
Novasky:Cinematic-Quality VoD
in a P2P Storage Cloud

Fangming Liu†, Shijun Shen§, Bo Li†, Baochun Li‡, Hao Yin§, Sanli Li§
†Hong Kong University of Science & Technology, §Tsinghua University, ‡University of Toronto

Abstract—In this paper, we present Novasky, a real-world
Video-on-Demand (VoD) system capable of delivering cinematic-
quality video streams to end users. The foundation of the
Novaskydesign is a peer-to-peer (P2P) storage cloud, storing and
refreshing media streams in a decentralized fashion using local
storage spaces of end users. We present our design objectives
in Novasky, and how these objectives are achieved using a
collection of unique mechanisms, with respect to caching strate-
gies, coding mechanisms, and the maintenance of the supply-
demand relationship when it comes to media availability in the
P2P storage cloud. The production Novasky system has been
implemented with over 100,000 lines of code. It has been deployed
in the Tsinghua University campus network, operational since
September 2009, attracting 10,000 users to date, and providing
over 1,000 cinematic-quality video streams with bit rates of 1
– 2 Mbps. Based on real-world traces collected over 6 months,
we show that Novaskycan achieve rapid startups within 4 – 9
seconds, and extremely short seek latencies within 3 seconds. Our
empirical experiences withNovaskymay bring valuable insights
to future designs of production-quality P2P storage cloud systems.

I. I NTRODUCTION

With its great potential to bring a rich repository of video
content to end users on-demand, video-on-demand (VoD)
systems have not only been the target of a substantial amount
of research, but also been core industry products in both
startup and established corporations alike. Existing research
has extensively studied peer-to-peer (P2P) VoD systems from
theoretical (e.g.,[1]), simulations (e.g.,[2]), and measurement
perspectives (e.g., [3]).

It has been well known that such systems require each user,
called apeer, to dedicate a certain amount of the non-volatile
storage space on her local host. Such local storage space from
users will be used in typical P2P VoD streaming systems as a
semi-persistentcacheof the media content that has just been
played. The benefits brought forth by such local caching are
two-fold: to assist other users from the cache in a peer-to-peer
fashion, and to improve the quality that the user experiences
with respect to important quality metrics, such as random seek
latencies — the time it takes for any random seek operations
to complete. Caching strategies in typical P2P VoD streaming
systems have been discussed extensively in the literature,with
a focus on improving the utility of cached content with respect
to performance.

∗The research was support in part by a grant from RGC under the contract
615608, by a grant from Huawei Technologies Co. Ltd. under the contract
HUAW18-15L0181011/PN, and by grants from project 60873254,60873202
supported by NSFC and the project 2011CB302600 supported bythe National
Basic Research Program of China (973 Program).

More recently, the advent of cloud computing has intro-
duced the concept of astorage cloud,which represents a large-
scale pool of storage space that can be accessed conveniently
by users who need storage space in the cloud. The amount
of storage space reserved by a P2P VoD system in each end
host is quite substantial in the real world, typically more than
1 GB. Connecting these two “dots” together, if there exists a
fair number of concurrent users in a traditional P2P system,
wouldn’t it be intriguing to take advantage of the local VoD
storage space that belongs to a large number of participating
peers, pool them together, and form aP2P storage cloud?This
is especially feasible and interesting when participatingpeers
are inter-connected with a local, high-bandwidth network —
such as a typical campus network.

One may naturally wonder why such a P2P storage cloud
may offer anything more interesting than a traditional P2P
VoD streaming system with local caching. We believe that,
as peers are inter-connected with a high-bandwidth network,
such a P2P storage cloud, if designed, implemented, and
managed appropriately, would be able to offer a stellar level of
performance when streaming on-demand video to participating
users, one that is much better than traditional P2P VoD systems
over the public Internet.

In this paper, we presentNovasky, a production-quality VoD
system that we implemented with over 100,000 lines of code
(LOC) in C++, based on the foundation of our P2P storage
cloud that we have designed and implemented from scratch.
In retrospect, when we brainstorm to finalize the design of
the NovaskyP2P storage cloud architecture a year ago, no
one would ever imagine that its production deployment in the
campus network at Tsinghua University has delivered over
1,000 video streams to over 10,000 users atcinematic quality,
streaming at bit rates of 1 – 2 Mbps. We are pleasantly
surprised by (and advertising the product for) the fact that,
when played back, these video streams can be enjoyed at a
quality level of DVD or even 720p video. In contrast, most
traditional P2P VoD systems operate at low bit rates, such
as 400 kbps [2]. Beyond sustainable streaming rates,Novasky
users are also experiencing typical random seek latencies of
3 seconds, while traditional systems suffer from random seek
latencies of 15 – 40 seconds, or even longer [2].

Rather than typical emulation-based experiments, withNo-
vasky, we choose to design, implement, deploy, and measure
a complete VoD system based on a P2P storage cloud over
a high-bandwidth network. TheNovaskyP2P storage cloud
architecture features a number of unique highlights, whichare
the focus of this paper.First, we believe that simple replication

strategies typically used in cache design are not efficient when
a high level of video availability needs to be maintained
across the P2P storage cloud. To maintain a well-designed
and balanced tradeoff between the performance of streaming
“hot” videos and the diversity of available videos, we have
decided to use Reed-Solomon codes [4], tightly coupled with
a new coding-aware storage replacement algorithm.Second,to
maintain a healthy relationship between the “supply” of and
“demand” for content and bandwidth, we designed an adaptive
server-feeding strategy that actively pushes content to peers in
the P2P storage cloud.

During the brainstorming stage, we were worried about
the use of Reed-Solomon codes in theNovaskyP2P storage
cloud. Though MDS codes, such as Reed-Solomon codes, have
been widely adopted in traditional mass storage systems (e.g.,
RAID 6), and have been conceptually shown to be effective
in distributed storage systems [5], [6], they have not been
used in practice in any production-quality P2P storage cloud
systems. We were mainly concerned with their computational
complexity.

The good news is that our worries were dissipated by
evidence from our extensive measurement studies presentedin
this paper. Throughout subsequent sections in this paper, we
evaluate the scale, quality, and lessons learned from practically
every conceivable aspect inNovasky: its quality perceived
by the users, its performance as a system, especially with
respect to the efficacy of coding, as well as its operational
overhead. To the best of our knowledge,Novaskyis the first
attempt in the literature towards designing and implementing
an operational P2P storage cloud for on-demand streaming
of cinematic-quality videos over a high-bandwidth network.
We are convinced that results reported in this paper can offer
valuable insights towards a new genre of cinematic-quality
VoD services in real-world systems.

II. N OVASKY: CHALLENGES AND DESIGN

In this section, we first identify important challenges as
we design the architecture of theNovaskyP2P storage cloud.
In response to these challenges, we then present our system
architecture and design, including code-based peer storage and
adaptive push-to-peer mechanisms.

A. Design Objective and Challenges

Our ultimate design objective is to build a P2P storage
cloud that is specifically tailored to the performance needsof
cinematic-quality VoD streaming over a high-bandwidth net-
work. To achieve such an objective, two important challenges
need to be addressed.

⊲ Despite a variety of cache replacement strategies in
existing P2P VoD systems [2], [3], when taking a system-wide
perspective, they are mostly restricted to replication of original
video data across the local storage space of participating peers,
due to its simplicity. However, given limited peer cache sizes,
such strategies would become insufficient to maintain data
availability and diversity, and are especially ill-conceived for
on-demand streaming of cinematic-quality video. We need a

P2P Storage Cloud

Media Servers

Management

Center

2

1 Decoding

Video i (coded)

Video ii (original)

Peer Cache

…
…
……

…

…

…
Recoding

Downloading
Coded

Segments

Playing

3

4

Storing

Fig. 1. The architecture ofNovasky.

new and cost-effective storage and replacement strategy, in
order to improve the efficiency of utilizing valuable space in
the P2P storage cloud, and to maintain availability of videos.

⊲ With the presence of frequent peer departures and the
evolution of diverse user interests across a rich repository
of videos, it is not uncommon to have a lack of balance
between the demand and supply of content and bandwidth,
which brings adverse effects to the availability of videos and
the streaming performance. We seek to proactively adapt the
availability of videos in the P2P storage cloud based on their
popularity, yet with effective utilization of limited bandwidth
available at media servers.

B. Novasky: Architectural Design

Fig. 1 illustrates our system architecture, and interactions
among major components inNovasky. Arrow 1 represents
the interaction between peers and the Management Center to
manage the P2P storage cloud. Arrow 2 represents the gossip
communication and video data distribution among peers. By
concurrently downloading coded video blocks from multiple
serving peers, a viewing peer can progressively decode and
playback the video. Each peer is able to cache both original
and coded segments of multiple videos. Along arrows 3 and
4, the Media Servers adaptively and proactively push coded
segments of under-supplied videos to selected peers.

The Management Center(MC) consists of a set of servers
that have a number of responsibilities: (1) maintaining meta-
data in all media files, including the MD5 hash value, length,
and popularity of each file; (2) authenticating users using the
RSA-based public key infrastructure; and (3) maintaining the
current status of participating peers in the P2P storage cloud,
including the status of their local storage space. Routine tasks
such as NAT traversal are also handled.

The Media Servers(MS) cooperate with the P2P storage
cloud to feed a rich repository of videos to a large number
of users. As we shall elaborate in Sec. II-D, the objective of
the Media Servers is to utilize limited server bandwidth in the
best ways possible, and to maximize content availability and
service quality in the P2P storage cloud.

The P2P storage cloudis designed to “pool” local storage
spaces on all participating peers together, and collectively
optimize the delivery of cinematic-quality video streams.The
P2P storage cloud is derived from traditional P2P designs: all
participating peers are organized into a mesh topology, and
exchange information about the availability of video segments
periodically.

Algorithm 1 The peer storage and replacement strategy using
Reed-Solomon codes.

1: // when the current cache space is saturated and cannot
store new incoming video data

2: sort currently cached original videos in LFU order;
3: for each original videodo
4: // code-based replacement
5: use Reed-Solomon codes to generate a coded segment

to be stored, with a randomly selected index from the
Vandermonde matrix;

6: evict the original video from the cache;
7: if the cache space is enough for the new incoming data

then
8: store the new incoming data;return ;
9: end if

10: end for
11: // if cache space is still insufficient to accommodate new

incoming video data
12: sort currently cached coded segments in LFU order;
13: for each coded segmentdo
14: evict the coded segment from the cache;
15: if the cache space is enough for the new incoming data

then
16: store the new incoming data;return ;
17: end if
18: end for

Finally, Novaskyprovides a feature-rich user interface. In
addition to on-demand streaming and random seek functions,
Novaskyusers are able to navigate and search in the video
repository, rate videos, and upload user-generated content.
From the perspective of a user using its interface, theNovasky
P2P storage cloud architecture is completely transparent:it
operates exactly like a cloud storage service. Users are not
aware of the fact that, rather than storing videos in the “cloud,”
they are stored in the collective “pooled” storage that all users
contribute to.

C. Peer Storage and Replacement using Reed-Solomon Codes

In a P2P storage cloud, the most critical design objective
is to efficiently utilize limited peer storage cache capacities to
maintain video availability and to maximize peer upload con-
tribution. To achieve this objective, there are three important
aspects that we have considered as we designNovasky: (1)
Each peer is expected to cache a number of videos to serve as
many peers as possible. However, given a limited cache size
such as2 GB, it is infeasible to store all complete videos.
(2) A viewing peer is usually fed by multiple seeding peers
with limited upload capacities, each of which is responsible
for uploading a certain part of video data. Since a seeding
peer only provides a part of video data, it is unnecessary to
store the complete video. (3) The rich repository of high-
quality videos with bit rates of1 − 2 Mbps could further
strain peer storage and bandwidth resources, rendering simple
replication strategies insufficient to maintain video availability

1B

1 kB

1)1(! kcB

b

1B 2B kB 1 kB 2 kB k2B 1)1(! kcB 2)1(! kcB ckB

1S 2S kS

2B

2 kB

2)1(! kcB

kB

k2B

ckB

jS

k

]1,1[! " qkj

Fig. 2. The coding process from original video to coded segments.

and transmission efficiency.
Motivated by these considerations, our design choice is to

store a part of the video data instead of the complete video,
in order to better utilize limited peer cache capacities, and to
promote diversity. However, this may bring adverse effectson
video availability and on-demand streaming performance. How
can we carefully store a part of video data while mitigating
such adverse effects, and in what form should the video data
be stored to maintain video availability and storage efficiency?

In response, we would like to take advantage of Reed-
Solomon codes when video is stored in the peer local storage
cache. Algorithm 1 shows our strategy to replace original
video segments withonecoded segment, if we need to reclaim
cache space to store a new incoming video. In particular, to
combine coding with replication within the peer storage cache,
Novaskyperforms the following: (1) When a peer has adequate
cache space, it stores the complete video as usual so that it may
serve more data to viewing peers that do not have a sufficient
number of seeding peers. (2) When the cache space becomes
fully utilized as a peer watches more videos, currently cached
videos are sorted in the Least Frequently Used (LFU) order,
and following that order, each video file will be coded toone
coded segment, using a(n, k) Reed-Solomon code, in which
n is the maximum number of unique coded segments possible,
andk is the number of original segments to be coded. Since
only one coded segment will remain, it will occupy a smaller
amount of cache space as compared to the original video. The
purpose is to free up a sufficient amount of storage space to
accommodate a new incoming video, while still keeping the
availability of coded videos.

There are, however, a number of more detailed challenges
that the outline of our design does not discuss.

Applying Reed-Solomon codes to segments.The first nat-
ural question that arises is: How aresegmentsdefined, and
how are Reed-Solomon codes applied to these segments? In
Novasky, the original (complete) video of sizeL is divided into
contiguous data blocks of sizeb, i.e., {Bi|i = 1, 2, . . . , ck},
where i is the sequence number of blocks, andc = ⌈ L

kb⌉ is
the number of blocks within a segment. Of course, additional
zeros can be added to the end of the last segment of a video.
These blocks are recombined in aninterleavedmanner to form
k original segmentsSj = {Bik+j |i = 1, 2, . . . , c − 1; j =

1, 2, . . . , k} with indices j ∈ [1, k], so that each segment
consists of interleaved blocks across the entire video, as
shown in Fig. 2. A seeding peer inNovaskyindependently
and randomly chooses an indexj and a corresponding row
vectorgj in the Vandermonde matrix — which is the typical
generator matrix used in systematic Reed-Solomon codes —
and generate a coded segment̂Sj = gj [S1,S1, . . . ,Sk]

T .
When such a choice of indexj is made, due to the nature
of systematic Reed-Solomon codes,j must be in the range
of [k + 1, n]. Since there arek segments in a video, a coded
segment has a size of only1/k of the original video size,
and will be stored by the seeding peer to replace the original
video when storage space in the cache needs to be reclaimed.
A viewing peer can decode and recover video blocks in a
pipelined fashion using Gauss-Jordan elimination, as soonas
k blocks with the same relative positionx of any k linearly
independent segmentsS are received, instead of waiting fork
entire segments to be received.

Choosing parametersn and k in Reed-Solomon codes.
How parametersn andk should be chosen inNovaskyhinges
upon the need that different peers needs to produce different
coded blocks,i.e., using different indices to select different
coding vectors in the Vandermonde matrix that Reed-Solomon
codes use. In order to minimize the probability of duplicated
coded segments, we choose to use a sufficiently large sizeq of
the Galois Field GF(q) in Novasky. A good choice would be
q = 216, since it is the maximum size of the Galois Field that
allows for efficient implementations in software [4], [5]. In
this case, based on the requirement of Reed-Solomon codes,
n ≤ q − 1, and the maximumn is 216 − 1.

To minimize the probability of duplicate index choices by
different peers, we choose a reasonably smallk, in thatk = 16.
This implies that segments cached by peers are coded by
randomly selecting a coding vector from216 − 1 rows in
the Vandermonde matrix, all of which are guaranteed to be
linearly independent from each other, due to the property ofthe
Vandermonde matrix. According to solutions to the birthday
attack problem, the probability of having a duplicated selection
with k different peers choosing indices fromn = 216−1 rows
can be approximated as1 − e−k2/(2n), which is only0.20%
underk = 16 andn = 216 − 1.

Interestingly, the selection ofk = 16 implies that the seg-
ment size is only1/16 of the original video size. By replacing
the original video with a coded segment, our strategy can free
up to 16 times less storage space to store new videos. Even
larger values ofk require a viewing peer to download segments
from more seeding peers, which aggravates the scheduling
overhead. As shown in recent measurement studies [2], the
practical number of seeding peers falls in[8, 32].

Estimating communication overhead.Another practical de-
sign consideration is whether we can keep the implementation
of code-based storage strategy sufficiently lightweight, with
acceptable communication overhead, even with the use of
Reed-Solomon codes. Withn = 216−1 as we discussed above,
the coding metadata in term of the segment index can be
simply represented as an integer of2 bytes within[1, 216−1]:

original segments with indices[1, k] and coded ones with
indices[k + 1, 216− 1], all of which are linearly independent.
The original video can be treated ask original segments,
since systematic Reed-Solomon codes are used. In addition,
coding vectors from the Vandermonde matrix can be readily
buffered by each peer, without incurring extra computationand
transmission overhead.

Summary.Our code-based storage and replacement strategy
can improve the storage efficiency and video availability ofa
P2P storage cloud, in the sense that more storage space can
be freed to cache and serve a larger number of videos with
the same cache size constraints, while coded segments using
Reed-Solomon codes can still maintain video availability and
peer upload contribution with high probability. This essentially
increases the data sharing opportunity among peers, compared
to simple replication strategies. Although we can further allow
a peer to cache more than one coded segment for a replaced
video, our current design choice is to let the peer cache
one coded segment. The rationale is that storing multiple
coded segments of the same video will consume more storage
resources and potentially incur peer load imbalance, without
providing extra data availability [5].

D. Adaptive Server Push-to-Peer Strategy

Due to the dynamic nature of the P2P storage cloud, video
availability can be degraded at run-time. With the presenceof
frequent peer departures, new coded video segments need to
be periodically replenished in the system to maintain video
availability. However, solely relying on peers for such repairs
in coded systems may incur tremendous computation overhead
and repair bandwidth costs [6]. In particular, regenerating one
coded video segment with a(n, k) MDS code requires a peer
to downloadk distinct segments or the entire video. That is,
the amount of data that needs to be transferred can bek times
higher than the amount of redundancy lost [7]. Furthermore,
due to the evolution of diverse user interests across a rich
repository of videos, it is not uncommon to have demand-
supply imbalance across videos. This requires the redundancy
of video in a P2P storage cloud to be proactively adapted to
the video popularity, in order to guarantee service qualityand
user experience.

To compensate for these adverse effects, we design an
adaptive server push-to-peer strategy in the P2P storage cloud,
shown in Algorithm 2, in order to optimize video availability
and service quality, by effectively utilizing premium server
bandwidth resources. Specifically, by leveraging online traces
on video popularity and redundancy, as well as peer cache
status and online duration, the MS inNovaskyis designed
to proactively transmit randomly coded segments of under-
supplied videos to capable peers, in order to: (1) cope with
redundancy loss due to peer churn, (2) alleviate video demand-
supply discrepancy, and (3) release new videos. These replen-
ished segments can improve data redundancy and diversity in
the P2P storage cloud, so as to improve data sharing among
peers, and thus mitigate costly requests to servers. This is
complementary to the commonly used “best-effort” server

strategy which is passively driven by unsatisfied viewing
requests from peers. In particular, as the MS hosts original
videos, it can readily produce new coded segments using
our coding approach in previous subsection, without incurring
excessive repair bandwidth costs [7].

Algorithm 2 Adaptive server push-to-peer strategy.

1: Given a repository of videosV : {v = 1, 2, . . . , V }
seeded by the MS, monitoring the video popularityλv

and redundancyrv,∀v ∈ V, by collecting peer viewing
statistics and cache status.

2: for all v ∈ V do
3: if v has been pushed within a previous periodTp then
4: continue;
5: end if
6: compute a demand-supply discrepancy indexdv ←

(kw
wv

) rv

λv

, wherewv is the streaming bit rate of video
v, and w is a statistical measurement on peer upload
capacity based on collected traces.

7: end for
8: select a candidate videov′ with dv′ = min{dv|v ∈ V}.
9: if dv′ < d, which is a tunable threshold controlled by the

service providerthen
10: generateλv′ coded segments using Reed-Solomon

codes;
11: select candidate peers according to collected traces on

available cache space, online duration and idle status;
12: if MS has available bandwidth and is not busythen
13: transmit new coded segments to selected peers.
14: end if
15: end if

Our server push-to-peer strategy can be implemented with
flexibility in the P2P storage cloud. Specifically, video popu-
larity λv,∀v ∈ V, can be captured by periodically recording
file request counts, so as to adapt to the evolution of user
interests. With our coding approach in the previous subsection,
the video redundancyrv,∀v ∈ V, can be reflected by the ratio
of the total number of video segments cached on peers to the
corresponding number of segmentsk. With our peer caching
Algorithm 1, a videov with redundancyrv implies that there
exist [rv, krv] seeding peers caching coded or original seg-
ments ofv. Given the video streaming ratewv and a statistical
measurement on the peer upload capacityw (e.g., average
peer upload capacity), the maximum concurrent number of
viewing requests that can be supported by seeding peers can
be ideally expressed as(kw

wv

)rv. Hence, maintaining video
availability requires its redundancyrv to meet its popularityλv

as (kw
wv

)rv ≥ λv, i.e., rv ≥ max{λvwv

kw , 1}. This qualitatively
implies that a higher video popularity and streaming rate
requires a higher level of redundancy, whereas coding and
peer upload contributions can help relax such a requirement.

Accordingly, we can expressrv as rv = dv(λvwv

kw); al-
ternatively, dv = (kw

wv

) rv

λv

is referred to asdemand-supply
discrepancy indexof video v. In practice, we expect to
maintain dv ≥ 1 for a baseline of video availability and

resilience to peer churns. The larger the value ofdv is, the
higher redundancy, availability and churn resilience the video
v has. Under-supplied videos with smallerdv are preferred
by the MS for replenishing coded segments. However, if a
video has been replenished in a previous periodTp, it will
be excluded to avoid aggressive replenishment of a particular
video while ignoring others. To prevent server bandwidth
abuse, a tunable threshold for demand-supply discrepancyd
is controlled by the service provider. Given a flat amount of
server resources, the selection ofd needs to balance the trade-
off between server resource utilization and coding overhead.
A higher threshold may aggravate the burden on servers,
while a lower one can lead to under-utilized server bandwidth.
Finally, there is a substantial margin of flexibility in selecting
candidate peers to push coded segments. The rule of thumb
is to randomly select long-lived peers with a relatively large
available cache space and available upload bandwidth. The
cost efficiency of our server push-to-peer strategy in termsof
the utility of pushed video segments will be evaluated with
real-world measurements in Sec. III.

III. N OVASKY: REAL-WORLD MEASUREMENT AND

PERFORMANCEEVALUATION

A. Deployment Statistics and Trace Collection

Since September 2009,Novasky, which is developed for
both Linux and Windows platforms, has been deployed and op-
erational in the Tsinghua University campus network. TableI
summarizes the deployment statistics ofNovasky. In particular,
Novaskyis designed towards providing cinematic-quality VoD
service. Fig. 3 plots the CDF of streaming bit rates over all
videos provided byNovasky. The average video bit rate is1.08
Mbps, and around25% of all videos (especially 720p format
videos) have bit rates higher than1.5 Mbps. In contrast, the
video bit rates in existing P2P VoD systems [2], [3], [8] fall
in the range of400 − 800 Kbps, and very rarely exceed1
Mbps. Despite high streaming bit rates,Novaskycan provide
high service quality levels as perceived by users, in terms of
fluent playback and short startup and seek latencies, as we will
demonstrate in the next subsection.

TABLE I
DEPLOYMENT STATISTICS OFNovasky.

of users 10, 094 # of videos 1, 000

of user sessions 47, 626 # of video sessions 63, 445

Viewing time 30, 288 hours Total traffic 17 TB
Measurement period Feb-Jul, 2010 Trace volume 10 GB

We have implemented detailed instrumentation and mea-
surement mechanisms within each Novaksy client to collect
real-world traces over6 months. Each peer periodically reports
its run-time activities and status using UDP to the MC, which
is responsible for logging: (1) user-related traces including
online times and cache status, CPU and memory consumption,
as well as upload and download traffic volumes; (2) media-
related traces including video popularity, startup and seek
latencies, as well as session durations. Such internal traces
characterizing the live behavior ofNovaskyare not only used

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5

Video Bitrate (Mbps)

C
D
F

 Mean = 1.08

 Median = 1.11

Fig. 3. CDF of streaming bit rates
over all videos provided byNovasky.

0

20

40

60

80

100

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

P
er

ce
n
ta

g
e

(%
)

Other

Buffer

Short

Complete

Fig. 4. Percentage of completed,
short and aborted sessions, and other
cases due to miscellaneous failures.

to guide the adaptive server-feeding strategy in Sec. II-D,but
also analyzed to evaluate the design effectiveness and overhead
of Novasky.

B. User-Perceived Service Qualities

We first evaluate the user-perceived service qualities pro-
vided byNovaskyfrom various perspectives, including durable
video availability, on-demand streaming fluency, as well as
startup and random seek latencies.

1) Durable video availability: In the context of VoD, video
availability is primarily related to three cases during a user’s
viewing session for a video: (1) completed session: the session
successfully ends when the video is completely watched by the
user; (2) short session: the user stops the session or switches
to another video due to content reasons, even if it has not
experienced any streaming interruption; (3) aborted session:
the session is interrupted with unacceptable buffering time τ ,
such asτ > 1 minute, which motivates the user to leave.
By regarding the first two cases as successful, we define a
playback success ratioas the percentage of successful sessions
over all measured sessions of a video, in order to capture the
video availability. Compared to conventional data availability
measurements [7], our measurements are more representative
of the durable video availabilityin the context of VoD.

Fig. 4 plots the average percentage of completed sessions,
short sessions and aborted sessions over all videos inNovasky
vs. time on a representative day. We observed that the average
playback success ratio can be maintained up to80%, which
implies a stable level of durable video availability inNovasky.
Specifically, 60% of sessions exit prior to the end of the
corresponding video due to active video switching, whereas
around20% of sessions last until the videos are completely
watched by users. This demonstrates a common “short ses-
sion” nature in VoD services [2], [8]. Empirically, around15%
of sessions aborted because users cannot tolerate a buffering
time exceeding one minute, when streaming interruptions
occurred. We zoom into the durable video availability of each
video in the large video repository ofNovasky, by plotting the
playback success ratio of each video in a descending order
in Fig. 5. It shows that nearly20% of videos enjoyed perfect
availability, and more than60% of videos achieved higher than
80% durable video availability.

2) On-demand streaming fluency and latencies: While
the durable video availability is insufficient to reflect fine-
grained user experiences (e.g., playback jitters), we further
investigate the video streaming fluency as sessions progress,

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Video Rank

P
la
y
b
ac
k
 S
u
cc
es
s
R
at
io
 (
%
)

 Mean=82.54%

 Median=83.85%

Fig. 5. Playback success ratio of
each video in a descending order
(normalized) on a representative day.

90

92

94

96

98

100

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

P
la
y
b
ac
k
 F
lu
en
cy
 (
%
)

 Mean = 99.23%

 Median = 99.14%

Fig. 6. Playback fluency index aver-
aged over all video sessions vs. time
on a representative day.

as well as startup and random seek latencies. Specifically,
for each viewing sessions, our trace mechanism records:
(1) the startup latencyTst between the time a user issues a
viewing request and the time the video playback commences;
(2) seek latenciesT i

sk after a user jumps forward or backward
to arbitrary playback points, wherei is the number of seek
activities during the session; (3) buffering timesT j

b when play-
back interruptions occur, wherej is the number of playback
interruptions during the session; (4) the total session duration
Ts. Inspired by [2], we define aplayback fluency indexas
the fraction of uninterrupted watching time out of the total
watching time,i.e.,1−

∑
j T j

b /(Ts−Tst−
∑

i T i
sk). Fig. 6 plots

the average playback fluency index over all video sessions in
Novaskyvs. time on a representative day. With our lightweight
coding implementation,Novaskycan achieve a superior level
of playback fluency that remains higher than98% and even
up to100%; and the average playback fluency over time is up
to 99.23%.

Next we examine the startup and random seek latencies.
Fig. 7 plots the average startup and seek latencies, as well
as the buffering time during playback interruptions, over all
video sessions inNovaskyvs. time on a representative day. We
can observe that: (1) Our coding-aware design can effectively
support the timely retrieval of arbitrary playback points,with
seek latencies within3 seconds. This is remarkably shorter
than the seek latencies (10−30 seconds) of existing P2P VoD
systems [2], [3]. InNovasky, random seeks with either long
or short distances may very possibly not cause the requesting
peer to switch to new seeding peers, as both original and coded
segments generated by our segmentation and coding approach
in Sec. II-C involve data across the entire video. (2)Novasky
also achieves fast startups to provide competitive user experi-
ences. Specifically, the startup latencies varied between4 and
9 seconds over time, due to the well known “daily pattern”
of peer population [3]. In contrast, the startup latencies in
existing P2P VoD systems are up to15− 40 seconds [2], [3].
(3) The buffering time during playback interruption is around
1 second. Furthermore, Fig. 8 plots the CDF of startup and
random seek latencies over all video sessions across our six-
month trace period, which confirms that up to90% of videos
enjoyed short latencies within10 seconds.

C. Effectiveness of Coding and Push-to-Peer

We next examine the effectiveness of our proposed coding-
aware storage and replacement mechanism and server push-
to-peer strategy, in terms of storage efficiency, peer upload

0

2

4

6

8

10

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

L
at
en
cy
 (
se
c)

Startup
Seek
Buffering

Fig. 7. Latencies of startup, random
seeks and buffering averaged over all
video sessions vs. time on a represen-
tative day.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Latency (sec)

C
D
F

Startup latency

(mean = 6.6s)

Seek latency

(mean = 3.6s)

Fig. 8. CDF of startup and random
seek latencies of all video sessions
over six-month trace period.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100
Percentage of Coded Amount

C
D

F

Coded data

(mean = 76.9%)

Coded video

(mean = 85.6%) 36.8%

Fig. 9. CDF of the percentage of
coded data volume and number of
videos over all peers’ caches within
48 hours.

0

6

12

18

24

1 4 7 10 13 16 19 22 25 28 31 34

Seeding Peer Rank

P
ee
r
U
p
lo
ad
 T
ra
ff
ic
 (
M
B
)

Fig. 10. Upload traffic from seeding
peers in descending order, averaged
over all video sessions within a rep-
resentative day.

contribution and load balancing, as well as the cost effective-
ness of pushed segments.

1) Storage efficiency: First, we are interested in whether
our coding-aware storage algorithm can operate effectively in
the P2P VoD storage cloud, by comparing the amount of coded
and original data in peer storage caches. Fig. 9 plots the CDF
of the percentage of coded data and videos over all peer caches
in Novaskywithin 48 hours. The average amount of coded data
and videos are76.9% and85.6%, respectively; and63.2% of
peer caches are completely filled with coded data. This shows
that our coding-aware storage and replacement strategy indeed
plays an important role inNovasky.

With our coding-aware storage and replacement strategy,
is it possible to increase the number of videos stored and
peer upload contribution? Fig. 11 shows the evolution of
storage usage, the number of cached videos, and peer upload
contribution averaged over all peers, as cumulative onlinetime
increases to48 hours. The default peer cache capacity is set to
2 GB in Novasky. We observed from Fig. 11(a) and 11(b) that
the number of cached videos is not exactly in proportion to the
storage space used. During the first12 hours, both the storage
usage and the number of cached videos increase quickly. In the
subsequent13−40 hours, the increase of storage usage slows
down, while the number of cached videos keeps increasing
rapidly with the help of our algorithm. Finally, both the storage
usage and the number of cached videos reach a saturation point
at the40-th hour, i.e., 1.6 GB storage space and34 videos,
respectively. Fig. 11(c) shows the hourly peer upload traffic
averaged over all peers. It is interesting to see that the increase
of hourly peer upload contribution is in proportion to that of
the number of cached videos, rather than that of storage usage.

This validates the effectiveness of our coded-based storage
and replacement strategy in improving the efficiency of uti-
lizing local storage. It “amplifies” the peer cache capacityto
store more videos with the same cache capacity, while still
maintaining the high availability of coded videos due to theuse
of Reed-Solomon codes. In addition, this in turn increases data
sharing opportunity to enable higher peer upload contribution.
Furthermore, we note that the hourly peer upload after40-
th hour keeps increasing even though the number of cached
videos already reaches a saturation point. This is achievedby
LFU-based cache replacement.

2) Load balancing: We now examine load balancing in
Novaksy, by illustrating the upload traffic distribution across
seeding peers (in descending order of traffic) of a request-

0.0

0.5

1.0

1.5

2.0

0 12 24 36 48

Cumulative Online Time (h)

S
to
ra
g
e
U
se
d
 (
G
B
)

(a)

0

10

20

30

40

0 12 24 36 48

Cumulative Online Time (h)

#
 o
f
V
id
e
o
s
C
a
c
h
e
d

(b)

0

3

6

9

12

0 12 24 36 48

Cumulative Online Time (h)

H
o
u
rl
y
 U
p
lo
ad
 (
M
B
)

(c)
Fig. 11. Evolution of (a) storage usage, (b) the number of cached videos,
and (c) peer upload contribution averaged over all peers, ascumulative online
time increases to48 hours.

ing peer during a viewing session, in Fig. 10. To obtain a
macroscopic view, this is averaged over all video sessions
within a representative day. We find that for a viewing ses-
sion, most traffic is uploaded by the top16 seeding peers,
among which the traffic load is fairly balanced with relatively
small deviation. Recalling our choice of the coding parameter
k = 16 in Sec. II-C, such observation implies that: (1) The data
diversity brought by random coding can indeed helpNovasky
to approach load balancing, as coded segments cached on
seeding peers are equally useful and independent with high
probability. (2) The cases for a viewing peer to switch to new
seeding peers, due to the lack of data availability or diversity,
are infrequent with our coding-aware storage scheduling, as
on average only a small portion of data is shown to be
downloaded from peers other than the top16 ones.

3) Cost effectiveness of the server push-to-peer strategy:
We first examine the video popularity-redundancy status under
our server strategy in Algorithm 2. For each video inNovasky,
Fig. 12 plots the video redundancy in term of the ratio
of the total number of video segments cached on peers to
the segmentation number of the original videok, vs. video
popularity in term of daily request count, periodically sampled
over a two-week period from July 2 to July 14, 2010. In
comparison, we also plot the expected video redundancy as
a function of video popularity using Algorithm 2, and the
lower bound of redundancy to maintain video availability by
peers alone, as a function of video popularity based on our
discussion in Sec. II-D.

We observed that: (1) The redundancy of most videos have
reached or surpassed the expected level, while the remaining
ones have redundancy at least higher than the lower bound.
This implies that our server push-to-peer strategy effectively
adapted video redundancy to meet user demand, so as to
guarantee video availability and user experience. Even some

0

20

40

60

80

100

0 15 30 45 60 75
Video Popularity

V
id
eo
 R
ed
u
n
d
an
cy

Trace Data
Algorithm 2
Lower Bound

Fig. 12. Video redundancy vs. video
popularity under server push strat-
egy, compared to the expectation and
lower bound.

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.1 1 10 100

Utility of Pushed Segments

C
D
F

 Mean = 2.35

56%

Fig. 13. CDF of the utility of pushed
segments from servers, over a two-
week period from July 2 to July 14,
2010.

“cold” videos with a zero request count can remain available
with certain nonzero redundancy. (2) There are many less
popular videos with redundancy much higher than the expected
level. We believe this is due to the dynamic changing of user
interests in video content. For example, a highly popular video,
which can result in many segments cached by peers, may
become “cold” quickly.

Next, we take a closer look at theutility of replenished
segments pushed by servers in Fig. 13. It plots the CDF
of the ratio between the amount of data served by each
replenished segment (uploaded to some requesting peers) and
the size of the replenished segment pushed by servers, over
the two-week period. Note that the utilities of replenished
segments are very likely to increase further, as they could
be requested by more peers as time progresses. We found
that: (1) The average utility of replenished segments is2.35.
Although 56% of them have less than1.0 utility, we believe
they are still desirable to meet the corresponding user demand,
which would otherwise be unsatisfied with degraded user
experience. (2) Specifically, those segments with utility of
1.0 represent a balanced cost effectiveness between server
bandwidth consumed and peer upload contribution afterwards.
(3) The utilities of the remaining44% replenished segments
have been remarkably “amplified” with peer assistance. This
implies that a substantial amount of server bandwidth costscan
be saved by benefiting from our server push-to-peer strategy.

To validate this, Fig. 14 plots the percentage of server
bandwidth usage and peer bandwidth contribution over all
videos in Novaskywithin the two-week period. Specifically,
the latter is further dissected into peers that are caching
replenished segments pushed by servers (referred to as pushed
peers) and others. It shows that server bandwidth usage only
accounted for10%-35% of the total traffic volume over time,
which is remarkably lower than a previous measurement result
of 73% in Gridcast [8], and comparable to that of UUSee
with network coding [3]. Interestingly, pushed peers can make
significant bandwidth contributions up to43% on average. This
clearly shows that our server push-to-peer strategy can indeed
lead to effective utilization of server bandwidth, by increasing
peer contributions.

D. Overhead with Coding

Finally, we examine the transmission and computation over-
head incurred by coding inNovasky.

0

20

40

60

80

100

Jul 2 Jul 5 Jul 8 Jul 11 Jul 14

Date

P
er
ce
n
ta
g
e
(%
)

Pushed Peers (Mean=43%)

Other Peers (Mean=42%)

MS (Mean=15%)

Fig. 14. Percentage of server band-
width usage and peer bandwidth con-
tributions over all videos inNovasky,
within a two-week period from July
2 to July 14, 2010.

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5
Overhead (%)

C
D
F

Signal Overhead

(Mean = 0.17%)

Packet Overhead

(Mean = 1.50%)

Unused Data

(Mean = 0.19%)

Overall Overhead

(Mean = 1.85%)

Fig. 15. CDF of the signaling
overhead, packet overhead, unused
data overhead and overall transmis-
sion overhead over all videos.

1) Transmission overhead: There are three types of trans-
mission overhead inNovasky: (1) packet overheadcontaining
the packet header of around20 bytes per block transmitted
using UDP, a2-byte segment index, and a block sequence
number; (2)signaling overheadincluding the seed list retrieval
for bootstrapping, handshake for connection establishment, as
well as media and security metadata; (3)unused data overhead
referred to those downloaded yet unwatched video data, due to
user activities such as session abortion, video switching and
random seeks. Fig. 15 plots the CDF of all three types of
overhead in terms of the percentage of their incurred traffic
volume in the total traffic volume of each video, over a one-
week period from July 13 to July 20, 2010. We observe
that: (1) Thanks to our lightweight coding implementation,the
overall transmission overhead of any video is lower than5%,
which is half of the overhead in PPLive [2] and comparable to
that of UUSee with network coding [3]. (2) Among the three
types of overhead, packet overhead accounts for a relatively
larger portion with a mean of1.5%, while the means of
the other two are all lower than0.2%. In summary, there
is marginal transmission overhead incurred by our coding
implementation inNovasky.

2) CPU and memory consumption: We now evaluate the
computational and memory overhead ofNovaskywith coding
“in the wild,” by periodically sampling the CPU usage and
memory consumption of theNovaskyclient software on each
peer. Specifically, the CPU usage is broken down into: the
front-end usagewhich is primarily accounted for by the media
player to render videos, and theback-end usagewhich is
incurred by downloading and decoding video data during a
viewing session, or by encoding for storage replacement when
the peer cache space is saturated.

Fig. 16 plots the CDF of two categories of CPU usage that
are sampled from1, 500 online peers during a one-week period
from July 13 to July 20, 2010. Fig. 17 plots the CDF of
memory consumption of the same set of peers. We observe
that: (1) Most of the peers have less than10% back-end
CPU usage, and even the highest observed back-end CPU
usage is lower than15%. This shows that the computation
overhead incurred by coding is indeed acceptable in practice.
(2) By embedding the lightweight open-source VLC player in
Novasky, the front end CPU usage is typically below20%.
Note that it is not uncommon to observe that the frond-
end CPU usage is higher than back-end CPU usage during

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50
CPU Usage (%)

C
D
F

Backend (Mean=0.17%)

Frontend (Mean=1.68%)

Total (Mean=1.85%)

Fig. 16. CDF of the CPU usage
of theNovaskyclient software, which
is sampled from1, 500 online peers
over an one-week period from July
13 to July 20, 2010.

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150 200

Memory Consumption (MB)

C
D
F

 Mean = 55.7

 Median = 58.0
25%

90%

Fig. 17. CDF of the memory con-
sumption of theNovaskyclient soft-
ware, which is sampled from1, 500

online peers over an one-week period
from July 13 to July 20, 2010.

a viewing session, especially when watching 720p cinematic-
quality videos (at around2 Mbps). (3) Many online peers could
have zero back-end CPU usage, when they are not watching
or uploading any video. (4) Up to90% of peers have less than
100 MB memory consumption, which is comparable to that of
current systems without coding, such as PPLive. Around25%
of peers have less than20 MB memory consumption, as most
of them just joined the system. In summary, our lightweight
coding implementation and fine-tuned parameter selection in
Novaskywork effectively in real-world systems, with marginal
transmission and computation overhead brought by coding.

IV. RELATED WORK

There exists a number of prior works on using network
coding to improve the availability and performance of P2P
distributed storage and file download systems (e.g., [6], [7],
[9]). One of the most relevant studies [5] has analytically
investigated the use of erasure codes in a P2P storage cloud,
by considering data reliability, computation efficiency and
security issues. Differing from these works that mainly focused
on elastic content distribution or general data availability, No-
vaskyconstitutes a real-world operational P2P storage cloud,
with a coding-aware peer storage solution that is custom-
tailored to the on-demand streaming requirement of cinematic-
quality videos. More recently, it has been shown by several
emulated studies [10], [11] that network coding can help
improve playback quality and buffering delays in both P2P
live and on-demand streaming systems. While these works
have provided key design principles on the use of network
coding for transmission designs, we are particularly focused
on how to adopt MDS codes, such as Reed-Solomon codes,
to improve storage efficiency and video availability in a P2P
storage cloud that is being used on a daily basis.

Several measurement studies of P2P VoD systems [2], [8]
have extensively covered video characteristics, streaming per-
formance, user behavior, and server load. Our work in Novasky
is different from and complementary to these studies, in that
we focus on building an operational P2P storage cloud for
on-demand streaming ofcinematic-qualityvideos over ahigh-
bandwidthnetwork. In particular, while existing peer caching
designs still resort to replications of original video data, we
adopt Reed-Solomon codes, which are tightly coupled with
new coding-aware storage and access mechanisms to jointly
optimize storage efficiency, video availability and streaming

performance. This enables Novasky to provide up to 1,000
DVD-quality or even 720p videos with bit rates of 1 – 2 Mbps
— much higher than that of current popular P2P VoD systems
over the public Internet.

Finally, Novaskyhas incorporated an adaptive server push
strategy which is different from the conventional “best-effort”
server strategy in existing P2P VoD systems, and is particularly
useful for balancing the demand and supply of content and
bandwidth. Suhet al. [1] in the literature proposed push-
to-peer data placement schemes for VoD in cable networks.
However, static set-top boxes in cable networks are radically
different from a highly dynamic P2P storage cloud, and the
work has focused on theoretical analysis without validating
results from a real-world system.

V. CONCLUDING REMARKS

This paper designs and implementsNovasky, an operational
P2P storage cloud for on-demand streaming of cinematic-
quality videos over a high-bandwidth network. Two unique
mechanisms are proposed: (1) a coding-aware peer storage and
replacement strategy that takes advantage of Reed-Solomon
codes to achieve storage efficiency, durable video availability
and load balancing; and (2) an adaptive server push strategy
with video popularity-redundancy awareness to proactively
balance the demand and supply of content and bandwidth
in the P2P storage cloud. Based on real-world traces over
6 months, we demonstrated thatNovaskycan achieve stellar
performance, as perceived by its users in the P2P storage
cloud. We believe that insights offered in this paper will be
helpful towards future designs of P2P storage cloud systems
for a variety of purposes.

REFERENCES

[1] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, and
M. Varvello, “Push-to-Peer Video-on-Demand System: Design and Eval-
uation,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 9, pp. 1706–1716, 2007.

[2] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges, Design
and Analysis of a Large-scale P2P-VoD System,” inProc. of ACM
SIGCOMM, Aug. 2008.

[3] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-Scale Operational On-
Demand Streaming with Random Network Coding,” inProc. of IEEE
INFOCOM, Mar. 2010.

[4] J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-Like Systems,”Software: Practice and Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[5] J. Li and Q. Huang, “Erasure Resilient Codes in Peer-to-Peer Storage
Cloud,” in Proc. of Acoustics, Speech and Signaling Processing, 2006.

[6] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran,“Network
Coding for Distributed Storage Systems,” inProc. of IEEE INFOCOM,
May 2007.

[7] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure
Coding vs. Replication,”Peer-to-Peer Systems IV, pp. 226–239, 2005.

[8] B. Cheng, L. Stein, H. Jin, and Z. Zhang, “Towards Cinematic Internet
Video-on-Demand,” inProc. of 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems, Apr. 2008.

[9] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of A
Live Network Coding P2P System,” inProc. of ACM IMC, Oct. 2006.

[10] M. Wang and B. Li, “Rˆ 2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming,”IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, p. 1655, 2007.

[11] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Ro-
driguez, “Is High-Quality VoD Feasible using P2P Swarming?”in
Proc. of 16th International World Wide Web Conference, May 2007.

