
Flash Crowd in P2P Live Streaming Systems:
Fundamental Characteristics and

Design Implications
Fangming Liu, Member, IEEE, Bo Li, Fellow, IEEE, Lili Zhong, Baochun Li, Senior Member, IEEE,

Hai Jin, Senior Member, IEEE, and Xiaofei Liao, Member, IEEE

Abstract—Peer-to-peer (P2P) live video streaming systems have recently received substantial attention, with commercial deployment

gaining increased popularity in the internet. It is evident from our practical experiences with real-world systems that, it is not uncommon

for hundreds of thousands of users to choose to join a program in the first few minutes of a live broadcast. Such a severe flash crowd

phenomenon in live streaming poses significant challenges in the system design. In this paper, for the first time, we develop a

mathematical model to: 1) capture the fundamental relationship between time and scale in P2P live streaming systems under a flash

crowd, and 2) explore the design principle of population control to alleviate the impact of the flash crowd. We carry out rigorous analysis

that brings forth an in-depth understanding on effects of the gossip protocol and peer dynamics. In particular, we demonstrate that

there exists an upper bound on the system scale with respect to a time constraint. By trading peer startup delays in the initial stage of a

flash crowd for system scale, we design a simple and flexible population control framework that can alleviate the flash crowd without

the requirement of otherwise costly server deployment.

Index Terms—Live video streaming, peer-to-peer, flash crowds, population control.

Ç

1 INTRODUCTION

RECENTLY, the internet has witnessed a significant
increase in the popularity of peer-to-peer (P2P) live

video streaming applications, that deliver real-time and
sustained media content to potentially millions of users [1],
[2]. Measurement studies [1], [3] on real-world P2P live
streaming systems reveal that video streaming performance
can be typically maintained at a high level once systems
have reached a reasonable scale. However, this is chal-
lenged by a severe phenomenon called the flash crowd, in
which there could be a large number of peers arriving at the
system during the initial few minutes of a live broadcast.
This is evident in our empirical experiences from Cool-
streaming+ [4] that, it is considerably more challenging for a
P2P live streaming system to accommodate such an abrupt
surge of newly arrived peers, requiring reasonable stream-
ing qualities and low initial startup delays. As a result, we
also observe a considerable portion of peers undergoing a

flash crowd could opt to leave the system due to
impatience, which leads to more dynamic system scaling
behavior and more constrained limits on the system scale.

In real-world systems, the flash crowd is usually handled
by the deployment of a potentially large number of servers
(e.g., 60 dedicated servers in Coolstreaming+ [2]) or by
leveraging content delivery networks [5]. This is apparently
not cost effective. On the other hand, it is widely known and
was confirmed in earlier experiments with Coolstreaming
[6], in which one or two servers were sufficient to support
tens of thousands of peers once the system reached an
adequate scale. What this implies is that the servers are only
necessary during the initial ramp up process as an accel-
erator. In other words, the video streaming quality in a P2P
live streaming system can be self-sustained without the need
for expensive server deployment once the system reaches a
reasonable scale. Therefore, our focus in this paper is to
examine the fundamental characteristics of a flash crowd.
Based on these characteristics, we seek to design a simple and
flexible population control framework that helps to alleviate
the impact of a flash crowd, which offers an alternative and
complementary solution to the use of dedicated servers. Our
original contributions in this paper are two-fold:

First, understanding flash crowds. We first analyze the
inherent relationship between scale and time in P2P live
streaming systems in the flash crowd scenario (henceforth
referred to as scale-time). We derive an upper bound of the
system scale over time. The key insight from the analysis is
that having enough upload bandwidth alone is insufficient
to sustain a flash crowd, as it takes time for peers to locate
available resources and content. We further quantitatively
characterize how the system scale is constrained by the
timing constraint under typical gossip protocols, in which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012 1227

. F. Liu, H. Jin, and X. Liao are with the Services Computing Technology and
System Lab, Cluster and Grid Computing Lab in the School of Computer
Science and Technology, Huazhong University of Science and Technology,
No. 5 Eastern Building, No. 1037 Luoyu Road, Hongshan District, Wuhan
430074, China. E-mail: {fmliu, hjin, xfliao}@mail.hust.edu.cn.

. B. Li and L. Zhong are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon 999077, Hong Kong. E-mail: {bli, lilizh}@cse.ust.hk.

. B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada. E-mail: bli@eecg.toronto.edu.

Manuscript received 23 Mar. 2011; revised 23 Oct. 2011; accepted 26 Oct.
2011; published online 29 Nov. 2011.
Recommended for acceptance by E. Leonardi.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-03-0168.
Digital Object Identifier no. 10.1109/TPDS.2011.283.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

only partial knowledge of peers and their competition for
limited upload bandwidth resources in the system are
taken into account. Motivated by our empirical experiences
[4], our model also demonstrates the effects of peer churns
with general peer arrival and departure patterns on the
system scale.

Second, controlling the population of flash crowds. From the
perspective of system design, our analysis indicates that
we can trade peer startup delays during a flash crowd to
achieve better system scale. This inspires us to explore the
design and potential benefits of population control to
alleviate negative effects of a flash crowd. Specifically,
we identify critical criteria to make decisions of control-
ling the population of a flash crowd, by analyzing an
inherent relationship between how system scale increases
and how peers arrive in P2P live streaming systems.
Based on this, we first design an ideal population control
procedure with its fundamental limit in improving the
system scale, which provides a benchmark for a more
practical design and performance evaluation. Furthermore,
by investigating the robustness and sensitivity of popula-
tion control, we propose a simple and flexible framework
with practical guidelines.

To our knowledge, this paper represents the first attempt
to provide an analytical characterization and understanding
of the inherent scale-time relationship in P2P live streaming
systems, with a particular focus on the effects of the flash
crowd and how it can be controlled. In addition, our
analytical framework offers the flexibility to examine the
effects of various critical factors including the initial system
scale, the scale of the flash crowd, peer upload capacities,
and the number of partners each peer has. Our simulations
have validated the model and analytical results in a wide
range of settings. We believe that this work provides
substantial understanding complementary to the existing
literature, and offers insightful guidelines toward the future
system design and optimization.

The remainder of this paper is organized as follows:
Section 2 discusses our contributions in the context of
related work. Section 3 presents our theoretical model for
P2P live streaming systems under a flash crowd, along with
its scale-time relationship and roles of various critical
factors. Section 4 carries out a series of sensitivity analysis
to demonstrate the effects of various critical factors on
system scalability and peer startup delays, verified by
simulations. Section 5 proceeds to explore the design and
potential benefits of population control for alleviating flash
crowds. Finally, Section 6 concludes the paper.

2 RELATED WORK

With respect to analytical studies on P2P live streaming
systems, Kumar et al. [7] have derived the maximum
streaming rate for churnless systems and developed a
stochastic fluid model with peer churn to examine its
performance. There were also a number of analyses on the
performance bounds of tree-based or mesh-based systems
in terms of streaming rate, delay, and server load (e.g., [8],
[9], [10], [11]), particularly through the perspective of chunk
dissemination to participating peers. Zhou et al. [12] have
compared, through a stochastic model, different chunk

scheduling strategies based on the performance metrics of
continuity and startup latency. While recognizing the
significance of these prior works, our study is different
from and complementary to them in that: we analyze the
asymptotic scaling behavior of P2P live streaming systems
during a flash crowd, which provides an in-depth under-
standing on the inherent scale-time relationship and the
effects of partial knowledge of peers and peer churn. This
further leads to useful design guidelines of population
control for alleviating flash crowds.

Flash crowd issues were examined in other P2P applica-
tions. Yang and Veciana [13] used a branching process
model to examine the service capacity of BitTorrent-like file
sharing systems during flash crowds. Another modeling
work [14] evaluated the scalability of a distributed
randomized P2P search protocol that provides transmission
of objects from servers currently suffering with flash
crowds. Ho�feld and Leibnitz [15] compared the file
download performance of client/server and P2P systems
while considering flash crowd arrivals and user impatience.
A recent study [16] investigated the transient behavior and
performance of a file sharing system, which shifts from a
congested state where all servers available are saturated by
file download demands to a state where a growing number
of servers are idle. Differing from these works, we examine
the flash crowd problem in P2P live video streaming
systems, which is subject to the requirements for an
adequate bandwidth to sustain the streaming rate and
stringent startup delays with respect to peer impatience.
This is more critical than other types of P2P applications
such as file sharing, in which either the peer joining process
can be stretched over a relatively longer period of time or
the application itself can tolerate relatively longer delays.

More recently, Wang et al. [17] considered a class of
algorithms and policies that provide statistically guaranteed
average streaming quality in the steady state, by ensuring a
certain probability for a video channel to have sufficient
overall upload bandwidth. In contrast, in this paper, we
both qualitatively and quantitatively demonstrate that,
solely relying on the condition of overall upload bandwidth
resources is insufficient to guarantee the scalability and
performance of P2P live streaming systems undergoing a
flash crowd. We reveal that this is due to the scale-time
constraint, the incomplete knowledge of peers and their
resource competition. In practice, most commercial P2P live
streaming systems (e.g., PPLive [1], UUSee [18]) Livesky [5]
do not impose any explicit population control for dealing
with flash crowds; instead, they overprovision dedicated
server bandwidth capacities. While our framework is
general and flexible to allow the use of such approaches,
we further propose the design of population control
mechanisms as an alternative and complementary ap-
proach, especially when costly server bandwidth capacities
are insufficient to meet exploding user demand.

3 SYSTEM MODEL AND FUNDAMENTAL PRINCIPLES

3.1 System Model

In this section, we present our basic model for P2P live
video streaming systems under a flash crowd, with the

1228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

assumptions and notations summarized in Table 1. We

consider a video with rate R ¼ xr to be streamed to all

participating peers, where r is the bit rate corresponding

to one unit of bandwidth, and R corresponds to the

bandwidth requirement of x units. This can be related to

the concept of substreams in Coolstreaming+ [3], a large-

scale real-world P2P live streaming system, in which a

media stream is divided into multiple substreams and

peers could subscribe to different substreams from

different partners.
For a peer i, let ui denote its upload capacity of the peer.

The peer download capacity is assumed not to be the

bottleneck, which is in accordance with most of the recent

internet access technologies and measurement studies of

existing P2P systems [19]. Given a streaming rate R, we

define the relative surplus upload capacity hi of a peer i as the

ratio of ðui �RÞ to r. Let u be the average peer upload

capacity and h ¼ ðu�RÞ=r be the relative average peer

surplus capacity. The intuition of h is consistent with that of

the Resource Index [20] in reflecting the bandwidth resource

capacity of the system with respect to the streaming rate R.

Specifically, the Resource Index is defined as the ratio of the

entire supply of bandwidth U (consisting of the bandwidth

supply from servers Us and peers
P
ui) to the demand for

bandwidth D in the system, while h takes a particular focus

on the residual (surplus) bandwidth from peers in addition

to satisfying D. Suppose the current number of participat-

ing peers is SðtÞ, D ¼ SðtÞR and U ¼
P
ui þ Us ¼ SðtÞR þ

ð
P
ui � SðtÞRÞ þ Us. Then, the Resource Index can be

formally described as

U

D
¼
P
ui þ Us
SðtÞR ¼ SðtÞRþ ð

P
ui � SðtÞRÞ þ Us
SðtÞR

¼ 1þ u�R
R
þ Us
SðtÞR ¼ 1þ h

x
þ Us
SðtÞR ;

where R ¼ xr and h ¼ ðu�RÞ=r as defined previously.

This clearly shows that the higher (lower) the relative

average surplus capacity h is, the higher (lower) the

Resource Index is, indicating a less (more) constrained

system capacity.
To capture essential aspects of practical systems, yet be

still simple enough for analytical tractability, our model

mainly considers the following aspects:

First, initial system capacity. We assume initially there are
M existing peers that have already joined the system. That
is, they have obtained sufficient upload bandwidth re-
sources to satisfy the streaming rate, and are able to
contribute their upload capacities to the system. We assume
that there exists one or multiple servers in the system with
aggregate upload capacity Us. Given a streaming rate R, the
relative server capacity us is defined as the ratio of Us=R.

Second, flash crowd. We start by focusing on an extreme
flash crowd scenario where Nð�MÞ peers arrive at
approximately the same time [11], just after a new live event
has been released. Each new peer that has yet to join the
system needs to gather at least x units of upload bandwidth
resource from the existing peers to meet the streaming rate
requirement. Our model strives to capture the difficulty for
peers to gather sufficient upload bandwidth resources at
startup, which we believe is the most critical problem in a
flash crowd. Furthermore, we also extend our model to more
general and realistic peer arrival patterns [15], [21], [22]
during a flash crowd, in order to make our analysis more
representative of real-world systems.

Third, system scale and initial startup delays. Without loss of
generality, we assume that time t is slotted. If a new
peer—one that has not yet joined the system—has obtained
sufficient upload bandwidth resource (i.e., x units) at the tth
time slot, it is regarded as “joined the system” and counted
toward the system scale SðtÞ of existing peers. In other
words, during ½0; t�, the number of peers that have obtained
sufficient upload bandwidth resource to satisfy the stream-
ing rate are regarded as the system scale SðtÞ. Otherwise,
the peer will continue to seek upload bandwidth resources
in subsequent time slots, until it joins the system. From the
perspective of user experience, the time t in our model
represents the initial startup delays for peers. In addition,
motivated by our recent empirical study [4] that peers in a
flash crowd may opt to leave the system due to excessive
startup delays, we further refine our model by taking into
account peer impatience and its impact on the system scale
over time.

Finally, we consider the case that each peer has global
knowledge on the content availability and there is a central
control in the system. This leads to an upper bound of the
system scale over time. We then proceed to demonstrate
the effects of partial or incomplete knowledge, by assuming
a mesh-based system using a simple random partner
selection strategy. This is different from a tree-based
system enforcing a preconstructed topology, in which each
node retrieves the video content from its predetermined
parent. Specifically, each new peer randomly selects k
partners from the current set of existing peers to ask for
their surplus upload capacities in each time slot.1 Since an
existing peer can be requested by more than one new peer,
it may supply its upload bandwidth resources to satisfy
subset of such requests, depending on its current surplus
capacity. Such a random partner selection strategy with
parameter k essentially represents decentralized gossiping
among peers to gather upload bandwidth resource. This

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1229

TABLE 1
Key Parameters in the System Model

1. Essentially, a time slot in our model represents the time that a new
peer takes to contact k partners to locate available bandwidth resource and
content, so that the streaming rate is satisfied.

strategy is typically adopted in practical mesh-based P2P live
streaming systems such as Coolstreaming [3], mainly due
to its simplicity.

Differing from the perspective of chunk dissemination
that takes peer streaming buffer states and chunk schedul-
ing as their main consideration (e.g., [8], [9], [12]), in this
paper, we focus on the asymptotic scaling behavior of the
entire system and the effects of various influential factors,
rather than individual peer behavior. Given that chunk
scheduling policies [12] have been extensively studied and
optimal schemes have been proposed [8], [9], [10], [11], our
model assumes an existing peer who accepts to serve
another new peer always has chunks to provide, i.e.,
content availability is not the bottleneck. Nevertheless, this
assumption will be relaxed by our simulation in Section 4.3,
so as to obtain complementary insights into the impact of
content availability on system scaling.

3.2 Scale-Time Relationship with Critical Factors

We first derive the fundamental constraint of the scale-time
relationship in a P2P live streaming system, with global
knowledge and centralized control: While “the average peer
uploading capacity should be no less than the average peer
downloading rates” is a necessary condition for P2P live
streaming systems to scale, it is insufficient to capture the system
scale, as the upload bandwidth resource from newly arrived peers
cannot be utilized immediately. This leads to the following
upper bound of system scale over time.

Theorem 1. For a P2P live streaming system with a given
streaming rate R and average peer upload capacity u, the
system scale after the tth time slot, SðtÞ, has the following
upper bound:

SðtÞ � min
u

R

� �t
ðM þ CÞ � C;N þM

� �
; ð1Þ

where C ¼ Us=ðu�RÞ, M is the initial system scale at time
t ¼ 0, Us is the total server capacity, and N is a flash crowd or
the number of newly arrived peers.

Remark. Interested readers are referred to Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.283, for a complete proof. It is interesting to
observe that the upper bound neither depends on
specific flash crowd arrival patterns, nor the bandwidth
unit. However, it intuitively would be too optimistic as it
assumes all current surplus bandwidth resources from
existing peers can be fully utilized. Since the system scale is
further constrained by the partial knowledge of peers and their
competition for limited resources, how can we characterize and
quantify such effects? To this end, we proceed to analyze
the scale-time relationship with a random partner
selection strategy as follows:

Since it has already been proved in [7], [11] that the average
peer upload capacity u satisfies u > R in large-scale live
streaming systems, we first focus on the general homoge-
neous case where ui ¼ u > Rði:e:; hi ¼ h > 0Þ for all peers.
This is reasonable as we are more interested in the asymptotic
collective behavior of the system rather than the individual
peer behavior. As we focus on such a homogeneous case, we

first ignore the server capacity, and will introduce it as a
parameter later. Heterogeneous cases are further investi-
gated by simulations in Section 4.3.

Lemma 1. For a P2P live streaming system with each peer having
partial knowledge of the system and a random partner selection
strategy (i.e., each new peer independently and randomly selects
k partners from the set of existing peers), the number of new
partners of an existing peer during the tth time slot, qðt; kÞ, is a
random variable that follows a binomial distribution with
parameters ðN þM � Sðt� 1Þ; k=Sðt� 1ÞÞ, and an expected
value of

E½qðt; kÞ� ¼ kðN þM � Sðt� 1ÞÞ
Sðt� 1Þ ; ð2Þ

where Sðt� 1Þ is the current number of existing peers in the
system.

The proof of Lemma 1 can be found in Appendix B,
available in the online supplemental material. Based on
Lemma 1, we can derive an approximation of the expected
system scale as follows:

Theorem 2. For a P2P live streaming system with each peer
having partial knowledge of the system and a random partner
selection strategy, assume that each existing peer could
randomly provide each of its new partner with 1 unit of
upload bandwidth resource with a probability of h=qðt; kÞ. If
we use the expected value E½qðt; kÞ� given by (2) as an
approximation of qðt; kÞ, then the expected system scale after
the tth time slot, E½SðtÞ�, can be approximated by

E½SðtÞ� � Sðt� 1Þ þ ðN þM � Sðt� 1ÞÞ

�
Xk
i¼x

Ci
kpðt; k; hÞ

i 1� pðt; k; hÞð Þk�i;
ð3Þ

where pðt; k; hÞ � h�ðtÞ=k is the probability for a new peer to
obtain 1 unit of upload bandwidth resource from an existing
peer; and �ðtÞ ¼ Sðt� 1Þ=ðN þM � Sðt� 1ÞÞ is the ratio of
the number of existing peers to the number of new peers in the
system at the beginning of the tth time slot.

The proof of Theorem 2 is given in Appendix C, available
in the online supplemental material, and its accuracy is
verified by simulations in Section 4.3. Theorem 2 with (3)
qualitatively indicates that, pðt; k; hÞ plays an important role
for the system scale, which depends on �ðtÞ, h, and k. The
effects of these factors will be thoroughly examined in
Section 4.

Furthermore, as demonstrated by both the real-world
experience [4] and the numerical results (Section 4) derived
from our model, P2P live streaming systems by nature do
not react well to a flash crowd. Specifically, the system scale
grows relatively slower during the initial time slots. This
motivates a natural question: How can a certain amount of
server capacity provisioning help improve the system scale?
Based on Theorem 2, we can approximately derive the
improved system scale with a given amount of server
capacity provisioning as follows:

Corollary 1. For a P2P live streaming system with a streaming
rate of R and an aggregate server upload capacity Us, assume

1230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

that server(s) support a number of us ¼ Us=R randomly
selected new peers at the beginning of each time slot. The
remaining N þM � Sðt� 1Þ � us new peers still rely on the
Sðt� 1Þ existing peers through a random partner selection
strategy. Then, the expected system scale E½SðtÞ� given by
Theorem 2 can be potentially improved as

E½SðtÞ� � Sðt� 1Þ þ us þ ðN þM � Sðt� 1Þ � usÞ

�
Xk
i¼x

Ci
kp
0ðt; k; h; usÞi 1� p0ðt; k; h; usÞð Þk�i;

ð4Þ

w h e r e p0ðt; k; h; usÞ ¼ h�0ðt; usÞ=k, �0ðt; usÞ ¼ Sðt� 1Þ=
ðN þM � Sðt� 1Þ � usÞ, and us ¼ Us=R is the relative
server capacity.

The proof of Corollary 1 is similar to the proof of
Theorem 2. The effects of the parameter us will be
demonstrated through both analytical and simulation
results in Section 4.

3.3 Effects of Peer Arrival Patterns and Peer
Departures

In addition to the extreme flash crowd scenario, our model
can easily be extended to more general peer arrival patterns
as follows:

Corollary 2. For a P2P live streaming system with each peer
having partial knowledge of the system and a random partner
selection strategy as assumed in Theorem 2, then given any

specific peer arrival pattern �ðtÞ, the expected system scale
E½SðtÞ� given by Theorem 2 can be extended as

E½SðtÞ� � Sðt� 1Þ þ
Z t

0

�ð�Þd� þM � Sðt� 1Þ
� �

�
Xk
i¼x

Ci
kpðt; k; hÞ

i 1� pðt; k; hÞð Þk�i;
ð5Þ

where pðt; k; hÞ � h�ðtÞ=k is the probability for a new peer to
obtain 1 unit of upload bandwidth resource from an existing
peer; and �ðtÞ ¼ Sðt� 1Þ=ð

R t
0 �ð�Þd� þM � Sðt� 1ÞÞ is the

ratio of the number of existing peers to the number of new
peers in the system at the beginning of the tth time slot.

The proof of Corollary 2 is similar to the proof of
Theorem 2. We will quantitatively examine the scale-time
relationship in P2P live streaming systems under both the
extreme flash crowd scenario and another two typical peer
arrival patterns in Section 4 plus Appendix E, available in
the online supplemental material.

It was observed in [4] that a considerable portion of
users undergoing a flash crowd could opt to leave the
system due to excessive startup delays. To capture this
behavior and its impact on the system scale, we define a
random variable �, as a peer impatience time threshold
specifying the time after which a new peer aborts its
joining attempt and leaves the system.2 Let E½�� be the
expected value; then, the scale-time relationship given in
Corollary 2 can be further extended as follows:

Corollary 3. For a P2P live streaming system with each peer
having partial knowledge of the system and a random partner
selection strategy as assumed in Theorem 2, if we use an
expected threshold E½�� as an approximation of impatience
time for all the new peers, after waiting for which new peers
would leave the system; then, given any specific peer arrival
pattern �ðtÞ, the expected system scale E½SðtÞ� given by
Corollary 2 can be extended as

E½SðtÞ� � Sðt� 1Þ þ
�Z t

0

�ð�Þd� þM � Sðt� 1Þ

�
Z t�1

0

Dð�Þd�
�Xk

i¼x
Ci
kp
0ðt; k; h; �Þi 1� p0ðt; k; h; �Þð Þk�i;

ð6Þ

where Dð�Þ � �ð� � E½��Þlð�Þ for � � E½�� (otherwise,

Dð�Þ ¼ 0) is the number of new peers that leave the system

over time slots due to impatience, lð�Þ ¼ 1� ððSð�Þ � Sð� �
E½��ÞÞ=ð

R �
0 �ðtÞdtþM � Sð� � E½��Þ �

R ��E½��
0 DðtÞdtÞÞ is a

probability for new peers that arrived at the (� � E½�� þ 1)th

time slot yet still have not obtained sufficient upload

bandwidth resources for startup at the end of �th time slot.

p0ðt; k; h; �Þ � h�0ðt; �Þ=k, and

�0ðt; �Þ ¼ Sðt� 1Þ
��Z t

0

�ð�Þd� þM � Sðt� 1Þ

�
Z t�1

0

Dð�Þd�
�
:

Remark. Interested readers are referred to Appendix D,
available in the online supplemental material, for a
complete proof. Corollary 3 with (6) qualitatively
indicates that the departures of impatient peers during
a flash crowd could indirectly alleviate the heavy
competition among new peers for the limited pool of
upload bandwidth resources, thus the system could scale
up more quickly in a transient period. This, however, is
at the expense of the reduced system scale in steady
state, as demonstrated in Section 4 quantitatively.

4 RESULTS AND DISCUSSIONS

In this section, we present both analytical and simulation
results to demonstrate the fundamental scale-time relation-
ship in P2P live streaming systems under a flash crowd, as
well as the effects of various critical factors.

4.1 Scale-Time Relationship and Join Time
Distribution

Fig. 1 compares the approximated system scale over time
obtained by Theorem 1, 2 and Corollary 1, under the same
flash crowd scenario setting. We observe that:

First, the system scale grows relatively slower during the
initial time, as a surge of newly arrived peers compete for
the limited surplus capacities from a relatively smaller
number of existing peers. This results in considerable
difficulty for new peers to obtain sufficient upload
bandwidth resources.

Second, as more peers gradually join the system with
positive gain of surplus capacities, the ratio of the number

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1231

2. Note that the retrying peers [4] can be viewed as part of the new peers
in our model, who try to join the streaming system in subsequent time slots.

of existing peers to the number of new peers �ðtÞ
continuously increases and the entire system capacity

improves; thus the system scale ramps up more quickly.
Third, as expected, the system scale can be substantially

improved with an additional amount of server capacity

provisioned, especially during the initial time. However, we

note that the improvement slows down with more server

capacity provisioned, as demonstrated by the decreasing

gaps between the curves.
We plot the peer join time distribution (i.e., the

percentage of peers that joined the system in each time

slot) in Fig. 2, which clearly illustrates that significant

portion of peers could suffer from long startup delays

during a flash crowd; and not surprisingly, the extra

server(s) can help reduce the startup delays.

4.2 Sensitivity Analysis on Critical Factors

We next examine the effects of several critical factors

indicated by Theorem 2.
First, Fig. 3 compares the approximated system scale

over time slots, by varying the number of partners for new

peers k. We observe that the system scale improves

significantly as k increases in the range of typical settings

that real-world systems use [3]. Equivalently, this implies

that the time to accommodate a given scale of a flash crowd

decreases substantially, as each new peer can explore with,

and obtain video content from more partners. However, the

improvement becomes marginal with the further increase of

the k value, especially when the value of k is close to the size
of current set of existing peers Sðt� 1Þ.

Second, we examine the effects of k by evaluating the time
to accommodate different scales of a flash crowd, as shown
in Fig. 4. We observe that: 1) When the flash crowd is less
severe with respect to the initial system capacity (i.e., the
demand to supply ratio of ðNxÞ=ðMhÞ is relatively less
stringent), results are relatively insensitive to different
values of k. Specifically, the increase of k actually does not
help (e.g., when the flash crowd scale N ¼ 4;000, the time to
accommodate it under different values of k stays nearly the
same). This is because that a given initial system capacity
can more easily accommodate a smaller degree of flash
crowd, and there is far less competition for upload
bandwidth resources in the system. 2) As the scale of the
flash crowd increases, our results become more sensitive to
different values of k, and there are remarkable improve-
ments by increasing k. However, excessive increase of k
brings relatively minor improvements, which is consistent
with previous observation from Fig. 3.

Third, we examine the impact from the relative average
peer surplus capacity h, the initial system scale M, and their
correlation with k. Figs. 5 and 6 plot the time to
accommodate a given scale of a flash crowd when h or M
varies, respectively, under different settings of k. The
increase of h or M can effectively reduce the time to
accommodate flash crowd, as it improves the entire system
capacity. In general, the more upload bandwidth resources
exist in the system (though it takes time to utilize them), the
less time it takes to accommodate a flash crowd. When the

1232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fig. 2. Peer join time distribution versus time slots, with different amount
of server capacities. We set the initial system scale M to 1,500 and flash
crowd scale N to 10,000. The number of partners for new peers k is set
to a typical value of 20. The relative server capacity us varies from 0 to
200. Others are set as h ¼ x ¼ 5.

Fig. 3. Approximated system scale over time slots, with different settings
of the number of partners for new peers k. We set the initial system
scale M to 1,500 and flash crowd scale N to 10,000. The value of k
varies from 6 to Sðt� 1Þ. Others are set as us ¼ 0; h ¼ x ¼ 5.

Fig. 4. Time to accommodate different scales of a flash crowd, under
different settings of the number of partners for new peers k. We set the
initial system scale M to 1,500. The value of k varies from 6 to Sðt� 1Þ.
Others are set as us ¼ 0; h ¼ 6; x ¼ 5.

Fig. 1. Approximated system scale over time slots, with different amount
of server capacities. We set the initial system scale M to 1,500 and flash
crowd scale N to 10,000. The number of partners for new peers k is set
to a typical value of 20. The relative server capacity us varies from 0 to
200. Others are set as h ¼ x ¼ 5.

upload bandwidth resource is relatively constrained (i.e.,
when h or M decreases), the performance gaps (in terms of
time saved) between different settings of k are more
profound, which is consistent with the observation in Fig. 4.

In addition to the extreme flash crowd scenario, we
further utilize Corollary 2 to examine the scale-time relation-
ship in P2P live streaming systems under other typical peer
arrival patterns. Fig. 7 plots the approximated system scale
over time slots under a constant peer arrival rate �ðtÞ ¼ �. To
make the result comparable to that of the extreme flash
crowd scenario, the total number of new peers that arrive at
the system (i.e., the flash crowd scale) is limited to the same
as in Fig. 1, i.e., �� ¼ N , where N peers arrive at the system
in a period of � with a constant rate �. We can see that our
previous discussion on the scale-time relationship still holds
for such a constant peer arrival pattern. More importantly,
given a specific scale of flash crowd, the system scale under
a constant peer arrival pattern grows more quickly
compared to the extreme (pessimistic) flash crowd case
(marked as N ¼ 10;000). As the peer arrival rate � decreases,
the initial startup delays decrease remarkably. Specifically,
when the peer arrival rate is close to the initial system scale
(e.g., � ¼ 2;000 which is close to M ¼ 1;500), the system is
able to accommodate all the new peers shortly after they
arrived. Additional observations on a more realistic pattern
called exponentially decreasing peer arrival pattern [15],
[21], [22] can be found in Appendix E, available in the online
supplemental material.

Finally, our recent measurement study [4] shows that a
considerable portion of peers undergoing a flash crowd

could opt to leave the system due to impatience. Based on
Corollary 3, Fig. 7 compares the approximated system scale
over time slots with different values of the expected peer
impatience time threshold E½��, under a constant but
relatively high peer arrival rate (with respect to the initial
system scale). We observe that: 1) As the expected peer
impatience time threshold E½�� decreases, the system could
scale up more quickly during the flash crowd with
relatively more peers, especially later arrivals, experiencing
shorter startup delays. For instance, the approximated
system scale with E½�� ¼ 3 quickly reaches a high level
(6,600) at the 11th time slot, which is nearly 3 times of the
system scale (2,200) with larger values of E½�� (8, 13, 18 and
>23, respectively). This implies that the departures of
impatient peers during a flash crowd could alleviate the
heavy competition for the limited pool of upload band-
width resources, as reflected by �0ðt; �Þ and p0ðt; k; h; �Þ in
Corollary 3. 2) This is achieved at the cost of a reduced
system scale in the steady-state due to the departures of
impatient peers. For example, after all the new peers during
the flash crowd either left or joined the system, the final
system scale with smaller values of E½�� is only around half
(e.g., E½�� ¼ 3; 8; 13) or even a quarter (e.g., E½�� ¼ 1) of that
with loose impatience thresholds (e.g., E½�� � 23).

4.3 Simulation Results

We have carried out simulations to validate the model and
analytical results, under heterogeneous peer upload capacity
and asymmetric load distribution among peers. The input to
the simulator includes a set of existing peers in the initial
system and a flash crowd of newly arriving peers yet to join
the streaming, both of which consist of heterogeneous
peers. Without loss of generality, we classify each peer as
either a low-capacity one with ul < R, or a moderate-
capacity one with um ¼ R, or a high-capacity one with
uh > R. Specifically, in our experiment we randomly choose
20 percent of peers with uh ¼ 35, 30 percent of peers with
um ¼ R ¼ 5, and another 50 percent of peers with ul ¼ 3 to
emulate the observed environments [3]. It is easy to check
that the relative average peer surplus capacity is h ¼ 5.
These rates could be in units of 100 Kbps [7], so that high-
capacity peers can represent enterprise/campus users with

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1233

Fig. 6. Time to accommodate a flash crowd of N ¼ 10;000 peers when
the initial system scale M varies, under different settings of the number
of partners for new peers k. The value of k varies from 10 to 100. Others
are set as us ¼ 0; h ¼ x ¼ 5.

Fig. 7. Effects of peer arrival patterns and peer departures:
(a) approximated system scale over time slots, under a constant peer
arrival pattern �ðtÞ ¼ �. We set the initial system scale M to 1,500 and
flash crowd scale N to 10,000, with the peer arrival rate � varying from
2,000 to 5,000. (b) approximated system scale over time slots, under a
constant peer arrival pattern �ðtÞ ¼ � and different values of the expected
peer impatience time threshold E½��. We set the initial system scale M to
700 and flash crowd scale N to 10,000, with � ¼ 1;000 and E½�� varying
from 23 to 1 time slots. The number of partners for new peers k is set to a
typical value of 20. Others are set as us ¼ 0; h ¼ x ¼ 5.

Fig. 5. Time to accommodate a flash crowd of N ¼ 10;000 peers when
relative average peer surplus capacity h varies, under different settings
of the number of partners for new peers k. We set the initial system
scale M to 1,500. The value of k varies from 10 to 100. Others are set as
us ¼ 0; x ¼ 5.

Ethernet access rates in excess of a few Mbps, while
moderate/low-capacity ones represent broadband residen-
tial users (with DSL and cable access) typically with upload
rates at 500 Kbps or less. Accordingly, the streaming content
can be empirically presented as a series of fixed-length
chunks (marked by sequence numbers) of size 10 Kb [3].

The simulator has a tracking server for peer registration
and bootstrapping, which connects each peer in the initial
system to k (2 ½6; 40� in accordance to practical systems [3])
other randomly chosen peers, so as to form the initial mesh
overlay. The simulator runs in rounds during the flash
crowd. In each round, peers independently perform partner
selection using the random peering strategy described in
Section 3.1. With incomplete knowledge on available
content and bandwidth resources, neighboring peers then
demand from and supply to one another in attempting to
sustain the streaming. In particular, we relax the model
assumption on content availability by introducing a simple
yet representative pull-based random chunk scheduling
policy [23] in the simulator, which is suggested to be
near-optimal in terms of a peer upload capacity utilization
and streaming performance [11], [23]. Specifically, each peer
can buffer up to W of the aforementioned chunks (e.g., we
set W ¼ 100 in the simulation), and periodically exchange
chunk availability information of the sliding streaming
buffers (commonly referred to as buffer maps3) with its
neighboring peers per round. Based on such information,
each peer explicitly requests absent chunks in its current
buffer from neighbors, starting from those chunks with less
number of supplying neighbors. Among multiple neighbors
holding the same absent chunk, the chunk will be assigned
to one of the neighbors randomly with the same probability
[23]. A peer obtaining sufficient upload bandwidth resource
and half-loaded buffer is counted toward the system scale
[3], [4]. Other parameters will be specified as part of the
following experiments.

Fig. 8 shows the system scale evolution with 95 percent-
level confidence intervals obtained by simulations, under
heterogeneous peer upload capacity and different settings
of the number of partners for new peers k. The parameters
are set to be the same as in Fig. 3. We can see the
experimental results of Fig. 8 match the analytical results of

Fig. 3 in a wide range of settings of k, except that the
respective ramp-up process under simulation tends to
become slightly longer in Fig. 8. This demonstrates the
performance gap accounted for by the relaxation of assump-
tions on content availability, homogeneous peer upload
capacity, and homogeneous load distribution (see Fig. 9).
Nevertheless, such an impact fades as the number of
partners for peers increases from k � 10 to k � 20 (i.e., peers
can explore with, and obtain absent chunks from more
neighbors). This corroborates the validity of our theoretical
model and the accuracy of associated approximations in
characterizing the asymptotic scaling behavior of the system.

By capturing the distribution of upload bandwidth
contributions from all peers during the flash crowd in
Fig. 9, we observe highly uneven contributions from peers
in the system. Specifically, 20 percent of peers, most of
which are high-capacity ones, contribute more than
80 percent of the amount of upload bandwidth in
combating with the flash crowd. This is consistent with
the empirical observations in realistic P2P live streaming
systems [24]. More importantly, even for such asymmetric
load distribution among peers, simulation results in Fig. 8
are quite close to the theoretical analysis in Fig. 3.

We also compare the evolution of small-scale systems by
varying M in Fig. 10, under both theoretical calculation and
simulations with 95 percent-level confidence intervals. We
start from an empty peer population size M ¼ 0, with
relative server upload capacity us ¼ 5 as bootstrap. We can
see that with smaller initial system scales (M ¼ 0; 100; 200)

1234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

3. Similar to [3], we ignore the signaling overhead caused by the
exchange of the buffer map since only one-bit is required for each chunk in
the buffer map.

Fig. 8. Simulated system scale over time with 95 percent-level
confidence intervals, under heterogeneous peer upload capacity and
different settings of the number of partners for new peers k. We set the
initial system scale M to 1,500 and flash crowd scale N to 10,000. The
value of k varies from 6 to Sðt� 1Þ. Others are set as us ¼ 1; h ¼ 5.

Fig. 9. CDF of peers’ upload bandwidth contributions during the flash
crowd, under simulation with heterogeneous peer upload capacity. We
set the initial system scale M to 1,500, the flash crowd scale N to
10,000, and the number of partners for new peers k ¼ 40. Others are set
as us ¼ 1; h ¼ 5.

Fig. 10. Performance comparison of small-scale systems under
theoretical analysis against simulations with 95 percent-level confidence
intervals, where the initial system scale M varies from 0 to 500. We set
the flash crowd scale N to 10,000, the number of partners for new peers
k ¼ 20, and the relative server upload capacity us ¼ 5 or 10.

relative to the flash crowd scale (N ¼ 10;000), the system

ramps up much slower in both theory and experiments. In

particular, the impact of content availability and chunk

scheduling on small-scale systems is more evident under

flash crowd, as shown by the performance gap between

analytical and simulation results. Not surprisingly, a larger

population size (M ¼ 500) or a further increase of the server

capacity (us ¼ 10) can help accelerate the initial ramp up

process, and then simulation results asymptotically con-

form to analytical results. This implies that simple pull-

based chunk scheduling policies only lead to a small degree

of performance impact when the system reaches a reason-

able scale with sufficient server bandwidth, as consisted

with both the theory [11] and realistic P2P streaming

systems [23].

5 POPULATION CONTROL FOR ALLEVIATING FLASH

CROWDS

The design implication from our previous analysis of the

scale-time relationship is that we can trade peer startup delays

in the initial stage of a flash crowd to achieve better system scale.

To this end, we proceed to explore the design and potential

benefits of population control for alleviating flash crowds.

5.1 Inherent Relationship between Rate of System
Scale Increase and Peer Arrivals

We first identify the critical criteria for population control

decisions, by analyzing an inherent relationship between

the rate of system scale increase and the rate of peer arrivals

in P2P live streaming systems.

Corollary 4. For a P2P live streaming system with a given relative

average peer surplus capacity h, and each peer having partial

knowledge of the system and a random partner selection strategy

as assumed in Theorem 2, then given any specific peer arrival

pattern �ðtÞ, there exists an inherent relationship between the

relative rate of system scale increase �ðh; k; �ðtÞÞ and

relative peer arrival rate �ðtÞ, as characterized by the

following function:

�ðh; k; �ðtÞÞ ¼ �ðtÞ
Xk
i¼x

Ci
k

h

k�ðtÞ

� �i
1� h

k�ðtÞ

� �k�i
; ð7Þ

where the relative rate of system scale increase is defined as
�ðh; k; �ðtÞÞ ¼4 ðE½SðtÞ� � Sðt� 1ÞÞ=Sðt� 1Þ, and the rela-
tive peer arrival rate is defined as �ðtÞ ¼4 1=�ðtÞ ¼
ð
R t

0 �ð�Þ d � þ M � Sðt� 1ÞÞ=Sðt� 1Þ, i.e., the ratio of the
number of new peers versus that of existing peers in the
system at the beginning of the tth time slot.

Remark. The proof of Corollary 4 is given in Appendix F,
available in the online supplemental material. Corollary 4
with (7) essentially describes how fast the P2P live streaming
system with a certain capacity can scale up, in response to a
certain peer arrival intensity imposed by a certain peer arrival
pattern. In particular, by viewing the rate of system scale
increase �ðh; k; �ðtÞÞ as a function of the parameters h, k,
and �ðtÞ, the relationship in (7) is general in any P2P live
streaming system. This is because both �ðh; k; �ðtÞÞ and
�ðtÞ are abstracted as relative ratios that are independent
of specific system population sizes and specific peer
arrival patterns. As we will elaborate in Section 5.2, this
relationship can serve as the theoretical principle of
population control design for alleviating flash crowds.

To clearly illustrate the relationship in Corollary 4 and its
implication on population control design, Figs. 11 and 12
depict the relative rate of system scale increase �ðh; k; �ðtÞÞ
as a function of the relative peer arrival rate �ðtÞ, under
different settings of the relative average peer surplus
capacity h and the number of partners for new peers k,
respectively.

We find that in general, as the relative peer arrival rate

increases (i.e., more new peers4 relative to the current system

scale request to join the system), the relative rate of a system

scale increase does not grow monotonously, regardless of the

setting of the relative average peer surplus capacity h and

number of partners for new peers k. In particular, given a

certain system capacity represented by h and k, there

exists a peak relative rate of system scale increase �ðh; kÞ
when the relative peer arrival rate reaches a critical

resiliency threshold �ðh; kÞ. Beyond this threshold, the rate

of a system scale increase will fall significantly. This

clearly demonstrates the motivation and potential benefits

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1235

Fig. 11. The relative rate of system scale increase �ðh; k; �ðtÞÞ as a
function of the relative peer arrival rate �ðtÞ, under different settings of the
relative average peer surplus capacity h. The number of partners for new
peers k is set to a typical value of 20. Others are set as x ¼ 5; us ¼ 0.

Fig. 12. The relative rate of a system scale increase �ðh; k; �ðtÞÞ as a
function of the relative peer arrival rate �ðtÞ, under different settings of the
number of partners for new peers k. Others are set as h ¼ x ¼ 5; us ¼ 0.

4. Without loss of generality, those new peers at the beginning of the tth
time slot include both newly arrived ones at the beginning of the tth time
slot and others that arrived in previous time slots but not yet joined the
system.

of population control: during a flash crowd wherein the

peer arrival rate exceeds the resiliency threshold, we can

adaptively admit (or delay) a proper portion of new peers

from joining the system, so as to attain the peak rate of a

system scale increase. Otherwise, the rate of a system scale

increase could deteriorate quickly due to a heavy resource

competition, leading to a poor system scalability and

excessive peer startup delays. Henceforth, we refer to

ð�ðh; kÞ;�ðh; kÞÞ as the optimal control point under given

ðh; kÞ, which is the criteria for making population control

decisions.
Also, benefiting from the generality of Corollary 4, the

optimal control point is essentially an abstract and general
criteria (i.e., in the form of relative ratios) that is
independent of specific system population sizes and peer
arrival patterns (although the specific maximum number of
new peers that could join the system over the tth time slot
apparently depends on the existing number of peers in
previous time slots, i.e., Sðt� 1Þ ��ðh; kÞ). In practice,
given a typical range of h and k based on specific system
design choices and empirical measurements, we can
precompute a set of optimal control points for each typical
setting of ðh; kÞ, even though it is hard to directly obtain
closed-form expressions of ð�ðh; kÞ;�ðh; kÞÞ by maximizing
(7). This is useful for simplifying the population control
implementation with reduced computational overhead, as
we will further discuss in Section 5.3.

In addition, we have observed that the optimal control
point is very sensitive to the relative average peer surplus
capacity h (i.e., both �ðh; kÞ and �ðh; kÞ increase as h
increases), while relatively insensitive to the number of
partners for new peers k. We will take a closer look at such
an effect when we examine the robustness and sensitivity of
population control in Appendix H, available in the online
supplemental material.

5.2 Population Control: An Ideal Case

Based on the above analysis, the natural question is: what is
the ideal case of population control, and what is its fundamental
limit in improving the system scale?

By assuming accurate knowledge on the number of
existing peers in the system Sðt� 1Þ, the relative average
peer surplus capacity h and the number of partners for
new peers k to be available, we can design an ideal
population control procedure in Algorithm 1. Specifically,
based on the optimal control point ð�ðh; kÞ;�ðh; kÞÞ illu-
strated in Figs. 11 and 12, the intuition of population
control is very simple: as long as the number of new peers
relative to the current system scale does not exceed �ðh; kÞ,
all new peers can be admitted. Otherwise, population
control will attempt to attain the peak rate of system scale
increase �ðh; kÞ by admitting a portion of new peers
according to �ðh; kÞ (alternatively, by delaying a counter-
part portion of new peers from joining the system for
certain time slots). As any advantage may come with
tradeoffs, an obvious cost of population control is a portion
of delayed peers during the flash crowd. We will
demonstrate in Section 5.3 that, this is a worthy choice
for improving the overall system scalability which even-
tually compensates for such delays.

Algorithm 1. An ideal population control procedure
with accurate knowledge on the number of existing peers in
the system, the relative average peer surplus capacity h, and
the number of partners for new peers k.

Theorem 3. For a P2P live streaming system with a given
relative average peer surplus capacity h, and each peer having
partial knowledge of the system and a random partner selection
strategy as assumed in Theorem 2, then given any specific peer
arrival pattern �ðtÞ during a flash crowd, the system can
potentially scale over time exponentially under ideal popula-
tion control in Algorithm 1.

Remark. The proof can be found in Appendix G, available
in the online supplemental material. Theorem 3 indicates
the fundamental limit of population control for alleviat-
ing flash crowds. In particular, with ideal population
control in Algorithm 1, the system can potentially scale
over time in an exponential manner, even if a partial
knowledge of peers and their competition for the limited
upload bandwidth resources are taken into account. This
will be quantitatively demonstrated in Section 5.3.

Such an ideal population control procedure in Algorithm 1
with its limit in Theorem 3 can provide a benchmark for
designing practical population control algorithms. However,
it essentially tracks and regulates the system evolution by
relying on accurate knowledge on Sðt� 1Þ, h, and k, which is
infeasible to be achieved in practical systems. Interested
readers are referred to Appendix H, available in the online
supplemental material, for investigating how robust and
sensitive population control could be, with respect to h, k, and
Sðt� 1Þ, in order to explore if it is feasible to design simple and
practical population control mechanisms with approximated
knowledge.

5.3 Population Control: Simple Framework and
Guidelines

Based on insights from Algorithm 1 in Section 5.2 and
Theorem 4 in Appendix H, available in the online

1236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

supplemental material, we propose a simple population
control framework in Algorithm 2. Rather than dictating
specific implementation of population control that highly
depends on and varies across different P2P live streaming
systems, we focus on a common and flexible framework
with key guidelines. Compared to the ideal population
control procedure in Algorithm 1, the salient features of the
framework in Algorithm 2 in terms of simplicity, flexibility,
and practicability include:

Algorithm 2. A simple and flexible framework for
alleviating flash crowds in P2P live streaming systems,
based on key principles from Algorithm 1 and Theorem 4 in
Appendix H, available in the online supplemental material.

First, it does not need to continuously track both the
newly arrived peers �ðtÞ and those that arrived in previous
time slots but not yet joined the system Uðt� 1Þ. Instead, it
can simply monitor the total number of requests issued by
distinct new peers IðtÞ, which can be readily captured via the
tracking server deployed in most existing P2P live streaming
systems [1], [3] for peer registration and bootstrapping.

Second, it does not rely on accurate knowledge of the
number of existing peers in the system Sðt� 1Þ, which is
hard to obtain in large-scale P2P live streaming systems
during a flash crowd. Instead, it allows the use of a
conservative estimate S0ðt� 1Þ to achieve proven robust-
ness based on Theorem 4 in Appendix H, available in the
online supplemental material. Specifically, Theorem 4
implies that we can make a conservative estimate of the
initial system scale M by tuning " 2 ð0; 1� in Algorithm 2, at
the early stage of a flash crowd (e.g., just after a new live
broadcast has been released). Then, a guaranteed rate of
system scale increase can be preserved under population
control. Furthermore, system designers can jointly consider
the S0ðtÞ predicted by Algorithm 2 and empirical measure-
ments (e.g., consider peer departures during the flash
crowd) to adjust and ensure the subsequent conservative
estimation of S0ðtÞ.

As an illustration, Fig. 13 compares the simulated system
scale over time during a flash crowd, under no population
control, ideal population control in Algorithm 1 with
accurate knowledge, and the simplified framework in
Algorithm 2 with conservative and over estimation of the
initial system scale, respectively. It shows that ideal

population control with accurate knowledge outperforms
the other alternatives for alleviating a flash crowd, as it can
help to attain the peak rate of a system scale increase over
time in an exponential manner (Theorem 3). Although the
population control framework with a conservative estimate
of the initial system scale (e.g., " ¼ 0:5) limits the number of
admitted new peers to the system at an early stage, a
guaranteed rate of system scale increase can help the system
to scale up rapidly in subsequent time. This leads to
comparable results to that of ideal population control.
While an overestimate of the initial system scale (e.g.,
" ¼ 1:5) can degrade the effectiveness of population control,
it still substantially improves the system scalability during
the flash crowd, compared to the case of no population
control. Similar results are observed for general peer arrival
patterns besides the extreme flash crowd scenario.

Third, as the optimal control point ð�ðh; kÞ;�ðh; kÞÞ is
abstracted as relative ratios based on the generality of
Corollary 4, it is independent of specific system population
sizes and peer arrival patterns. This enables the use of
precomputed optimal control points in our framework, so
as to simplify the implementation with reduced real-time
computational overhead. For example, given a typical range
of h and k based on specific system design choices and
empirical measurements, we can precompute a set of
optimal control points for each typical setting of ðh; kÞ.
And the set of precomputed optimal control points can be
organized and stored as a map, with different pairs of ðh; kÞ
as indices. Then, such a set can be periodically updated in a
coarse-grained manner according to potential variations in
h and k in practical P2P live streaming systems.5

Last but not the least, our framework is also extensible to
incorporate other criteria for population control decisions.
For example, it is suggested by Kumar et al. [7] that it would
be beneficial for a P2P live streaming system operating in the
undercapacity region (e.g., in a flash crowd) to preferentially
admit high-capacity peers. Consistent with this, Figs. 11, 16,

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1237

Fig. 13. System scale over time slots during a flash crowd, under no
population control, ideal population control with accurate knowledge, the
simplified population control framework with a conservative estimate
(" ¼ 0:5), and an overestimate of the initial system scale (" ¼ 1:5),
respectively. The accurate initial system scale is M ¼ 1;500 and the
scale of the extreme flash crowd is N ¼ 10;000. Others are set as
k ¼ 20, h ¼ x ¼ 5; us ¼ 0.

5. Such an update is supposed to be infrequent, given that: 1) the number
of partners for peers k in practical P2P live streaming systems is usually
configured within a typical range [1], [3], beyond which the system
performance is insensitive to k. 2) Typical peer surplus capacities h can be
largely covered via existing measurement statistics on the distribution of
user upload bandwidth capacities (e.g., DSL, Cable, and Ethernet) [19].

and 17 (in Appendix H, available in the online supplemental
material) also demonstrate that the peer surplus upload
capacity h has significant impact on the system scalability
and the optimal control point. Note that our framework
generally instructs the sweet spot for the number of admitted
new peers AðtÞ � minfS0ðt� 1Þ�ðh; kÞ; IðtÞg, without enfor-
cing which set of new peersAðtÞ to be preferentially admitted
(or delayed). In practice, the streaming service providers can
preferentially admit high-capacity peers, which can enable
the system to withstand a higher peer arrival intensity during
a flash crowd. Besides, the streaming service providers may
also incorporate service differentiation [25] into population
control decisions, depending on whether their systems are
offered free of charge or as a billable service (e.g., determine
AðtÞ by prioritizing paying users over free users). Overall,
how to incorporate various criteria and practical concerns of
P2P live streaming systems to refine and optimize population
control decisions is an open problem for future research.

6 CONCLUSION

Through a mathematical framework we developed, this
paper has studied the inherent relationship between time
and scale in P2P live streaming systems during a flash
crowd, and investigated design principles of population
control to alleviate a flash crowd. We have derived an
upper bound on the system scale over time, which
demonstrated that: having enough upload bandwidth
resources is insufficient to sustain a flash crowd, as it takes
time for peers to locate available resources. The design
implication from our analysis is that we can trade peer
startup delays for better system scale, via proper population
control in the initial stage of a flash crowd. By identifying
critical criteria for population control decisions, we have
designed an ideal population control procedure and
demonstrated its fundamental limit in improving the
system scale. This has further led to a simple and flexible
population control framework with practical guidelines. In
addition, our analysis also brought an in-depth under-
standing on the effects of partial knowledge of peers and
their competition for a limited pool of upload bandwidth
resources, as well as peer departures due to impatience.

ACKNOWLEDGMENTS

The research was support in part by a grant from The
National Natural Science Foundation of China (NSFC)
under grant No. 61103176, by a grant from the NSFC under
grant No. 61133006, by a grant from the National Science
and Technology Major Project of the Ministry of Science and
Technology of China under grant No. 2010ZX-03004-001-03.

REFERENCES

[1] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A Measurement
Study of a Large-Scale P2P IPTV System,” IEEE Trans. Multimedia,
vol. 9, no. 8, pp. 1672-1687, Dec. 2007.

[2] B. Li, S. Xie, G. Keung, J. Liu, I. Stoica, H. Zhang, and X. Zhang,
“An Empirical Study of the Coolstreaming+ System,” IEEE J.
Selected Areas in Comm., vol. 25, no. 9, pp. 1627-1639, Dec. 2007.

[3] B. Li, S. Xie, Y. Qu, Y. Keung, C. Lin, J. Liu, and X. Zhang, “Inside
the New Coolstreaming: Principles, Measurements and Perfor-
mance Implications,” Proc. IEEE INFOCOM, Apr. 2008.

[4] B. Li, Y. Keung, S. Xie, F. Liu, Y. Sun, and H. Yin, “An Empirical
Study of Flash Crowd Dynamics in a P2P-Based Live Video
Streaming System,” Proc. IEEE Globecom, Nov. 2008.

[5] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B.
Li, “Design and Deployment of a Hybrid CDN-P2P System for
Live Video Streaming: Experiences with LiveSky,” Proc. 17th ACM
Int’l Conf. Multimedia, Oct. 2009.

[6] X. Zhang, J. Liu, B. Li, and T. Yum, “CoolStreaming/DONet: A
Data-Driven Overlay Network for Efficient Live Media Stream-
ing,” Proc. IEEE INFOCOM, Mar. 2005.

[7] R. Kumar, Y. Liu, and K.W. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems,” Proc. IEEE INFOCOM, Apr. 2007.

[8] Y. Liu, “On the Minimum Delay Peer-to-Peer Video Streaming:
How Realtime Can It Be?,” Proc. 15th Int’l Conf. Multimedia, Sept.
2007.

[9] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A. Twigg,
“Epidemic Live Streaming: Optimal Performance Trade-Offs,”
Proc. ACM SIGMETRICS Int’l Conf. Measurement and Modeling of
Computer Systems, June 2008.

[10] S. Liu, R.Z. Shen, W. Jiang, J. Rexford, and M. Chiang,
“Performance Bounds for Peer-Assisted Live Streaming,” Proc.
ACM SIGMETRICS Int’l Conf. Measurement and Modeling of
Computer Systems, June 2008.

[11] C. Feng, B. Li, and B. Li, “Understanding the Performance Gap
between Pull-Based Mesh Streaming Protocols and Fundamental
Limits,” Proc. IEEE INFOCOM, Apr. 2009.

[12] Y. Zhou, D. Chiu, and J. Lui, “A Simple Model for Analyzing P2P
Streaming Protocols,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), Oct. 2007.

[13] X. Yang and G. de Veciana, “Service Capacity of Peer to Peer
Networks,” Proc. IEEE INFOCOM, Mar. 2004.

[14] D. Rubenstein and S. Sahu, “Can Unstructured P2P Protocols
Survive Flash Crowds?,” IEEE Trans. Networking, vol. 13, no. 3,
pp. 501-512, June 2005.

[15] T. Ho�feld and K. Leibnitz, “Modeling and Evaluation of an
Online TV Recording Service,” Proc. Ninth Ann. Workshop Math.
Performance Modeling and Analysis, June 2007.

[16] F. Simatos, P. Robert, and F. Guillemin, “A Queueing System for
Modeling a File Sharing Principle,” ACM SIGMETRICS Perfor-
mance Evaluation Rev., vol. 36, no. 1, pp. 181-192, 2008.

[17] M. Wang, L. Xu, and B. Ramamurthy, “Providing Statistically
Guaranteed Streaming Quality for Peer-to-Peer Live Streaming,”
Prof. 18th Int’l Workshop Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), pp. 127-132, 2009.

[18] C. Wu, B. Li, and S. Zhao, “Multi-Channel Live P2P Streaming:
Refocusing on Servers,” Proc. IEEE INFOCOM, Apr. 2008.

[19] C. Huang, J. Li, and K. Ross, “Can Internet Video-on-Demand be
Profitable?,” Proc. ACM SIGCOMM, Aug. 2007.

[20] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
Feasibility of Supporting Large-Scale Live Streaming Applications
with Dynamic Application End-points,” Proc. ACM SIGCOMM,
Aug. 2004.

[21] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A
Performance Study of BitTorrent-Like Peer-to-Peer Systems,”
IEEE J. Selected Areas in Comm., vol. 25, no. 1, pp. 155-169, Jan.
2007.

[22] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,
“Measurements, Analysis, and Modeling of BitTorrent-Like
Systems,” Proc. Fifth ACM SIGCOMM Conf. Internet Measurement
(IMC), Oct. 2005.

[23] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the
Power of Pull-Based Streaming Protocol: Can We Do Better?,”
IEEE J. Selected Areas in Comm., vol. 25, no. 9, pp. 1678-1694, Dec.
2007.

[24] S. Xie, B. Li, G. Keung, and X. Zhang, “Coolstreaming: Design,
Theory, and Practice,” IEEE Trans. Multimedia, vol. 9, no. 8,
pp. 1661-1671, Dec. 2007.

[25] A. Magnetto, R. Gaeta, M. Grangetto, and M. Sereno, “TURIN-
stream: A Totally pUsh, Robust, and effIcieNt P2P Video
Streaming Architecture,” IEEE Trans. Multimedia, vol. 12, no. 8,
pp. 901-914, Dec. 2010.

[26] R. Sibly and J. Hone, “Population Growth Rate and Its
Determinants: An Overview,” Philosophical Trans. Royal Soc. B,
vol. 357, no. 1425, pp. 1153-1170, 2002.

1238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fangming Liu (S’08-M’11) received the BEngr
degree from the Department of Computer
Science and Technology, Tsinghua University,
Beijing, China, in 2005; and the PhD degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy in 2011, where he was awarded with the
Overseas Research Award and Postgraduate
Excellence Scholarships. He is currently an
associate professor in the School of Computer

Science and Technology, Huazhong University of Science and Technol-
ogy, Wuhan, China. In 2007, he worked as a research assistant at the
Department of Computer Science and Engineering, Chinese University of
Hong Kong. From August 2009 to February 2010, he was a visiting
student at the Computer Engineering Group, Department of Electrical
and Computer Engineering, University of Toronto, Canada. Since 2010,
he has also collaborated with the ChinaCache Content Delivery Network
Research Institute in Tsinghua University, Beijing. His research interests
are in the area of peer-to-peer networks, rich-media distribution, cloud
computing, and large-scale data center networking. He is a member of
the IEEE, the IEEE Communications Society, and the ACM.

Bo Li (S’89-M’92-SM’99-F’11) received the
BEngr degree in computer science from Tsin-
ghua University, Beijing, and the PhD degree in
the electrical and computer engineering from the
University of Massachusetts at Amherst. He is a
professor in the Department of Computer
Science and Engineering, Hong Kong University
of Science and Technology. He was with IBM
Networking System, Research Triangle Park,
between 1993 and 1996. He was an adjunct

researcher at Microsoft Research Asia (MSRA) (1999-2006), where he
spent his sabbatical leave (2003-2004). He was with Microsoft Advanced
Technology Center (ATC) in the summers of 2007 and 2008. His works
have resulted in more than 220 publications. He has made original
contributions on internet proxy placement, capacity provisioning in
wireless networks, routing in WDM optical networks, and internet video
streaming. He is best known for a series of works on a system called
Coolstreaming (Google entries over 1,000,000 in 2008 and Google
scholar citations over 800), which attracted millions of download and was
credited as the first large-scale Peer-to-Peer live video streaming system
in the world. His recent work on the peer-assisted online hosting system,
FS2You (2007-2009) (Google entries 800,000 in 2009) has also attracted
millions of downloads worldwide. He received two best paper awards
from the IEEE. He received the Young Investigator Award from Natural
Science Foundation of China (NFSC) in 2005. He has been an editor or
guest editor for 17 IEEE/ACM journals and magazines, and he was
involved in organizing 50 conferences. He was the co-TPC chair for IEEE
Infocom’04. He was a distinguished lecturer in IEEE Communications
Society (2006-2007). He is a fellow of the IEEE.

Lili Zhong received the BEngr degree from
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in
2008, and the MPhil degree from Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology, in
2011. Her research interests include peer-to-
peer networking and cloud computing.

Baochun Li (S’98-M’00-SM’05) received the
BEngr degree from Department of Computer
Science and Technology, Tsinghua University,
Beijing, China, in 1995, and the MS and PhD
degrees from the Department of Computer
Science, University of Illinois at Urbana-Cham-
paign, in 1997 and 2000, respectively. Since
2000, he has been with the Department of
Electrical and Computer Engineering at the
University of Toronto, where he is currently a

professor. He holds the Bell University Laboratories endowed chair in
Computer Engineering since August 2005. In 2000, he was the recipient
of the IEEE Communications Society Leonard G. Abraham Award in the
Field of Communications Systems. In 2009, he was the recipient of the
Multimedia Communications Best Paper Award from the IEEE Com-
munications Society. His research interests include large-scale multi-
media systems, peer-to-peer networks, applications of network coding,
and wireless networks. He is a senior member of the IEEE, and a
member of the ACM.

Hai Jin received the PhD degree in computer
engineering from HUST in 1994. He is a Cheung
Kung Scholars chair professor of computer
science and engineering at the Huazhong
University of Science and Technology (HUST)
in China. He is now a dean of the School of
Computer Science and Technology at HUST. He
is the chief scientist of ChinaGrid, the largest
grid computing project in China, and the chief
scientist of National 973 Basic Research Pro-

gram Project of Virtualization Technology of Computing System. He
worked at The University of Hong Kong between 1998 and 2000, and as
a visiting scholar at the University of Southern California between 1999
and 2000. In 1996, he was awarded a German Academic Exchange
Service fellowship to visit the Technical University of Chemnitz in
Germany. He was awarded Excellent Youth Award from the National
Science Foundation of China in 2001. He is the member of Grid Forum
Steering Group (GFSG). He has coauthored 15 books and published
more than 400 research papers. His research interests include computer
architecture, virtualization technology, cluster computing, and grid
computing, peer-to-peer computing, network storage, and network
security. He is the steering committee chair of International Conference
on Grid and Pervasive Computing (GPC), Asia-Pacific Services
Computing Conference (APSCC), International Conference on Frontier
of Computer Science and Technology (FCST), and Annual ChinaGrid
Conference. He is a member of the steering committee of the IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid),
the IFIP International Conference on Network and Parallel Computing
(NPC), and the International Conference on Grid and Cooperative
Computing (GCC), International Conference on Autonomic and Trusted
Computing (ATC), International Conference on Ubiquitous Intelligence
and Computing (UIC). He is a senior member of the IEEE and a member
of the ACM.

Xiaofei Liao received the PhD degree in
computer science and engineering from Huaz-
hong University of Science and Technology
(HUST), China, in 2005. He is now an associate
professor in school of Computer Science and
Engineering at HUST. He has served as a
reviewer for many conferences and journal
papers. His research interests are in the areas
of virtualization technology for computing sys-
tem, peer-to-peer system, cluster computing

and streaming services. He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ET AL.: FLASH CROWD IN P2P LIVE STREAMING SYSTEMS: FUNDAMENTAL CHARACTERISTICS AND DESIGN IMPLICATIONS 1239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

