
1

Cinematic-Quality VoD in a P2P Storage Cloud:
Design, Implementation and Measurements

Fangming Liu, Member, IEEE, Shijun Shen, Bo Li, Fellow, IEEE, Baochun Li, Senior Member, IEEE,
and Hai Jin, Senior Member, IEEE

Abstract—In this paper, we explore the design space and
practice of a new peer-to-peer (P2P) storage cloud, which is
capable of replicating, refreshing and on-demand streaming
of cinematic-quality video streams, in a decentralized fashion
using local storage spaces of end users. We identify key design
challenges and tradeoffs in such a P2P storage cloud, and
how these are addressed by making informed design choices
in a step-by-step fashion. Following our design choices, we
have implemented a real-world Video-on-Demand (VoD) system
with over 100,000 lines of code, called Novasky, which features
new coding-aware peer storage replacement and server push-
to-peer strategies, in order to maintain media availability and
to balance the system-wide supply-demand relationship in the
P2P storage cloud. Since September 2009, it has been deployed
in the Tsinghua University campus network, attracting 10,000
users during our measurement studies from February to July
2010, and providing over 1,000 cinematic-quality video streams
with bit rates of 1 – 2 Mbps. Based on real-world traces collected
over 6 months, we show that Novasky can achieve rapid startups
within 4 – 9 seconds and extremely short seek latencies within
3 seconds, while maintaining reasonable operational overhead
and server bandwidth costs. Our general understanding on the
design tradeoffs of P2P storage cloud and practical experiences
with Novasky may bring valuable guidelines to future designs of
production-quality P2P storage cloud systems.

Index Terms—Video-on-demand, peer-to-peer, storage replica-
tion, Reed-Solomon codes, quality of experience.

I. INTRODUCTION

With its great potential to bring a rich repository of video
content to end users on-demand, video-on-demand (VoD)
systems have not only been the target of a substantial amount
of research [1], but also been core industry products in both
startup and established corporations alike. Existing research

Manuscript received February 28, 2012; revised June 1, 2012. The research
was support in part by a grant from The National Natural Science Foundation
of China (NSFC) under grant No.61103176, by a grant from the NSFC
Key Program under grant No.61133006, by a grant from the Research
Fund of Young Scholars for the Doctoral Program of Higher Education,
Ministry of Education, China, under grant No.20110142120079, by a grant
from NSFC/RGC under the contract N HKUST610/11, by a grant from
ChinaCache Corp. under the contract CCNT12EG01.

F. Liu and H. Jin are with the Services Computing Technology and System
Lab, Cluster and Grid Computing Lab in the School of Computer Science
and Technology, Huazhong University of Science and Technology. E-mail:
{fmliu, hjin}@hust.edu.cn.

S. Shen is with National Computer Network Emergency Response Technical
Team/Coordination Center of China. E-mail: shijun0504@gmail.com.

Bo Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong. E-mail: bli@cse.ust.hk.

Baochun Li is with the Department of Electrical and Computer Engineering,
University of Toronto. E-mail: bli@eecg.toronto.edu.

Digital Object Identifier XXX/JSAC.XXX.XXX

has extensively studied peer-to-peer (P2P) VoD systems from
theoretical (e.g., [2]), simulations (e.g., [3]), and measurement
perspectives (e.g., [4]). More recently, the ever increasing
expectation of Internet users worldwide for cinematic-quality
videos watched on bigger screens, such as online high-
definition TV or movies in 1, 920×1, 080 pixel resolution [5],
aggravates the challenges in guaranteeing the availability
of both popular and unpopular videos and sustaining high
streaming bit rates, over highly dynamic P2P networks.

To meet skyrocketing user requirements on both video
quantity and quality [6], such systems usually require each
user, called a peer, to dedicate a certain amount of non-
volatile storage space on her local host. Such local storage
space from users will be used in typical P2P VoD streaming
systems as a semi-persistent cache of the media content that
has just been played [7], [8]. The benefits brought forth by
such local caching are two-fold: to assist the video content
distribution among other users from the cache in a peer-to-
peer fashion, and to improve the quality of user experiences
with respect to important quality metrics, such as random seek
latencies — the time it takes for any random seek operations
to complete. As the amount of storage space reserved by a P2P
VoD system in each end host is quite substantial in the real
world, typically more than 1 GB, how can system designers
pool them together to form a P2P storage cloud custom-
tailored for replicating, refreshing and on-demand streaming of
cinematic-quality video contents? This is arguably believed to
be one of the most critical design problems from the viewpoint
of commercial VoD providers such as PPLive, which showed
that a proper design choice of content replication and re-
placement strategies across peer caches has brought significant
performance improvements [9].

In this paper, we seek to explore the design space and
practice of a new P2P storage cloud from the ground up, that
maximizes the utilities of cached content and contributions
of peers to satisfy the availability and performance needs of
cinematic-quality VoD, without the penalty of excessive server
bandwidth costs. Our original contributions in this paper are
two-fold:

First, designing peer storage and server bandwidth strate-
gies by exploring representative design choices. On the peer
side, we make our design choices between simple replication
strategies commonly used in peer caches of most existing
commercial systems, and a new coding-aware peer storage
replacement strategy that we proposed to take advantage
of theoretically-sound maximum distance separable (MDS)
codes, such as Reed-Solomon codes [10]. Impartial trace-

2

driven performance comparisons are conducted to understand
and test their suitability for maintaining a balanced tradeoff
between the performance of streaming “hot” videos and the
diversity of available videos. On the server side, to accommo-
date frequent peer departures and the evolution of diverse user
interests across rich video contents, we switch between two
extremes of the server bandwidth strategies — including the
conventional passive mode driven by greedy viewing requests
of unsatisfied peers, and an adaptive server push mode that
we designed to proactively transmit content to peers in the
P2P storage cloud. Trace-driven experiments in a wide range
of settings are carried out to evaluate these strategies in
maintaining a cost-effective relationship between the system-
wide “supply” of and “demand” for content and bandwidth.

Second, building and measuring a real-world cinematic-
quality VoD system. Following our design choices, we are able
to implement, deploy, and measure a complete VoD system
based on a P2P storage cloud over a high-bandwidth network,
namely, Novasky [11]. Rather than typical emulation-based
experiments, Novasky is a production-quality VoD system that
we implemented with over 100,000 lines of code (LOC) in
C++ from scratch to incorporate our proposed coding-aware
peer storage replacement and proactive server push-to-peer
strategy. We are pleasantly surprised by (and advertising the
product for) the fact that, during our measurement study from
February to July, 2010, its production deployment in the
campus network at Tsinghua University has delivered over
1,000 video streams to over 10,000 users at a quality level of
720p or even 1080p, streaming at bit rates of 1 – 2 Mbps.
In contrast, most traditional P2P VoD systems operate at low
bit rates, such as 400 Kbps [9]. Beyond sustainable streaming
rates, Novasky users are also experiencing typical random seek
latencies of 3 seconds, while traditional systems suffer from
random seek latencies of 15 – 40 seconds, or even longer [9].

Through extensive measurements, we validate the scale,
quality, and lessons learned from practically every conceivable
aspect in Novasky. In particular, though MDS codes, such as
Reed-Solomon codes, have been widely adopted in traditional
mass storage systems (e.g., RAID 6), and have been conceptu-
ally shown to be effective in distributed storage systems [12],
[13], they have not been used in practice in any production-
quality P2P storage cloud systems. Our measurements take
a particular focus on the computational complexity and op-
erational overhead of applying Reed-Solomon codes in the
Novasky P2P storage cloud. To the best of our knowledge, our
work represents the first attempt to provide not only a general
understanding of peer-side and server-side design spaces, but
also practical implementation guidelines of an operational P2P
storage cloud towards a new genre of cinematic-quality VoD
services.

II. DESIGN CHALLENGES AND METHODOLOGIES

A. Design Objective and Challenges
In the context of VoD, a P2P storage cloud is designed to

“pool” local cache storage spaces on all participating peers via
an overlay network, and collectively maintain the availability
and delivery of a rich repository of video contents. To compen-
sate for the dynamic nature of distributed peers, a set of servers

can be deployed to cooperate with the P2P storage cloud
to optimize video availability and streaming quality, while
utilizing limited and prohibitive server bandwidth resources
in a cost-effective manner. In this section, we first identify
both peer-side and server-side challenges in the design process
of P2P storage cloud for on-demand streaming of cinematic-
quality videos from the ground up:

B Despite a variety of cache replacement strategies in
existing P2P VoD systems [4], [7]–[9], when taking a system-
wide perspective, they are mostly restricted to replication of
original video data across the local storage space of partic-
ipating peers, due to its simplicity. However, given limited
peer cache sizes, such simple replication strategies could
become insufficient to maintain data availability and diversity,
and are especially ill-conceived for on-demand streaming of
cinematic-quality videos. We need a new and cost-effective
storage and replacement strategy, in order to improve the
efficiency of utilizing valuable space in the P2P storage cloud,
and to maintain the availability of videos.

B With the presence of frequent peer departures and the
evolution of diverse user interests across a rich repository
of videos, it is not uncommon to have a lack of balance
between the demand and supply of content and bandwidth,
which brings adverse effects to the availability of videos and
the streaming performance. We need to proactively adapt the
availability of videos in the P2P storage cloud based on their
popularity, yet with effective utilization of limited bandwidth
available at media server(s).

B. Methodologies

To address the above challenges, we need to thoroughly
explore different design choices of peer storage and server
bandwidth strategies, verified from simulation-based “stress-
tests” to practical system implementation “in the wild.” In
particular, such design choices are required to withstand
impartial and extensive performance-comparisons in a step-
by-step manner, in order to derive crystal-clear and rigorous
engineering guidelines on how well a certain building compo-
nent of the system is doing and why.

First, we build impartial and practical simulations to
conduct fair comparisons between different design choices,
driven by real-world traces from a popular VoD service of
cctv.com [14], [15]: (1) Without loss of generality, suppose
media server(s) host a rich set of V = 1, 000 high-quality
videos of 1 GB size and 1 Mbps streaming bit rate, which
follow the observed long-tail popularity distribution of real
traces [15]. (2) Empirically, the typical uplink and downlink
capacities of peers are 384 Kbps and 1.5 Mbps, respectively,
which is in accordance to the asymmetric characteristics
of ADSL access in the public Internet. Like most existing
commercial P2P VoD systems [9], the default cache space of
peers is limited to 2 GB. The arrival/departure pattern and
viewing interactivities of peers follow the reported statistics
of user behaviors1 of real traces [15]. (3) To exercise our

1Our empirical observations from both cctv.com traces and our realistic
Novasky VoD system in Sec. V-A show that, the number of seeding peers
(supply) is usually greater than the number of streaming peers (demand).

3

design choices to the extent possible, we emulate both stable
and dynamic scenarios for performance evaluation throughout
Sec. III and Sec. IV, by varying the system scale M (the total
number of concurrently online peers) and the degree of system
dynamics m in term of the portion of newly arriving peers
(with empty caches and thus cannot make upload contributions
to the system immediately) over the entire population M . Note
that such flexible and fine-tuned “stress-tests” are imperative
before, yet infeasible during, live operation of deployed sys-
tems.

Then, following the justified design choices, we are able to
implement and deploy a new cinematic-quality VoD system
based on a P2P storage cloud in the real world, with compre-
hensive measurements to validate its performance and over-
head in Sec. V. Such a “closed-loop” research methodology
can offer not only general understanding of peer-/server-side
design spaces, but also practical implementation guidelines
towards the best possible VoD service qualities.

III. DESIGN CHOICES BETWEEN REPLICATION AND
CODING-AWARE PEER STORAGE STRATEGIES

In a P2P storage cloud, the most critical design objective
is to efficiently utilize limited peer storage cache capacities to
maintain video availability and to maximize peer upload con-
tribution. To achieve this objective, two representative types
of storage strategies characterize the availability-complexity
tradeoff in system design:

First, most real-world systems organize peers in a mesh
overlay [4], [9], wherein each peer replicates a number of
videos to serve as many peers as possible. However, given a
limited cache size such as 2 GB, it is infeasible to store all
complete videos. Meanwhile, a viewing peer is fed by multiple
seeding peers with limited upload capacities, each of which is
responsible for uploading only a certain part of video data in
a coordinated manner. Combining these aspects, the common
design choice of peer caches is to replicate certain segments
of the original video data instead of the complete video. Such
a mesh-based replication strategy (e.g., [7], [8]) is widely
adopted due to its simplicity in system design and resilience
to peer dynamics. However, as different segments become
rare (even unavailable) or excessively duplicated among peer
caches, video availability and on-demand streaming perfor-
mance are adversely affected.

Second, to improve video availability for the same storage
capacity, another theoretically-sound strategy is to take advan-
tage of coding, such as MDS codes [10], [16], to generate and
store video data in the form of encoded segments across the
distributed peer caches. Compared to the replication of original
video segments, all coded segments are equally innovative and
useful to any peers with high probability, due to increased data
randomness and diversity (Sec. III-A2). Nevertheless, such
coding-aware storage strategies have rarely been deployed
in peer caches of real-world operational VoD systems. How
much performance benefit could sophisticated coding-aware
storage strategies bring forth compared to simple replication
strategies, in the context of on-demand streaming of cinematic-
quality videos? Would such benefit outweigh the additional

system complexity and computation/communication overhead
in practical uses of coding?

A. Peer Storage and Replacement using Reed-Solomon Codes

In response to the questions above, we first propose a
coding-aware peer storage and replacement strategy using
Reed-Solomon codes, which then is experimentally compared
with simple replication strategies under impartial trace-driven
simulations.

Algorithm 1 The peer storage and replacement strategy using
Reed-Solomon codes.

1: // when the current cache space is saturated and cannot
store new incoming video data

2: sort currently cached original videos in LFU order;
3: for each original video do
4: // code-based replacement
5: use Reed-Solomon codes to generate a coded segment

to be stored, with a randomly selected index from the
Vandermonde matrix;

6: evict the original video from the cache;
7: if the cache space is enough for the new incoming data

then
8: store the new incoming data; return;
9: end if

10: end for
11: // if cache space is still insufficient to accommodate new

incoming video data
12: sort currently cached coded segments in LFU order;
13: for each coded segment do
14: evict the coded segment from the cache;
15: if the cache space is enough for the new incoming data

then
16: store the new incoming data; return;
17: end if
18: end for

As a peer watches more videos (or receives pushed video
segments from proactive servers as we will elaborate in
Sec. IV), new incoming videos will be stored until its cache
space gradually becomes fully utilized. This will eventually
trigger our replacement strategy in Algorithm 1 to replace
original video segments with one coded segment, so that a
peer can reclaim cache space to further accommodate more
incoming videos. In particular, to combine coding with repli-
cation within the peer storage cache, our strategy performs
the following: (1) When a peer has adequate cache space, it
stores the complete video as usual so that it may serve more
data to viewing peers that do not have a sufficient number
of seeding peers. (2) When the cache space becomes fully
utilized as a peer watches more videos, currently cached videos
are sorted in the Least Frequently Used (LFU) order2, and
following that order, each video file will be coded to one

2Specifically, each peer records the number of requesting times (from
other peers) for each of its cached videos. Such statistics will be used by
corresponding peers to form their respective LFU order of cached videos as
needed in the replacement strategy.

4

1B

1 kB

1)1(! kcB

b

1B 2B kB 1 kB 2 kB k2B 1)1(! kcB 2)1(! kcB ckB

1S 2S kS

2B

2 kB

2)1(! kcB

kB

k2B

ckB

jS

k

]1,1[! " qkj

Fig. 1. The coding process from original video to coded segments.

coded segment, using a (n, k) Reed-Solomon code, in which
n is the maximum number of unique coded segments possible,
and k is the number of original segments to be coded. Since
only one coded segment will remain, it will occupy a smaller
amount of cache space as compared to the original video. The
purpose is to free up a sufficient amount of storage space to
accommodate a new incoming video, while still keeping the
availability of coded videos.

There are, however, a number of more detailed challenges
that the outline of our design does not discuss.

1) Applying Reed-Solomon codes to segments: The first
natural question that arises is: How are segments defined, and
how are Reed-Solomon codes applied to these segments? In
general, the original (complete) video of size L is divided into
contiguous data blocks3 of size b, i.e., {Bi|i = 1, 2, . . . , ck},
where i is the sequence number of blocks, and c = d Lkbe is
the number of blocks within a segment. Of course, additional
zeros can be added to the end of the last segment of a video.
These blocks are recombined in an interleaved manner to form
k original segments Sj = {Bik+j |i = 0, 1, . . . , c − 1; j =
1, 2, . . . , k} with indices j ∈ [1, k], so that each segment con-
sists of interleaved blocks across the entire video4, as shown
in Fig. 1. A seeding peer can independently and randomly
choose an index j and a corresponding row vector gj in the
Vandermonde matrix — which is the typical generator matrix
used in systematic Reed-Solomon codes — and generate a
coded segment Ŝj = gj [S1,S2, . . . ,Sk]

T . When such a
choice of index j is made, due to the nature of systematic
Reed-Solomon codes, j must be in the range of [k + 1, n].
Since there are k segments in a video, a coded segment has a
size of only 1/k of the original video size, and will be stored
by the seeding peer to replace the original video when storage
space in the cache needs to be reclaimed. A viewing peer can
decode and recover video blocks in a pipelined fashion using

3The selection of block size b needs to cater to fine-grained decoding and
streaming, while avoiding excessive computation overhead. It is empirically
shown in [17] that feasible block sizes for code-based P2P content distribution
systems fall in [2, 32] KB. Specifically, under a typical setting of b = 8 KB
(smaller than 32 KB in BitTorrent-like file sharing systems) and k = 16 in
Novasky, an amount of k∗b decoded data corresponds to one second of video
content with a streaming bit rate of 1 Mbps.

4As both original and coded segments generated by our segmentation and
coding approach involve data across the entire video, random seeks with either
long or short distances may very possibly not cause the requesting peer to
switch to new seeding peers. This can avoid potential increases of random
seek latencies.

0

20

40

60

1 2 4 8 16 32 64 128

P
er

ce
n

ta
g

e
o

f
B

u
ff

er
in

g
 T

im
e

(%
)

Parameter k

(a)

0

20

40

60

80

1 2 4 8 16 32 64 128

P
ee

r
S

to
ra

g
e

U
ti

li
za

ti
o

n
(%

)

Parameter k

(b)

20

40

60

80

1 2 4 8 16 32 64 128

U
p
lo

ad
 B

an
d

w
id

th
 U

ti
li

za
ti

o
n

 (
%

)

Parameter k

(c)
Fig. 2. Effects of number of original segments to be coded k: (a) percentage
of buffering time during playback, (b) storage utilization ratio of peer caches,
and (c) upload bandwidth utilization ratio averaged over all peers, as the value
of parameter k varies.

Gauss-Jordan elimination, as soon as k blocks with the same
relative position x of any k linearly independent segments S
are received, instead of waiting for k entire segments to be
received.

2) Choosing parameters n and k in Reed-Solomon codes:
How parameters n and k should be chosen hinges upon the
need that different peers need to produce different coded
blocks, i.e., using different indices to select different coding
vectors in the Vandermonde matrix that Reed-Solomon codes
use. In order to minimize the probability of duplicated coded
segments, we choose to use a sufficiently large size q of the
Galois Field GF(q) in our storage strategy. A good choice
would be q = 216, since it is the maximum size of the Galois
Field that allows for efficient implementations in software [10],
[12]. In this case, based on the requirement of Reed-Solomon
codes, n ≤ q − 1, and the maximum n is 216 − 1.

By utilizing our trace-driven simulations to obtain practical
guidelines on the choices of k, Fig. 2(a), Fig. 2(b) and
Fig. 2(c) investigate the fraction of buffering time (streaming
interruptions) during video playback, the storage utilization
ratio of peer caches, and the upload bandwidth utilization
ratio (versus peer upload capacity) averaged over all peers,
respectively. As the value of k varies, we observe “sweet
spots” of k ∈ [16, 64] for achieving less buffering time when
playback interruptions occur and higher utilization of peer
upload bandwidth resources, and k ∈ [8, 32] for reaching
higher utilization of peer storage resources. These jointly give
a favorable range of k ∈ [16, 32] for system designers. To min-
imize the probability of duplicate index choices by different
peers, one representative choice is a reasonably small k = 16
as we will verify in our real-world system implementation and
measurement in Sec. V. This implies that segments cached
by peers are coded by randomly selecting a coding vector
from 216 − 1 rows in the Vandermonde matrix, all of which
are guaranteed to be linearly independent from each other,
due to the property of the Vandermonde matrix. According
to solutions to the birthday attack problem, the probability of
having a duplicated selection with k different peers choosing
indices from n = 216 − 1 rows can be approximated as
1 − e−k

2/(2n), which is only 0.20% under k = 16 and
n = 216 − 1.

Interestingly, the selection of k = 16 implies that the
segment size is only 1/16 of the original video size. By
replacing the original video with a coded segment, our strategy

5

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6

P
la

y
b

ac
k
 S

u
cc

es
s

R
at

io
 (

%
)

System Dynamics m

Replication

Coding

(a)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6

P
ee

r
U

p
lo

ad
 C

o
n

tr
ib

u
ti

o
n

 (
%

)

System Dynamics m

Replication

Coding

(b)

0

3

6

9

12

15

0.1 0.2 0.3 0.4 0.5 0.6

S
ta

rt
u
p

 L
at

en
cy

 (
se

c)

System Dynamics m

Replication

Coding

(c)

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6

S
ee

k
 L

at
en

cy
 (

se
c)

System Dynamics m

Replication

Coding

(d)

0

15

30

45

60

75

0.1 0.2 0.3 0.4 0.5 0.6

B
u

ff
er

in
g

 T
im

e
(s

ec
)

System Dynamics m

Replication

Coding

(e)
Fig. 3. Performance comparison of coding-aware and traditional replication
strategies under different degree of system dynamics: (a) playback success
ratio of videos, (b) upload contribution of peers, (c) startup latency, (d) seek
latency, and (e) buffering time averaged over all video sessions.

can free up to 16 times less storage space to store new videos.
Even larger values of k require a viewing peer to download
segments from more seeding peers, which aggravates the
scheduling overhead. As shown in recent measurement and
analytical studies [9], [18], the practical number of seeding
peers falls in [8, 32].

3) Estimating communication overhead: Another practical
design consideration is whether we can keep the implemen-
tation of code-based storage strategy sufficiently lightweight,
with acceptable communication overhead, even with the use of
Reed-Solomon codes. With n = 216−1 as we discussed above,
the coding metadata in term of the segment index can be
simply represented as an integer of 2 bytes within [1, 216−1]:
original segments with indices [1, k] and coded ones with
indices [k+1, 216− 1], all of which are linearly independent.
The original video can be treated as k original segments,
since systematic Reed-Solomon codes are used. In addition,
coding vectors from the Vandermonde matrix can be readily
buffered by each peer, without incurring extra computation
and transmission overhead. We will further verify the coding
overheads via real-world measurements in Sec. V-D.

B. Coding-Aware or Not?

Following our methodology in Sec. II-B, we conduct im-
partial trace-driven performance comparisons of coding-aware
and traditional replication strategies in the context of VoD.
Specifically, we choose the simple yet practical proportional
replication algorithm [7], [9] with respect to video popularity
to represent the family of traditional replication strategies in
most existing P2P VoD systems. And recent analyses [7], [19],
[20] have demonstrated that such simple replication strategies
can work well.

First, we examine the video availability which is primarily
related to three cases during a user’s viewing session for a
video: (1) completed session: the session successfully ends
when the video is completely watched by the user; (2) short

session: the user stops the session or switches to another
video due to content reasons, even if it has not experienced
any streaming interruption; (3) aborted session: the session
is interrupted with unacceptable buffering time τ , such as
τ > 1 minute, which motivates the user to leave. By regard-
ing the first two cases as successful, we define a playback
success ratio as the percentage of successful sessions over all
measured sessions of a video, in order to capture the video
availability. Fig. 3(a) compares the average playback success
ratio of videos under coding-aware peer storage strategy in
Algorithm 1 (with the chosen parameters in Sec. III-A2 and
Sec. II-B) against traditional replication strategy. Under small
and moderate degrees of system dynamics (M = 3, 000 and
m ≤ 0.4, i.e., the portion of newly arriving peers with empty
caches is below 40%), our coding-aware peer storage strategy
maintains a consistently higher playback success ratio (nearly
100%) than the traditional replication strategy. As the system
becomes even more dynamic as m > 0.4, it is not surprising
that the performance of both coding-aware and traditional
replication strategies degrades, yet the former still outperforms
the latter.

Given a limited amount of server bandwidth 50 Mbps
provisioned versus a large system scale M = 3, 000 (i.e.,
only 50 peers can be concurrently supported by the server to
playback high-quality videos of 1 Mbps bit rate), Fig. 3(b)
examines the ratio of the amount of video data uploaded
by peers to the overall upload traffic served by both the
server and peers. It reveals that our coding-aware peer storage
strategy can enable higher data sharing opportunities among
peer caches, and make more sufficient utilization of peer
upload bandwidth resources. This explains the improvement
of video availability observed in Fig. 3(a).

Next, we estimate the user experience in terms of the average
startup latency, seek latency and buffering time over all video
sessions in Fig. 3(c), Fig. 3(d) and Fig. 3(e), respectively. We
observe that our coding-aware peer storage strategy is capable
of reducing all the three types of latencies under both stable
and dynamic systems. In particular, the average buffering time
under the traditional replication strategy steadily increases
from around 22 seconds to even one minute as m increases.
This leads to unacceptable playback interruptions for users.
In sharp contrast, such a buffering time under our coding-
aware strategy can be kept within 5 seconds for most cases
(i.e., m ≤ 0.4), and less than 25 seconds even under highly
dynamic systems such as m = 0.6.

In summary, our code-based storage and replacement strat-
egy can improve the storage efficiency and video availability
of a P2P storage cloud, in the sense that more storage space
can be freed to cache and serve a larger number of videos with
the same cache size constraints, while coded segments using
Reed-Solomon codes can still maintain video availability and
peer upload contribution with high probability. This essentially
increases the data sharing opportunity among peers, compared
to simple replication strategies. Although we can further allow
a peer to cache more than one coded segment for a replaced
video, our current design choice is to let the peer cache
one coded segment. The rationale is that storing multiple
coded segments of the same video will consume more storage

6

resources and potentially incur peer load imbalance, without
providing extra data availability [12].

IV. DESIGN CHOICES BETWEEN PROACTIVE SERVER
PUSH-TO-PEER AND PASSIVE SERVER STRATEGIES

Due to the dynamic nature of the P2P storage cloud, video
availability and peer upload contribution can be degraded
at run-time, as illustrated by Fig. 3. With the presence of
frequent peer departures, new coded video segments need to
be periodically replenished in the system to maintain video
availability. However, solely relying on peers for such repairs
in coded systems may incur tremendous computation overhead
and repair bandwidth costs [13]. In particular, regenerating one
coded video segment with a (n, k) MDS code requires a peer
to download k distinct segments or the entire video. That is,
the amount of data that needs to be transferred can be k times
higher than the amount of redundancy lost [16]. Furthermore,
due to the evolution of diverse user interests across a rich
repository of videos, it is not uncommon to have demand-
supply imbalance across videos. This requires the redundancy
of video in a P2P storage cloud to be proactively adapted to
the video popularity, in order to guarantee service quality and
user experience.

To compensate for these adverse effects, it is natural to
consider what is the best possible strategy for server bandwidth
to be supplemented and its usage to be reduced. Generally, two
extremes of the design space exist: (1) Traditionally, server
bandwidth usage is passively driven by viewing requests that
are not satisfied by peers alone, in order to maintain a baseline
on content availability. This is commonly used in existing
commercial systems [9], [21], due to its simplicity. Although
this can temporarily compensate for individual demand of
peers, it cannot balance the system-wide demand and supply of
P2P storage cloud in the long run. As a result, expensive server
bandwidth could be greedily consumed during peak viewing
hours, while leaving idle server resources during non-peak
hours (Fig. 6). (2) Beyond such passive server strategies, can
we switch to proactively push “proper” video data to “proper”
peer caches at “proper” times, with a better utilization of
precious server resources? The expected benefit is to maximize
the utilities of pushed data and contributions of peers, enabling
the P2P storage cloud to satisfy most viewing requests and
offload the server(s) eventually.

A. Adaptive Server using Push-to-Peer Strategy

To answer the above questions, we first design an adaptive
server push-to-peer strategy in the P2P storage cloud, shown
in Algorithm 2, which is then impartially compared with
traditional passive server strategies. Specifically, by monitoring
online traces on video popularity and redundancy, as well
as peer cache status and online duration, the media server(s)
feeding the P2P storage cloud can be designed to proactively
transmit randomly coded segments of under-supplied videos to
capable peers, in order to: (1) cope with redundancy loss due
to peer churn, (2) alleviate video demand-supply discrepancy,
and (3) release new videos. These replenished segments can
improve data redundancy and diversity in the P2P storage

cloud, so as to improve data sharing among peers, and thus
mitigate costly requests to servers. This is complementary
to the commonly used “best-effort” server strategy which is
passively driven by unsatisfied viewing requests from peers. In
particular, as the server(s) host original videos, it can readily
produce new coded segments using our coding approach in
previous section, without incurring excessive repair bandwidth
costs [16].

Algorithm 2 Adaptive server push-to-peer strategy.
1: Given a repository of videos V : {v = 1, 2, . . . , V } seeded

by the media server(s), monitoring the video popularity λv
and redundancy rv,∀v ∈ V, by collecting peer viewing
statistics and cache status.

2: for all v ∈ V do
3: if v has been pushed within a previous period Tp then
4: continue;
5: end if
6: compute a demand-supply discrepancy index dv ←

(kwwv
) rvλv

, where wv is the streaming bit rate of video
v, and w is a statistical measurement on peer upload
capacity based on collected traces.

7: end for
8: select a candidate video v′ with dv′ = min{dv|v ∈ V}.
9: if dv′ < d, which is a tunable threshold controlled by the

service provider then
10: generate λv′ coded segments using Reed-Solomon

codes;
11: select candidate peers according to collected traces on

available cache space, online duration and idle status;
12: if media server(s) has available bandwidth and is not

busy then
13: transmit new coded segments to selected peers.
14: end if
15: end if

Our server push-to-peer strategy can be implemented with
flexibility in the P2P storage cloud. Specifically, video popu-
larity λv,∀v ∈ V, can be captured by periodically recording
file request counts, so as to adapt to the evolution of user
interests. With our coding approach in the previous section,
the video redundancy rv,∀v ∈ V, can be reflected by the ratio
of the total number of video segments cached on peers to the
corresponding number of segments k. With our peer caching
Algorithm 1, a video v with redundancy rv implies that there
exist [rv, krv] seeding peers caching coded or original seg-
ments of v. Given the video streaming rate wv and a statistical
measurement on the peer upload capacity w (e.g., average
peer upload capacity), the maximum concurrent number of
viewing requests that can be supported by seeding peers can
be ideally expressed as (kwwv

)rv . Hence, maintaining video
availability requires its redundancy rv to meet its popularity λv
as (kwwv

)rv ≥ λv , i.e., rv ≥ max{λvwv

kw , 1}. This qualitatively
implies that a higher video popularity and streaming rate
requires a higher level of redundancy, whereas coding and
peer upload contributions can help relax such a requirement.

Accordingly, we can express rv as rv = dv(
λvwv

kw); al-
ternatively, dv = (kwwv

) rvλv
is referred to as demand-supply

7

20

30

40

50

60

70

80

500 1500 2500 3500

S
er

v
er

 B
an

d
w

id
th

 (
M

b
p

s)

System ScaleM

Passive

Replication-based Push

Coding-aware Push

(a)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6

S
er

v
er

 B
an

d
w

id
th

 (
M

b
p

s)

System Dynamics m

Passive

Replication-based Push

Coding-aware Push

(b)
Fig. 4. Comparison of server bandwidth demanded for maintaining 99% of
average playback success ratio, using proactive server push-to-peer strategy
and traditional passive server strategy driven by unsatisfied viewing requests
from peers: (a) under different system scales, and (b) under different degree
of system dynamics.

discrepancy index of video v. In practice, we expect to
maintain dv ≥ 1 for a baseline of video availability and
resilience to peer churns. The larger the value of dv is, the
higher redundancy, availability and churn resilience the video
v has. Under-supplied videos with smaller dv are preferred
by the server for replenishing coded segments. However, if a
video has been replenished in a previous period Tp, it will
be excluded to avoid aggressive replenishment of a particular
video while ignoring others. To prevent server bandwidth
abuse, a tunable threshold for demand-supply discrepancy d
is controlled by the service provider. Given a flat amount of
server resources, the selection of d needs to balance the trade-
off between server resource utilization and coding overhead.
A higher threshold may aggravate the burden on servers, while
a lower one can lead to under-utilized server bandwidth.

Finally, there is a substantial margin of flexibility in select-
ing candidate peers to push coded segments. The rule of thumb
is to randomly select long-lived peers with a relatively large
available cache space and available upload bandwidth. If the
cache space of a selected peer is adequate to accommodate
those pushed segments, then those pushed segments can be
stored by the selected peer without triggering Algorithm 1 to
replace other existing segments. Otherwise, when the cache
space of a selected peer is insufficient to accommodate those
pushed segments, Algorithm 1 will be triggered to replace
some existing segments. The cost efficiency of our server
push-to-peer strategy in terms of the utility of pushed video
segments will be evaluated with both trace-driven simulations
in Sec. IV-B and real-world measurements in Sec. V.

B. Proactive or Passive?

Using our trace-driven simulations for impartial tests,
Fig. 4(a) compares the server bandwidth demanded for main-
taining 99% of average playback success ratio, under proactive
server push-to-peer strategy in Algorithm 2 and traditional pas-
sive server strategy. Specifically, the proactive server strategy
can either push original video segments (henceforth referred to
as replication-based push) under traditional replication strat-
egy on peer caches, or push randomly coded segments (hence-
forth referred to as coding-aware push) under our coding-
aware peer storage strategy. In contrast, the passive server
strategy (without push) is completely driven by unsatisfied
viewing requests from peers using replication strategy, which
is representative of most existing deployed systems [9]. We
observe that the passive server strategy greedily consumes

0

2

4

6

8

10

0 20 40 60 80 100

U
ti

li
ty

 o
f

P
u

sh
ed

 D
at

a

Time after Push (Day)

Replication-based Push

Coding-aware Push

Fig. 5. Comparison of the utility of
pushed data from server(s) over time,
under replication-based and coding-
aware server push-to-peer strategies.

0

20

40

60

80

100

0:00 6:00 12:00 18:00 24:00

S
er

v
er

 B
an

d
w

id
th

 U
sa

g
e

(%
)

Time

Unused

Push

Requested

Fig. 6. Percentage of server band-
width used for meeting viewing re-
quests from peers and pushing coded
segments to selected peers over time.

tremendous server bandwidth resources as the system scale
increases from M = 500 to M = 3, 500, when the degree
of system dynamics is set as m = 0.1 according to our
empirical experiences from practical systems (Sec. V) and
the other parameters follow Sec. II-B and Sec. III-A2. While
the replication-based push strategy brings limited server band-
width reduction, the coding-aware push strategy can signifi-
cantly save around 55% of server bandwidth costs (compared
to that of the passive strategy) as the system scale M ≥ 2, 500.

Even when the system becomes more dynamic (i.e., M =
3, 000 and m increases from 0.1 to 0.6) in Fig. 4(b), our
coding-aware push strategy consistently consumes far less
server bandwidth than both the passive strategy and the
replication-based push strategy do. This further justifies the
robustness of our coding-aware server push-to-peer strategy
in conserving premium server bandwidth costs, without sacri-
ficing the quality of user experiences.

To unveil in-depth rationales behind the above observations,
Fig. 5 zooms into the utility of replenished segments pushed
by server(s), in term of the ratio between the aggregate amount
of data served by all the replenished segments (uploaded to
some requesting peers) and the sum of the original sizes of
the replenished segments. A good news for system designers
is that the utilities of replenished segments can be “amplified”
dramatically, as they could be requested by more peers as
time progresses. Conversely, severe system dynamics could
result in less time and chance for the peers caching replenished
segments to make contributions. This may lead to the rise of
server bandwidth under all the three types of server strategies
in Fig. 4(b). Nevertheless, the utility achieved by our coding-
aware push strategy surpasses that of the replication-based
push strategy by around 2.3 times, due to the wide diversity
and high randomness of coded segments in maximizing peer
contributions. Thus, it is more cost effective to push coded
segments rather than original segments.

Further, Fig. 6 examines the evolution of server bandwidth
usages over a day, when the system scale M = 3, 000 and sys-
tem dynamics m = 0.1. Similar to the empirical observations
in most existing VoD systems [4], [9], we observe a regular
“daily variation pattern” of server bandwidth usage: the system
has the lowest server bandwidth demand from fewer peers
at the early morning, and reaches its peak bandwidth usage
with an increasing population of peers during the afternoon
and night. Given that an Internet service provider (or a
content delivery network) often uses the 95 percentile rule [3]

8

to charge a VoD provider according to its peak bandwidth
usage, the larger such a variation of bandwidth usage is, the
greater amount of under-utilized server bandwidth resources
exist. This implies a poor return-on-investment for a VoD
provider. Using our proactive server push-to-peer strategy, a
VoD provider can not only meet the present viewing requests
from peers, but also make better use of idle bandwidth to
optimize the long-term utility of P2P storage cloud (Fig. 5),
without incurring extra server bandwidth cost under the 95
percentile rule. In essence, the idle server bandwidth resources
are utilized to push coded segments into the P2P storage cloud
with “amplified” utilities (Fig. 5), which in turn can alleviate
the peak user demand and offload the server(s). Unsurprisingly,
the server bandwidth usage still drops during 4:00 am to 7:00
am, due to the difficulty in finding enough number of candidate
online peers to push video data to.

V. Novasky: REAL-WORLD IMPLEMENTATION AND
MEASUREMENT

A. System Deployment and Trace Collection

Motivated by the observed benefits and design guidelines of
using coding-aware peer storage strategy and proactive server
push-to-peer strategy, we have developed a new cinematic-
quality VoD system, named Novasky [11], for both Linux
and Windows platforms. It has been deployed and operational
in the Tsinghua University campus network since Septem-
ber 20095. Fig. 7 illustrates our system architecture, and
interactions among major components in Novasky. Arrow 1
represents the interaction between peers and the Management
Center to manage the P2P storage cloud. Arrow 2 represents
the gossip communication and video data distribution among
peers. By concurrently downloading coded video blocks from
multiple serving peers, a viewing peer can progressively
decode and playback the video. Each peer is able to cache both
original and coded segments of multiple videos. Along arrows
3 and 4, the media servers adaptively and proactively push
coded segments of under-supplied videos to selected peers.

B The Management Center (MC) consists of a set of servers
that have a number of responsibilities: (1) maintaining meta-
data in all media files, including the MD5 hash value, length,
and popularity of each file; (2) authenticating users using the
RSA-based public key infrastructure; and (3) maintaining the
current status of participating peers in the P2P storage cloud,
including the status of their local storage space. Routine tasks
such as NAT traversal are also handled.

B The Media Servers (MS) cooperate with the P2P storage
cloud to feed a rich repository of videos to a large number
of users. As we have elaborated in Sec. IV, the objective of
the media servers is to utilize limited server bandwidth in the
best ways possible, and to maximize content availability and
service quality in the P2P storage cloud.

B The P2P storage cloud is derived from traditional P2P
designs: all participating peers are organized into a mesh

5Note that although our system is deployed over a campus network, the
effectiveness and advantages of our design choices are not restricted to such
cases, as verified by our impartial trace-driven simulations with public Internet
settings for fair performance comparisons in previous sections.

P2P Storage Cloud

Media Servers

Management

Center

2

1 Decoding

Video i (coded)

Video ii (original)

Peer Cache

…
…
……

…

…

…
Recoding

Downloading
Coded

Segments

Playing

3

4

Storing

Fig. 7. The architectural implementation of Novasky.

topology, and exchange information about the availability
of video segments periodically. In addition to on-demand
streaming and random seek functions, Novasky provides a
feature-rich user interface to navigate and search in the video
repository, rate videos, and upload user-generated content.
From the perspective of a user using its interface, the Novasky
P2P storage cloud architecture is completely transparent: it
operates exactly like a cloud storage service. Users are not
aware of the fact that, rather than storing videos in the “cloud,”
they are stored in the collective “pooled” storage that all users
contribute to.

B We have implemented detailed measurement mechanisms
within each Novaksy client to collect real-world traces over 6
months. Each peer periodically reports its run-time activities
and status using UDP to the MC, which is responsible for
logging: (1) user-related traces including online times and
cache status, CPU and memory consumption, as well as
upload and download traffic volumes; (2) media-related traces
including video popularity, startup and seek latencies, as well
as playback durations. Such internal traces characterizing the
live behavior of Novasky are not only used to guide the
adaptive server push strategy in Sec. IV, but also analyzed
to evaluate the design effectiveness and overhead of Novasky.

TABLE I
DEPLOYMENT STATISTICS OF Novasky.

of users 10, 094 # of videos 1, 000
of user sessions 47, 626 # of video sessions 63, 445

Viewing time 30, 288 hours Total traffic 17 TB
Measurement period Feb-Jul, 2010 Trace volume 10 GB

Table I summarizes the deployment statistics6 of No-
vasky. In particular, Novasky is designed towards providing
cinematic-quality VoD service. Fig. 8 plots the CDF of stream-
ing bit rates over all videos provided by Novasky. The average
video bit rate is 1.08 Mbps, and around 25% of all videos
(especially 720p format videos) have bit rates higher than 1.5
Mbps. In contrast, the video bit rates in existing P2P VoD
systems [4], [9], [22] fall in the range of 400−800 Kbps, and
very rarely exceed 1 Mbps. Despite high streaming bit rates,
Novasky can provide high service quality levels as perceived
by users, in terms of fluent playback and short startup and
seek latencies, as we will demonstrate in the next subsection.

6A user session is defined as the online period between a pair of arrival and
departure events of a user in Novasky VoD system, during which the user may
playback a certain number of videos (defined as video sessions). On average,
the ratio of playback time of a user to its total online time is below 1/3.5
in Novasky VoD system, which implies that there are usually more seeding
peers (supply) than streaming ones (demand).

9

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5

Video Bitrate (Mbps)

C
D

F

 Mean = 1.08

 Median = 1.11

Fig. 8. CDF of streaming bit rates
over all videos provided by Novasky.

0

20

40

60

80

100

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

P
er

ce
n

ta
g

e
(%

)

Other

Buffer

Short

Complete

Fig. 9. Percentage of completed,
short and aborted sessions, and other
cases due to miscellaneous failures.

B. User-Perceived Service Qualities

We first evaluate the user-perceived service qualities pro-
vided by Novasky from various perspectives, including durable
video availability, on-demand streaming fluency, as well as
startup and random seek latencies.

1) Durable video availability: Compared to conventional
data availability measurements [16], we measure the playback
success ratio of videos defined in Sec. III-B, which is more
representative of the durable video availability in the context
of VoD. Fig. 9 plots the average percentage of completed
sessions, short sessions and aborted sessions over all videos
in Novasky vs. time on a representative day. We observed
that the average playback success ratio can be maintained
up to 80%, which implies a stable level of durable video
availability in Novasky. Specifically, 60% of sessions exit prior
to the end of the corresponding video due to active video
switching, whereas around 20% of sessions last until the
videos are completely watched by users. This demonstrates
a common “short session” nature in VoD services [9], [22].
Empirically, around 15% of sessions aborted because users
cannot tolerate a buffering time exceeding one minute, when
streaming interruptions occurred. We zoom into the durable
video availability of each video in the large video repository
of Novasky, by plotting the playback success ratio of each
video in a descending order in Fig. 10. It shows that nearly
20% of videos enjoyed perfect availability, and more than 60%
of videos achieved higher than 80% durable video availability.

2) On-demand streaming fluency and latencies: While
the durable video availability is insufficient to reflect fine-
grained user experiences (e.g., playback jitters), we further
investigate the video streaming fluency as sessions progress,
as well as startup and random seek latencies. Specifically,
for each viewing session s, our trace mechanism records:
(1) the startup latency7 Tst between the time a user issues a
viewing request and the time the video playback commences;
(2) seek latencies8 T isk after a user jumps forward or back-
ward to arbitrary playback points, where i is the number
of seek activities during the session; (3) buffering times T jb
when playback interruptions occur, where j is the number of

7The startup latency of a viewing peer comes from three aspects, including
(1) bootstrapping for retrieving the seed list and media metadata from
management server(s), (2) establishing connections with seeding peers, and
(3) downloading initial video data from multiple seeding peers to the playback
buffer. Specifically, an amount of data corresponding to at least 16 seconds
of a video needs to be buffered before a peer plays the video. Suppose a
streaming bit rate of 1 Mbps, the size of such buffered data is 2 MB.

8The seek latency of a viewing peer is primarily attributed to the above
third part (playback buffer), so that it is usually shorter than the startup latency
as shown by our measurement results in Fig. 12 and Fig. 13.

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Video Rank

P
la

y
b

ac
k

 S
u

cc
es

s
R

at
io

 (
%

)

 Mean=82.54%

 Median=83.85%

Fig. 10. Playback success ratio
of each video in a descending order
(normalized) on a representative day.

90

92

94

96

98

100

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

P
la

y
b

ac
k

 F
lu

en
cy

 (
%

)

 Mean = 99.23%

 Median = 99.14%

Fig. 11. Playback fluency index
averaged over all video sessions vs.
time on a representative day.

playback interruptions during the session; (4) the total session
duration Ts. Inspired by [9], we define a playback fluency
index as the fraction of uninterrupted watching time out of
the total watching time, i.e., 1−

∑
j T

j
b /(Ts−Tst−

∑
i T

i
sk).

Fig. 11 plots the average playback fluency index over all video
sessions in Novasky vs. time on a representative day. With
our lightweight coding implementation, Novasky can achieve
a superior level of playback fluency that remains higher than
98% and even up to 100%; and the average playback fluency
over time is up to 99.23%.

Next we examine the startup and random seek latencies.
Fig. 12 plots the average startup and seek latencies, as well
as the buffering time during playback interruptions, over all
video sessions in Novasky vs. time on a representative day. We
can observe that: (1) Our coding-aware design can effectively
support the timely retrieval of arbitrary playback points, with
seek latencies within 3 seconds. This is remarkably shorter
than the seek latencies (10−30 seconds) of existing P2P VoD
systems [4], [9]. In Novasky, random seeks with either long
or short distances may very possibly not cause the requesting
peer to switch to new seeding peers, as both original and coded
segments generated by our segmentation and coding approach
in Sec. III involve data across the entire video. (2) Novasky
also achieves fast startups to provide competitive user experi-
ences. Specifically, the startup latencies varied between 4 and
9 seconds over time, due to the well known “daily pattern”
of peer population [4]. In contrast, the startup latencies in
existing P2P VoD systems are up to 15− 40 seconds [4], [9].
(3) The buffering time during playback interruption is around
1 second. Furthermore, Fig. 13 plots the CDF of startup and
random seek latencies over all video sessions across our six-
month trace period, which confirms that up to 90% of videos
enjoyed short latencies within 10 seconds.

C. Effectiveness of Coding and Push-to-Peer

We next examine the effectiveness of our proposed coding-
aware storage and replacement mechanism and server push-
to-peer strategy, in terms of storage efficiency, peer upload
contribution, and the cost effectiveness of pushed segments.

1) Storage efficiency: First, we are interested in whether
our coding-aware storage algorithm can operate effectively in
the P2P VoD storage cloud, by comparing the amount of coded
and original data in peer storage caches. Fig. 14 plots the CDF
of the percentage of coded data and videos over all peer caches
in Novasky within 48 hours. The average amount of coded data
and videos are 76.9% and 85.6%, respectively; and 63.2% of
peer caches are completely filled with coded data. This shows

10

0

2

4

6

8

10

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

L
at

en
cy

 (
se

c)

Startup
Seek
Buffering

Fig. 12. Latencies of startup, ran-
dom seeks and buffering averaged
over all video sessions vs. time on
a representative day.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Latency (sec)

C
D

F

Startup latency

(mean = 6.6s)

Seek latency

(mean = 3.6s)

Fig. 13. CDF of startup and random
seek latencies of all video sessions
over six-month trace period.

that our coding-aware storage and replacement strategy indeed
plays an important role in Novasky.

With our coding-aware storage and replacement strategy,
is it possible to increase the number of videos stored and
peer upload contribution? Fig. 16 shows the evolution of
storage usage, the number of cached videos, and peer upload
contribution averaged over all peers, as cumulative online time
increases to 48 hours. The default peer cache capacity is set to
2 GB in Novasky. We observed from Fig. 16(a) and 16(b) that
the number of cached videos is not exactly in proportion to the
storage space used. During the first 12 hours, both the storage
usage and the number of cached videos increase quickly. In the
subsequent 13−40 hours, the increase of storage usage slows
down, while the number of cached videos keeps increasing
rapidly with the help of our algorithm. Finally, both the storage
usage and the number of cached videos reach a saturation point
at the 40-th hour, i.e., 1.6 GB storage space and 34 videos,
respectively. Fig. 16(c) shows the hourly peer upload traffic
averaged over all peers. It is interesting to see that the increase
of hourly peer upload contribution is in proportion to that of
the number of cached videos, rather than that of storage usage.

This validates the effectiveness of our coded-based storage
and replacement strategy in improving the efficiency of uti-
lizing local storage. It “amplifies” the peer cache capacity to
store more videos with the same cache capacity, while still
maintaining the high availability of coded videos due to the use
of Reed-Solomon codes. In addition, this in turn increases data
sharing opportunity to enable higher peer upload contribution.
Furthermore, we note that the hourly peer upload after 40-
th hour keeps increasing even though the number of cached
videos already reaches a saturation point. This is achieved by
LFU-based cache replacement.

2) Cost effectiveness of the server push-to-peer strategy:
We first examine the video popularity-redundancy status under
our server strategy in Algorithm 2. For each video in Novasky,
Fig. 15 plots the video redundancy in term of the ratio
of the total number of video segments cached on peers to
the segmentation number of the original video k, vs. video
popularity in term of daily request count, periodically sampled
over a two-week period from July 2 to July 14, 2010. In
comparison, we also plot the expected video redundancy as
a function of video popularity using Algorithm 2, and the
lower bound of redundancy to maintain video availability by
peers alone, as a function of video popularity based on our
discussion in Sec. IV.

We observed that: (1) The redundancy of most videos have
reached or surpassed the expected level, while the remaining

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100
Percentage of Coded Amount

C
D

F

Coded data

(mean = 76.9%)

Coded video

(mean = 85.6%) 36.8%

Fig. 14. CDF of the percentage of
coded data volume and number of
videos over all peers’ caches within
48 hours.

0

20

40

60

80

100

0 15 30 45 60 75
Video Popularity

V
id

eo
 R

ed
u

n
d

an
cy

Trace Data
Algorithm 2
Lower Bound

Fig. 15. Video redundancy vs. video
popularity under server push strat-
egy, compared to the expectation and
lower bound.

0.0

0.5

1.0

1.5

2.0

0 12 24 36 48

Cumulative Online Time (h)

S
to

ra
g

e
U

se
d

 (
G

B
)

(a)

0

10

20

30

40

0 12 24 36 48

Cumulative Online Time (h)

#
 o

f
V

id
e
o
s

C
a
c
h
e
d

(b)

0

3

6

9

12

0 12 24 36 48

Cumulative Online Time (h)

H
o

u
rl

y
 U

p
lo

ad
 (

M
B

)

(c)
Fig. 16. Evolution of (a) storage usage, (b) the number of cached videos,
and (c) peer upload contribution averaged over all peers, as cumulative online
time increases to 48 hours.

ones have redundancy at least higher than the lower bound.
This implies that our server push-to-peer strategy effectively
adapted video redundancy to meet user demand, so as to
guarantee video availability and user experience. Even some
“cold” videos with a zero request count can remain available
with certain nonzero redundancy. (2) There are many less
popular videos with redundancy much higher than the expected
level. We believe this is due to the dynamic changing of user
interests in video content. For example, a highly popular video,
which can result in many segments cached by peers, may
become “cold” quickly.

Next, Fig. 17 plots the percentage of server bandwidth
usage and peer bandwidth contribution over all videos in
Novasky within the two-week period. Specifically, the latter
is further dissected into peers that are caching replenished
segments pushed by servers (referred to as pushed peers) and
others. It shows that server bandwidth usage only accounted
for 10%-35% of the total traffic volume over time, which
is remarkably lower than a previous measurement result of
73% in Gridcast [22], and comparable to that of UUSee
with network coding [4]. Interestingly, pushed peers can make
significant bandwidth contributions up to 43% on average. This
clearly shows that our server push-to-peer strategy can indeed
lead to effective utilization of server bandwidth, by increasing
peer contributions.

D. Overhead with Coding

Finally, we examine the transmission and computation over-
head incurred by coding in Novasky.

1) Transmission overhead: There are three types of trans-
mission overhead in Novasky: (1) packet overhead containing
the packet header of around 20 bytes per block transmitted
using UDP, a 2-byte segment index, and a block sequence
number; (2) signaling overhead including the seed list retrieval
for bootstrapping, handshake for connection establishment, as

11

0

20

40

60

80

100

Jul 2 Jul 5 Jul 8 Jul 11 Jul 14

Date

P
er

ce
n

ta
g

e
(%

)

Pushed Peers (Mean=43%)

Other Peers (Mean=42%)

MS (Mean=15%)

Fig. 17. Percentage of server band-
width usage and peer bandwidth con-
tributions over all videos in Novasky,
within a two-week period from July
2 to July 14, 2010.

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5
Overhead (%)

C
D

F

Signal Overhead

(Mean = 0.17%)

Packet Overhead

(Mean = 1.50%)

Unused Data

(Mean = 0.19%)

Overall Overhead

(Mean = 1.85%)

Fig. 18. CDF of the signaling
overhead, packet overhead, unused
data overhead and overall transmis-
sion overhead over all videos.

well as media and security metadata; (3) unused data overhead
referred to those downloaded yet unwatched video data, due to
user activities such as session abortion, video switching and
random seeks. Fig. 18 plots the CDF of all three types of
overhead in terms of the percentage of their incurred traffic
volume in the total traffic volume of each video, over a one-
week period from July 13 to July 20, 2010. We observe
that: (1) Thanks to our lightweight coding implementation, the
overall transmission overhead of any video is lower than 5%,
which is half of the overhead in PPLive [9] and comparable to
that of UUSee with network coding [4]. (2) Among the three
types of overhead, packet overhead accounts for a relatively
larger portion with a mean of 1.5%, while the means of
the other two are all lower than 0.2%. In summary, there
is marginal transmission overhead incurred by our coding
implementation in Novasky.

2) CPU and memory consumption: We now evaluate the
computational and memory overhead of Novasky with coding
“in the wild,” by periodically sampling the CPU usage and
memory consumption of the Novasky client software on each
peer. Specifically, the CPU usage is broken down into: the
front-end usage which is primarily accounted for by the media
player to render videos, and the back-end usage which is
incurred by downloading and decoding video data during a
viewing session, or by encoding for storage replacement when
the peer cache space is saturated.

Fig. 19 plots the CDF of two categories of CPU usage that
are sampled from 1, 500 online peers during a one-week period
from July 13 to July 20, 2010. Fig. 20 plots the CDF of
memory consumption of the same set of peers. We observe
that: (1) Most of the peers have less than 10% back-end
CPU usage, and even the highest observed back-end CPU
usage is lower than 15%. This shows that the computation
overhead incurred by coding is indeed acceptable in practice.
(2) By embedding the lightweight open-source VLC player in
Novasky, the front end CPU usage is typically below 20%.
Note that it is not uncommon to observe that the frond-
end CPU usage is higher than back-end CPU usage during
a viewing session, especially when watching 720p cinematic-
quality videos (at around 2 Mbps). (3) Many online peers could
have zero back-end CPU usage, when they are not watching
or uploading any video. (4) Up to 90% of peers have less than
100 MB memory consumption, which is comparable to that of
current systems without coding, such as PPLive. Around 25%
of peers have less than 20 MB memory consumption, as most
of them just joined the system. In summary, our lightweight

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50
CPU Usage (%)

C
D

F

Backend (Mean=0.17%)

Frontend (Mean=1.68%)

Total (Mean=1.85%)

Fig. 19. CDF of the CPU usage
of the Novasky client software, which
is sampled from 1, 500 online peers
over an one-week period from July
13 to July 20, 2010.

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150 200

Memory Consumption (MB)

C
D

F

 Mean = 55.7

 Median = 58.0
25%

90%

Fig. 20. CDF of the memory con-
sumption of the Novasky client soft-
ware, which is sampled from 1, 500
online peers over an one-week period
from July 13 to July 20, 2010.

coding implementation and fine-tuned parameter selection in
Novasky work effectively in real-world systems, with marginal
transmission and computation overhead brought by coding.

VI. RELATED WORK

There exists a number of prior works on using network
coding to improve the availability and performance of P2P
distributed storage and file download systems (e.g., [13], [16],
[23]). One of the most relevant studies [12] has analytically
investigated the use of erasure codes in a P2P storage cloud,
by considering data reliability, computation efficiency and
security issues. Differing from these works that mainly focused
on elastic content distribution or general data availability, we
constitute a coding-aware P2P storage solution that is custom-
tailored to the on-demand streaming requirement of cinematic-
quality videos, verified by not only impartial simulation-
based comparative-tests but also a real-world system im-
plementation. More recently, it has been shown by several
emulated studies [24], [25] that network coding can help
improve playback quality and buffering delays in both P2P
live and on-demand streaming systems. While these works
have provided key design principles on the use of network
coding for transmission designs, we are particularly focused
on how to adopt MDS codes, such as Reed-Solomon codes,
to improve storage efficiency and video availability in a P2P
storage cloud that is being used on a daily basis. Also, this is
different from and orthogonal to other prior systems that apply
scalable coding [26] for generating multiple layers of video
streams to adapt to heterogeneous quality-of-services [27].

Differing from the conventional “best-effort” server strategy
in existing P2P VoD systems [9], [22], we have devised,
implemented and evaluated a new adaptive server push strat-
egy, which is particularly useful for proactively balancing the
system-wide demand for and supply of content and bandwidth
in the P2P storage cloud. Suh et al. [2] in the literature pro-
posed push-to-peer data placement schemes for VoD in cable
networks. However, static set-top boxes in cable networks
are radically different from a highly dynamic P2P storage
cloud, and the work has focused on theoretical analysis without
validating results from a real-world system.

Finally, several measurement studies of P2P VoD sys-
tems [4], [6], [9], [22] have extensively covered video char-
acteristics, streaming performance, user behavior and engage-
ment, as well as server load. As existing peer caching designs
in such systems still resort to replications of original video
data (e.g., [7]–[9], [28]), our work is different from and

12

complementary to these studies: our measurements have a
particular focus on the effectiveness and overhead of coding-
aware storage strategy and proactive server push strategy
incorporated into an operational P2P storage cloud, and closely
examine how well the storage efficiency, video availability and
streaming performance can be jointly optimized, without the
penalty of excessive server bandwidth costs.

VII. CONCLUDING REMARKS

This paper explores the design space and practice of a
new P2P storage cloud for on-demand streaming of cinematic-
quality videos. By impartially understanding and testing repre-
sentative design choices of peer storage and server bandwidth
strategies, two unique mechanisms are proposed and justified
from the ground up: (1) a coding-aware peer storage and
replacement strategy that takes advantage of Reed-Solomon
codes to achieve storage efficiency and durable video avail-
ability; and (2) an adaptive server push-to-peer strategy with
video popularity-redundancy awareness to proactively balance
the demand for and supply of content and bandwidth in the
P2P storage cloud. This enables us to develop and deploy
Novasky, a real-world cinematic-quality VoD system based on
a P2P storage cloud over a high-bandwidth network. Through
extensive measurement studies over 6 months, we demon-
strated that our design choices applied in Novasky can achieve
stellar performance and reasonable overhead, as perceived by
its users in the P2P storage cloud. Our insights into not only
the general design tradeoffs of P2P storage cloud but also the
practical implementation experiences will be helpful to guide
future designs of P2P storage cloud systems for a variety of
purposes.

REFERENCES

[1] Y. Liu, Y. Guo, and C. Liang, “A Survey on Peer-to-Peer Video
Streaming Systems,” Peer-to-Peer Networking and Applications, vol. 1,
no. 1, pp. 18–28, 2008.

[2] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, and
M. Varvello, “Push-to-Peer Video-on-Demand System: Design and Eval-
uation,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 9, pp. 1706–1716, 2007.

[3] C. Huang, J. Li, and K. Ross, “Can Internet Video-on-Demand be
Profitable?” in Proc. of ACM SIGCOMM, Aug. 2007.

[4] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-Scale Operational On-
Demand Streaming with Random Network Coding,” in Proc. of IEEE
INFOCOM, Mar. 2010.

[5] [Online]. Available: http://www.webtvwire.com/category/internet-hdtv
[6] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica,

and H. Zhang, “Understanding the Impact of Video Quality on User
Engagement,” in Proc. of ACM SIGCOMM, Aug. 2011.

[7] Y. Zhou, T. Fu, and D. Chiu, “A Unifying Model and Analysis of P2P
VoD Replication and Scheduling,” in Proc. of INFOCOM, Mar. 2012.

[8] W. Wu and J. Lui, “Exploring the Optimal Replication Strategy in P2P-
VoD Systems: Characterization and Evaluation,” in Proc. of INFOCOM,
Apr. 2011.

[9] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges, Design
and Analysis of a Large-scale P2P-VoD System,” in Proc. of ACM
SIGCOMM, Aug. 2008.

[10] J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-Like Systems,” Software: Practice and Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[11] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li, “Novasky: Cinematic-
Quality VoD in a P2P Storage Cloud,” in Proc. of IEEE INFOCOM,
Apr. 2011.

[12] J. Li and Q. Huang, “Erasure Resilient Codes in Peer-to-Peer Storage
Cloud,” in Proc. of Acoustics, Speech and Signaling Processing, 2006.

[13] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” in Proc. of IEEE INFOCOM,
May 2007.

[14] (2010) CCTV. [Online]. Available: http://www.cctv.com
[15] J. Luo, Q. Zhang, Y. Tang, and S. Yang, “A Trace-Driven Approach

to Evaluate the Scalability of P2P-Based Video-on-Demand Service,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1,
pp. 59–70, 2009.

[16] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure
Coding vs. Replication,” Peer-to-Peer Systems IV, pp. 226–239, 2005.

[17] M. Wang and B. Li, “How Practical is Network Coding?” in Proc. of
IEEE IWQoS, Jun. 2006.

[18] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao, “Flash Crowd in
P2P Live Streaming Systems: Fundamental Characteristics and Design
Implications,” IEEE Transactions on Parallel and Distributed Systems,
2011.

[19] J. Wu and B. Li, “Keep Cache Replacement Simple in Peer-Assisted
VoD Systems,” in Proc. of INFOCOM, Apr. 2009.

[20] F. Liu, B. Li, B. Li, and H. Jin, “Peer-Assisted On-Demand Streaming:
Characterizing Demands and Optimizing Supplies,” IEEE Transactions
on Computers, 2011.

[21] B. Li, G. Y. Keung, S. Xie, F. Liu, Y. Sun, and H. Yin, “An Empirical
Study of Flash Crowd Dynamics in a P2P-based Live Video Streaming
System,” in Proc. of IEEE Globecom, Nov. 2008.

[22] B. Cheng, L. Stein, H. Jin, and Z. Zhang, “Towards Cinematic Internet
Video-on-Demand,” in Proc. of 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems, Apr. 2008.

[23] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of A
Live Network Coding P2P System,” in Proc. of ACM IMC, Oct. 2006.

[24] M. Wang and B. Li, “Rˆ 2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, p. 1655, 2007.

[25] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Ro-
driguez, “Is High-Quality VoD Feasible using P2P Swarming?” in
Proc. of 16th International World Wide Web Conference, May 2007.

[26] D. Wu, T. Hou, W. Zhu, Y.-Q. Zhang, J. Peha, “Streaming Video over
the Internet: Approaches and Directions,” IEEE Transactions on Circuits
and Systems for Video Technology, Special Issue on Streaming Video,
vol. 11, no. 3, pp. 282–300, Mar. 2001.

[27] H. Yin, C. Lin, Q. Zhang, Z. Chen, and D. Wu, “TrustStream: A Secure
and Scalable Architecture for Large-scale Internet Media Streaming,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 18, no. 12, pp. 1692–1702, Dec. 2008.

[28] B. Tan and L. Massoulié, “Optimal Content Placement for Peer-to-Peer
Video-on-Demand Systems,” in Proc. of INFOCOM, Apr. 2011.

Fangming Liu (S08-M11) received his B.Engr. de-
gree in 2005 from Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China; and his Ph.D. degree in Computer Science
and Engineering from the Hong Kong University of
Science and Technology in 2011. He is currently
an Associate Professor in the School of Computer
Science and Technology, Huazhong University of
Science and Technology, Wuhan, China. In 2011,
he was awarded as the Chutian Scholar of Hubei
Province, China; and he received the Best Paper

Award from the IEEE GLOBECOM’2011.
In 2007, he worked as a research assistant at the Department of Computer

Science and Engineering, Chinese University of Hong Kong. From Aug 2009
to Feb 2010, he was a visiting student at the Computer Engineering Group,
Department of Electrical and Computer Engineering, University of Toronto,
Canada. Since 2012, he has also been a StarTrack Visiting Young Faculty in
Microsoft Research Asia, Beijing.

His research interests are in the area of large-scale content distribution
systems, cloud computing and datacenter networking, peer-to-peer networks,
green computing and communication. He is a member of IEEE and IEEE
Communications Society, a member of ACM, and a member of the China
Computer Federation (CCF) and CCF Internet Technical Committee. He has
been a guest editor for IEEE Network Magazine, and served as a TPC for
IEEE INFOCOM’2013 and GLOBECOM’2012-2013.

13

Shijun Shen received his Ph.D. degree in Com-
puter Science and Technology from Tsinghua Uni-
versity, Beijing, China, in 2011. He is currently
with the National Computer Network Emergency
Response Technical Team/Coordination Center of
China (CNCERT/CC). His research interests include
peer-to-peer networks, video-on-demand and cloud
computing.

Bo Li (S89-M92-SM99-F11) is a professor in the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology.
He holds a Cheung Kong Chair Professor in Shang-
hai Jiao Tong University, and is the Chief Technical
Advisor for ChinaCache Corp., the largest CDN
operator in China (NASDAQ CCIH). His current
research interests include: large-scale content distri-
bution in the Internet, datacenter networking, cloud
computing, green computing and communications.

He made pioneering contributions in the Internet
video broadcast with the system, Coolstreaming (the keyword had over
2,000,000 entries on Google), which was credited as the world first large-
scale Peer-to-Peer live video streaming system. The work first appeared in
IEEE INFOCOM (2005) has not only been highly cited, but also spearheaded
a momentum in peer-to-peer streaming industry, with no fewer than a dozen
successful companies adopting the same mesh-based pull streaming technique
to deliver live media content to tens of millions of users in the world. He has
been an editor or a guest editor for a dozen of IEEE journals and magazines.
He was the Co-TPC Chair for IEEE INFOCOM 2004.

He received his B. Eng. Degree in the Computer Science from Tsinghua
University, Beijing, and his Ph.D. degree in the Electrical and Computer
Engineering from University of Massachusetts at Amherst. He is a Fellow
of IEEE.

Baochun Li (S98-M00-SM05) received the
B.Engr. degree from the Department of Computer
Science and Technology, Tsinghua University,
China, in 1995 and the M.S. and Ph.D. degrees
from the Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana, in 1997 and 2000. Since 2000, he has been
with the Department of Electrical and Computer
Engineering at the University of Toronto, where
he is currently a Professor. He holds the Nortel
Networks Junior Chair in Network Architecture and

Services from October 2003 to June 2005, and the Bell Canada Endowed
Chair in Computer Engineering since August 2005. His research interests
include large-scale multimedia systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks. Dr. Li was
the recipient of the IEEE Communications Society Leonard G. Abraham
Award in the Field of Communications Systems in 2000. In 2009, he was
a recipient of the Multimedia Communications Best Paper Award from the
IEEE Communications Society, and a recipient of the University of Toronto
McLean Award. He is a member of ACM and a senior member of IEEE.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at the
Huazhong University of Science and Technology
(HUST) in China. He is now Dean of the School
of Computer Science and Technology at HUST. Jin
received his Ph.D. degree in computer engineering
from HUST in 1994. In 1996, he was awarded
a German Academic Exchange Service fellowship
to visit the Technical University of Chemnitz in
Germany. Jin worked at The University of Hong
Kong between 1998 and 2000, and as a visiting

scholar at the University of Southern California between 1999 and 2000. He
was awarded Excellent Youth Award from the National Science Foundation
of China in 2001. Jin is the chief scientist of ChinaGrid, the largest grid
computing project in China, and the chief scientist of National 973 Basic
Research Program Project of Virtualization Technology of Computing System.
Jin is a senior member of the IEEE and a member of the ACM. Jin is
the member of Grid Forum Steering Group (GFSG). He has coauthored 15
books and published over 400 research papers. His research interests include
computer architecture, virtualization technology, cluster computing and grid
computing, peer-to-peer computing, network storage, and network security.
Jin is the steering committee chair of International Conference on Grid and
Pervasive Computing (GPC), Asia-Pacific Services Computing Conference
(APSCC), International Conference on Frontier of Computer Science and
Technology (FCST), and Annual ChinaGrid Conference. Jin is a member
of the steering committee of the IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), the IFIP International Conference
on Network and Parallel Computing (NPC), and the International Confer-
ence on Grid and Cooperative Computing (GCC), International Conference
on Autonomic and Trusted Computing (ATC), International Conference on
Ubiquitous Intelligence and Computing (UIC).

