec. 1, along with the key notations
used in Table 1 which is available in Appendix A of the
online supplementary file.

3.1.1 Admission control of application requests
In each time slot t, given the number of newly arrived
requests of each application Ai(t),∀i ∈ A, the forefront
control decision of a datacenter is to determine a subset
of requests of each application Ri(t),∀i ∈ A (out of the
potentially substantial amount of newly arrived requests
of each application Ai(t),∀i ∈ A), that can be admitted
into the system2: {0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A,∀t}. On
the other hand, for those denied a portion of requests
[Ai(t) − Ri(t)],∀i ∈ A, the system can return negative
response signals to the corresponding users, who may
choose to resend their requests to the datacenter [14].

3.1.2 Routing of application requests
As soon as a portion of requests of each application
Ri(t),∀i ∈ A are admitted into the datacenter, the

2. Though such an admission control of application requests can
be achieved in either a centralized frond-end component or in a
distributed manner across backend servers, our model focuses on the
general underlying control decision without being restricted to any
specific design choice and implementation.

next core control decision is to route (dispatch) the
admitted requests from each application Ri(t),∀i ∈ A
to the corresponding queue for each application on each
server, where the requests will wait to be processed. Let
Rij(t) denote a subset of requests to be routed to the
queue maintained by the i-th VM on the j-th server in
time slot t. Then, the routing control decisions should
satisfy an obvious constraint: Ri(t) =

∑N
j=1Rij(t),∀i ∈

A,∀j ∈ S,∀t. Essentially, such a routing control logic can
be implemented as the load balancer(s) [18] of realistic
datacenters, though our general model is not restricted
to any specific design choice and implementation.

3.1.3 Scheduling of VMs

While the amount of routed requests Rij(t) are waiting
in the aforementioned corresponding queue maintained
by the i-th (∀i ∈ A) VM on the j-th (∀j ∈ S) server,
another important control decision is to schedule each
VM in time slot t, by switching between the running
state (to process the routed application requests that
are waiting in this VM’s queue) and the idle state3 to
keep the routed requests waiting in this VM’s queue,
without processing them in the current time slot. Such
VM scheduling decisions are denoted by the following
indicator variables for ∀i ∈ A, ∀j ∈ S,∀t:

aij(t)=
{

1, if the i-th VM on server j is running,
0, if the i-th VM on server j is idle.

For each VM, its queue backlog, arrival rate and
service rate of application requests can be derived as
follows. First, we assume that the limited processing ca-
pacity (e.g., CPU, memory, disk or network bandwidth)
of any server ∀j ∈ S is fairly allocated among its hosted
M VMs, i.e., the processing capacity of each VM is 1/M
of the total processing capacity of its hosting server.
Second, while requests from different applications require
different amounts of processing capacity, we assume that
each request from the same application requires the same
amount of processing capacity. Then, the number of time
slots di for a VM to process each request of a specific
application ∀i ∈ A is identical. Henceforth, di is referred
to as the size of each request of this particular application
∀i ∈ A. Finally, we define the queue backlog Qij(t) of the
i-th VM on the j-th server as the total sizes of all the
requests that are waiting in the queue at the beginning
of time slot t (Initially, Qij(0) = 0,∀i ∈ A, j ∈ S). The
corresponding service rate and arrival rate of a queue in
time slot t can be quantified as aij(t) and di · Rij(t),
respectively. By doing so, we can capture the following
queueing dynamics over time for each VM hosted on each
server in a datacenter:

Qij(t+ 1) = max[Qij(t)− aij(t), 0] + diRij(t). (1)

3. We focus on the decision for whether a VM will process applica-
tion request(s) or remain idle in current time slot, rather than frequently
turning on/off VMs (or servers) per time slot, which would incur
considerable performance and energy overhead [19].

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

With the VM scheduling above, it is intuitive that the
more VMs remain in the running state, the better pro-
cessing capacity and thus performance can the datacen-
ter provide. Yet, the tradeoff is a larger amount of power
consumed by the datacenter, as we shall characterize in
the following subsection.

3.2 Characterizing the Power-Performance Tradeoff
3.2.1 System Throughput
For the large-scale SaaS cloud platforms, one of the most
important performance metrics is the overall application
throughput in terms of the total number of requests
(of all provided applications) that can be admitted and
processed. Specifically, for each application ∀i ∈ A, we
define the time averaged throughput ri of a datacenter as:

ri = lim
t→∞

1

t

t−1∑
τ=0

E{Ri(τ)}. (2)

As with ri, we define the time averaged value aij as:

aij = lim
t→∞

1

t

t−1∑
τ=0

E{aij(τ)},

according to the definition above, aij is the frequency to
make the i-th VM on the j-th server running, while can
also be viewed as the capacity consumed by that VM
during the t time slots.

Then, the metric
∑M
i=1 ri is the overall datacenter

throughput that is expected to be maximized, subject
to the following two constraints: (1) ri ≤ λi, as the
time averaged throughput ri cannot exceed the time
averaged arrival rate λi for any application ∀i ∈ A, and
(2) diri ≤

∑N
j=1 aij , as the normalized time averaged

throughput diri cannot exceed the overall processing ca-
pacity allocated for the corresponding application i ∈ A.

3.2.2 Power Consumption
Here we focus on a basic power consumption model of
servers where the CPU processing capacity is the main
bottleneck, in the case of serving computation-intensive
applications. Yet, our model can be extended to incorpo-
rate other components (e.g., memory, disk and network
I/O) via informed ways [14], such as representing multi-
dimensional resources of a server as a vector in our
formulation, and amending the aforementioned request
sizes and service rates accordingly.

Specifically, it has been shown by recent studies [16],
[20] that, the amount of power consumed by a server
(CPU processor) is primarily associated with its current
CPU running speed s, as formally characterized by the
following Eq. (3). Without loss of generality, we consider
a normalized s ∈ [0, 1] (alternatively viewed as the
CPU utilization ratio) and its corresponding normalized
power consumption P (s) ∈ [0, 1], where s = 0 represents
the idle state of a server while s = 1 represents its
maximum CPU speed in the running state:

P (s) = αsv + (1− α), (3)

where the exponent parameter v is empirically deter-
mined as v ≥ 1 in practice (e.g., a typical value is
v = 2 [20]). With another parameter α ∈ [0, 1], the term
(1−α) represents the normalized power consumption of
an idle server. Practical measurements [21] have shown
that (1 − α) is around 0.6 (and barely lower than 0.5),
which implies that an idle server still consumes a non-
trivial amount of power.

Based on the power model above, for a server j ∈
S that hosts M VMs with the fair capacity allocation
policy described in Sec. 3.1, its normalized CPU load
and corresponding power consumption in time slot t are
given as:

sj(t) =

∑M
i=1 aij(t)

M
,

Pj(t) = α(

∑M
i=1 aij(t)

M
)v + (1− α).

Accordingly, the time average of normalized power consump-
tion pj of each server ∀j ∈ S in a datacenter can be
defined as:

pj = lim
t→∞

1

t

t−1∑
τ=0

E{Pj(τ)}, (4)

then, the metric
∑N
j=1 pj is the overall power consump-

tion of all servers4, hopefully being minimized.

3.2.3 A Unified Objective from an Economic Perspective
So far, we have derived both the datacenter performance
metric ri,∀i ∈ A in Eq. (2) (time averaged throughput)
and power consumption metric pj ,∀j ∈ S in Eq. (4) (time
averaged power consumption). However, the fundamen-
tal challenge is how to optimize the tradeoff between the
two potentially conflicting objectives in a balanced and cost-
effective manner? To this end, we first construct a unified
profit objective to couple both sides in an economic way
as follows.

First, quantifying the power cost. The power cost of a dat-
acenter can be measured as (Price ·PUE ·

∑N
j=1 pj), where

Price is the electricity market price of each unit of the
normalized power consumption, and PUE is the power
usage efficiency metric provided by the Green Grid [23].
It represents the ratio of the total amount of power used
by the entire datacenter facility to the power delivered to
the computing equipment. Reportedly, inefficient data-
center facilities can have a PUE ∈ [2.0, 3.0], while leading
industry datacenter facilities are announced to approach
a PUE of around 1.2 [18].

Second, pricing the system throughput. Different from the
power which is demanded rigidly, there exists ”elastic
demand” for the cloud applications served by a dat-
acenter. Hence, we choose to price the throughput of

4. Given recent reports [22] that the power consumption of other
non-IT equipments (e.g., cooling) is roughly proportional to that by
servers, our basic model can also be extended to capture the overall
power consumption of a datacenter by scaling up

∑N
j=1 pj with a

constant factor.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

each application i ∈ A served by the datacenter as a
log function g(ri) = log(1 + diri), according to the law
of diminishing marginal utility in economics [4]. Such
a rule has also been adopted by real-world SaaS cloud
services (e.g., [3]). In addition, such a nonlinear function
is different from a closely related work [14], which used
a simple linear utility function.

Given the revenue brought by the system throughput
and the cost incurred by the power consumption, we
can maximize the time averaged profit of a datacenter
as follows:

max

M∑
i=1

g(ri)− β
N∑
j=1

pj (5)

s.t. 0 ≤ ri ≤ λi, ∀i ∈ A,

diri ≤
N∑
j=1

aij , ∀i ∈ A,

where the factor β = Price · PUE.
Intuitively, one may attempt to solve the problem

above directly. Before attempting this, we should rewrite
pj in the form of aij , and thus to constrain the power
consumption to the admission rate. As Pj(t) is nonlin-
ear to aij(t), it is impossible to establish the equation
between pj and aij . Fortunately, since Pj(t) is convex to
aij(t), according to Jesen’s inequality, we have:

pj ≥ α(

∑M
i=1 aij
M

)2 + (1− α). (6)

As we cannot obtain the explicit form of pj , it is
impractical to maximize the time averaged profit di-
rectly. Instead, we propose an offline control strategy to
maximize the supreme bound of the time averaged profit
in the next section.

4 MAXIMIZING THE SUPREME BOUND

In this section, we resort to the theoretical analysis to
design an offline control strategy, which makes station-
ary decisions on admission control and VM scheduling,
and thus to maximize the supreme bound of the time
averaged profit. Such an offline control solution helps
to justify the reliability of our basic power-performance
tradeoff model. Furthermore, the supreme bound of the
time averaged profit can be used as a profit benchmark,
and thus to examine the effectiveness of alternative
control solutions.

Based on the inequality (6) in Sec. 3.2.3, we maximize
the supreme bound of the time averaged profit:

max
ri,aij

M∑
i=1

log(1 + diri)−
αβ

M2

N∑
j=1

(

M∑
i=1

aij)
2 +N(1− α)

s.t. 0 ≤ ri ≤ λi

diri ≤
N∑
j=1

aij

0 ≤ aij ≤ 1. (7)

First, note that the objective function is non-decreasing
to aij ,∀i ∈ A,∀j ∈ S . Hence, to maximize the objective
function, we should choose:

N∑
j=1

aij = diri. (8)

Since
∑N
j=1 aij is the processing capacity allocated to the

i-th application by the corresponding VMs, the equation
above indicates that to maximize the profit, the pro-
cessing capacity allocated to each application should be
completely consumed to process the admitted requests,
no power is consumed without processing any request
and thus the power cost is minimized.

Then, to simplify the objective function, we first take
Cauchy’s inequality (

∑n
k=1 a

2
k

∑n
k=1 b

2
k ≥ (

∑n
k=1 akbk)2) to

bound the complicated term
∑N
j=1(

∑M
i=1 aij)

2,yielding:

N∑
j=1

(

M∑
i=1

aij)
2 ≥

(
∑N
j=1

∑M
i=1 aij)

2∑N
j=1 12

=
(
∑M
i=1

∑N
j=1 aij)

2

N
,

according to Cauchy’s inequality, the equation above is
established if and only if:

M∑
i=1

ai1 =

M∑
i=1

ai2 = · · · =
M∑
i=1

aiN . (9)

Sine
∑M
i=1 aij is the processing capacity consumed by the

j-th server, the equation above implies that each server
consumes the same amount of processing capacity. Fur-
thermore, note that the term N(1 − α) is constant, then
the Problem (7) is now transformed to the following
simplified problem:

max
ri

f =

M∑
i=1

log(1 + diri)−
αβ

M2N
(

M∑
i=1

diri)
2

s.t. 0 ≤ ri ≤ min[λi,
N

di
]. (10)

To make it easier to derive the peak value of the objective
function f , let xi = diri, differentiating f with respect to
each xk,∀k ∈ A, yielding:

∂f

∂xk
=

1

1 + xk
− 2αβ

M2N

M∑
i=1

xi, for k = 1, 2, · · ·,M.

For each application k ∈ A, let ∂f
∂xk

= 0. Note that the
term

∑M
i=1 xi is identical to each application k, hence,

we have the following equation:

x1 = x2 = · · · = xM ,

then,
∑M
i=1 xi = Mx1, plugging it into ∂f

∂x1
= 0, yielding:

∂f

∂x1
=

1

1 + x1
− 2αβ

MN
x1 = 0.

Solving it yields the following solution:

x1 = x2 = · · · = xM =
−αβ +

√
α2β2 + 2αβMN

2αβ
,

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

revenue

cost

profit

admission rate

d
o
ll
a
r

0

Fig. 2: An illustration of the optimal solution ri, which reflects the shape
of revenue, cost and profit.

where the other negative root is discarded. Recall that
xi = diri, so we have:

ri =
−αβ +

√
α2β2 + 2αβMN

2αβdi
.

Before reaching the peak point, the objective function is
non-decreasing, while after reaching the peak point, the
objective function is decreasing. Hence, taking the addi-
tional constraint 0 ≤ ri ≤ min[λi,

N
di

] into consideration,
yielding the following optimal solution ri,∀i ∈ A, which
can be viewed as the decision of admission control:

ri = min[λi,
N

di
,
−αβ +

√
α2β2 + 2αβMN

2αβdi
].

Insight: Fig. 2 illustrates the tendency of the rev-
enue, cost and profit as the admission rate increases. To
support the increasing admission rate, the cost that is
incurred by the power consumption increases more and
more rapidly, while the corresponding revenue brought
by processing the increasing requests grows more and
more slowly. Therefore, the profit increases initially and
then decreases as shown in Fig. 2, and there exists a
certain admission rate that maximizes the profit.

Meanwhile, to maximize the objective function,
aij ,∀i ∈ A,∀j ∈ S should satisfy Eq. (8). Besides, based
on Eq. (8) and Eq. (9) which can be viewed as the
decision of VM scheduling, we further have:

M∑
i=1

ai1 =

M∑
i=1

ai2 = · · · =
M∑
i=1

aiN =

∑M
i=1 diri
N

. (11)

The equation above suggests that the admitted requests
are fairly allocated to each server, which can be viewed
as load balancing. However, note that according to
Eq. (8) and Eq. (11), the optimal solution aij is not
unique, i.e., there exist a variety of optimal VM schedul-
ing decisions.

The optimal offline control solution above is reason-
able and reliable. However, for realistic datacenters, there
is a challenge when applying this solution: The datacen-
ter workload is time-varying and unpredictable, which
makes it infeasible to precisely capture key parameters
(such as λi), and impractical to calculate optimal solution
in an offline manner. In response, we seek to design

an online control algorithm in Sec. 5, which is able to
efficiently make decisions on all three important control
decisions.

5 CONSTRUCTING AN ONLINE CONTROL
FRAMEWORK

In response to the challenges of Problem (5), we take
advantage of the Lyapunov optimization techniques [6]
to design an online control framework, which is able to
concurrently make all three important control decisions
in Fig. 1, including request admission control, routing, and
VM scheduling. In particular, our control algorithms can
be proved to approach a time averaged profit that is
arbitrarily close to the optimum of Problem (5), while
keeping the system stable.

5.1 Problem Transformation Using Lyapunov Opti-
mization
Given that the function g(ri) is nonlinear, we are inspired
by a recent technique [24] to transform Problem (5) to the
following framework of Lyapunov optimization Prob-
lem (12), which introduces auxiliary variables γi for each
admitted stream of application requests Ri(t),∀i ∈ A, in
the system described in Fig. 1:

max

M∑
i=1

g(γi)− β
N∑
j=1

pj (12)

s.t. γi ≤ ri, ∀i ∈ A (13)
0 ≤ ri ≤ λi, ∀i ∈ A (14)

diri ≤
N∑
j=1

aij , ∀i ∈ A. (15)

It is easy to check that the optimal solution of the prob-
lem above is the same as that of the original Problem
(5), as the function g(∗) = log(1 + ∗di) is non-decreasing.

To solve the problem above, we first transform the
inequality constraint (13) into a queue stability prob-
lem [6]. Specifically, we introduce virtual queues Hi(t) for
each Ri(t). Initially, we define Hi(0) = 0,∀i ∈ A, and
then update the queues per each time slot as follows:

Hi(t+ 1) = max[Hi(t)−Ri(t), 0] + γi(t), (16)

where γi(t) denotes a process of non-negative auxiliary
variables that the admission control of the datacenter
system (Sec. 3.1) will determine in every time slot, which
satisfies the constraint (17). The time average of each
γi(t) is defined as γi = limt→∞

1
t

∑t−1
τ=0 E{γi(τ)}.

0 ≤ γi(t) ≤ Amax
i . (17)

Insight: Intuitively, the auxiliary variables γi(t) can
be viewed as the “arrivals” of the virtual queues Hi(t),
while Ri(t) can be viewed as the service rate of such
virtual queues. The constraints (13) are enforced on the
condition that the virtual queues Hi(t) are stable, i.e.,

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

limt→∞ E{Hi(t)}/t = 0. Specifically, from (16) it is clear
that: Hi(t + 1) ≥ [Hi(t) − Ri(t) + γi(t)]. By summing
this inequality over time slots τ ∈ {0, 1, ..., t − 1} and
then dividing the result by t, we have Hi(t)−Hi(0)

t +
1
t

∑t−1
τ=0Ri(τ) ≥ 1

t

∑t−1
τ=0 γi(τ). With Hi(0) = 0, taking

expectations of both sides yields:

lim
t→∞

E{Hi(t)}
t

+ ri ≥ γi. (18)

If the virtual queues Hi(t) are stable, then
limt→∞ E{Hi(t)}/t = 0 (Note that we will prove
the strong stability of virtual queues Hi(t) in Theorem 1
later). Plugging this into (18) yields ri ≥ λi, so that the
constraint (13) can be satisfied.

5.1.1 Characterizing the Stability-Profit Tradeoff
Let Q(t) = (Qij(t)) and H(t) = (Hi(t)) denote the matrix
of the actual and virtual queues maintained by VMs
(Sec. 3.1). Then, we use Θ(t) = [Q(t); H(t)] to denote
the combined matrix of all the actual queues and virtual
queues. However, since Q(t) and H(t) have different
scales (the former corresponds to the request size di
according to Eq. (1), while the latter corresponds to the
number of requests according to Eq. (16)), we define
a Lyapunov function L(Θ(t)), which assigns different
weights di and 1 to Hi(t) and Qij(t), respectively:

L(Θ(t)) =
1

2

[M∑
i=1

d2iH
2
i (t) +

M∑
i=1

N∑
j=1

Q2
ij(t)

]
. (19)

This represents a scalar metric of queue congestion [6]
in the datacenter system. For example, a small value
of L(Θ(t)) implies that both actual queue backlogs and
virtual queue backlogs are small. The implication is that
the corresponding datacenter system has strong stability.

To keep the system stable by persistently pushing the
Lyapunov function towards a lower congestion state, we
introduce ∆(Θ(t)) as the one-step conditional Lyapunov
drift [6]:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}.

In the sense of Lyapunov optimization, the underlying
objective of our optimal control decisions on request
admission control, routing and VM scheduling is to
minimize an infimum bound on the following drift-
minus-profit expression in each time slot:

∆(Θ(t))− V E
{ M∑
i=1

g(γi(t))− β
N∑
j=1

Pj(t)|Θ(t)
}
. (20)

Insight: The control parameter V (≥ 0) represents a
design knob of the stability-profit tradeoff, i.e., how much
we shall emphasize the profit maximization (Problem
(12)) compared to system stability. It empowers system
operators to make flexible design choices among various
tradeoff points between system stability and profit. For
example, one may prefer to achieve as much expected
profit E{

∑M
i=1 g(γi(t)) − β

∑N
j=1 Pj(t)|Θ(t)} as possible,

while having to keep ∆(Θ(t)) small to avoid higher
system congestion.

5.1.2 Bounding Drift-Minus-Profit
The analysis above instructs a system designer to derive
an infimum bound of the drift-minus-profit expression
given in Eq. (20), which requires the following Lemma.

Lemma 1: In each time slot t, for any value of Θ(t),
the Lyapunov drift ∆(Θ(t)) of a datacenter system under
any control strategy satisfies the following, where B1 ,
MN+3

∑M
i=1(diA

max
i)2

2 is a finite constant parameter.

∆(Θ(t)) ≤ B1 −
M∑
i=1

d2iHi(t)E{Ri(t)− γi(t)|Θ(t)}

−
M∑
i=1

N∑
j=1

Qij(t)E{aij(t)− diRij(t)|Θ(t)}. (21)

Interested readers are referred to Appendix B for a
complete proof of Lemma 1, available in the online
supplemental material.

Based on Lemma 1, subtracting the expression
V E{

∑M
i=1 g(γi(t)) − β

∑N
j=1 Pj(t)|Θ(t)} from both sides

of Eq. (21) yields an infimum bound of the drift-minus-
profit expression of the datacenter system:

∆(Θ(t))− V E
{ M∑
i=1

g(γi(t))− β
N∑
j=1

Pj(t)|Θ(t)
}
≤ B1

−
M∑
i=1

E{V g(γi(t))− d2iHi(t)γi(t)|Θ(t)} (22)

−
M∑
i=1

E
{
d2iHi(t)Ri(t)−

N∑
j=1

diRij(t)Qij(t)|Θ(t)
}

(23)

−
N∑
j=1

E
{ M∑
i=1

Qij(t)aij(t)− V βPj(t)|Θ(t)
}
. (24)

5.2 An Optimal Online Control Algorithm

Instead of directly minimizing the drift-minus-profit ex-
pression in Eq. (20) that involves implicit max[∗] terms
in both Eq. (1) and Eq. (16), we seek to design an
optimal Online Control Algorithm (OCA) to minimize
its infimum bound given above (i.e., equivalent to max-
imizing the terms (22)(23)(24) on the right-hand-side),
without undermining the optimality and performance
of the algorithm according to [6]. Interestingly, we will
show that the maximization of the terms (22)(23)(24) can
be decoupled to a series of independent subproblems,
which can be computed concurrently in a decentralized
fashion.

Specifically, in each time slot t, based on online ob-
servations of the queue backlogs Q(t) and H(t), OCA
performs the following four phases of control operations,
including: (1) auxiliary variable selection, (2) request ad-
mission control and routing control, (3) VM scheduling,
and (4) queue update.

Recall that the phases (2) and (3) make corresponding
decisions for the three fundamental control decisions
that we described in Sec. 3.1 and Fig. 1.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

5.2.1 Auxiliary Variable Selection
For each application i ∈ A served by the datacenter,
we determine γi(t) by maximizing the term (22) in
Sec. 5.1.2. Fortunately, as the decision variables γi(t) are
independent among applications, such centralized maxi-
mization can be decoupled to be computed concurrently
as follows:

max
γi(t)

V log(1 + diγi(t))− d2iHi(t)γi(t) (25)

s.t. 0 ≤ γi(t) ≤ Amax
i ,∀i ∈ A.

Differentiating the objective function above with respect
to γi(t) can yield the peak value of the objective function
when γi(t) = V

d2iHi(t)
− 1

di
. By taking the constraint (17)

into consideration, we obtain the optimal solution to
problem (25):

γi(t) =

0, Hi(t) >
V

di
V

d2iHi(t)
− 1

di
,

V

d2iA
max
i + di

≤ Hi(t) ≤
V

di

Amax
i , Hi(t) <

V

d2iA
max
i + di

(26)

Insight: The stepped solution above is directly related
to the value of Hi(t). Recall from Eq. (18) that, if the
value of Hi(t) is small, then it implies that the time
average of γi(t) is close to that of Ri(t), which improves
the system stability as we expected. In this case, a larger
value of γi(t) can be chosen with respect to Hi(t). On
the other hand, if the value of Hi(t) is large, then it
implies that the time average of γi(t) is far away from
that of Ri(t). To fill this gap, it would be better to
choose a lower value of γi(t). In addition, as the selection
of auxiliary variables can be separately performed for
each application ∀i ∈ A, this can facilitate a distributed
implementation of the decision phase above.

5.2.2 Request Admission Control and Routing
For each application i ∈ A served by the datacenter,
the request admission decisions Ri(t) and routing de-
cisions (Ri1(t), Ri2(t), ..., RiN (t)) as illustrated in Fig. 1
can be decided by maximizing the term (23) in Sec. 5.1.2.
Again, since the admission decisions Ri(t) and routing
decisions Rij(t) of different applications are independent
from each other, this centralized maximization can be
decoupled to be computed concurrently as follows:

max
Ri(t),Rij(t)

d2iHi(t)Ri(t)− di
N∑
j=1

Rij(t)Qij(t) (27)

s.t. 0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A,

Ri(t) =

N∑
j=1

Rij(t).

Different from the previous problem (25), both the con-
trol decisions of Ri(t) and Rij(t) in problem (27) need to
be determined. We first start from a simple case: if the
value of Ri(t) is known in advance, then problem (27) is

exactly equivalent to the following problem for making
routing decisions:

min
Rij(t)

di
∑N
j=1Rij(t)Qij(t) (28)

s.t.
∑N
j=1Rij(t) = Ri(t),∀i ∈ A.

Insight: The problem (28) is a generalized min-weight
problem, where the amount of requests routed to server
j ∈ S for application i ∈ A is weighted by the current
queue backlog Qij(t). Hence, for each application i ∈ A
served by the datacenter, the optimal routing strategy
tends to dispatch as many admitted requests as possible to
the VM with the least backlogged queue:

Rij(t) =

{
Ri(t), j = j∗i ,

0, else,
(29)

where j∗i = arg minj∈{1,2,...,N}Qij(t), i.e., the queue of the
i-th VM on server j∗i is the shortest queue among all the
N queues for the i-th type of application. Such a routing
policy is an intuitive “Join the Shortest Queue” policy
for the purpose of load balancing, which is consistent
with a recent work on scheduling of cloud computing
clusters [25]. Further, it can effectively reduce the re-
sponse delay of newly admitted requests, as they are
preferentially routed to the shortest queues. However,
it requires to obtain all the queue backlog information
of those VMs serving the i-th type of applications. To
mitigate this complexity, we can adopt a recently devel-
oped “Power-of-Two-Choices” [25] routing policy, which
randomly samples two VMs and routes the application
requests to the VM with a smaller queue backlog.

Recall that the optimal value of Ri(t) is still undecided
so far. Based on the routing strategy in Eq. (29), the
second term of Eq. (27) (i.e., di

∑
j∈S Rij(t)Qij(t)) can be

rewritten as diRi(t)Qij∗i (t). Then, the request admission
control decision can be solved as:

max
Ri(t)

d2iHi(t)Ri(t)− diRi(t)Qij∗i (t) (30)

s.t. 0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A.

The problem (30) is a simple linear programming prob-
lem in which the optimal value of Ri(t) is:

Ri(t) =

{
Ai(t), diHi(t) > Qij∗i (t)

0, else
(31)

Insight: This is a simple threshold-based admission
control strategy. When the backlog of the shortest queue
Qij∗i (t) is smaller than a threshold diHi(t), then all the
newly arrived requests are admitted into the datacenter.
Essentially, this not only reduces the value of Hi(t) so as
to push γi to become closer to ri, but also increases the
datacenter throughput ri so as to improve the profit. On
the other hand, when the backlog of the shortest queue
Qij∗i (t) is larger than the threshold diHi(t), then all the
requests will be denied to ensure the stability of the
datacenter system. The intuition is to prevent the system
with considerable backlogged requests from being overloaded
by newly arrived requests.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

5.2.3 VM Scheduling
In each time slot t, the running or idle state of each
VM (a1j(t), a2j(t), ..., aMj(t)) (Sec. 3.1) on server j ∈ S
can be determined by maximizing the term (24) in
Sec. 5.1.2. Observing that the indicator variables aij(t)
are independent among different servers, the centralized
maximization can be implemented by each server in a
fully distributed manner:

max
aij(t)

M∑
i=1

Qij(t)aij(t)− V βPj(t) (32)

s.t. aij(t) ∈ {0, 1},∀i ∈ A,∀j ∈ S,

where Qij(t) can be viewed as the weight of the decision
variable aij(t). As the growth of power consumption
caused by running each VM is the same under our
model (see the definition of Pj(t) in Sec. 3.2.2), the
optimal solution for Eq. (32) would prefer to schedule
those VMs with the most backlogged queues (i.e., larger
Qij(t) as weights) to the running state. Following this
intuition, each server adopts a simple yet effective greedy
strategy that ranks hosted VMs according to their queue
backlogs. Then, it searches from VMs with the most
backlogged queues to VMs with the least backlogged
queues: (1) If the growth in the sum of backlogs exceeds
the growth of power consumption (weighted by V β)
caused by running a certain VM, then the VM is prefer-
entially scheduled to the running state. (2) Such a search
process can continue until the growth in the sum of
backlogs falls below the growth of power consumption
(weighted by V β) for a certain VM, which is scheduled
to the idle state. Then, the other remaining VMs are
scheduled to the idle state.

5.2.4 Queue Update
Finally, the virtual queues H(t) can be updated accord-
ing to Eq. (16), by using the optimal values of γi(t)
and Ri(t) determined by the phases above. Likewise, the
actual queues Q(t) maintained by VMs in the datacenter
can be updated according to Eq. (1), based on the optimal
values of Rij(t) and aij(t) derived above.

5.3 Optimality Analysis
Theorem 1: For arbitrary arrival rates of application

requests (λ1(t), λ2(t), ..., λM (t)) (possibly exceeding the
processing capacity of a datacenter), a datacenter using
the OCA algorithm with any V ≥ 0 (the stability-profit
tradeoff parameter defined in Sec. 5.1.1) can guarantee
that all the actual and virtual queues are strongly stable
over time slots:

Hi(t) ≤
V

di
+Amax

i ,∀i ∈ A, (33)

Qij(t) ≤ V + 2diA
max
i ,∀i ∈ A,∀j ∈ S. (34)

Meanwhile, the gap between its achieved time averaged
profit and the optimal profit ξ∗ is within B1/V :

lim inf
t→∞

{ M∑
i=1

g(ri)− β
N∑
j=1

pj

}
≥ ξ∗ − B1

V
, (35)

where ξ∗ =
∑M
i=1 g(r∗i) − β

∑N
j=1 p

∗
j , r∗i and p∗j are the

optimal solution to Problem (5), and B1 is a finite
constant parameter defined in Lemma 1.

Insight: Theorem 1 provides a strong deterministic
guarantee of the upper bounds on backlogs of all the
actual and virtual queues in any time slot. Meanwhile,
Eq. (35) indicates that the gap between the time averaged
profit achieved by OCA algorithm and the optimal profit
is within O(1/V). Interestingly, as the value of param-
eter V increases to sufficiently large, the time averaged
profit under OCA can be pushed arbitrarily close to the
optimum. However, according to Eq. (33) and Eq. (34),
overly aggressive increases of profit can increase the
bounds of queue backlogs. By Little’s law [6], the bounds
of response delays for application requests would also
increase. The proof of Theorem 1 can be found in Ap-
pendix C of the online supplemental material.

6 EXTENSION: BUFFERING THE REQUESTS

In a realistic datacenter, to satisfy some practical re-
quirements, the designer of the datacenter may have
additional design choices based on the typical cloud
platform shown in Fig. 1. For example, to alleviate
the impact of bursty arrivals (e.g., the flash crowd
phenomenon in Internet content distribution and video
streaming [26], [27]) and thus to improve the robustness
of the datacenter system, the designer may prefer to store
the excessive admitted requests for each application in
a buffering facility before part of them are routed to
the corresponding VMs. In this section, we first show
that the Lyapunov-based optimization framework can be
enhanced to accommodate this additional design choice
in realistic datacenters. Then, we present the correspond-
ing buffer-enhanced optimal control algorithm which is
denoted as BOCA. Finally, we distinguish BOCA from
OCA. Please refer to Sec. D of the online supplementary
material for detailed discussions.

7 EXTENSION: ENFORCING A POWER BUD-
GET

In additional to accommodating diverse design choices
such as buffering facilities in a realistic datacenter, our
model and optimization framework can also be ex-
tended to incorporate various practical requirements of
the datacenter power-performance tradeoff. For instance,
as most real-world datacenters are operated within a
certain power budget [5], it is important for datacenter
operators to improve the performance (dollar) per watt [5]
by achieving a desired performance level with an en-
forced power budget. Please refer to Sec. E of the online
supplementary material for detailed discussions.

8 PERFORMANCE EVALUATION

We conduct comprehensive simulations to evaluate our
online control algorithm OCA and its extensions from a
variety of perspectives, including: (1) the verification of

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

algorithm optimality, (2) the examination of system sta-
bility, (3) the adaptivity to bursty request arrivals, (4) the
effectiveness of admission control, (5) the effectiveness
of power budget enforcement, (6) the sensitivity of key
parameters, as well as (7) the exactness of the maximized
supreme bound. Please refer to Sec. G of the online
supplementary material for detailed discussions on the
experimental configurations and evaluation results.

Based on the evaluation under representative data-
center scenarios, we show that: (1) our online control
framework can approach a time averaged profit that is
arbitrarily close to the optimum, which implies a cost-
effective power-performance tradeoff; (2) it can maintain
strong system stability, in term of the robustness and
adaptivity to time-varying and bursty application re-
quests; (3) it can reflect the potential benefits of practical
factors, such as the impact of power efficient hardware
and cooling control.

9 CONCLUSION
In response to dynamic and unpredictable user requests
from heterogeneous applications served by a SaaS cloud
datacenter platform, this paper designs and analyzes an
optimal online control framework to balance the tradeoff
between the throughput performance and power con-
sumption for processing requests. By applying rigorous
Lyapunov optimization approaches, our online control
framework can independently and simultaneously make
decisions on three important control decisions of such
a cloud platform, including request admission control,
routing, and VM scheduling. To show the superiority of
our online control framework, an offline control solution
is derived in advance to provide a profit benchmark, and
also to justify the reliability of the basic model.

In particular, our online control framework is shown
to be extensible to explore the various design choices and
operational constraints. Specifically, additional buffering
facilities are introduced for better system scalability in
term of design choices, and a certain power budget is
enforced towards better performance (dollar) per watt in
term of operational constraints. Through in-depth math-
ematical analysis and various simulations, we demon-
strate that our online control framework can approach a
time averaged profit — unifying a cost-effective power-
performance tradeoff — that is arbitrarily close to the
optimum, while still maintaining strong system stability,
in term of the robustness and adaptivity to time-varying
and bursty application requests. As future work, we will
investigate more effective cost reduction mechanisms, by
dynamically adjusting the number of activated servers in
the datacenter.

ACKNOWLEDGMENTS
The research was supported in part by a grant from
National Basic Research Program (973 program) un-
der Grant of 2014CB347800, by a grant from Na-
tional Natural Science Foundation of China under grant
No.61133006. The corresponding author is Hai Jin.

REFERENCES
[1] Google Apps. [Online]. Available: http://www.googleapps.com
[2] Salesforce. [Online]. Available: http://www.salesforce.com
[3] Campaign Monitor. [Online]. Available: http://www.

campaignmonitor.com/pricing
[4] N. G. Mankiw, Principles of Economics, 6th ed. South-Western

College Pub, 2011.
[5] X. Fan, W. Weberand, and L. Barroso, “Power Provisioning for A

Warehouse-Sized Computer,” ACM SIGARCH Computer Architec-
ture News, vol. 35, no. 2, pp. 13–23, 2007.

[6] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[7] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, C. Lui, and H. Jin, “Carbon-
aware Load Balancing for Geo-distributed Cloud Services,” in
Proc. of IEEE MASCOTS, 2013.

[8] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang, “On Arbitrating
the Power-Performance Tradeoff in SaaS Clouds,” in Proc. of IEEE
INFOCOM, 2013.

[9] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic
Right-Sizing for Power-Proportional Data Centers,” in Proc. of
IEEE INFOCOM, 2011.

[10] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing Electricity Cost:
Optimization of Distributed Internet Data Centers in a Multi-
Electricity-Market Environment,” in Proc. of IEEE INFOCOM,
2010.

[11] Z. Liu, M. Lin, A. Wierman, and L. A. SH Low, “Greening
Geographic Load Balancing,” in Proc. of ACM SIGMETRICS, 2011.

[12] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam, “Managing Server Energy and Operational Costs in
Hosting Centers,” in Proc. of ACM SIGMETRICS, 2005.

[13] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini, “Statistical Profiling-based Techniques for Effective
Power Provisioning in Data Centers,” in Proc. of EuroSys, 2009.

[14] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely, “Dynamic
Resource Allocation and Power Management in Virtualized Data
Centers,” in Proc. of IEEE NOMS, 2010.

[15] D. Xu and X. Liu, “Geographic Trough Filling for Internet Data-
centers,” in Proc. of IEEE INFOCOM, 2012.

[16] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
Centers Power Reduction: A Two Time Scale Approach for Delay
Tolerant Workloads,” in Proc. of IEEE INFOCOM, 2012.

[17] W. Deng, F. Liu, H. Jin, and C. Wu, “SmartDPSS: Cost-Minimizing
Multi-source Power Supply for Datacenters with Arbitrary De-
mand,” in Proc. of IEEE ICDCS, 2013.

[18] A. Greenberg, J. Hamilton, D. Malta, and P. Patel, “The Cost of
a Cloud: Research Problems in Data Center Networks,” ACM
SIGCOMM Computer Communication Review, 2008.

[19] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang,
“Power and Performance Management of Virtualized Computing
Environments via Lookahead Control,” Cluster Computing, vol. 12,
no. 1, pp. 1–15, 2009.

[20] L. A. A. Wierman and A. Tang, “Power-Aware Speed Scaling in
Processor Sharing Systems,” in Proc. of IEEE INFOCOM, 2009.

[21] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-Aware Server Provisioning and Load Dispatching for
Connection-Intensive Internet Services,” in Proc. of NSDI, 2008.

[22] N. Rasmussen, “Electrical Efficiency Modeling for Data Centers,”
in White Paper No. 113.

[23] The Green Grid. [Online]. Available: http://www.thegreengrid.
org

[24] M. J. Neely, “Delay-Based Network Utility Maximization,” in
Proc. of IEEE INFOCOM, 2010.

[25] S. T. Theja, R. Srikant, and L. Ying, “Stochastic Models of Load
Balancing and Scheduling in Cloud Computing Clusters,” in
Proc. of IEEE INFOCOM, 2012.

[26] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao, “Flash Crowd
in P2P Live Streaming Systems: Fundamental Characteristics and
Design Implications,” IEEE Trans. Parallel and Distributed Systems,
vol. 23, no. 7, pp. 1227–1239, Jul. 2012.

[27] F. Liu, Y. Sun, B. Li, B. Li, and X. Zhang, “FS2You: Peer-Assisted
Semi-Persistent Online Hosting at a Large Scale,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 21, no. 10, pp. 1442–
1457, 2010.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Fangming Liu is an associate professor in the
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, Wuhan, China; and he is awarded as the
CHUTIAN Scholar of Hubei Province, China.
He is the Youth Scientist of National 973 Basic
Research Program Project on Software-defined
Networking (SDN)-based Cloud Datacenter Net-
works, which is one of the largest SDN projects
in China. Since 2012, he has also been in-
vited as a StarTrack Visiting Young Faculty in

Microsoft Research Asia (MSRA), Beijing. He received his B.Engr.
degree in 2005 from Department of Computer Science and Technology,
Tsinghua University, Beijing; and his Ph.D. degree in Computer Sci-
ence and Engineering from the Hong Kong University of Science and
Technology in 2011. From 2009 to 2010, he was a visiting scholar at
the Department of Electrical and Computer Engineering, University of
Toronto, Canada. He was the recipient of two Best Paper Awards from
IEEE GLOBECOM 2011 and IEEE CloudCom 2012, respectively. His
research interests include cloud computing and datacenter networking,
mobile cloud, green computing and communications, software-defined
networking and virtualization technology, large-scale Internet content
distribution and video streaming systems. He is a member of IEEE and
ACM, as well as a member of the China Computer Federation (CCF)
Internet Technical Committee. He has been a Guest Editor for IEEE Net-
work Magazine, an Associate Editor for Frontiers of Computer Science,
and served as TPC for IEEE INFOCOM 2013-2014 and GLOBECOM
2012-2013.

Zhi Zhou is a Master student in the School of
Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan,
China. His research interests include cloud com-
puting and green datacenters.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
the Huazhong University of Science and Tech-
nology (HUST), China. He is now dean of the
School of Computer Science and Technology at
HUST. He received his Ph.D. degree in computer
engineering from HUST in 1994. In 1996, he
was awarded a German Academic Exchange
Service fellowship to visit the Technical Uni-
versity of Chemnitz in Germany. He worked at
the University of Hong Kong between 1998 and

2000, and as a visiting scholar at the University of Southern California
between 1999 and 2000. He was awarded the Excellent Youth Award
from the National Science Foundation of China in 2001. He is the chief
scientist of ChinaGrid, the largest grid computing project in China, and
chief scientist of the National 973 Basic Research Program Project of
Virtualization Technology of Computing Systems. He is a senior member
of the IEEE and a member of the ACM. His research interests include
computer architecture, virtualization technology, cluster computing and
grid computing, peer-to-peer computing, network storage, and network
security.

Bo Li is a professor in the Department of Com-
puter Science and Engineering, Hong Kong Uni-
versity of Science and Technology. His current
research interests include large-scale content
distribution in the Internet, datacenter network-
ing, cloud computing, and mobile sensor net-
works. He made pioneering contributions in the
Internet video broadcast with a system, called
Coolstreaming (the keyword had over 2,000,000
entries on Google), which was credited as the
world first large-scale Peer-to-Peer live video

streaming system, which spearheaded a momentum in video broadcast
industry, with no fewer than a dozen successful companies adopting
the same mesh-based pull streaming technique to deliver live media
content to hundreds of millions of users in the world. He has been an
editor or a guest editor for a dozen of IEEE journals and magazines.
He was the Co-TPC Chair for IEEE INFOCOM 2004. He received his B.
Eng. Degree in the Computer Science from Tsinghua University, Beijing,
and his Ph.D. degree in the Electrical and Computer Engineering from
University of Massachusetts at Amherst. He is a Fellow of IEEE.

Baochun Li is a professor with the Depart-
ment of Electrical and Computer Engineering
at the University of Toronto, Canada. He re-
ceived the B.Engr. degree from the Department
of Computer Science and Technology, Tsinghua
University, China, in 1995 and the M.S. and
Ph.D. degrees from the Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, Urbana, in 1997 and 2000. He
holds the Nortel Networks Junior Chair in Net-
work Architecture and Services from October

2003 to June 2005, and the Bell Canada Endowed Chair in Computer
Engineering since August 2005. His research interests include large-
scale distributed systems, cloud computing, peer-to-peer networks,
applications of network coding, and wireless networks. He was the
recipient of the IEEE Communications Society Leonard G. Abraham
Award in the Field of Communications Systems in 2000. In 2009, he was
a recipient of the Multimedia Communications Best Paper Award from
the IEEE Communications Society, and a recipient of the University of
Toronto McLean Award. He is a member of ACM and a senior member
of IEEE.

Hongbo Jiang received the B.S. and M.S. de-
grees from Huazhong University of Science and
Technology, China. He received his Ph.D. from
Case Western Reserve University in 2008. After
that he joined the faculty of Huazhong Univer-
sity of Science and Technology as an associate
professor. His research concerns computer net-
working, especially algorithms and architectures
for high-performance networks and wireless net-
works. He is a member of IEEE.

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

APPENDIX A
KEY PARAMETERS IN THE BASIC DATACENTER
MODEL

TABLE 1: Key Parameters in the Basic Datacenter Model.

Notations Definitions

M
The number of heterogeneous applications A

served by a datacenter

N
The number of homogeneous servers S

in a datacenter

aij(t)
The running/idle state of the i-th VM on the

j-th server in time slot t

Ai(t)
The number of arrived requests of

each application ∀i ∈ A in time slot t

Ri(t)
The number of admitted requests of

each application ∀i ∈ A in time slot t

Rij(t)

The portion of requests of each application
∀i ∈ A that are routed to the i-th VM

on the j-th server in time slot t

Qij(t)
The queue backlog of each application ∀i ∈ A on

the j-th server in time slot t

Pj(t)
The power consumption of the j-th server

in time slot t

di
The respective size of a request of

each application ∀i ∈ A
λi, ri The time average of Ai(t) and Ri(t)

pj , aij The time average of Pj(t) and aij(t)

V Lyapunov control parameter

APPENDIX B
PROOF OF LEMMA 1

Proof: Squaring Eq. (1) and Eq. (16) and leveraging
the fact that (max[a − b, 0] + c)2 ≤ a2 + b2 + c2 − 2a(b −
c),∀a, b, c ≥ 0, we have:

H2
i (t+ 1)−H2

i (t) ≤ R2
i (t) + γ2i (t)−

2Hi(t)(Ri(t)− γi(t)), (36)
Q2
ij(t+ 1)−Q2

ij(t) ≤ a2ij(t) + d2iR
2
ij −

2Qij(t)(aij(t)− diRij(t)).(37)

Based on Eq. (36) and Eq. (37), we further have:

∆(Θ(t)) ≤
M∑
i=1

d2i
2
E{R2

i (t) + γ2i (t)|Θ(t)}

+
1

2

M∑
i=1

N∑
j=1

E{a2ij(t) + d2iR
2
ij(t)|Θ(t)}

−
M∑
i=1

diHi(t)E{Ri(t)− γi(t)|Θ(t)}

−
M∑
i=1

N∑
j=1

Qij(t)E{aij(t)− diRij(t)|Θ(t)}.

Note that d2i
∑M
i=1(R2

i (t) + γ2i (t)) is bounded by
2
∑M
i=1(diA

max
i)2 and

∑M
i=1

∑N
j=1(a2ij(t) + d2iR

2
ij(t)) is

bounded by MN +
∑M
i=1(diA

max
i)2. By defining B1 ,

MN+3
∑M

i=1(diA
max
i)2

2 , the above expression can be simpli-
fied to Eq. (21).

APPENDIX C
PROOF OF THEOREM 1
The proof of Theorem 1 is presented in the following
two aspects:

First, we prove the strong stability of the virtual
queues H(t) and actual queues Q(t) under our OCA
algorithm via mathematical introduction:

Proof: For H(t), suppose Hi(t) ≤ V/di +Amaxi holds
for ∀i ∈ A and ∀t. Initially, it holds when t = 0, as all
queues are initialized to empty (0). For time slot t + 1,
we consider the following three cases:

(1) If V/di < Hi(t) ≤ V/di + Amaxi : based on Eq. (26),
we have γi(t) = 0 under our OCA algorithm. Then, from
Eq. (16), we have Hi(t+1) ≤ Hi(t)+γi(t) ≤ V/di+Amaxi ,
which indicates that Eq. (33) holds in this case.

(2) If V
d2iA

max
i +di

≤ Hi(t) ≤ V
di

: then, γi(t) = V
d2iHi(t)

− 1
di

under our OCA algorithm. Thus, we have:

Hi(t+ 1) ≤ Hi(t) + γi(t)

≤ V

di
+

V

d2iHi(t)
− 1

di

≤ V

di
+

V

d2i
V

d2iA
max
i +di

− 1

di

=
V

di
+Amaxi ,

which satisfies Eq. (33).
(3) If Hi(t) <

V
d2iA

max
i +di

: then, γi(t) = Amaxi under our
OCA algorithm. Thus, we have:

Hi(t+ 1) ≤ V

d2iA
max
i + di

+Amaxi

≤ V

di
+Amaxi ,

which also satisfies Eq. (33). Above all, Hi(t) ≤ V
di

+Amaxi

holds for all time slots.
Likewise, the strong stability of virtual queues Q(t)

can be proved via mathematical introduction, based on
control decisions (29) and (31) under our OCA algo-
rithm. We omit the details for brevity.

Next, we prove the time average profit bound Eq. (35)
in Theorem 1, which requires the following Lemma 2:

Lemma 2: (Existence of Optimal Randomized Station-
ary Policy): For any arrival rate vector (λ1, λ2, ..., λM),
there exists a randomized stationary control policy π that
chooses feasible control decisions γπi (t), Rπi (t), Rπij(t) and
aπij(t) for ∀i ∈ A,∀j ∈ S,∀t, independent of the current
queue backlogs, and yields the following steady state
values:

γπi (t) = r∗i ,

E{aπij(t)} ≥ E{diRπij(t)},
E{Rπi (t)} = r∗i ,

E{Pπj (t)} = p∗j . (38)

As Lemma 2 can be proved by applying similar tech-
niques as [6], we omit the details for brevity. Based on

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Lemma 2, we are able to prove the time average profit
bound in Eq. (35) under our OCA algorithm as follows.

Proof: Let ξ(t) =
∑M
i=1 g(γi(t))−β

∑N
j=1 Pj(t) denote

the profit of the datacenter in time slot t. Recall that our
OCA algorithm seeks to choose those decision variables
that can minimize the right-hand-side of Eq. (24) among
all feasible decisions (including the control decision π in
Lemma 2) in each time slot, thus we have:

∆(Θ(t))− V E{ξ(t)|Θ(t)}

≤ B1 −
M∑
i=1

E{V g(γπi (t))− d2iHi(t)γ
π
i (t)|Θ(t)}

−
M∑
i=1

E{d2iHi(t)R
π
i (t)|Θ(t)}

+

M∑
i=1

N∑
j=1

E{diRπij(t)Qij(t)|Θ(t)}

−
M∑
i=1

N∑
j=1

Qij(t)E{aπij(t)|Θ(t)}+ V β

N∑
j=1

E{Pπj (t)|Θ(t)}.

Since the control decisions γπi (t), Rπi (t), Rπij(t) and
aπij(t) are independent of Θ(t), taking expectations of
both sides of the above yields:

E{L(Θ(t+ 1))− L(Θ(t))} − V E{ξ(t)}

≤ B1 −
M∑
i=1

E{V g(γ∗i (t))− d2iHi(t)γ
∗
i (t)}

−
M∑
i=1

E{d2iHi(t)R
∗
i (t)}+

M∑
i=1

N∑
j=1

E{diR∗ij(t)Qij(t)}

−
M∑
i=1

N∑
j=1

Qij(t)E{a∗ij(t)}+ V β

N∑
j=1

E{P ∗j (t)}. (39)

Then, plugging (38) into the right-hand-side of (39)
yields:

E{L(Θ(t+ 1))− L(Θ(t))} − V E{ξ(t)} ≤ B1 − ξ∗.

By summing the above over time slots τ ∈ {0, 1, ..., t−
1} and then divide the result by t, we have:

E{L(Θ(t))} − E{L(Θ(0))}
t

− V

t

t−1∑
τ=0

E{ξ(τ)} ≤ B1 − ξ∗.

Rearranging terms and considering the fact that
L(Θ(t)) ≥ 0 and L(Θ(0)) = 0 yields:

1

t

t−1∑
τ=0

E{ξ(τ)} ≥ ξ∗ − B1

V
. (40)

Since the function g(∗) is concave, we can have the
following relationship according to Jensen’s inequality:

g(
1

t

t−1∑
τ=0

E{γi(τ)}) ≥ 1

t

t−1∑
τ=0

E{g(γi(τ))}.

By plugging this into Eq. (40) and letting t → ∞, we
have:

lim inf
t→∞

{
M∑
i=1

g(γi)− β
N∑
j=1

pj

}
≥ ξ∗ − B1

V
. (41)

As each virtual queue Hi(t) is stable, ri ≥ γi is satisfied
according to Eq. (18). Then, plugging this inequality into
Eq. (41) yields Eq. (35).

APPENDIX D
EXTENDED MODEL: BUFFERING THE RE-
QUESTS

In this section, we first show that the Lyapunov-based
optimization framework can be enhanced to accommo-
date this additional design choice in realistic datacenters.
Then, we present the corresponding buffer-enhanced
optimal control algorithm which is denoted as BOCA.
Finally, we distinguish BOCA from OCA.

D.1 Characterizing the Buffer

We assume that the aforementioned amount of admitted
requests Ri(t) are queued in the buffer for the i-th
(∀i ∈ A) type of application before routed to the queues
maintained by the i-th VM on each server, and let Li(t)
denote the backlog of this i-th buffer at time slot t.
For the i-th buffer queue, in time slot t, the amount of
requests admitted to it is Ri(t), while as in Sec. 3.1, Rij(t)
is the number of requests that are routed to server j from
this i-th buffer queue. Hence, the queuing dynamics for
the backlog Li(t) can be given by:

Li(t+ 1) = Li(t)−
N∑
j=1

Rij(t) +Ri(t).

Initially, Li(0) = 0,∀i ∈ A. In time slot t, for the i-th
application, there are at most Li(t) requests available that
can be routed to the VMs. Thus, the requests routing
decisions Rij(t) must satisfy

∑N
j=1Rij(t) ≤ Li(t),∀i ∈

A,∀t. Note that, after introducing the buffer queues,
the requests admission control and routing control can
be decoupled to compute independently and concurrently.
Further, to mitigate the bursty admitted arrivals, we
impose the constraint

∑N
j=1Rij(t) ≤ Rmax

i ,∀i ∈ A,∀t,
where Rmax

i are suitably large positive constants and
should satisfy Rmax

i ≤ Amax
i ,∀i ∈ A. Above all, we have

N∑
j=1

Rij(t) ≤ min[Li(t), R
max
i], ∀i ∈ A,∀t.

D.2 Buffer-enhanced Optimal Control Algorithm

With our control framework based on Lyapunov opti-
mization presented in previous sections, we let L(t) =
(Li(t)) denote the vector of all the buffer queues, and let
Θ(t) = [Q(t),H(t),L(t)] represent the combined matrix

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

of all the queues in the datacenter system. Define the
Lyapunov function as:

L(Θ(t)) =
1

2

[M∑
i=1

d2iH
2
i (t) +

M∑
i=1

d2iL
2
i (t)

+

M∑
i=1

N∑
j=1

Q2
ij(t)

]
. (42)

Then, as in Sec. 5.1.2, to bound the drift-minus-profit
expression Eq. (20), we rewrite inequality (24) as:

∆(Θ(t))− V E
{ M∑
i=1

g(γi(t))− β
N∑
j=1

Pj(t)|Θ(t)
}

≤ B2 −
M∑
i=1

E{V g(γi(t))− d2iHi(t)γi(t)|Θ(t)}

−
M∑
i=1

E{d2iRi(t)(Hi(t)− Li(t))|Θ(t)}

−
M∑
i=1

N∑
j=1

E{diRij(t)(diLi(t)−Qij(t))|Θ(t)}

−
M∑
i=1

N∑
j=1

Qij(t)E{aij(t)|Θ(t)}+ V β

N∑
j=1

E{Pj(t)|Θ(t)}. (43)

Where the constant B2 ,
MN+3

∑M
i=1(diA

max
i)2+2

∑M
i=1(diR

max
i)2

2 , which is larger
than the constant B1, as a result of introducing the
buffer queues.

Comparing inequality (43) to inequality (24), we ob-
serve that the decisions of auxiliary variable selection and
VM scheduling are exactly the same as that OCA made
in Sec. 5.2. While different from OCA, the decisions of
requests admission control and routing control made by
BOCA are now decoupled to the following two phases,
which can be computed concurrently in a decentralized
fashion:

D.2.1 Requests Admission Control

For each application i ∈ A served by the datacen-
ter, the request admission decisions Ri(t) as illustrated
in Fig. 1 can be decided by maximizing the term∑M
i=1 d

2
iRi(t)[Hi(t)−Li(t)] in the right hand of inequality

(43). Since the admission decisions Ri(t) are independent
from each other, this centralized maximization can be
decoupled to be computed concurrently as follows:

max
Ri(t)

d2iRi(t)[Hi(t)− Li(t)]

s.t. 0 ≤ Ri(t) ≤ Ai(t).

As with problem (30) in Sec. 5.2.2, the above linear
programming reduces to the threshold-based flow control
decision of admitting Ri(t) = Ai(t) if Hi(t) > Li(t), and
Ri(t) = 0 otherwise.

D.2.2 Requests Routing
For each application i ∈ A served by the datacenter,
the routing decisions (Ri1(t), Ri2(t), ..., RiN (t)) as illus-
trated in Fig. 1 can be decided by maximizing the term∑M
i=1

∑N
j=1 diRij(t)[diLi(t) − Qij(t)] in the right hand

of inequality (43). Again, since the routing decisions
Rij(t) of different applications are independent from
each other, this centralized maximization can be decou-
pled to be computed concurrently as follows:

max
Rij(t)

N∑
j=1

diRij(t)[diLi(t)−Qij(t)]

s.t. 0 ≤
N∑
j=1

Rij(t) ≤ min[Li(t), R
max
i].

The above weighted linear programming also leads to
the join-the-shortest-queue policy below, as with the
problem (28) in Sec. 5.2.2:

Rij(t) =

{
min[Li(t), R

max
i] j = j∗i and diLi(t) > Qij∗i (t)

0 otherwise

where j∗i = arg minj∈{1,2,...,N}Qij(t), i.e., the queue of the
i-th VM on server j∗i is the shortest queue among all the
N queues for the i-th type of application, which have
been defined in Sec. 5.2.2.

D.3 Comparing Tradeoffs: Buffer-enhanced or Not?
Theorem 2: For arbitrary arrival rates of application

requests (λ1(t), λ2(t), ..., λM (t)) (possibly exceeding the
processing capacity of a datacenter), a datacenter using
the BOCA algorithm with any V ≥ 0 (the stability-profit
tradeoff parameter defined in Sec. 5.1.1) can guarantee
that all the actual and virtual queues are strongly stable
over time slots:

Hi(t) ≤
V

di
+Amax

i ,∀i ∈ A

Li(t) ≤
V

di
+ 2Amax

i ,∀i ∈ A

Qij(t) ≤ V + di(2A
max
i +Rmax

i),∀i ∈ A,∀j ∈ S.

Meanwhile, the gap between its achieved time averaged
profit and the optimal profit ξ∗ is within B2/V :

lim inf
t→∞

{
M∑
i=1

g(ri)− β
N∑
j=1

pj

}
≥ ξ∗ − B2

V
. (44)

where ξ∗ =
∑M
i=1 g(r∗i) − β

∑N
j=1 p

∗
j , r∗i and p∗j are the

optimal solution to Problem (5).
The proof of Theorem 2 is similar to that of The-

orem 1, so it’s omitted here. However, note that, the
constant B2 is strictly larger than the constant B1 in
Theorem 1, and B2 − B1 =

∑M
i=1(diA

max
i)2. It follows

that if the parameter V is fixed, then lower bound of the
expected profit achieved in Theorem 2 is smaller than
that in Theorem 1. Hence, the buffers incur a loss of
accuracy with the BOCA algorithm. Furthermore, the

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

upper bound of Qij(t) in Theorem 2 is also larger than
that in Theorem 1, which implies that introducing the
buffers aggravates the congestion of the queues Qij .
Accordingly, the response delay of the requests will also
be prolonged by Little’s law, and this does not even
count the delay triggered by the buffers.

Why does buffering not only aggravate the congestion of
the system, but also incur a loss of accuracy of the control
algorithm? This can be explained as follows: After intro-
ducing the buffer queues Li(t)(∀i ∈ A) to the datacenter
system, the corresponding Lyapunov function L(Θ(t)) is
enlarged according to Eq. (19) and Eq. (42). However, the
profit expression E{

∑M
i=1 g(γi(t)) − β

∑N
j=1 Pj(t)|Θ(t)}

does not change at all after introducing the buffer
queues, which can be understood as the weight of
∆(Θ(t)) ascending after introducing the buffer queues
according to the drift-minus-profit expression (20). As a
consequence, BOCA leads to a profit loss compared to
OCA.

APPENDIX E
EXTENDED MODEL: ENFORCING A POWER
BUDGET

As most real-world datacenters are operated within a
certain power budget [5], it is important for datacenter op-
erators to improve the performance (dollar) per watt [5] by
achieving a desired performance level with an enforced
power budget.

Specifically, we enforce an additional power budget
constraint pj ≤ pavj ,∀j ∈ S (in terms of the time average
of normalized server power consumption) within the
basic Problem (5), while still maintaining a performance
requirement on the time averaged throughput of ap-
plications ri ≥ ravi ,∀i ∈ A. This yields an extended
optimization model:

max

M∑
i=1

g(ri)− β
N∑
j=1

pj (45)

s.t. ravi ≤ ri ≤ λi, ∀i ∈ A,

diri ≤
N∑
j=1

aij , ∀i ∈ A,

pj ≤ pavj , ∀j ∈ S.

To accommodate the newly introduced constraints,
we further define virtual queues Zi(t), Xj(t) for each
application i ∈ A and each server j ∈ S, respectively,

Zi(t+ 1) = max[Zi(t)−Ri(t), 0] + ravi ,

Xj(t+ 1) = max[Xj(t)− pavj , 0] + Pj(t).

Then, with our control framework based on Lyapunov
optimization presented in previous sections, we define
the Lyapunov function as: L(Θ(t)) = 1

2

[∑M
i=1 d

2
iH

2
i (t) +∑M

i=1 d
2
iZ

2
i (t)+

∑N
j=1X

2
j (t)+

∑M
i=1

∑N
j=1Q

2
ij(t)

]
. Accord-

ing to the definition of the Lyapunov drift ∆(Θ(t))

in Sec. 5.1.1, the corresponding drift-minus-profit ex-
pression under the extended model can be rewritten
as follows, where B3 = 1

2 [MN + 5
∑M
i=1(diA

max
i)2 +∑M

i=1(ravi)2 +
∑N
j=1(pavj)2]:

∆(Θ(t))− V E
{ M∑
i=1

g(γi(t))− β
N∑
j=1

Pj(t)|Θ(t)
}

≤ B3 +

M∑
i=1

ravi Zi(t)−
N∑
j=1

pavj Xj(t)

−
M∑
i=1

E{V g(γi(t))− d2iHi(t)γi(t)|Θ(t)} −

M∑
i=1

E
{
d2iRi(t)(Hi(t) + Zi(t))−

N∑
j=1

diRij(t)Qij(t)|Θ(t)
}

−
N∑
j=1

E
{ M∑
i=1

Qij(t)aij(t)− Pj(t)(V β +Xj(t))|Θ(t)
}
. (46)

Insight: Based on Eq. (46), we can also design an
online control algorithm for the extended Problem (45),
named EOCA, which follows the skeleton of the four
phases of control operations in Sec. 5.2. Specifically, the
auxiliary variable selection of EOCA is the same as that
of OCA, which implies that the newly introduced power
and performance constraints do not affect this phase.
Additionally, the routing policy of EOCA still follows the
“Join the Shortest Queue” policy as in OCA. However,
EOCA differs from OCA in the following aspects:

First, for the request admission control and routing
phase of EOCA, the weights of Ri(t),∀i ∈ A would be
increased to d2i (Hi(t) + Zi(t)),∀i ∈ A, after introducing
the virtual queues Zi(t),∀i ∈ A. This changes the ad-
mission control policy to become: if di(Hi(t) + Zi(t)) >
Qij∗i (t), Ri(t) = Ai(t); otherwise, Ri(t) = 0.

Second, for the VM scheduling phase of EOCA, the
term

∑M
i=1Qij(t)aij(t) − V βPj(t) to be maximized is

rewritten as
∑M
i=1Qij(t)aij(t) − V β(Pj(t) + Xj(t)). This

adjusts the greedy strategy in OCA to become: only
when the growth in

∑M
i=1Qij(t)aij(t) exceeds the growth

of V β(Pj(t)+Xj(t)) caused by running a certain VM, the
VM will be preferentially scheduled to the running state.

Third, the queue backlogs of Zi(t), Xj(t) and Qij(t) are
not guaranteed to be deterministically bounded under
EOCA, though it can ensure the stability of these queues
(i.e., pj ≤ pavj ,∀j ∈ S and ri ≥ ravi ,∀i ∈ A) and a
bounded gap between its achieved time averaged profit
and the optimal profit for the extended Problem (45), as
given by the following Theorem 3.

Theorem 3: For arbitrary arrival rates of application
requests (λ1(t), λ2(t), ..., λM (t)) (possibly exceeding the
processing capacity of a datacenter), a datacenter can
use EOCA algorithm with any V ≥ 0 to guarantee the
stability of queues Qij(t), Zi(t), Xj(t) over time slots.
Meanwhile, the gap between its achieved time averaged
profit and the optimal profit ξ? for the extended Problem

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

(45) is within B3/V :

lim inf
t→∞

{ M∑
i=1

g(ri)− β
N∑
j=1

pj

}
≥ ξ? − B3

V
, (47)

where ξ? =
∑M
i=1 g(r?i) − β

∑N
j=1 p

?
j , r?i and p?j are the

optimal solution to the extended Problem (45), and B3

is a finite constant parameter defined in Eq. (46).
Interested readers are referred to Appendix F for a

complete proof of Theorem 3, available in the online
supplemental material.

APPENDIX F
PROOF OF THEOREM 3

Similar to Theorem 1, the proof of Theorem 3 also
requires the proof of existence of optimal randomized
stationary policy [6], which yields Eq. (38) in Lemma 2
as well as the following additional Eq. (48):

E{Rπi (t)} ≥ ravi , (48)
E{Pπj (t)} ≤ pavj .

Eq.(48) can also be proved by applying similar tech-
niques as [6]. Then, we can prove Theorem 3 as follows:

Proof: Plugging Eq. (38) and Eq. (48) into the drift-
minus-profit expression (46) yields:

∆(Θ(t))− V E{ξ(t)|Θ(t)} ≤ B2 − ξ?.

Summing the above over τ ∈ {0, 1, ..., t − 1} for t > 0
yields:

E{L(Θ(t))} − E{L(Θ(0))} ≤ (B2 + ξmax − ξ?)t,

where ξmax = maxτ∈{0,1,...,t−1}{
∑M
i=1 g(γi(t)) −

β
∑N
j=1 Pj(t)}, and ξmax ≥ ξ?. Using the definition

of L(Θ(t)) and the fact that L(Θ(0)) = 0 yields:

1

2
E

{
M∑
i=1

d2i

(
H2
i (t) + Z2

i (t)
)

+

N∑
j=1

X2
j (t) +

M∑
i=1

N∑
j=1

Q2
ij(t)

}
≤ (B2 + ξmax − ξ?)t.

Then, we have E{Qij(t)} ≤
√

2(B2 + ξmax − ξ?)t, ∀i ∈
A,∀j ∈ S. Dividing this by t with t→∞ gives:

lim
t→∞

E{Qij(t)}
t

≤ lim
t→∞

√
2(B2 + ξmax − ξ?)t

t2
= 0.

Thus, all the queues Qij(t) are stable. Similarly, the
stability of queues Zi(t) and Xj(t) can be also proved.
Then, the proof of the time average profit bound in
Eq. (47) is similar to that of Theorem 1.

APPENDIX G
PERFORMANCE EVALUATION
We conduct simulations to evaluate our online control
algorithm OCA and its extensions in a representative
datacenter scenario. The scenario consists of 100 homo-
geneous servers, each of which hosts 10 VMs to serve
10 heterogeneous applications, respectively. Specifically,
the requests from each application i arrive according to
a random process of mean rate λi, and different appli-
cations have different mean arrival rates and request
sizes di (Sec. 3.1) in Table 2. For each application i,
we set its peak request arrival rate as Amax

i = 2λi, its
maximal routing rate as Rmax

i = Amax
i , and the number

of newly arrived requests in each time slot is assumed to
be uniformly and randomly distributed within [0, Amax

i].
With such a setup, each application is being served

by a total of 100 VMs across servers, with an allocated
total processing capacity of 100 (in terms of the total
queue service rates of these VMs as modeled in Sec. 3.1),
according to the fair allocation policy of server capacity
in Sec. 3.1. Observing the capacity demand of each
application in terms of diλi in Table 2, we find that
the capacity demands of requests for applications 1 − 6
are within the respective allocated processing capacity,
while those for applications 7− 10 exceed the respective
allocated processing capacity. We choose a typical setting
of exponent parameter v = 2 and α = 0.5 [20] for the
normalized power function in Eq. (3), and an empirical
value of parameter β = 0.4. The following simulations
are carried out over 100, 000 time slots.

TABLE 2: Request Arrival Rates and Sizes of Different Applications.

App i 1 2 3 4 5 6 7 8 9 10
λi(×103) 2.5 2 3.5 2 3 2 2.75 2.4 2.6 2.8
di(×10−2) 2 3 2 4 3 5 4 5 5 5
diλi(×10) 5 6 7 8 9 10 11 12 13 14

Verification of algorithm optimality. Fig. 3 plots the
time averaged profit for different values of the control
parameter V under OCA algorithm. We observe that:
(1) as the value of V increases, the time averaged profit
achieved improves significantly and converges to the
maximum level for larger values of V . This quantita-
tively corroborates Theorem 1 in that OCA can approach
the optimal profit with a diminishing gap (1/V) (cap-
tured by Eq. (35)), which also implies a cost-effective
tradeoff between power and performance unified by the
profit objective (recall Problem (5)). However, such an
improvement starts to diminish with excessive increases
of V , which can adversely aggravate the congestion of
queues in the system (captured by Eq. (19)). (2) Further-
more, compared to OCA, the variant algorithm BOCA
with enhanced buffering facilities can achieve a slightly
higher time averaged profit for smaller values of V , but
such a profit gap (marked as BOCA–OCA) will diminish
as V grows.

Examination of system stability. Fig. 4 plots the time
average of queue congestion [6] captured by Eq. (19)
and Eq. (42) for different values of V under both OCA

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

0 2 4 6 8 10 12

x 10
6

−10

−5

0

5

10

15

20

25

V

T
im

e
−

a
v
e

ra
g

e
 P

ro
fi
t

OCA

BOCA

BOCA−OCA

Fig. 3: Time averaged profit vs.
different values of the control pa-
rameter V under OCA and BOCA
algorithms.

0 2 4 6 8 10

x 10
6

0

1

2

3

4

5
x 10

7

V

T
im

e
−

a
v
e

ra
g

e
 C

o
n

g
e

s
ti
o

n

OCA

BOCA

Fig. 4: Time averaged system
congestion vs. different values of
the control parameter V under
OCA and BOCA algorithms.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

100

200

300

400

500

Time Slot

T
o

ta
l
N

u
m

b
e

r
o

f
R

u
n

n
in

g
 V

M
s

Fig. 5: The total number of run-
ning VMs in the system using
OCA algorithm over all time slots.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

θ

A
g

g
re

g
a

te
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

V=500,000

V=1,000,000

V=2,000,000

V=4,000,000

Fig. 6: Total system throughput
vs. the multiplier θ of request
arrival rates, with the admission
control of the OCA algorithm.

1 2 3 4 5 6 7 8

x 10
5

0.75

0.76

0.77

0.78

0.79

0.8

Number of Time Slots

T
im

e
−

a
v
e

ra
g

e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n

EOCA

TOCA

Fig. 7: Average power consump-
tion (normalized) of servers vs.
the length of simulation time, with
EOCA against TOCA.

0 2 4 6 8 10 12

x 10
6

−10

0

10

20

30

V

T
im

e
−

a
v
e

ra
g

e
 P

ro
fi
t

α=0.4

α=0.5

α=0.6

α=0.7

Fig. 8: Time averaged profit vs.
different values of the control pa-
rameter V under OCA with vari-
ous values of parameter α.

0 2 4 6 8 10 12

x 10
6

−30

−20

−10

0

10

20

30

V

T
im

e
−

a
v
e

ra
g

e
 P

ro
fi
t

β=0.4

β=0.5

β=0.6

β=0.7

Fig. 9: Time averaged profit vs.
different values of the control pa-
rameter V under OCA with vari-
ous values of parameter β.

0 0.5 1 1.5 2 2.5 3

x 10
6

−5

0

5

10

15

V

T
im

e
−

a
v
e

ra
g

e
 P

ro
fi
t

MSB

OCA

Fig. 10: Time averaged profit
vs. different values of the con-
trol parameter V under OCA and
the maximized supreme bound
(MSB).

and BOCA, respectively. With the growth of V , the
time averaged system congestion with both algorithms
increases. Along with Fig. 3, this reflects the tradeoff
between system stability and profit maximization, as
revealed in Sec. 5.1.1. In comparison, though BOCA
gains a higher time averaged profit than OCA does, the
former, on the other hand, incurs a higher level of system
congestion.

Online control in response to bursty request arrivals.
Different from our simulations above with fixed mean
arrival rates of application requests (λ1, λ2, ..., λM), Fig. 5
plots the fluctuations with respect to the number of
running VMs in the system under OCA, when the mean
request arrival rates of applications vary in a bursty
manner. We set the mean request arrival rate of each
application as half of their original rate in Table 2 (i.e.,
0.5λi) during the first 1/3 of the simulation time. Then,
the rates abruptly rise to 1.5λi in the next 1/3 interval
before dropping to the original λi in the final 1/3 of the
simulation time. Fig. 5 clearly shows that, even under
bursty and unpredictable arrivals of requests, OCA is
able to quickly adapt to the varying demand by increas-
ing or decreasing the number of running VMs.

The effectiveness of admission control. We further
examine the effects of admission control with OCA on
the total system throughput (quantified as

∑M
i=1 diri) by

varying the request arrival rates in Fig. 6. By tuning the
mean request arrival rates of all applications by a factor
of θ times the original setting in Table 2, we observe
that as long as θ is relatively small, the total system
throughput increases linearly with the increasing request
arrival rates, despite different values of V . The rationale
is that under such a condition, all application requests
can be admitted by OCA according to the threshold-

based admission control policy in Sec. 5.2. With even
higher request arrival rates, the aggregate throughput
achieved by the system under different values of V will
gradually become stabilized, which shows that OCA
can prevent the system from being overwhelmed by
excessive requests.

The effectiveness of power budget enforcement. Fig. 7
compares the average power consumption of servers
under our extended algorithm EOCA with both power
budget enforcement and throughput requirement dis-
cussed in Sec. 7, against a counterpart algorithm with
only throughput requirements (marked as TOCA). We
set the time averaged throughput requirement of both
EOCA and TOCA as ravi = 2, 000,∀i ∈ A. The normal-
ized time averaged power budget of EOCA for half of
the servers in the system is set as 0.7, while that of the
other half is set as 0.8. The other parameters are set as the
same for both algorithms. As expected, we observe that,
in the long run, EOCA indeed outperforms TOCA with
respect to the reduction of server power consumption.

The sensitivity of parameter α. Fig. 8 plots the time
averaged profit under OCA with different values of
parameter α. We observe that when V is given, the
time averaged profit increases with the growth of pa-
rameter α. Recall that the term 1 − α represents the
normalized power consumption of an idle server (in
Sec. 3.2.2), therefore, Fig. 8 indicates that power savings
in datacenters can be achieved by reducing the power
consumption of each server (by designing more power
efficient hardware) in its idle state.

The sensitivity of parameter β. Fig. 9 plots the time
averaged profit under OCA with various values of pa-
rameter β. It can be seen that with the same level of V , a
smaller value of parameter β will lead to a time averaged

SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 18

profit that is more concave. Recall that the parameter β
is defined as β = Price ·PUE in Sec. 3.2.3, where Price is
the electricity market price and PUE is the power usage
efficiency metric. Then, according to Fig. 9, an increase
in the electricity market price will diminish the time
averaged profit, while cost savings in datacenters can
be achieved by improving the PUE (by cooling control).

The exactness of the maximized supreme bound. We
also examine the exactness of the maximized supreme
bound of the time averaged profit achieved by the offline
solution derived in Sec. 4, by comparing it to the time
averaged profit achieved by OCA in Fig. 10. We observe
that the maximized supreme bound is equal to 14.1.
Within the given scope of V , as the value of V increases,
the time averaged profit achieved by OCA improves sig-
nificantly and never surpasses the maximized supreme
bound. Though as V continues to increase to large
enough, the time averaged profit achieved by OCA will
eventually outperform the maximized supreme bound,
this is principally due to the fact that time slots in the
simulation is limited, while our theoretical analysis is
based on the assumption V →∞. Furthermore, from the
perspective of datacenter operators, a larger V will incur
the worse congestion. Therefore, it is practical to regard
the maximized supreme bound as a profit benchmark.

