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Abstract—In this paper, we present Novasky a real-world More recently, the advent of cloud computing has intro-
Video-on-Demand (VoD) system capable of delivering cinematic- duced the concept ofstorage cloudwhich represents a large-
quality video streams to end users. The foundation of the a6 ool of storage space that can be accessed convgnientl

Novaskydesign is a peer-to-peer (P2P) storage cloud, storing and .
refreshing media streams in a decentralized fashion using local by users who need storage space in the cloud. The amount

storage spaces of end users. We present our design objective®f storage space reserved by a P2P VoD system in each end
in Novasky and how these objectives are achieved using ahost is quite substantial in the real world, typically madnart
collection of unique mechanisms, with respect to caching strate- 1 GB. Connecting these two “dots” together, if there exists a
gies, coding mechanisms, and the maintenance of the supply-fair number of concurrent users in a traditional P2P system,

demand relationship when it comes to media availability in the e A
P2P storage cloud? The production Novasky system %as beepWouldn't it be intriguing to take advantage of the local VoD

implemented with over 100,000 lines of code. It has been deployedStorage space that belongs to a large number of particgpatin
in the Tsinghua University campus network, operational since peers, pool them together, and forr®2P storage cloud7his
September 2009, attracting 10,000 users to date, and providing js especially feasible and interesting when participapegrs

over 1,000 cinematic-quality video streams with bit rates of 1 are inter-connected with a local, high-bandwidth network —
— 2 Mbps. Based on real-world traces collected over 6 months, .
such as a typical campus network.

we show that Novaskycan achieve rapid startups within 4 — 9
seconds, and extremely short seek latencies within 3 seconds. Our One may naturally wonder why such a P2P storage cloud
empirical experiences withNovaskymay bring valuable insights may offer anything more interesting than a traditional P2P
to future designs of production-quality P2P storage cloud system1  \/oD streaming system with local caching. We believe that,
as peers are inter-connected with a high-bandwidth network
such a P2P storage cloud, if designed, implemented, and
managed appropriately, would be able to offer a stellar lefre
With its great potential to bring a rich repository of videgerformance when streaming on-demand video to particigati
content to end users on-demand, video-on-demand (Vo@sers, one thatis much better than traditional P2P VoD syste
systems have not only been the target of a substantial amoaver the public Internet.
of research, but also been core industry products in bothin this paper, we presehtovaskya production-quality VoD
startup and established corporations alike. Existingarese system that we implemented with over 100,000 lines of code
has extensively studied peer-to-peer (P2P) VoD systemms frgLOC) in C++, based on the foundation of our P2P storage
theoretical é.g.,[1]), simulations €.g.,[2]), and measurement cloud that we have designed and implemented from scratch.
perspectivesd.g.,[3]). In retrospect, when we brainstorm to finalize the design of
It has been well known that such systems require each ugbg NovaskyP2P storage cloud architecture a year ago, no
called apeer, to dedicate a certain amount of the non-volatilene would ever imagine that its production deployment in the
storage space on her local host. Such local storage spane fegmpus network at Tsinghua University has delivered over
users will be used in typical P2P VoD streaming systems ad &£00 video streams to over 10,000 usersia¢matic quality
semi-persistentacheof the media content that has just beestreaming at bit rates of 1 — 2 Mbps. We are pleasantly
played. The benefits brought forth by such local caching asgrprised by (and advertising the product for) the fact,that
two-fold: to assist other users from the cache in a peeeta-p when played back, these video streams can be enjoyed at a
fashion, and to improve the quality that the user experigncguality level of DVD or even 720p video. In contrast, most
with respect to important quality metrics, such as randoek setraditional P2P VoD systems operate at low bit rates, such
latencies — the time it takes for any random seek operatiods 400 kbps [2]. Beyond sustainable streaming ralesasky
to complete. Caching strategies in typical P2P VoD stregmitisers are also experiencing typical random seek latenéies o
systems have been discussed extensively in the literatitie, 3 seconds, while traditional systems suffer from randonk see
a focus on improving the utility of cached content with restpelatencies of 15 — 40 seconds, or even longer [2].
to performance. Rather than typical emulation-based experiments, Witk
vasky we choose to design, implement, deploy, and measure
*The research was support in part by a grant from RGC underahzact a complete VoD system based on a P2P storage cloud over

615608, by a grant from Huawei Technologies Co. Ltd. underdbntract g high-bandwidth network. ThelovaskyPZP storage cloud
HUAW18-15L0181011/PN, and by grants from project 6087320873202 hi f b f uni highliah .
supported by NSFC and the project 2011CB302600 supporteyiational  architecture features a number of unique highlights, wiaief

Basic Research Program of China (973 Program). the focus of this papekirst, we believe that simple replication
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strategies typically used in cache design are not efficidmgnwy
a high level of video availability needs to be maintained
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across the P2P storage cloud. To maintain a well-designé Playing—ode 1

and balanced tradeoff between the performance of streami ‘_%H 1.11
“hot” videos and the diversity of available videos, we have "=~~~ e
decided to use Reed-Solomon codes [4], tightly coupled wit

a new coding-aware storage replacement algoritbecond{o
maintain a healthy relationship between the “supply” of and !
“demand” for content and bandwidth, we designed an adaptive
server-feeding strategy that actively pushes content éosge Fig. 1. The architecture dllovasky
the P2P storage cloud. new and cost-effective storage and replacement strategy, i
During the brainstorming stage, we were worried abowgkder to improve the efficiency of utilizing valuable spaoe i
the use of Reed-Solomon codes in tRevaskyP2P storage the P2P storage cloud, and to maintain availability of video
cloud. Though MDS codes, such as Reed-Solomon codes, have With the presence of frequent peer departures and the
been widely adopted in traditional mass storage systengs ( evolution of diverse user interests across a rich repagsitor
RAID 6), and have been conceptually shown to be effectiwd# videos, it is not uncommon to have a lack of balance
in distributed storage systems [5], [6], they have not beg¢mtween the demand and supply of content and bandwidth,
used in practice in any production-quality P2P storagectlowhich brings adverse effects to the availability of videosl a
systems. We were mainly concerned with their computationgle streaming performance. We seek to proactively adapt the
complexity. availability of videos in the P2P storage cloud based orr thei
The good news is that our worries were dissipated Ipopularity, yet with effective utilization of limited bamddth
evidence from our extensive measurement studies presientegvailable at media servers.
this paper. Throughout subsequent sections in this paper, w i i
evaluate the scale, quality, and lessons learned fromigatigt B- NOvasky: Architectural Design
every conceivable aspect iNovasky its quality perceived Fig. 1 illustrates our system architecture, and interastio
by the users, its performance as a system, especially wémong major components iNovasky Arrow 1 represents
respect to the efficacy of coding, as well as its operationtdile interaction between peers and the Management Center to
overhead. To the best of our knowleddégvaskyis the first manage the P2P storage cloud. Arrow 2 represents the gossip
attempt in the literature towards designing and implenmgnti communication and video data distribution among peers. By
an operational P2P storage cloud for on-demand streamigancurrently downloading coded video blocks from multiple
of cinematic-quality videos over a high-bandwidth networkserving peers, a viewing peer can progressively decode and
We are convinced that results reported in this paper cam offdayback the video. Each peer is able to cache both original
valuable insights towards a new genre of cinematic-qualignd coded segments of multiple videos. Along arrows 3 and

VoD services in real-world systems. 4, the Media Servers adaptively and proactively push coded
_ segments of under-supplied videos to selected peers.
Il. NOVASKY: CHALLENGES AND DESIGN The Management CentefMC) consists of a set of servers

In this section, we first identify important challenges athat have a number of responsibilities: (1) maintaininganet
we design the architecture of tidovaskyP2P storage cloud. data in all media files, including the MD5 hash value, length,
In response to these challenges, we then present our sysésd popularity of each file; (2) authenticating users usirgy t
architecture and design, including code-based peer gt@ag RSA-based public key infrastructure; and (3) maintaining t

adaptive push-to-peer mechanisms. current status of participating peers in the P2P storagedclo
] o including the status of their local storage space. Routisks
A. Design Objective and Challenges such as NAT traversal are also handled.

Our ultimate design objective is to build a P2P storage The Media Server§MS) cooperate with the P2P storage
cloud that is specifically tailored to the performance ne&fds cloud to feed a rich repository of videos to a large number
cinematic-quality VoD streaming over a high-bandwidth-nebf users. As we shall elaborate in Sec. II-D, the objective of
work. To achieve such an objective, two important challesngéhe Media Servers is to utilize limited server bandwidthhia t
need to be addressed. best ways possible, and to maximize content availabilitg an

> Despite a variety of cache replacement strategies service quality in the P2P storage cloud.
existing P2P VoD systems [2], [3], when taking a system-wide The P2P storage clouds designed to “pool” local storage
perspective, they are mostly restricted to replicationra@final spaces on all participating peers together, and colldgtive
video data across the local storage space of participadegsp optimize the delivery of cinematic-quality video streanibe
due to its simplicity. However, given limited peer cacheesiz P2P storage cloud is derived from traditional P2P desighs: a
such strategies would become insufficient to maintain dgparticipating peers are organized into a mesh topology, and
availability and diversity, and are especially ill-cone for exchange information about the availability of video segtee
on-demand streaming of cinematic-quality video. We needpariodically.



Algorithm 1 The peer storage and replacement strategy usmg Original video
Reed-Solomon codes.
/I when the current cache space is saturated and cannoﬂ 5 | B |5 |[B,

[ By

1: B, | p
store new incoming video data (DRecombination lock size b
2: sort currently cached original videos in LFU order; J ———N " —" ~, _ )
3: for each original videalo :@ @ @: M @
4 Il code-based replacement LoR------- —R--- R0 Jelkrlg-ln ST
5. use Reed-Solomon codes to generate a coded segme| B, | B, | ] B
to be stored, with a randomly selected index from the| B,.,| || B..| By )| ——>
Vandermonde matrix; : : :
. evict the original video from the cache; B,
7. if the cache space is enough for the new incoming data k original segments Coded segments
then . . Fig. 2. The coding process from original video to coded sedgsien
8: store the new incoming dateeturn;
9. endif and transmission efficiency.

10: end for Motivated by these considerations, our design choice is to
11: // if cache space is still insufficient to accommodate nesfore a part of the video data instead of the complete video,
incoming video data in order to better utilize limited peer cache capacities tn

12: sort currently cached coded segments in LFU order; promote diversity. However, this may bring adverse effects

13: for each coded segmedb video availability and on-demand streaming performanasv H

14:  evict the coded segment from the cache; can we carefully store a part of video data while mitigating
15:  if the cache space is enough for the new incoming dageich adverse effects, and in what form should the video data

then be stored to maintain video availability and storage efficj®

16: store the new incoming dateeturn; In response, we would like to take advantage of Reed-
17:  end if Solomon codes when video is stored in the peer local storage
18: end for cache. Algorithm 1 shows our strategy to replace original

video segments witbnecoded segment, if we need to reclaim
cache space to store a new incoming video. In particular, to
Finally, Novaskyprovides a feature-rich user interface. Irffombine coding with replication within the peer storageheac
addition to on-demand streaming and random seek functiohgvaskyperforms the following: (1) When a peer has adequate
Novaskyusers are able to navigate and search in the videache space, it stores the complete video as usual so thay it m
repository, rate videos, and upload user-generated cont@erve more data to viewing peers that do not have a sufficient
From the perspective of a user using its interface Nbeasky number of seeding peers. (2) When the cache space becomes
P2P storage cloud architecture is completely transpaientfully utilized as a peer watches more videos, currently edch
operates exactly like a cloud storage service. Users are Misteos are sorted in the Least Frequently Used (LFU) order,
aware of the fact that, rather than storing videos in theudfo and following that order, each video file will be codedadoe

they are stored in the collective “pooled” storage that aing coded segment, using (&, k) Reed-Solomon code, in which
contribute to. n is the maximum number of unique coded segments possible,

_ and k is the number of original segments to be coded. Since
C. Peer Storage and Replacement using Reed-Solomon Casleig one coded segment will remain, it will occupy a smaller

In a P2P storage cloud, the most critical design objectiggnount of cache space as compared to the original video. The
is to efficiently utilize limited peer storage cache capasito Purpose is to free up a sufficient amount of storage space to
maintain video availability and to maximize peer upload-cof®ccommodate a new incoming video, while still keeping the
tribution. To achieve this objective, there are three irtguar availability of coded videos.
aspects that we have considered as we dekigmasky (1) There are, however, a number of more detailed challenges
Each peer is expected to cache a number of videos to servéha the outline of our design does not discuss.
many peers as possible. However, given a limited cache sizeA\pplying Reed-Solomon codes to segmerithe first nat-
such as2 GB, it is infeasible to store all complete videosural question that arises is: How asegmentslefined, and
(2) A viewing peer is usually fed by multiple seeding peersow are Reed-Solomon codes applied to these segments? In
with limited upload capacities, each of which is resporesibNovaskythe original (complete) video of sizeis divided into
for uploading a certain part of video data. Since a seediegntiguous data blocks of size i.e., {B;|i = 1,2,...,ck},
peer only provides a part of video data, it is unnecessary wierei is the sequence number of blocks, and= (kb] is
store the complete video. (3) The rich repository of highthe number of blocks within a segment. Of course, additional
quality videos with bit rates oft — 2 Mbps could further zeros can be added to the end of the last segment of a video.
strain peer storage and bandwidth resources, renderingesinirhese blocks are recombined iniaterleavedmanner to form
replication strategies insufficient to maintain video &dility £ original segmentsS; = {Bj,y i = 1,2,...,c — 1;j =



1,2,...,k} with indicesj € [1,k], so that each segmentoriginal segments with indice§l, k] and coded ones with
consists of interleaved blocks across the entire video, iaslices[k + 1,2'¢ — 1], all of which are linearly independent.
shown in Fig. 2. A seeding peer iNovaskyindependently The original video can be treated &soriginal segments,
and randomly chooses an indgxand a corresponding row since systematic Reed-Solomon codes are used. In addition,
vector g; in the Vandermonde matrix — which is the typicakoding vectors from the Vandermonde matrix can be readily
generator matrix used in systematic Reed-Solomon codesbuifered by each peer, without incurring extra computasind
and generate a coded segméht = g; [Sl,Sl,...,Sk]T. transmission overhead.
When such a choice of index is made, due to the nature Summary.Our code-based storage and replacement strategy
of systematic Reed-Solomon codgsmust be in the range can improve the storage efficiency and video availabilityaof
of [k + 1,n]. Since there aré segments in a video, a codedP2P storage cloud, in the sense that more storage space can
segment has a size of only/k of the original video size, be freed to cache and serve a larger number of videos with
and will be stored by the seeding peer to replace the originhe same cache size constraints, while coded segments using
video when storage space in the cache needs to be reclainiégked-Solomon codes can still maintain video availabilitgd a
A viewing peer can decode and recover video blocks inpeer upload contribution with high probability. This estaly
pipelined fashion using Gauss-Jordan elimination, as s®onincreases the data sharing opportunity among peers, cechpar
k blocks with the same relative positianof any & linearly to simple replication strategies. Although we can furtHewva
independent segmen$sare received, instead of waiting fér a peer to cache more than one coded segment for a replaced
entire segments to be received. video, our current design choice is to let the peer cache
Choosing parameters: and & in Reed-Solomon codes. one coded segment. The rationale is that storing multiple
How parameters andk should be chosen iNovaskyhinges coded segments of the same video will consume more storage
upon the need that different peers needs to produce differessources and potentially incur peer load imbalance, witho
coded blocks,.e., using different indices to select differentproviding extra data availability [5].
coding vectors in the Vandermonde matrix that Reed-Solomon )
codes use. In order to minimize the probability of duplicateP- Adaptive Server Push-to-Peer Strategy
coded segments, we choose to use a sufficiently large;ofe  Due to the dynamic nature of the P2P storage cloud, video
the Galois Field GFy) in Novasky A good choice would be availability can be degraded at run-time. With the presesice
g = 2%, since it is the maximum size of the Galois Field thafrequent peer departures, new coded video segments need to
allows for efficient implementations in software [4], [5ja | be periodically replenished in the system to maintain video
this case, based on the requirement of Reed-Solomon codesilability. However, solely relying on peers for suchaip
n < g — 1, and the maximum is 216 — 1. in coded systems may incur tremendous computation overhead
To minimize the probability of duplicate index choices byand repair bandwidth costs [6]. In particular, regenegatine
different peers, we choose a reasonably sidh thatk = 16. coded video segment with (@, &) MDS code requires a peer
This implies that segments cached by peers are coded tbydownloadk distinct segments or the entire video. That is,
randomly selecting a coding vector frot® — 1 rows in the amount of data that needs to be transferred cdntimes
the Vandermonde matrix, all of which are guaranteed to Igher than the amount of redundancy lost [7]. Furthermore,
linearly independent from each other, due to the propertii@f due to the evolution of diverse user interests across a rich
Vandermonde matrix. According to solutions to the birthdaepository of videos, it is not uncommon to have demand-
attack problem, the probability of having a duplicated siéd®  supply imbalance across videos. This requires the reduydan
with & different peers choosing indices from= 2'6 —1 rows of video in a P2P storage cloud to be proactively adapted to
can be approximated &s— e~**/(2n) which is only0.20% the video popularity, in order to guarantee service quality
underk = 16 andn = 2'6 — 1. user experience.
Interestingly, the selection df = 16 implies that the seg- To compensate for these adverse effects, we design an
ment size is onlyl /16 of the original video size. By replacing adaptive server push-to-peer strategy in the P2P storagd,cl
the original video with a coded segment, our strategy cam frehown in Algorithm 2, in order to optimize video availahyjlit
up to 16 times less storage space to store new videos. Evend service quality, by effectively utilizing premium serv
larger values of: require a viewing peer to download segmentisandwidth resources. Specifically, by leveraging onlireds
from more seeding peers, which aggravates the schedulony video popularity and redundancy, as well as peer cache
overhead. As shown in recent measurement studies [2], gtatus and online duration, the MS Movaskyis designed
practical number of seeding peers falls[#32]. to proactively transmit randomly coded segments of under-
Estimating communication overheadinother practical de- supplied videos to capable peers, in order to: (1) cope with
sign consideration is whether we can keep the implementatieedundancy loss due to peer churn, (2) alleviate video ddman
of code-based storage strategy sufficiently lightweighthw supply discrepancy, and (3) release new videos. Thesenreple
acceptable communication overhead, even with the useisiied segments can improve data redundancy and diversity in
Reed-Solomon codes. With= 261 as we discussed abovethe P2P storage cloud, so as to improve data sharing among
the coding metadata in term of the segment index can peers, and thus mitigate costly requests to servers. This is
simply represented as an integer2dfiytes within[1,2'6 —1]:  complementary to the commonly used “best-effort” server



strategy which is passively driven by unsatisfied viewingesilience to peer churns. The larger the valuedpfis, the
requests from peers. In particular, as the MS hosts origifagher redundancy, availability and churn resilience thize
videos, it can readily produce new coded segments usinchas. Under-supplied videos with smallés are preferred
our coding approach in previous subsection, without iriogrr by the MS for replenishing coded segments. However, if a

excessive repair bandwidth costs [7]. video has been replenished in a previous petigd it will
be excluded to avoid aggressive replenishment of a paaticul
Algorithm 2 Adaptive server push-to-peer strategy. video while ignoring others. To prevent server bandwidth
1: Given a repository of videov : {v = 1,2,...,V} abuse, a tunable threshold for demand-supply discrepdncy

seeded by the MS, monitoring the video popularkty is controlled by the service provider. Given a flat amount of
and redundancy.,, Vv € V, by collecting peer viewing server resources, the selectiondofieeds to balance the trade-

statistics and cache status. off between server resource utilization and coding ovethea
2: for all v €V do A higher threshold may aggravate the burden on servers,
3: if v has been pushed within a previous perigdthen  while a lower one can lead to under-utilized server bandwidt
4 continue; Finally, there is a substantial margin of flexibility in sefiag
5. end if candidate peers to push coded segments. The rule of thumb
6: compute a demand-supply discrepancy indgx < is to randomly select long-lived peers with a relativelygkar

(ﬁfw)g— wherew, is the streaming bit rate of videoavailable cache space and available upload bandwidth. The

v, andw is a statistical measurement on peer uploazbst efficiency of our server push-to-peer strategy in tesis
capacity based on collected traces. the utility of pushed video segments will be evaluated with
7: end for real-world measurements in Sec. lll.
8: select a candidate vided with d,, = min{d,|v € V}.
9: if d,» < d, which is a tunable threshold controlled by the Ill. N OVASKY: REAL-WORLD MEASUREMENT AND
service providethen PERFORMANCEEVALUATION
10: ge(r;erate Aw coded segments using Reed-Solomop, Deployment Statistics and Trace Collection
codes;

Or§ince September 200%ovasky which is developed for
g_oth Linux and Windows platforms, has been deployed and op-
erational in the Tsinghua University campus network. Tdble
summarizes the deployment statistics\mivasky In particular,

11:  select candidate peers according to collected traces
available cache space, online duration and idle statu
12: if MS has available bandwidth and is not bubkgn

13: transmit new coded segments to selected peers. . . - . . )
4 endif 9 P Novaskyis designed towards providing cinematic-quality VoD
15: end if service. Fig. 3 plots the CDF of streaming bit rates over all

videos provided byNovasky The average video bit rate 1s08

0 . :
Our server push-to-peer strategy can be implemented Wlthbps, and aroun@5% of all videos (especially 720p format

flexibility in the P2P storage cloud. Specifically, video pep v!geos%_thavte b'.t rate_st_hlgr:aezrpth\z/irﬁD Mb;?[s. In c:20ntr3ast,8thfe”
larity \,,Vv € V, can be captured by periodically recordin yldeo bt rates in existng oD systems [2], [3], [8] fa

file request counts, so as to adapt to the evolution of ug'a[)ths Baggetgfépoh;tfgg$2pst’)'tap;t e;grégzregn eﬁge%ﬂe
interests. With our coding approach in the previous subm®ct PS. P '9 Ing oi vaskycan provi

the video redundancy,, Vv € V, can be reflected by the ratiohigh service quality levels as perceived by USers, in terms o
of the total number of video segments cached on peers to Q%Jeent playbagk and short startup.and seek latencies, as lve wi
corresponding number of segmerktsWith our peer caching JomoNStrate in the next subsection.

Algorithm 1, a videov with redundancy-, implies that there TABLE I

: . . o DEPLOYMENT STATISTICS OFNovasky
exist [r,, kr,] seeding peers caching coded or original seg-

ments ofv. Given the video streaming rate, and a statistical # of users 10, 094 # of videos 1,000

measurement on the peer upload capaaitye.g., average #3; user sessions| 47, 62hf5 #OfTVidleo Sf?_SSiO”S 637{1;185
: : f iewing time 30, 288 hours otal traffic 17

peer upload capacity), the maximum concurrent number ‘Measurement period Feb-Jul, 2010 Trace volume 10 GB

viewing requests that can be supported by seeding peers tan
be ideally expressed a@’;—w)rv. Hence, maintaining video We have implemented detailed instrumentation and mea-
availability requires its redu“ndan@y to meet its popularit, surement mechanisms within each Novaksy client to collect
as (&2yp, > A, ie,r, > max{%, 1}. This qualitatively real-world traces oves months. Each peer periodically reports
implies that a higher video popularity and streaming rates run-time activities and status using UDP to the MC, which
requires a higher level of redundancy, whereas coding aisdresponsible for logging: (1) user-related traces iniclgd
peer upload contributions can help relax such a requiremewohline times and cache status, CPU and memory consumption,

Accordingly, we can express, asr, = dv(A;;f;"); al- as well as upload and download traffic volumes; (2) media-
ternatively, d, = (,’wa)g—v is referred to asdemand-supply related traces including video popularity, startup andksee

discrepancy indexof video v. In practice, we expect to latencies, as well as session durations. Such interna¢grac
maintain d, > 1 for a baseline of video availability andcharacterizing the live behavior dfovaskyare not only used
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Fig. 3. CDF of streaming bit rates Fig. 4.  Percentage of completed,Fig. 5. Playback success ratio orFig. 6. Playback fluency index aver-

over all videos provided bjNovasky short and aborted sessions, and otheeach video in a descending ordermged over all video sessions vs. time

cases due to miscellaneous failures. (normalized) on a representative dayon a representative day.

to guide the adaptive server-feeding strategy in Sec. xR, as well as startup and random seek latencies. Specifically,
also analyzed to evaluate the design effectiveness antles@r for each viewing sessios, our trace mechanism records:
of Novasky (1) the startup latenc{s; between the time a user issues a
viewing request and the time the video playback commences;
(2) seek latencie$?, after a user jumps forward or backward

We first evaluate the user-perceived service qualities pro- arbitrary playback points, whergis the number of seek
vided byNovaskyfrom various perspectives, including durablectivities during the session; (3) buffering tiniEs when play-
video availability, on-demand streaming fluency, as well dsack interruptions occur, whergis the number of playback
startup and random seek latencies. interruptions during the session; (4) the total sessiomtiur

1) Durable video availability In the context of VoD, video 7. Inspired by [2], we define glayback fluency indems
availability is primarily related to three cases during @ne the fraction of uninterrupted watching time out of the total
viewing session for a video: (1) completed session: tha@@sswatching timej.e., 1—Zj T} )(Ts—Ty—>", T?, ). Fig. 6 plots
successfully ends when the video is completely watched dy ttihe average playback fluency index over all video sessions in
user; (2) short session: the user stops the session or switdNovaskys. time on a representative day. With our lightweight
to another video due to content reasons, even if it has roading implementationNovaskycan achieve a superior level
experienced any streaming interruption; (3) aborted sassiof playback fluency that remains higher the#? and even
the session is interrupted with unacceptable bufferingtim up to 100%; and the average playback fluency over time is up
such ast > 1 minute, which motivates the user to leaveto 99.23%.
By regarding the first two cases as successful, we define aext we examine the startup and random seek latencies.
playback success ratias the percentage of successful sessioffy. 7 plots the average startup and seek latencies, as well
over all measured sessions of a video, in order to capture teethe buffering time during playback interruptions, ovir a
video availability. Compared to conventional data avdiiigh video sessions iNovaskys. time on a representative day. We
measurements [7], our measurements are more representatan observe that: (1) Our coding-aware design can effégtive
of the durable video availabilityin the context of VoD. support the timely retrieval of arbitrary playback pointgth

Fig. 4 plots the average percentage of completed sessisexk latencies withir8 seconds. This is remarkably shorter
short sessions and aborted sessions over all videNswasky than the seek latenciesO(— 30 seconds) of existing P2P VoD
vs. time on a representative day. We observed that the averagstems [2], [3]. InNovasky random seeks with either long
playback success ratio can be maintained ug(, which or short distances may very possibly not cause the reqgestin
implies a stable level of durable video availabilityNovasky peer to switch to new seeding peers, as both original anddcode
Specifically, 60% of sessions exit prior to the end of thesegments generated by our segmentation and coding approach
corresponding video due to active video switching, whereas Sec. 1I-C involve data across the entire video. KRjvasky
around20% of sessions last until the videos are completelglso achieves fast startups to provide competitive useeréxp
watched by users. This demonstrates a common “short sesees. Specifically, the startup latencies varied betweand
sion” nature in VoD services [2], [8]. Empirically, around% 9 seconds over time, due to the well known “daily pattern”
of sessions aborted because users cannot tolerate a hgffeof peer population [3]. In contrast, the startup latencies i
time exceeding one minute, when streaming interruptioesisting P2P VoD systems are up 16 — 40 seconds [2], [3].
occurred. We zoom into the durable video availability offread3) The buffering time during playback interruption is andu
video in the large video repository dfovasky by plotting the 1 second. Furthermore, Fig. 8 plots the CDF of startup and
playback success ratio of each video in a descending ordandom seek latencies over all video sessions across our six
in Fig. 5. It shows that nearl20% of videos enjoyed perfect month trace period, which confirms that up%@ of videos
availability, and more thafi0% of videos achieved higher thanenjoyed short latencies withit) seconds.
80% durable video availability. ) )

2) On-demand streaming fluency and latencieavhile C- Effectiveness of Coding and Push-to-Peer
the durable video availability is insufficient to reflect fine We next examine the effectiveness of our proposed coding-
grained user experiences.g., playback jitters), we further aware storage and replacement mechanism and server push-
investigate the video streaming fluency as sessions pgrdés-peer strategy, in terms of storage efficiency, peer wuploa
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Fig. 7. Latencies of startup, randorfig. 8. CDF of startup and randomFig. 9. CDF of the percentage ofig. 10. Upload traffic from seeding
seeks and buffering averaged over alkek latencies of all video sessionsoded data volume and number @eers in descending order, averaged
video sessions vs. time on a represemver six-month trace period. videos over all peers’ caches withiover all video sessions within a rep-
tative day. 48 hours. resentative day.
40 12

contribution and load balancing, as well as the cost effee
ness of pushed segments.

1) Storage efficiency First, we are interested in whethg 10
our coding-aware storage algorithm can operate effegtive 2
the P2P VoD storage cloud, by comparing the amount of c(# * | b
and original data in peer storage caches. Fig. 9 plots the o0 ‘ 0 — 0
of the percentage of coded data and videos over all peer s 0 1224 36 48 0 12 24 36 48 0 1224 36 48
. . Cumulative Online Time (h) Cumulative Online Time (h) Cumulative Online Time (h)
in Novaskywithin 48 hours. The average amount of coded Gaia @ ©) 9
and videos arg6.9% and85'6%’ respectlvely; an63'2% of Fig. 11. Evolution of (a) storage usage, (b) the number of edahdeos,
peer caches are completely filled with coded data. This shoys (c) peer upload contribution averaged over all peersyamilative online
that our coding-aware storage and replacement strateggdéhdtime increases td8 hours.
plays an important role itNovasky ing peer during a viewing session, in Fig. 10. To obtain a

With our coding-aware storage and replacement strategyacroscopic view, this is averaged over all video sessions
is it possible to increase the number of videos stored awmdthin a representative day. We find that for a viewing ses-
peer upload contribution? Fig. 11 shows the evolution sfon, most traffic is uploaded by the td@ seeding peers,
storage usage, the number of cached videos, and peer uplaawng which the traffic load is fairly balanced with relalyve
contribution averaged over all peers, as cumulative oriime  small deviation. Recalling our choice of the coding paramet
increases td8 hours. The default peer cache capacity is set fo= 16 in Sec. 1I-C, such observation implies that: (1) The data
2 GB in Novasky We observed from Fig. 11(a) and 11(b) thatliversity brought by random coding can indeed hiipvasky
the number of cached videos is not exactly in proportion o thio approach load balancing, as coded segments cached on
storage space used. During the fir8thours, both the storage seeding peers are equally useful and independent with high
usage and the number of cached videos increase quicklye In giobability. (2) The cases for a viewing peer to switch to new
subsequent3 — 40 hours, the increase of storage usage slovgeeding peers, due to the lack of data availability or diters
down, while the number of cached videos keeps increasiate infrequent with our coding-aware storage schedulisg, a
rapidly with the help of our algorithm. Finally, both the sige on average only a small portion of data is shown to be
usage and the number of cached videos reach a saturatidn pddwnloaded from peers other than the tidpones.
at the40-th hour,i.e., 1.6 GB storage space aril videos, 3) Cost effectiveness of the server push-to-peer strategy
respectively. Fig. 11(c) shows the hourly peer upload traffiVe first examine the video popularity-redundancy statugund
averaged over all peers. It is interesting to see that the@se our server strategy in Algorithm 2. For each videdNavasky
of hourly peer upload contribution is in proportion to thdt oFig. 12 plots the video redundancy in term of the ratio
the number of cached videos, rather than that of storagesusagf the total number of video segments cached on peers to

This validates the effectiveness of our coded-based stordfje segmentation number of the original videpvs. video
and replacement strategy in improving the efficiency of utpopularity in term of daily request count, periodically sded
lizing local storage. It “amplifies” the peer cache capatity over a two-week period from July 2 to July 14, 2010. In
store more videos with the same cache capacity, while stibmparison, we also plot the expected video redundancy as
maintaining the high availability of coded videos due totise a function of video popularity using Algorithm 2, and the
of Reed-Solomon codes. In addition, this in turn increase¢a dlower bound of redundancy to maintain video availability by
sharing opportunity to enable higher peer upload contdbut peers alone, as a function of video popularity based on our
Furthermore, we note that the hourly peer upload after discussion in Sec. II-D.
th hour keeps increasing even though the number of cachedVe observed that: (1) The redundancy of most videos have
videos already reaches a saturation point. This is achibyedreached or surpassed the expected level, while the rergainin
LFU-based cache replacement. ones have redundancy at least higher than the lower bound.

2) Load balancing We now examine load balancing inThis implies that our server push-to-peer strategy effebti
Novaksy, by illustrating the upload traffic distributionrass adapted video redundancy to meet user demand, so as to
seeding peers (in descending order of traffic) of a requegtiarantee video availability and user experience. Evenesom
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Fig. 12. Video redundancy vs. videoFig. 13. CDF of the utility of pushed Fig. 14. Percentage of server bandfFig. 15.  CDF of the signaling
popularity under server push strat-segments from servers, over a two-width usage and peer bandwidth coneverhead, packet overhead, unused
egy, compared to the expectation anaveek period from July 2 to July 14, tributions over all videos ilNovasky data overhead and overall transmis-
lower bound. 2010. within a two-week period from July sion overhead over all videos.

. . . . 2toJuly 14, 2010.
“cold” videos with a zero request count can remain available

with certain nonzero redundancy. (2) There are many lessl) Transmission overheadThere are three types of trans-
popular videos with redundancy much higher than the exgect@ission overhead iiNovasky (1) packet overheadontaining
level. We believe this is due to the dynamic changing of usite packet header of arourtd bytes per block transmitted
interests in video content. For example, a highly populdesj Uusing UDP, a2-byte segment index, and a block sequence
which can result in many segments cached by peers, n{gynber; (2)signaling overheadhcluding the seed list retrieval
become “cold” quickly. for bootstrapping, handshake for connection establishnasn

Next, we take a closer look at thetility of replenished well as media and security metadata; (Bused data overhead
segments pushed by servers in Fig. 13. It plots the cpigferred to those downloaded yet unwatched video data,aue t

of the ratio between the amount of data served by ealf€' activities such as session abortion, video switchimd) a
replenished segment (uploaded to some requesting peets) @fdom seeks. Fig. 15 plots the CDF of all three types of
the size of the replenished segment pushed by servers, q¢¢rhead in terms of the percentage of their incurred traffic
the two-week period. Note that the utilities of replenisheo!ume in the total traffic volume of each video, over a one-
segments are very likely to increase further, as they colf(fek period from July 13 to July 20, 2010. We observe
be requested by more peers as time progresses. We folfif: (1) Thanks to our lightweight coding implementatite

that: (1) The average utility of replenished segmentg.3s. ©verall transmission overhead of any video is lower thé
Although 56% of them have less thaho utility, we believe which is half of the overhead in PPLive [2] and comparable to

they are still desirable to meet the corresponding user demathat of UUSee with network coding [3]. (2) Among the three
which would otherwise be unsatisfied with degraded usBPes of overhead, packet overhead accounts for a refativel
experience. (2) Specifically, those segments with utilify ¢a'ger portion with a mean oi.5%, while the means of
1.0 represent a balanced cost effectiveness between seffir other two are all lower thaf.2%. In summary, there
bandwidth consumed and peer upload contribution aftersvarf Marginal transmission overhead incurred by our coding
(3) The utilities of the remaining4% replenished segmentsiMPlementation inNovasky
have been remarkably “amplified” with peer assistance. This2) CPU and memory consumptionWe now evaluate the
implies that a substantial amount of server bandwidth azsts computational and memory overheadMdvaskywith coding
be saved by benefiting from our server push-to-peer stratefiy the wild,” by periodically sampling the CPU usage and
To validate this, Fig. 14 plots the percentage of servétemory consumption of thiovaskyclient software on each
bandwidth usage and peer bandwidth contribution over &ger. Specifically, the CPU usage is broken down into: the
videos in Novaskywithin the two-week period. Specifically, front-end usagevhich is primarily accounted for by the media
the latter is further dissected into peers that are cachiBlpyer to render videos, and tHeack-end usagevhich is
replenished segments pushed by servers (referred to ascpudhcurred by downloading and decoding video data during a
peers) and others. It shows that server bandwidth usage ovi§wing session, or by encoding for storage replacemenhwhe
accounted forl 0%-35% of the total traffic volume over time, the peer cache space is saturated.
which is remarkably lower than a previous measurementtresul Fig. 16 plots the CDF of two categories of CPU usage that
of 73% in Gridcast [8], and comparable to that of UUSeare sampled froni, 500 online peers during a one-week period
with network coding [3]. Interestingly, pushed peers carkenafrom July 13 to July 20, 2010. Fig. 17 plots the CDF of
significant bandwidth contributions up 48% on average. This memory consumption of the same set of peers. We observe
clearly shows that our server push-to-peer strategy cageihd that: (1) Most of the peers have less thad% back-end
lead to effective utilization of server bandwidth, by inreseng CPU usage, and even the highest observed back-end CPU
peer contributions. usage is lower thar5%. This shows that the computation
overhead incurred by coding is indeed acceptable in pectic
(2) By embedding the lightweight open-source VLC player in
Novasky the front end CPU usage is typically bela®%.
Finally, we examine the transmission and computation ovédote that it is not uncommon to observe that the frond-
head incurred by coding iNovasky end CPU usage is higher than back-end CPU usage during

D. Overhead with Coding
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Fig. 16. CDF of the CPU usageFig. 17. CDF of the memory con- usetu 'O balanc g the C.ie a d.a d supply of content a d

of the Novaskyclient software, which sumption of theNovaskyclient soft- Pandwidth. Suhet al. [1] in the literature PrOpOSEd push-

is sampled froml, 500 online peers ware, which is sampled frorh, 500 to-peer data placement schemes for VoD in cable networks.

over an one-week period from Julyonline peers over an one-week period ; _ i i

13 o July 20, 2010 from July 13 to July 20, 2010, prever, static sgt top boxes_ln cable networks are rdglical
different from a highly dynamic P2P storage cloud, and the

a viewing session, especially when watching 720p cinematigork has focused on theoretical analysis without validgtin
quality videos (at aroungl Mbps). (3) Many online peers could regyits from a real-world system.

have zero back-end CPU usage, when they are not watching

or uploading any video. (4) Up 0% of peers have less than V. CONCLUDING REMARKS

100 MB memory consumption, which is comparable to that of This paper designs and implemeftsvasky an operational

current systems without coding, such as PPLive. Aro2ffh P2P storage cloud for on-demand streaming of cinematic-

of peers have less thad MB memory consumption, as mostquality videos over a high-bandwidth network. Two unique

of them just joined the system. In summary, our lightweighthechanisms are proposed: (1) a coding-aware peer stordge an

coding implementation and fine-tuned parameter selectionreplacement strategy that takes advantage of Reed-Solomon

Novaskywork effectively in real-world systems, with marginalcodes to achieve storage efficiency, durable video avétjabi

transmission and computation overhead brought by codingand load balancing; and (2) an adaptive server push strategy
with video popularity-redundancy awareness to proagtivel

IV. RELATED WORK balance the demand and supply of content and bandwidth
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