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ABSTRACT

Peer-to-Peer (P2P) live video streaming systems have re-

cently received significant attention, with commercial deploy-

ment gaining increased popularity in the Internet. It is evident

from our experiences with real-world systems that, it is not

uncommon to have hundreds of thousands of users trying to

join a program in the first few minutes of a live broadcast.

This phenomenon, unique in live streaming systems, referred

to as the flash crowd, poses significant challenges in the sys-

tem design. In this paper, we develop a mathematical model

to capture the inherent relationship between time and scale in

P2P streaming systems under the flash crowd. Specifically,

we show that there is an upper bound on the system scale

with respect to a time constraint. In addition, our analysis has

brought forth an in-depth understanding on the effect from the

Gossip protocol and churn effects.

Index Terms— Video streaming, peer-to-peer, flash

crowds

1. INTRODUCTION

Recently, the Internet has witnessed a significant increase in

the popularity of peer-to-peer (P2P) live media streaming ap-

plications, that deliver real-time and sustained media content

to potentially millions of users. As participating peers not

only download media streams, but also contribute their up-

load bandwidth capacities to serve one another, such systems

are potentially more scalable, and are thus cost-effective to be

deployed, compared to traditional infrastructure-based solu-

tions, such as IP multicast or Content Delivery Networks.

While recent measurement studies [1, 2] on real-world

P2P streaming systems have demonstrated that the stream-

ing performance can be typically maintained at a high level

once the systems have reached a reasonable scale, this is

challenged by a severe phenomenon called the flash crowd,

in which there could be a large number of peers arriving at

the system within a short period of time, just after a new live

event has been released. It is evident in our empirical expe-

riences from the latest version of Coolstreaming+ [3] that, it
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is considerably more challenging for a P2P streaming sys-

tem to accommodate an abrupt surge of newly arrived peers,

with reasonable streaming qualities and initial startup delays.

As a result, we also observe a considerable portion of peers

undergoing a flash crowd could opt to leave the system due

to impatience, which leads to more dynamic system scaling

behavior and more constrained system scale limits.

In this paper, we seek to analyze and understand the in-

herent relationship between time and scale in P2P streaming

systems under a flash crowd scenario (henceforth referred to

as scale-time), through a tractable analytical model that we

propose. Specifically, our major contributions are: (1) We

first derive the fundamental constraint of the scale-time re-

lationship with the upper bound of system scale over time,

which explains in depth why the intuitive “demand vs. sup-

ply” condition is insufficient to capture the system scale. (2)

We further proceed to an enhanced constraint that quanti-

tatively characterizes how the system scale is further con-

strained by the timing constraint, if the partial knowledge of

peers and their competition for the limited upload bandwidth

resources in the system are taken into account. (3) Motivated

by our empirical experiences, we further extend our model

and analysis to more general and realistic peer arrival pat-

terns, and investigate the impact from peer departures due to

impatience on the system scale. In addition, our analytical

framework also offers us the flexibility to investigate the ef-

fects of various critical factors, including the initial system

scale, the scale of the flash crowd, the peer upload capacity,

and the number of partners each peer has.

The remainder of this paper is organized as follows. Sec. 2

discusses related work. Sec. 3 presents our theoretical model

for P2P streaming systems under a flash crowd, along with the

fundamental scale-time relationship and the roles of various

critical factors. In Sec. 4, we carry out a series of numeri-

cal analysis to demonstrate the scale-time relationship in P2P

streaming systems under a flash crowd, as well as the effects

of various critical factors. Finally, Sec. 5 concludes the paper

with remarks on future work.

2. RELATED WORK

With respect to analytical studies on P2P streaming systems,

Kumar et al. [4] have derived the maximum streaming rate

for churnless systems and developed a stochastic fluid model
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with peer churn to examine its performance. There have also

emerged a number of analyses on the performance bounds

of tree-based or mesh-based systems in terms of streaming

rate, delay, and server load (e.g., [5–7]), particularly through

the perspective of chunk dissemination to participating peers.

Along this direction, a more recent study [8] has analyzed the

performance gap between the fundamental limits and actual

performance of mesh-pull systems. Zhou et al. [9] have com-

pared, through a stochastic model, different chunk schedul-

ing strategies based on the performance metrics of continuity

and startup latency. Our study is different from and comple-

mentary to these prior works in that we analyze the asymp-

totic scaling behavior of P2P streaming systems during a flash

crowd, while paying particular attentions on essential aspects

such as the partial knowledge of peers and their competition

for the limited resources, as well as the peer departures due to

impatience.

Flash crowd issues were also examined in other P2P ap-

plications. Yang and Veciana [10] used a branching process

model to examine the service capacity of BitTorrent-like file

sharing systems during flash crowds. Another modeling work

in [11] provided a theoretical evaluation of the scalability of

a distributed randomized P2P search protocol that provides

transmission of objects from servers currently suffering with

flash crowds. Leibnitz et al. [12, 13] compared the file down-

load performances of Client/Server and P2P systems while

considering flash crowd arrivals and users’ impatience. Dif-

ferent from these works, we study the flash crowd challenges

in P2P streaming systems with more stringent requirements

on the bandwidth resources to meet the streaming rate. To our

knowledge, this paper, for the first time, attempts to provide

an analytical characterization and understanding of the scale-

time relationship in P2P streaming systems, with a particular

focus on the flash crowd and various critical factors.

3. SYSTEM MODEL AND FUNDAMENTAL

PRINCIPLES

3.1. System Model

In this section, we present our basic model for P2P live video

streaming under a flash crowd, including the underlying as-

sumptions and notations summarized in Table 1. We consider

a video with rate R = xr to be streamed to all participat-

ing peers, where r is the bit rate corresponding to a unit of

bandwidth, and R corresponds to the bandwidth requirement

of x units. This can alternatively be related to the concept of

substreams in the real-world large-scale P2P streaming sys-

tem Coolstreaming+ [2], in which a media stream is divided

into multiple substreams and peers could subscribe to differ-

ent substreams from different partners.

For a peer i, let ui denote the upload capacity of the peer.

The peer download capacity is assumed not to be the bottle-

neck, which is in accordance with most of the recent Internet

Table 1. Key Parameters in the System Model.

Notation Definition

M Initial system scale.

N Flash crowd scale.

R Video streaming rate (= xr).

ui Upload capacity of peer i.
hi Relative surplus upload capacity of peer i

(= (ui −R)/r).

u Average peer upload capacity.

h Relative average peer surplus capacity

(= (u−R)/r).

k Number of partners of a new peer (≥ x).

S(t) System scale (number of existing peers) in the

t-th time slot.

Us Server capacity provisioning.

us Relative server capacity provisioning (= Us/R).

access technologies and measurement studies of existing P2P

systems [14]. Given a streaming rate R, we define the rel-

ative surplus upload capacity hi of a peer i as the ratio of

(ui −R) to r. Let u be the average peer upload capacity and

h be the relative average peer surplus capacity, which will be

elaborated in Theorem 1 (Sec. 3.2) later.

To capture essential aspects of practical systems, yet

be still simple enough to yield relevant insights, our model

mainly considers the following aspects:

� First, initial system capacity. We assume initially there

are M existing peers that already joined the system. That

is, they have obtained sufficient upload bandwidth resources

to satisfy the streaming rate, and are able to contribute their

upload capacities to the system. We assume that there exists

one or multiple servers in the system with aggregate upload

capacity Us. Given a streaming rate R, the relative server

capacity us is defined as the ratio of Us/R.

� Second, flash crowd. We start by focusing on an ex-

treme flash crowd scenario where N(� M) peers arrive at

approximately the same time [8], just after a new live event

has been released. Each new peer that has yet to join the

system needs to gather at least x units of upload bandwidth

resource from those existing peers to meet the streaming

rate requirement. Our model strives to capture the difficulty

for peers to gather sufficient upload bandwidth resources at

startup, which we believe is a critical issue under a flash

crowd. Furthermore, we also extend our model to more gen-

eral and realistic peer arrival patterns during a flash crowd, in

order to make our analysis more representative of real-world

systems.

� Third, system scale and initial startup delays. Without

loss of generality, we assume that time t is slotted. If a new

peer — one that has not yet joined the system — has obtained

sufficient upload bandwidth resource (i.e., x units) at the t-th
time slot, it is regarded as “joined the system” and counted to-
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wards the system scale S(t) of existing peers. Otherwise, the

peer will continue to seek upload bandwidth resource along

the subsequent time slots until it joins the system. In our

model, once a peer is able to join the system, it will not leave

the system during the flash crowd. From the perspective of

user experience, the time t represents the initial startup de-

lays for peers. In addition, motivated by our recent empir-

ical study [3] that peers undergoing a flash crowd could opt

to leave the system due to excessive startup delays, we further

refine our model by taking into account peers’ impatience and

its impact on the system scale over time.

� Fourth, we first analytically consider the case of global

knowledge and centralized control of the system, which

yields an upper bound of the system scale over time. Further,

we proceed to demonstrate the effects of partial knowledge,

by a simple random partner selection strategy. Specifically,

each new peer will randomly select k partners from the cur-

rent set of existing peers to ask for their surplus upload capac-

ities in each time slot. Since an existing peer can be selected

by a number of new peers, it would randomly choose a cer-

tain number of them to supply its upload bandwidth resource,

depending on its surplus capacity. Such a random partner

selection strategy with parameter k essentially represents the

decentralized gossiping among peers to gather upload band-

width resource. This is a reasonable assumption, as such a

strategy is typically adopted in many practical P2P systems

(e.g., BitTorrent and Coolstreaming) for bootstrapping peers,

mainly due to its simplicity.

Different from the perspective of chunk dissemination

that takes the peer streaming buffer state or/and chunk

scheduling as main consideration (e.g., [5, 6, 8, 9]), we at-

tempt to provide a complementary perspective in this paper:

we analyze the asymptotic scaling behavior of the system,

rather than the individual peer behavior.

Based on this system model, we are able to derive a

tractable theoretical framework in Sec. 3.2, which reveals

the fundamental relationship between time and scale in P2P

streaming systems under a flash crowd, as well as insights

on the impacts from various critical factors, including k,

h, M , N , peer arrival patterns, and peer departures due to

impatience.

3.2. Scale-Time Relationship with Critical Factors

First of all, we derive the fundamental constraint of the scale-

time relationship in P2P streaming systems, even with global

knowledge and centralized control of the systems: While “the

average peer uploading capacity should be no less than the

average peer downloading rates” is a necessary condition for

P2P streaming systems to scale, it is insufficient to capture the

system scale, as the upload bandwidth resource from newly

arrived peers cannot be utilized immediately. This leads to

the following upper bound of system scale over time.

Theorem 1 For a P2P streaming system with a given stream-

ing rate R and average peer upload capacity u, the system

scale after the t-th time slot, S(t), has the following upper

bound:

S(t) ≤ min{(1 +
u−R

R
)t(M + C)− C,N + M}, (1)

where C = Us/(u−R), M is the initial system scale at time

t = 0, Us is the server capacity provisioning, and N is a flash

crowd of newly arrived peers.

Proof: Clearly, the system scale cannot exceed the total

number of peers, including both existing and new peers; thus,

S(t) ≤ N + M .

Furthermore, the system scale after each time slot S(t) is

bounded by the aggregate upload bandwidth resource that is

currently available in the system, which depends on the num-

ber of existing peers in previous time slots (i.e., S(t− 1)) and

their surplus upload capacities hi, as well as the server capac-

ity provisioning Us. If these resources can be fully utilized,

which essentially implies that global knowledge and central-

ized control of the system can be achieved, then

S(t) ≤ S(t− 1) +

∑
i∈S(t−1)

hi

x
+

Us

R

= S(t− 1) + S(t− 1)
h

x
+

Us

R

≤ (1 +
h

x
)tS(0) +

Us

u−R

(
(1 +

h

x
)t − 1

)

= (1 +
u−R

R
)t(M +

Us

u−R
)−

Us

u−R
.

Combining the above two bounds gives Eq. (1). Equivalently,

it also implies the minimum time to accommodate a flash

crowd of N peers. �

Note that this fundamental upper bound neither depends

on specific flash crowd arrival patterns, nor the bandwidth

unit. However, it intuitively would still be too optimistic as it

assumes all current surplus bandwidth resources from exist-

ing peers can be fully utilized. Since the system scale is fur-

ther constrained by the partial knowledge of peers and their

competition for limited resources, how can we quantify such

effects? To this end, we proceed to analyze the scale-time re-

lationship with a random partner selection strategy as follows.

Since it has already been proved in [4, 8] that the average

peer upload capacity u satisfies u > R in large-scale stream-

ing systems, we shall focus on the general homogeneous case

where ui = u > R (i.e., hi = h > 0) for all peers. This is

reasonable as we are more interested in the asymptotic col-

lective behavior of the system rather than the individual peer

behavior. As we focus on such a homogeneous case, we first

ignore the server capacity, and will introduce it as a parameter

later.
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Lemma 1 For a P2P streaming system with each peer having

partial knowledge of the system and a random partner selec-

tion strategy (i.e., each new peer independently and randomly

selects k partners from the set of existing peers), the number

of new partners of an existing peer during the t-th time slot,

q(t, k), is a random variable that follows a binomial distrib-

ution with parameters (N + M −S(t− 1), k/S(t− 1)), and

an expected value of

E[q(t, k)] =
k(N + M − S(t− 1))

S(t− 1)
, (2)

where S(t− 1) is the current number of existing peers in the

system.

Proof: At the beginning of the t-th time slot, the num-

ber of existing and new peers in the system is S(t − 1) and

N + M − S(t − 1), respectively. Since each new peer inde-

pendently and randomly selects k partners from those existing

peers, the probability for an existing peer to be selected as a

partner by a new peer is Ck−1
S(t−1)−1/Ck

S(t−1) = k/S(t − 1).
Hence, the probability for an existing peer to be selected as a

partner by i new peers is a binomial distribution with parame-

ters (N + M − S(t − 1), k/S(t − 1)). Hence, the expected

value of q(t, k) can be expressed as Eq. (2). �

Based on Lemma 1, we can derive an approximation of

the expected system scale as follows.

Theorem 2 For a P2P streaming system with each peer hav-

ing partial knowledge of the system and a random partner

selection strategy, assume that each existing peer could ran-

domly provide each of its new partner with 1 unit of upload

bandwidth resource with a probability of h/q(t, k). If we use

the expected value E[q(t, k)] given by Eq. (2) as an approxi-

mation of q(t, k), then the expected system scale after the t-th
time slot, E[S(t)], can be approximated by

E[S(t)] ≈ S(t− 1) + (N + M − S(t− 1))

×
k∑

i=x

Ci
kp(t, k, h)i (1− p(t, k, h))

k−i
, (3)

where p(t, k, h) ≈ hα(t)/k is the probability for a new peer

to obtain 1 unit of upload bandwidth resource from an existing

peer; and α(t) = S(t− 1)/(N + M − S(t− 1)) is the ratio

of the number of existing peers to the number of new peers in

the system at the beginning of the t-th time slot.

Proof: Based on Lemma 1, we have q(t, k) ∼ Binomial(N+
M−S(t−1), k/S(t−1)). Since one of the important features

of a binomial distribution is that its probability mass function

Pr[q(t, k) = j] gains the highest value at j = E[q(t, k)], we

choose E[q(t, k)] given by Eq. (2) to approximate q(t, k) for

all existing peers. Then, p(t, k, h) can be derived as

p(t, k, h) ≈
h

E[q(t, k)]
=

(
h

k

)(
S(t− 1)

N + M − S(t− 1)

)

=
h

k
α(t).

Then, the amount of upload bandwidth resource i that can be

obtained by a new peer can be simplified to a binomial dis-

tribution with parameters (k, p(t, k, h)). The corresponding

probability mass function is Ci
kp(t, k, h)i (1− p(t, k, h))

k−i
.

Furthermore, recall that a new peer needs to gather at least

x units of upload bandwidth resource (corresponding to the

streaming rate R) to join the system; hence, the expected sys-

tem scale after the t-th time slot, E[S(t)], can be approxi-

mated by Eq. (3). �

Theorem 2 with Eq. (3) qualitatively indicates that,

p(t, k, h) plays an important role for the system scale, which

depends on α(t), h, and k. The effects of these factors will

be thoroughly demonstrated in Sec. 4.

Furthermore, as demonstrated by both the real-world ex-

perience [3] and the numerical results (Sec. 4) derived from

our model, P2P streaming systems by nature do not react well

to a flash crowd. Specifically, the system scale grows rela-

tively slower during the initial time slots. This motivates a

natural question: How a certain amount of server capacity

provisioning can help improve the system scale? Based on

Theorem 2, we can approximately derive the improved sys-

tem scale with a given amount of server capacity provisioning

as follows.

Corollary 1 For a P2P streaming system with a streaming

rate of R and an aggregate server upload capacity Us, as-

sume that server(s) support a number of us = Us/R ran-

domly selected new peers at the beginning of each time slot.

The remaining N +M −S(t−1)−us new peers still rely on

the S(t − 1) existing peers through a random partner selec-

tion strategy. Then, the expected system scale E[S(t)] given

by Theorem 2 can be potentially improved as

E[S(t)] ≈ S(t− 1) + us + (N + M − S(t− 1)− us)×
k∑

i=x

Ci
kp′(t, k, h, us)

i (1− p′(t, k, h, us))
k−i

(4)

where p′(t, k, h, us) = hα′(t, us)/k, α′(t, us) = S(t −
1)/(N + M −S(t− 1)−us), and us = Us/R is the relative

server capacity.

The proof of Corollary 1 is similar to the proof of Theo-

rem 2. The effects of the parameter us will be quantitatively

demonstrated in Sec. 4.

In addition to the extreme flash crowd scenario, our model

can easily be extended to more general and realistic peer ar-

rival patterns as follows.

Corollary 2 For a P2P streaming system with each peer hav-

ing partial knowledge of the system and a random partner

selection strategy as assumed in Theorem 2, then given any

specific peer arrival pattern λ(t), the expected system scale
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E[S(t)] given by Theorem 2 can be extended as

E[S(t)] ≈ S(t− 1) + (

∫ t

0

λ(τ)dτ + M − S(t− 1))

×

k∑
i=x

Ci
kp(t, k, h)i (1− p(t, k, h))

k−i
, (5)

where p(t, k, h) ≈ hα(t)/k is the probability for a new peer

to obtain 1 unit of upload bandwidth resource from an existing

peer; and α(t) = S(t − 1)/(
∫ t

0
λ(τ)dτ + M − S(t − 1)) is

the ratio of the number of existing peers to the number of new

peers in the system at the beginning of the t-th time slot.

The proof of Corollary 2 is also similar to the proof of

Theorem 2. In Sec. 4, we will examine the scale-time re-

lationship in P2P streaming systems under both the extreme

flash crowd scenario and another two typical peer arrival pat-

terns.

Based on Corollary 2, we are further interested in an

important performance concern: the startup delays expe-

rienced by peers that arrive at different time slots during

a flash crowd. To this end, we derive the distribution

of peer startup delays as follows. First, let f(t, k, h) =
k∑

i=x

Ci
kp(t, k, h)i(1− p(t, k, h))k−i. For the set of peers that

arrive in the ti-th time slot, the expected portion of peers that

have not joined the system at the end of the tj-th time slot is

W (ti, tj) =

tj∏
t=ti

(1− f(t, k, h)), for (tj ≥ ti).

Then, the expected portion of peers that arrive in the ti-th
time slot and then join the system in the tj-th time slot, can

be expressed as

J(ti, tj) = W (ti, tj−1)−W (ti, tj)

=

(
tj−1∏
t=ti

(1− f(t, k, h))

)
× f(tj , k, h), (6)

where tj ≥ ti. We will use Eq. (6) to examine the peer startup

delays in Sec. 4.

Furthermore, observed from our recent measurement

study on real-word P2P streaming systems [3], a considerable

portion of users undergoing a flash crowd could opt to leave

the system due to excessive startup delays. To capture this

user behavior and its impact on the system scale, we further

introduce a peer impatience time threshold θ into our model,

after which a new peer aborts its joining attempt and leaves

the system. In reality, individual peers could have different

impatience times θ, which tends to be a random variable

highly depending on peers’ individual behaviors and the cur-

rent states they are being in (e.g., how long they have waited

so far). However, in order to make our analysis tractable,

we use an average threshold E[θ] as an approximation of

impatience time for all the new peers. Then, the scale-time

relationship given in Corollary 2 can be further extended as

follows.

Corollary 3 For a P2P streaming system with each peer hav-

ing partial knowledge of the system and a random partner

selection strategy as assumed in Theorem 2, if we use an ex-

pected threshold E[θ] as an approximation of impatience time

for all the new peers, after waiting for which new peers would

leave the system; then, given any specific peer arrival pattern

λ(t), the expected system scale E[S(t)] given by Corollary 2

can be extended as

E[S(t)] ≈ S(t− 1) +

(∫ t

0

λ(τ)dτ + M − S(t− 1)−

∫ t−1

0

D(τ)dτ

) k∑
i=x

Ci
kp′(t, k, h, θ)i (1− p′(t, k, h, θ))

k−i
,

(7)

where D(τ) ≈ λ(τ − E[θ])l(τ) for τ ≥ E[θ] (otherwise,

D(τ) = 0) is the number of new peers that leave the system

over time slots due to impatience, l(τ) = 1− ((S(τ)−S(τ −

E[θ]))/(
∫ τ

0
λ(t)dt+M−S(τ −E[θ])−

∫ τ−E[θ]

0
D(t)dt)) is

a probability for new peers that arrived at the (τ −E[θ]+1)-

th time slot yet still have not obtained sufficient upload

bandwidth resources for startup at the end of τ -th time

slot. p′(t, k, h, θ) ≈ hα′(t, θ)/k, and α′(t, θ) = S(t −

1)/(
∫ t

0
λ(τ)dτ + M − S(t− 1)−

∫ t−1

0
D(τ)dτ).

Proof: Suppose new peers arrive at the system over time

slots according to a certain pattern λ(t). If we use an expected

threshold E[θ] as an approximation of impatience time for all

the new peers, then at the end of each time slot τ(≥ E[θ]),
there will be a number of D(τ) new peers that arrived at the

beginning of the (τ −E[θ] + 1)-th time slot leave the system

due to impatience (i.e., their waiting times exceed E[θ]).

Within the period of [τ−E[θ], τ ], the number of new peers

that compete for the limited upload bandwidth resources is

∫ τ

0

λ(t)dt + M − S(τ − E[θ])−

∫ τ−E[θ]

0

D(t)dt,

among which S(τ) − S(τ − E[θ]) new peers have obtained

sufficient upload bandwidth resources and successfully joined

the system during this period. Hence, the probability for the

new peers that arrived at the beginning of the (τ−E[θ]+1)-th
time slot to join the system during this period is (S(τ)−S(τ−

E[θ]))/(
∫ τ

0
λ(t)dt + M − S(τ − E[θ]) −

∫ τ−E[θ]

0
D(t)dt).

In other words,

l(τ) = 1−
S(τ)− S(τ − E[θ])∫ τ

0
λ(t)dt + M − S(τ − E[θ])−

∫ τ−E[θ]

0
D(t)dt

.
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Fig. 1. Approximated system scale over time slots, with dif-

ferent amount of server capacity provisioning. We set the

initial system scale M to 1500 and flash crowd scale N to

10000. The number of partners for new peers k is set to a

typical value of 20. The relative server capacity provisioning

us varies from 0 to 200. Others are set as h = x = 5.

Fig. 2. Peer join time distribution versus time slots, with dif-

ferent amount of server capacity provisioning. We set the

initial system scale M to 1500 and flash crowd scale N to

10000. The number of partners for new peers k is set to a

typical value of 20. The relative server capacity provisioning

us varies from 0 to 200. Others are set as h = x = 5.

Since the total number of new peers that arrived at the

beginning of the (τ − E[θ] + 1)-th time slot is λ(τ − E[θ]),
D(τ) can be approximated by

D(τ) ≈ λ(τ − E[θ])l(τ), for τ ≥ E[θ].

For τ ∈ [0, E[θ]], we have D(τ) = 0, as the waiting times of

all the new peers within this initial period have not exceeded

the impatience threshold.

Since we still assume a random partner selection strategy

as in Theorem 2, the remaining part of proof is similar to the

proof of Theorem 2 except that both α′(t, θ) and p′(t, k, h, θ)
should take into account a set of departure peers up to the

current time
∫ t−1

0
D(τ)dτ . Hence, E[S(t)] given by Eq. (5)

can be extended as Eq. (7). �

Corollary 3 with Eq. (7) qualitatively indicates that the

departures of impatient peers during a flash crowd could in-

directly alleviate the heavy competition among new peers for

the limited pool of upload bandwidth resources, thus the sys-

tem could scale up more quickly in a transient period. How-

ever, the cost is the loss of a considerable portion of peers,

which eventually cuts down the system scale. We shall quan-

titatively demonstrate these effects in Sec. 4.

4. NUMERICAL RESULTS AND INSIGHTS

In this section, we take advantage of the theoretical results

derived from our model to demonstrate the fundamental

scale-time relationship in P2P streaming systems under a

flash crowd, as well as the effects of various critical factors.

4.1. Scale-Time Relationship and Join Time Distribution

Fig. 1 compares the approximated system scale over time

slots obtained by Theorem 1, 2 and Corollary 1, under the

same flash crowd scenario setting. We observe the following:

First, the system scale grows relatively slower during ini-

tial time slots, as a surge of newly arrived peers compete for

the limited surplus capacities from a relatively smaller num-

ber of existing peers. This results in considerable difficulty for

new peers to obtain sufficient upload bandwidth resources.

Second, as more peers gradually joining the system with

positive gain of surplus capacities, the ratio of the number of

existing peers to the number of new peers α(t) continuously

increases and the entire system capacity improves; thus the

system scale ramps up more and more quickly.

Third, as expected, the system scale can be improved with

an additional amount of server capacity provisioned, espe-

cially for the initial time slots. However, we note that the

improvement slows down with more and more server capacity

provisioned, as demonstrated by the decreasing gaps between

the curves.

To reflect the user experience under a flash crowd, Fig. 2

plots the peer join time distribution (i.e., the percentage of

peers that joined the system in each time slot). It shows that

potentially many peers could suffer from long startup delays

under a flash crowd; while only a small portion of peers can

join the system within the initial time slots. As an additional

amount of server capacity is provisioned, the join time dis-

tribution noticeably shifts towards the earlier time slots, with

a relatively larger portion of peers joining the system with

shorter startup delays.
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Fig. 3. Approximated system scale over time slots, with dif-

ferent settings of the number of partners for new peers k. We

set the initial system scale M to 1500 and flash crowd scale

N to 10000. The value of k varies from 6 to S(t−1). Others

are set as us = 0, h = x = 5.

Fig. 4. Time to accommodate different scales of a flash

crowd, under different settings of the number of partners for

new peers k. We set the initial system scale M to 1500.

The value of k varies from 6 to S(t − 1). Others are set

as us = 0, h = 6, x = 5.

Fig. 5. Time to accommodate a flash crowd of N = 10000
peers when relative average peer surplus capacity h varies,

under different settings of the number of partners for new

peers k. We set the initial system scale M to 1500. The value

of k varies from 10 to 100. Others are set as us = 0, x = 5.

Fig. 6. Time to accommodate a flash crowd of N = 10000
peers when the initial system scale M varies, under different

settings of the number of partners for new peers k. The value

of k varies from 10 to 100. Others are set as us = 0, h =
x = 5.

The above findings suggest that an adequate amount of

additional server capacity provisioning could help alleviate

the flash crowd effect in P2P streaming systems, and improve

the user experience with shorter initial startup delays. Specif-

ically, it can help improve the system scale during the ini-

tial period of a flash crowd. Once the system scale reaches

a reasonable level (e.g., this can be simply reflected by α(t),
which can be roughly captured by the tracking server used for

peer registration and discoveries), peer resources would then

be sufficient for the system to scale up further, and thus the

server capacity can be reduced accordingly.

4.2. Sensitivity Analysis on Critical Factors

We next demonstrate the effects of several critical factors in-

dicated by Theorem 2, by carrying out a series of sensitiv-

ity analysis. Specifically, we apply the classical approach of

varying one or two parameters while keeping others constant.

First, Fig. 3 compares the approximated system scale over

time slots, by varying the number of partners for new peers

k. We observe that the system scale improves significantly

as k increases in the range of typical settings that real-world

systems use [2]. Equivalently, the time to accommodate a

given scale of a flash crowd decreases significantly. However,

when k continues to increase to larger values up to the size

of current set of existing peers S(t − 1), the improvements,

though still exist, become relatively minor.

We further examine the effects of k by comparing the

time to accommodate different scales of a flash crowd when

k varies, as shown in Fig. 4. We observe that: (1) When the

flash crowd is less severe relative to the initial system capac-
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Fig. 7. Approximated system scale over time slots, under

a constant peer arrival pattern λ(t) = λ. We set the initial

system scale M to 1500 and flash crowd scale N to 10000,

with the peer arrival rate λ varying from 2000 to 5000. The

number of partners for new peers k is set to a typical value of

20. Others are set as us = 0, h = x = 5.

Fig. 8. Approximated system scale over time slots, under an

exponentially decreasing peer arrival pattern λ(t) = βe−γt.

We set the initial system scale M to 1500 and flash crowd

scale N = lim
t→∞

∫ t

0
λ(τ)dτ = 10000, with the parameter γ

varying from 0.2 to 1.0. The number of partners for new

peers k is set to a typical value of 20. Others are set as us =
0, h = x = 5.

ity (i.e., the demand to supply ratio of (Nx)/(Mh) is rela-

tively less stringent), results are relatively insensitive to dif-

ferent values of k. Specifically, the increase of k actually does

not help (e.g., when the flash crowd scale N = 4000, the time

to accommodate it under different values of k stays nearly

the same); or could even bring negative effects when the flash

crowd scale decreases. This is in conflict with the intuitive

belief that an increase of the number of partners for peers can

always help reduce the startup delays and improve the system

scale. (2) As the scale of the flash crowd increases, our re-

sults become more sensitive to different values of k, and there

are remarkable improvements by increasing k. However, ex-

cessive increase of k brings relatively minor improvements,

which consists with previous observation from Fig. 3.

Finally, we examine the impact from the relative average

peer surplus capacity h, the initial system scale M , and their

correlation with k. Fig. 5 and Fig. 6 plot the time to accom-

modate a given scale of a flash crowd when h or M varies,

respectively, under different settings of k. We observe that:

(1) As expected, the increase of h or M can effectively re-

duce the time to accommodate flash crowd, as it essentially

enhances the entire system capacity. In general, the more up-

load bandwidth resources exist in the system (though it takes

time to utilize them), the less time it takes to accommodate a

flash crowd. (2) The impact of k observed in Fig. 4 is also

verified. When the upload bandwidth resource is relatively

constrained (i.e., when h or M decreases), the performance

gaps (in terms of time saved) between different settings of k
are more profound.

4.3. Effects of Peer Arrival Patterns

In addition to the extreme flash crowd scenario, we further

utilize Corollary 2 to examine the scale-time relationship in

P2P streaming systems under two typical peer arrival patterns

as follows.

First, Fig. 7 plots the approximated system scale over time

slots under a constant peer arrival rate λ(t) = λ. To make the

result comparable to that of the extreme flash crowd scenario,

the total number of new peers that arrive at the system (i.e.,

the flash crowd scale) is limited to the same as in Fig. 1, i.e.,

λτ = N , where N peers arrive at the system in a period of τ
with a constant rate λ. We can see that our previous discussion

on the scale-time relationship still holds for such a constant

peer arrival pattern. More importantly, given a specific scale

of flash crowd, the system scale under a constant peer arrival

pattern grows more quickly with shorter initial startup delays

compared to the extreme flash crowd case (marked as N =
10000). This indicates that a more realistic peer arrival pattern

is less challenging than the pessimistic flash crowd scenario.

As the peer arrival rate λ decreases, the initial startup delays

decrease remarkably. Specifically, when the peer arrival rate

is close to the initial system scale (e.g., λ = 2000 which is

close to M = 1500), the system is able to accommodate all

the new peers shortly after they arrived.

Based on the above observation, a natural intuition is that

all the new peers arriving at the system within a shorter pe-

riod (as λ increases) is the sole reason that makes the flash

crowd more challenging. To examine this intuition, we fur-

ther compare the constant peer arrival pattern with an even
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Fig. 9. The distribution of startup delays for peers that arrive

at different time slots, under a constant peer arrival pattern

λ(t) = λ. We set the initial system scale M to 1500 and flash

crowd scale N to 10000, with the peer arrival rate λ = 2000.

The number of partners for new peers k is set to a typical

value of 20. Others are set as us = 0, h = x = 5.

Fig. 10. Approximated system scale over time slots, under

a constant peer arrival pattern λ(t) = λ and different values

of the expected peer impatience time threshold E[θ]. We set

the initial system scale M to 700 and flash crowd scale N to

10000, with λ = 1000 and E[θ] varying from 23 to 1 time

slots. The number of partners for new peers k is set to a

typical value of 20. Others are set as us = 0, h = x = 5.

more realistic pattern — exponentially decreasing peer arrival

pattern λ(t) = βe−γt as assumed in [13]. To make a fair com-

parison, we match them under the setting that almost all the

new peers arrive at the system within the same period. Specif-

ically, the flash crowd scale is limited to lim
t→∞

∫ t

0
λ(τ)dτ =

β/γ = N ; moreover, we also set
∫ t

0
βe−γτdτ = λt = δN ,

where δ is close to 1.0. Under such a setting, we use the

correlation between λ and γ to plot the approximated system

scale over time slots under γ = 0.5, 0.8, 1.0 in Fig. 8, which

correspond to the curves with λ = 2000, 3000, 4000 in Fig. 7.

Beyond the above intuition, it shows that although almost all

the new peers arrive in a same period for both of the patterns,

the resulting performances of them differ significantly. This

implies that with a same number of new peers arriving at the

system in a same period, different peer arrival patterns could

result in remarkably different system scaling performance.

Additionally, we also observe that the shape of the curve

with γ = 0.2 is different from other curves. The rationale is

that when the flash crowd scenario is less severe relative to the

initial system capacity (e.g., β = Nγ = 2000 which is close

to M = 1500), the growing rate of the system scale over time

could catch up with the peer arrival rate, after which the flash

crowd period actually ends and the system scale is constrained

by the relatively lower peer arrival rate, rather than the system

capacity.

Next, we examine the startup delays experienced by peers

that arrive at different time slots during a flash crowd. Us-

ing Eq. (6), Fig. 9 plots the distributions of startup delays

for peers that arrive at different time slots, under a constant

peer arrival pattern with λ = 2000. It clearly demonstrates

that different arrival times could result in remarkably differ-

ent distributions of startup delays. Generally, later arrivals

tend to experience shorter startup delays compared to early

arrivals. For example, while almost all the peers that arrive

at t = 5 quickly join the system within 3 time slots, those

that arrive at t = 1 are likely to wait much longer. This is

consistent with our previous analysis in Sec. 4.1 that, during

the initial period of the flash crowd, it is difficult for early ar-

rived peers to obtain sufficient upload bandwidth resources.

As more peers gradually join the system, the entire system

capacity improves, from which later arrivals as well as those

waiting peers benefit.

4.4. Effects of Peer Impatience and Departures

It is evident in our recent measurement study [3] that, a con-

siderable portion of peers undergoing a flash crowd could opt

to leave the system due to impatience. Here we use Corol-

lary 3 to examine the impact from this user behavior on the

system scale.

Fig. 10 compares the approximated system scale over

time slots with different values of the expected peer impa-

tience time threshold E[θ], under a constant high peer arrival

rate relative to the initial system scale. We observe the fol-

lowing interesting results. On one hand, as the expected peer

impatience time threshold E[θ] decreases, the system could

scale up more quickly during the flash crowd with relatively

more peers, especially later arrivals, experiencing shorter

startup delays. Noticeably, the approximated system scale
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with E[θ] = 3 quickly reaches a high level at the 10-th time

slot, which is nearly 3 times of the other curves with larger

values of E[θ]. This implies that the departures of impatient

peers during a flash crowd could alleviate the heavy compe-

tition for the limited pool of upload bandwidth resources, as

reflected by α′(t, θ) and p′(t, k, h, θ) in Corollary 3.

On the other hand, it clearly demonstrates that with more

stringent peer impatience time thresholds, the system would

scale up to even more constrained limits, as a considerable

portion of peers have left the system due to impatience. For

example, after all the new peers during the flash crowd either

left or joined the system, the final system scale with smaller

values of E[θ] is only around half (e.g., E[θ] = 3, 8, 13) or

even a quarter (e.g., E[θ] = 1) of that with loose impatience

thresholds (e.g., E[θ] ≥ 23).

5. CONCLUSION AND FUTURE WORK

In this paper, we have studied the inherent relationship be-

tween time and scale in P2P streaming systems during a flash

crowd, through a mathematical framework we developed. We

have derived an upper bound on the system scale and demon-

strated that the timing factor plays a critical role for such a

system to scale. Furthermore, our analysis also brings a more

in-depth understanding with respect to the partial knowledge

of peers and their competition for the limited pool of upload

bandwidth resources, as well as important insights on a few

other critical factors. In addition, our analysis also demon-

strates that the system scaling behavior and peers’ startup de-

lays are strongly affected by different peer arrival patterns and

peer departures due to impatience.

There are several avenues for further studies. For exam-

ple, since P2P streaming systems under a flash crowd show

transient behaviors [3], it is desirable to construct a transient

stochastic model which characterizes variabilities of relevant

factors and provides more accurate analysis and implications

for system design. In addition, it is also desirable to con-

sider other bursty patterns of peer arrival and departure, which

is more representative of real-world systems. Furthermore,

from the perspective of additional server capacity provision-

ing, it is also important to dynamically adjust additional ca-

pacities from servers to adapt to the size of the flash crowd.

We defer these investigations to our future work.
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