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Abstract— With increasing concerns on privacy leakage from
gradients, various attack mechanisms emerged to recover private
data from gradients, which challenged the primary advantage
of privacy protection in federated learning. However, we cast
doubt upon the real impact of these gradient leakage attacks on
production federated learning systems. By taking away several
impractical assumptions that the literature has made, we find
that these attacks pose a limited degree of threat to the privacy
of raw data. In this paper, through a comprehensive evaluation of
existing gradient leakage attacks in a federated learning system
with practical assumptions, we have systematically analyzed their
effectiveness under a wide range of configurations. We first
present key priors required to make the attack possible or
stronger, such as a narrow distribution of initial model weights,
as well as inversion at early stages of training. We then propose a
new lightweight defense mechanism that provides sufficient and
self-adaptive protection against time-varying levels of the privacy
leakage risk throughout the federated learning process. Our
proposed defense, called OUTPOST, selectively adds Gaussian
noise to gradients at each update iteration according to the Fisher
information matrix, where the level of noise is determined by the
privacy leakage risk quantified by the spread of model weights
at each layer. To limit the computation overhead and training
performance degradation, OUTPOST only performs perturbation
with iteration-based decay. Our experimental results demonstrate
that OUTPOST can achieve a much better tradeoff than the
state-of-the-art with respect to convergence performance, com-
putational overhead, and protection against gradient leakage
attacks.

Index Terms— Federated learning, gradient leakage attack,
data reconstruction, gradient perturbation.

I. INTRODUCTION

AS AN EMERGING distributed machine learning
paradigm, federated learning (FL) allows clients to train

machine learning models collaboratively with private data,
without transmitting them to the server. Though federated
learning is celebrated as a privacy-preserving paradigm of
training machine learning models, it was pointed out in the
recent literature [1] that sharing gradients with an honest-
but-curious server may lead to the potential reconstruction
of raw private data, such as images and texts, used in the
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training process. The discovery of this new attack, known as
Deep Leakage from Gradients (DLG), has stimulated a new
line of research to improve the attack efficiency [2], [3], [4]
and to provide stronger defenses against known DLG-family
attacks [5], [6] as well.

As existing studies have made significant efforts to indicate
that federated learning is vulnerable to gradient leakage attacks
from a malicious participant or eavesdropper, a lightweight
defense that provides adequate privacy protection with guaran-
teed training accuracy is sought by recent work to prevent this
attack [6]. However, before designing for even more efficient
and effective defense mechanisms, we begin to have second
thoughts on how severe the threat is in practice, even without
any defense mechanisms in place. Existing works focused
on reconstructing raw data from known gradients or model
weights in ideal settings, rather than considering practical
settings in production federated learning.

As its name suggests, DLG proved that sharing gradients
has the potential of leaking private data. However, when this
attack was first proposed and later improved, most works in the
literature considered sharing model updates as equivalent to
sharing gradients. In production FL, however, multiple epochs
are used routinely, and gradients are only accessible locally
in a single step of gradient descent. No gradient — in its
strict, original connotation — is transmitted to the server at all.
Instead, only model updates — the delta between local models
and the server’s global model in the preceding round — are
transmitted from clients to the server. Yet, to the best of
our knowledge, very little is known on the effectiveness of
gradient leakage attacks in practical contexts in production
federated learning. It was shown [7] that gradients can be
calculated from model updates with a known learning rate;
but with multiple epochs, we find that this calculation is far
from accurate. Only [4] and [6] considered the possibility of
reconstructing raw data with model updates directly, without
estimating the gradients.

Even with the assumption of direct gradient sharing, existing
works have mainly validated the efficiency when reconstruct-
ing one or multiple images (using a larger batch size) in
full gradient descent, i.e., merely one local step of Stochastic
Gradient Descent (SGD). None of them has shown convinc-
ing evidence that reconstructed images are recognizable by
humans under the standard settings of production federated
learning, where clients perform more local computation and
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less communication (i.e., multiple update steps on a local
model) [8]. Moreover, existing attacks neglect the change of
model status through FL training and tend to use untrained
neural networks that are explicitly initialized with weights of a
wide distribution for deriving gradients, which we have found
makes the model and shared gradients fundamentally more
vulnerable. Our empirical results disclose very limited privacy
leakage even when gradients are shared, not to mention the
privacy leakage with model updates, delta, only.

Existing defenses in the literature were designed explicitly
for gradient leakage attacks [5], [6], and evaluated their
performance with respect to privacy metrics (such as the
peak signal-to-noise ratio) and utility metrics (such as the
validation accuracy of the global model). However, they failed
to show the feasibility of data reconstruction by the DLG
attack in the first place before any defense is even applied,
especially in the context of production FL [9] with federated
averaging (FedAvg). Given that gradient leakage attacks are
much weaker as we will discover in this paper, we argue
that a new defense mechanism against such attacks can be
much more lightweight, without introducing extra overhead
or incurring the risk of sacrificing the utility of the global
model after training completes.

Inspired by our empirical observations that models with
weights from a narrower distribution and more local SGD
update steps will effectively make potential attacks weaker,
we propose a new defense mechanism, called OUTPOST,
that provides sufficient and self-adaptive protection throughout
the federated learning process against time-varying levels of
privacy leakage risks. As its highlight, OUTPOST is designed
to apply biased perturbation to gradients based on how
spread out and how informative model weights are at different
local update steps. Specifically, OUTPOST uses a probability
threshold to decide whether we perform a perturbation to
the gradients at the current step or not; and to limit the
computation overhead, such a threshold decays as local update
steps progress over time. When performing the perturbation,
OUTPOST first evaluates privacy leakage risks of the current
local model by the variance statistics of the model weights at
each layer, and then adds Gaussian noise to each layer of the
gradients of the current step based on the Fisher information
matrix, whose range is decided by the quantified privacy
leakage risks.

We have evaluated OUTPOST in comparison to four state-
of-the-art defense mechanisms in the literature, against two
gradient leakage attacks under both production FL settings and
a simplistic, yet unrealistic, FL scenario where the attack is
the most effective.1 We seek to evaluate both utility metrics —
regarding both the wall-clock time needed to converge and the
converged accuracy — and privacy metrics, which shows the
effectiveness of the defenses against gradient leakage attacks
in the worst case. With two image classification datasets
and the same LeNet neural network architecture used in
the literature [1], our experimental results have demonstrated
convincing evidence that OUTPOST can achieve a much better

1Our implementation is available as an open-source git repository at https://
github.com/TL-System/plato/tree/main/examples/gradient_leakage_attacks.

accuracy compared with the state-of-the-art, incurs a much
smaller amount of computational overhead, while effectively
providing a sufficient level of protection against DLG attacks
when evaluated using common privacy metrics in the literature.

Furthermore, we have extended our investigation into the
effectiveness of state-of-the-art gradient leakage attacks and
defenses in broader contexts. First, we analyze deeper neural
network models, particularly those in the ResNet family. Our
findings reveal that the success of attacks, such as those
proposed in [2] and [4], heavily relies on explicitly con-
figuring the client’s model into the evaluation state during
implementation. Such an explicit configuration of the model
state does not reflect reality, and may be in place in order to
bypass the batch normalization layers commonly present in
neural network models for vision tasks. Even in the simplistic
federated learning settings we experimented with, which favor
the attacker, OUTPOST can still provide substantial protection
on model updates, with minimal impact on model training
and computational overhead, achieving the best trade-off
compared to other defenses. Second, we examine gradient
leakage attacks [10], [11] under the assumption of a dishonest
and malicious server who disregards the federated learning
protocol and modifies the global model to tempt the client into
disclosing its private data in gradients. We find that, similar to
honest-but-curious attacks, malicious attacks are only effective
in highly unrealistic scenarios that do not occur in practice.
Even in such an adverse situation that exposes clients to much
greater risks, OUTPOST proves to be highly effective.

The remainder of this paper is organized as follows.
In Section II, we explain the underlying mechanism of
optimization-based gradient leakage attacks. In Section III,
we review different constructions of gradient leakage attacks
and re-evaluate the validity of assumptions made by the liter-
ature. We then describe the details of our proposed defense,
OUTPOST, including the design and convergence analysis,
in Section IV. In Section V, we provide a thorough empirical
evaluation of our proposed defense against gradient leakage
attacks, comparing it with state-of-the-art defense mecha-
nisms. In Section VI, we present our surprising findings on
gradient leakage attacks particularly [2] on ResNet models,
after correcting the implementation in related works to align
with real-world federated learning. In Section VII, we evaluate
gradient leakage attacks with a malicious server, particularly
the Fishing attack proposed by [11], and demonstrate the
robustness and reliability of OUTPOST against these more
advanced attacks. In Section VIII, we discuss prior research on
gradient leakage attacks in federated learning, considering both
the assumption of an honest-but-curious server and a malicious
server, as well as defenses that are specifically designed to
mitigate gradient leakage attacks. Finally, we summarize and
conclude the paper in Section IX.

II. PRELIMINARIES

A. Gradient Leakage Attacks

Recent research has discovered that, by simply exchanging
gradients of neural network models rather than raw data among
multiple clients, privacy leakage still cannot be prevented in
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Fig. 1. Matching the dummy gradient with the target gradient.

distributed machine learning. An honest-but-curious server can
recover the private data from the obtained gradients through
an optimization process [1], [2].

Essentially, DLG and other existing gradient inversion
attacks tried to solve an optimization problem. With the given
target gradient ∇∗ : ∇k

t = ∂Lgrad(Fw(x∗),y∗)
∂w received from

a participant k at a certain step t, the attacker can steal
the inputs with labels (xk

t ,y
k
t ) such as an image in pixels

or a sentence in tokens in this training step. To do so, the
attacker first generates random (dummy) inputs with labels
(x′0,y

′
0) of the same size as the target data. The attacker

then (1) derives dummy gradient ∇′0 = ∂Lgrad(Fw(x′0),y
′
0)

∂w
w.r.t. the model weights from the dummy data by feeding
the dummy data into the machine learning model Fw shared
between the participants; (2) updates the dummy data (x′1,y

′
1)

by gradient-based methods, in which the loss function is the
distance between the dummy gradient and the given gradient
∇∗. By iterating these steps, the dummy data (x′i,y

′
i) will

move closer to the target training data as the dummy gradient
matches the given gradient based on the following objective:

x′∗,y′∗ = arg min
x′,y′

D(∇′,∇∗). (1)

The distance D(∇′,∇∗) is a function differentiable w.r.t. the
dummy data, which can be the L2 distance ∥∇′−∇∗∥2 [1] or
the cosine distance 1− ⟨∇′,∇∗⟩

∥∇′∥∥∇∗∥ [2]. We illustrate the process
that DLG attacks use in Fig. 1. More comprehensive objec-
tive functions incorporating regularization terms have been
designed by some existing works to make the reconstructed
images less noisy [2].

Existing gradient inversion attacks, including [1], [2], [3],
[4], [7], and [12], explored the space of this attack in a wider
set of circumstances, such as reconstructing multiple images
and allowing multiple training steps. However, none of them
considered these settings in the context of production FL.
We now proceed to systematically evaluate the effectiveness of
these attacks, considering both the required assumptions and
applicable coverage, in the context of production FL.

B. Adversary Models

Objectives. Gradient leakage attacks in federated learning
aim to reconstruct private training data from participating
clients by analyzing the model updates exchanged during the
training process.

Knowledge Assumptions. The adversary is assumed to
possess knowledge of the global model at each communication
round, including its structures and parameters, as well as

Fig. 2. Three different ways of performing data reconstruction from deep
leakage in federated learning: [Red] matching the dummy gradient with the
target gradient; [Green] matching the dummy gradient with the approximated
gradient converted from the model update; [Blue] matching the dummy
model update with the model update directly. The shadow area indicates
that matching dummy gradients directly from gradients is not possible in
production FL, as local gradients will not be accessible by the server.

the model updates transmitted from the selected client upon
completing local training. Typically, the federated learning
server is considered the ideal adversary for gradient leakage
attacks.

Capabilities. The capabilities of the server acting as the
adversary may vary depending on two different assumptions
about the server: the honest-but-curious server and the dis-
honest server. An honest-but-curious server adheres to the
federated learning protocol but may attempt to learn infor-
mation about the clients’ private data by analyzing the model
updates. Conversely, a dishonest server manipulates the global
model distributed to clients in an attempt to coax them into
revealing their private data through gradients, disregarding
the federated learning protocol entirely. Therefore, while the
honest-but-curious server has limited capability compared to
the dishonest server, its activities are less suspicious from the
clients’ perspective.

III. RE-EVALUATING GRADIENT LEAKAGE ATTACKS IN
PRODUCTION FEDERATED LEARNING

In this section, we first show that existing gradient inversion
attacks do not work effectively in production FL, as some of
their implicit assumptions fail to hold.

A. Assumptions: Re-Evaluating Their Validity in Production
FL

Gradients are not shared directly with the server. Exist-
ing gradient inversion attacks in the literature (e.g., [1], [3], [7],
[12]) contained a technical misconception that model updates
(delta ∆k

t ) are equivalent to gradients∇k
t . They assumed that a

client will send either a gradient computed from a single local
training step or an average gradient over multiple local training
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TABLE I
RECONSTRUCTING A SINGLE IMAGE USING THE DLG ATTACK, WITH DIFFERENT MODEL INITIALIZATION METHODS OR TRAINING STAGES

steps (such as multiple epochs or multiple mini-batches) to
the server. However, in production FL using FedAvg [9],
computation over multiple local training steps are typically
used, and gradients in each step as intermediate outputs are
not visible to the other clients or to the server.

Neural network models are not initialized explicitly
before training. Existing gradient inversion attacks in the
literature assumed that the neural network model used by the
attack was untrained. Yet, we discovered that initial weights in
the neural network model substantially affect the difficulty of
performing the gradient inversion attack. As a rule of thumb,
to launch a successful attack, gradients need to have large mag-
nitudes and contain the most information to recover the data.
In fact, we discovered an explicit weight initialization step in
the source code of both the DLG algorithm [1] and other alter-
natives derived from DLG [2], [3], [12]. Such an initialization
step uses initial random weights and biases with a broader
range of values using an uniform distribution, compared to
the range of values that is initialized by PyTorch [13]. This
initialization step produces a neural network model that is
more naive, which conveys more informative gradients to the
attacker.

In production FL, training a pre-trained global model is
more common than training from scratch. Even if we intend to
train a model from scratch, the model will evolve into different
states over multiple communication rounds. The gradient will
be closer to zero over an appropriate training process as
the loss is approaching the minimum, leading to a more
challenging attack on a trained model. Unless an attacker
performs gradient inversion at the beginning of a federated
learning session with a naïve model, there is very limited
information about the raw data carried by the gradients.

To compare the capability of image reconstruction under
different scenarios of model initialization and training stages,
we ran the DLG attack on arbitrary images in the CIFAR-10
dataset and show the converged results in Table I, where
different random seeds (RS1, RS2, and RS3) were used to
generate dummy data in multiple trials. By comparing the
results with the same random seeds, we can observe that
there is a significant amount of noise in the recovered image
when the shared gradients come from an untrained network
initialized by PyTorch. When a pre-trained network model is
used, we can hardly recognize the recovered images. Even for
the best cases where shared gradients come from an untrained

model with random weights explicitly initialized with a wider
distribution, the attack is challenging to realize without using
a particularly delicate choice of random seeds for generating
the dummy data.

There are multiple update steps (across batches and
epoches) in local training. With FedAvg [9], a client selected
by the server performs τ = E ·n/B steps of gradient descent
in each communication round, where n is the number of data
samples at the client, E denotes the number of local training
epochs in each communication round over the local dataset,
and B is the local mini-batch size in each epoch. However,
existing attacks are only capable of reconstructing one or
multiple images when they are used as a full batch for training
in a single gradient descent step (i.e., E = 1 and B = n ≥ 1).
In production FL, however, multiple images are used across
multiple update steps (i.e., E ≥ 1, n≫ 1, B < n) in training,
with each of these steps corresponding to a mini-batch in
an epoch. The attacker’s ability to reconstruct images using
gradient matching may be substantially affected as the local
model evolves throughout multiple update steps, since the
attacker only has access to the global model at the beginning
of each communication round, and the assumption of having
only a single gradient descent step is no longer valid.

Label estimation is more challenging with non-i.i.d. data
distributions. It was shown that labels of a single image [3] or
even of a batch of images [4] can be estimated from the aver-
aged gradients. However, the accuracy of such label estimation
will be reduced if multiple images belong to one label [14].
In production FL, the distribution of local data across different
clients is non-i.i.d. (independent and identically distributed),
and data samples on the same client will correspond to fewer
labels as a result of such a non-i.i.d. distribution. Under
these circumstances, the accuracy of label estimation may be
significantly affected.

B. More Sophisticated DLG Attacks

Approximating gradients from updates. As we have
argued, instead of gradients, model updates are transmitted
from clients to the server in production FL. When training
a neural network in federated learning, each client tries to
optimize the network parameters θ using a loss function Lθ

on local training data. With a model Fwk
t

, the gradient ∇k
t at

a local training step can be evaluated by ∇Lθ(Fwk
t
) and the
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TABLE II
ASSUMPTIONS AND SETTINGS: PRODUCTION FL VS. WHAT WAS USED IN EXISTING GRADIENT LEAKAGE ATTACKS

new model weights can be updated with a learning rate η as
wk

t+1 = wk
t −η∇k

t . With τk steps of local training completed,
the model weights at the end of this communication round can
be expressed as wk(t+ 1) : wk

t+τk . After multiple local steps
of training in a communication, the server updates the global
model by the local model updates (delta) as w(t+1) = w(t)+∑

k
nk

n ∆k(t, t+ 1), where ∆k(t, t+ 1) = wk(t+ 1)−wk(t).
Existing work in the literature [7] and [15] considered

gradients and model updates as mathematically equivalent,
and used Eq. 2 to convert the delta ∆k(t, t + 1) to gradients
before performing gradient matching. Note that, for such an
approximation to be accurate, the fixed learning rate used at
the victim client (or shared between all the clients) must be
known by the attacker.

∇k(t, t+ 1) = −∆k(t, t+ 1)
η

(2)

Even with a known learning rate, such an approximation
only works effectively in the simplest case where only the
learning rate is used in the local gradient descent steps.
In production FL, however, there are a number of other factors,
such as momentum, weight decay, and learning rate schedules,
that are used routinely as best practices when training neural
networks. Gradient approximation from model updates will
fail in these more realistic settings as the computation is not
fully reversible for the attacker [16].

Matching deltas from updates. As an alternative to
approximating gradients from updates, Geiping et al. [2]
directly conducted the matching process over model updates
(or updated weights), with a similar matching mechanism to
conventional gradient matching. The attacker directly matches
its dummy weights or weight delta with the absolute weights
or model updates.

For delta matching to be effective, the server requires a
series of prior knowledge to realize the same gradient descent
process using the dummy data instead, including the number
of images to be reconstructed n, the batch size B, the learning
rate η, and other gradient descent factors such as weight
decay and momentum. What’s more, the effectiveness of the
delta matching process relies heavily on the assumption that
attackers know the data labels [2]. Without known labels as

prior, data reconstruction will become harder. But as we have
pointed out earlier in this section, label recovery often fails
in production FL, where client data distributions are usually
non-i.i.d.

Summary. Based on our analysis so far, the most feasible
way to perform this kind of attack in federated learning is
by matching deltas from updates. Therefore, when we devise
our new defense and conduct experiments, we only consider
matching deltas from updates, which does not imply that our
defense is ineffective against attacks that approximate gradi-
ents from updates. We show in Table II the stark differences
between assumptions in the gradient leakage literature and
practical settings in production FL.

IV. OUTPOST: OUR LIGHTWEIGHT DEFENSE

Thanks to the inherent resilience against gradient leakage
attacks in production FL, such as multiple local iterations
and more complex gradient descent optimizers, it becomes
feasible to design a simple, lightweight, yet effective gradient
protection mechanism as a proactive defense, without sacrific-
ing the training performance in FL sessions. In this section,
we propose a new defense mechanism, called OUTPOST,
to achieve these objectives.

A. OUTPOST: Mechanism Design

Privacy leakage risk. The scale of the initial distribution
has a significant effect on both the outcome of the opti-
mization procedure and on the ability of the neural network
model to generalize [17]. To elaborate what we have found
in Section III, the default model initialization in PyTorch
uses the Kaiming Uniform method [18] for both linear and
convolutional layers. The weights (and biases) of each layer
are values drawn randomly from a uniform distribution of
U(−

√
1

in_features ,
√

1
in_features ), where in_features is the size

of the previous layer. However, the explicit model weight ini-
tialization in those existing attacks for generating the gradients
uses a distribution of U(−0.5, 0.5), which is of a much larger
scale. This phenomenon gives us insights that the magnitude of
neural network weights can intuitively reveal the privacy leak-
age risks of the corresponding gradients. Therefore, we employ
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the variance statistics of the neural network weights as a way
to quantify the privacy leakage risks per layer. We denote the
scalar variance of all weights at layer d as Var [wd]. Then, the
privacy leakage risk at the d-th layer of the client k’s local
model at communication round t iteration i can be expressed
as rk

t+id
= Var

[
wk

t+id

]
.

Selective perturbation. Existing defenses based on gradient
compression or pruning techniques are designed for pruning
gradients with small magnitudes to zeros. As these gradients
have insignificant effects when weights are updated, the accu-
racy and convergence speed are both preserved with these
techniques in place. However, we doubt the effectiveness of
this method in the context of gradient leakage attacks, as the
remaining gradients still carry the primary information for data
reconstruction. With this insight, we suspect that perturbing
those insignificant gradients cannot sufficiently protect privacy
information from recovering. Therefore, we tend to also per-
turb gradients of which the model parameters contain more
important information.

We choose the diagonal of the Fisher information matrix
(FIM) to estimate how important a certain parameter is.
FIM [19] is strongly related to the Hessian Matrix, indicating
the curvature of the loss function for efficient optimization.
The Fisher information of the model can be expressed as

Iθ = Ep(x|θ)

[
∇θ log p(x | θ)∇θ log p(x | θ)T

]
, (3)

where log p(x | θ) is a the log-likelihood function given by
the model with parameter θ.

However, it is infeasible to directly use FIM or Hessian
information in the context of deep learning as the likelihood
is intractable. We use the empirical Fisher information matrix
instead, which crudely approximates the FIM, and is often
used to make computation easier [20]. We express the empir-
ical Fisher as

F̂ =
1

n/B

n/B∑
i=1

∇Lθi · ∇Lθ
⊤
i , (4)

where ∇Lθi denotes the gradient w.r.t. the i-th samples at the
given point, and · is the outer product of individual gradients.

In the given iteration, we can compute the empirical Fisher
for each model parameter based on average gradients over
this batch of data. When performing the perturbation, we only
choose gradients with the φ% highest values of empirical
Fisher in each layer to add noise, at a level determined by
the privacy leakage risk.

Perturbation with iteration-based decay. As we have
found that model updates shared after multiple local training
steps have a decreased risk of leaking information about
the raw training data, we propose to devise a schedule in
OUTPOST to adaptively perturb gradients in different local
training steps. Unlike existing defenses that treat gradients in
each local step equally, we introduce a bias on the probability
of perturbating gradients according to the number of local
iterations. Specifically, in each local training iteration i, the
probability of a client applying perturbation on its gradients
averaged over a mini-batch at the current iteration is deter-
mined by Pr = 1/(1 + β · i), where β is the hyperparameter

to control how fast the probability decay is as the number of
iterations grows.

The layer-based perturbation consists of two steps: (1)
compressing gradients by their magnitudes: ρ% of the smallest
gradients in each layer l are pruned to zeros; (2) adding
noise to gradients by their privacy leakage risks: noise is
added to each layer l of the gradients following the Gaussian
distribution N (0,

(
λrk

t+id

)2), where λ controls the range of
variance. With such a design, OUTPOST is a simple and self-
adaptive defense mechanism against time-varying levels of
privacy leakage risks, yet without introducing a substantial
amount of computation overhead. The overall random pertur-
bation mechanism in OUTPOST is shown as Algorithm 1.

Algorithm 1 FedAvg Local Training at Client k With OUT-
POST
Input: Broadcast the global model Fwt with weights w(t) of

the current communication round t; learning rate η; the
number of local data samples n; the number of epochs E;
batch size B; Initial iteration number as 0

Output: Local model update ∆k(t, t+ 1)
1: Set local model weights same as the global one wk(t) =
w(t)

2: for each epoch 1 to E do
3: for each batch 1 to n/B do
4: Iteration i = i+ 1
5: Compute loss and derive gradient at the current

iteration ∇k
t+i = ∇Lθ(Fwk

t+i
)

6: if a random value (∈ [0, 1)) ≤ Pr = 1/(1 + β · i)
or i = 1 then

7: Evaluate privacy leakage risks based on cur-
rent model per layer by rk

t+id
= Var

[
wk

t+id

]
8: Perform pruning with threshold ρ% and update

perturbed gradient to ∇̃k
t+i

9: Add noise to the selected φ% gradient at each
layer and update the perturbed gradient as ∇̃k

t+i = ∇̃k
t+i+

m where m ∈ N (0,
(
λrk

t+id

)2)
10: else
11: Update perturbed gradient as ∇̃k

t+i = ∇k
t+i

12: end if
13: Update local model weights with the perturbed

gradient and learning rate as wt+i = wt+i−1 − η∇̃k
t+i

14: end for
15: end for
16: Send the model update ∆k(t, t+1) = wk(t+1)−wk(t)

to the server

B. Convergence Guarantee With the FedAvg Algorithm

Our convergence analysis of FedAvg on non-i.i.d. data with
the OUTPOST defense mechanism is based on the following
assumptions. We use the same assumptions (Assumptions 1
to 5) as [8] on local objective functions F1, · · · , FN and partial
device participation.

Assumption 1: F1, · · · , FN are all L-smooth: for all v and
w, Fk(v) ≤ Fk(w) + (v− w)T∇Fk(w) + L

2 ∥v −w∥22.
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Assumption 2: F1, · · · , FN are all µ-strongly convex: for
all v and w, Fk(v) ≥ Fk(w)+(v−w)T∇Fk(w)+µ

2 ∥v−w∥22
Assumption 3: Let ξk

t be sampled from the k-th
device’s local data uniformly at random. The variance
of stochastic gradients in each device is bounded:
E

∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2 ≤ σ2
k for k = 1, · · · , N .

Assumption 4: The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E

∥∥∇Fk

(
wk

t , ξ
k
t

)∥∥2 ≤
G2 for all k = 1, · · · , N and t = 1, · · · , T − 1

Assumption 5: Assume St contains a subset of K indices
uniformly sampled from [N ] without replacement. Assume the
data is balanced in the sense that p1 = · · · = pN = 1

N . The
aggregation step of FedAvg performs wt ←− N

K

∑
k∈St

pkwk
t .

We now derive new bounds for Assumption 3 with our
defense. The expected norm of the distance between the
perturbed gradients ∇F ′k

(
W k

t , ξ
k
t

)
and the original gradients

∇Fk

(
W k

t , ξ
k
t

)
of the whole model is the sum of that of every

layer. Thus,

E
∥∥∥∇F ′k (

W k
t , ξ

k
t

)
−∇Fk

(
W k

t , ξ
k
t

)∥∥∥2

=
D∑

d=1

E
∥∥∇F ′k (

wk
dt, ξ

k
t

)
−∇Fk

(
wk

dt, ξ
k
t

)∥∥2

≤
(
λrk

d

)2 ·D, (5)

according to our perturbation noise distribution N (0,
(
λrk

d

)2),
where rk

d ∈ [0, 1] is the privacy risk of the d-th layer, and D
is the total number of layers of the stochastic gradients.

By using the norm triangle inequality, we can bound the
variance of stochastic gradients after perturbation in each
device as

E
∥∥∥∇F ′k (

W k
t , ξ

k
t

)
−∇Fk

(
W k

t

)∥∥∥2

≤E
∥∥∥∇F ′k (

W k
t , ξ

k
t

)
−∇Fk

(
W k

t , ξ
k
t

)∥∥∥2

+ E
∥∥∥∇Fk

(
W k

t , ξ
k
t

)
−∇Fk

(
W k

t

)∥∥∥2

≤
(
λrk

d

)2 ·D + σ2
k, (6)

in which we use Assumption 3 and Eq. 5.
Similarly, we can derive new bounds for Assumption 4

of the expected squared norm of stochastic gradients after
pertuerbation in each device as E

∥∥∇F ′k (
wk

t , ξ
k
t

)∥∥2 ≤(
λrk

d

)2 ·D +G2 for all k = 1, · · · , N and t = 1, · · · , T − 1.
Similar to [8], let F ∗ and F ∗k be the minimum values of F

and Fk, respectively. The term Γ = F ∗−
∑N

k=1 pkF
∗
k > 0 can

be used for quantifying the degree of non-i.i.d. We then have
the following convergence guarantee with FedAvg on non-
i.i.d. data, and with the OUTPOST defense mechanism.

Theorem 1: Let Assumptions 1 to 5 hold and L, µ, σk, G
be defined therein. Choose κ = L

µ , γ = max{8κ,E} and the
learning rate ηt = 2

µ(γ+t) . Then

E [F (wT )]− F ∗

≤ κ

γ + T − 1

(
2(B + C)

µ
+
µγ

2
E ∥w1 −w∗∥2

)
,

where

B =
N∑

k=1

p2
k(σ2

k +
(
λrk

d

)2 ·D) + 6LΓ + 8(E − 1)2(
(
λrk

d

)2

·D +G2),

C =
N −K
N − 1

4
K
E2(

(
λrk

d

)2 ·D +G2).

V. EXPERIMENTAL RESULTS

We are now ready to compare OUTPOST with state-of-
the-art defense mechanisms in the literature, against different
gradient leakage attacks and under a variety of experimental
settings. All our experiments are conducted on a server with
two Intel Xeon Silver 4210R CPUs and one NVIDIA RTX
A4500 GPU with 20 GB CUDA memory.

Defense and attack baselines. We compare OUTPOST
with two state-of-the-art defense mechanisms: Soteria [5]
and GradDefense (GD) [6], along with two commonly used
defenses for general attacks in federated learning — gradient
compression (GC) [1], which prunes small values in gradi-
ents; and differential privacy (DP) [21], which adds noise
to gradients. We evaluate these defense mechanisms against
two gradient leakage attacks: DLG [1] and csDLG [2]. When
applying these attacks, we use the mechanism of matching
deltas from updates, which is the most practical choice in
production FL.

Datasets and models. We evaluate both gradient leakage
attacks and defenses in PLATO,2 an open-source research
framework for federated learning. We show data reconstruction
results over two image classification datasets: EMNIST and
CIFAR-10. We use the same LeNet model evaluated in [1]
and [2], which consists of 4 convolutional layers and 1 fully-
connected layer.

Evaluation metrics. To evaluate the effectiveness of the
defense mechanisms, we use mean-square-error (MSE), struc-
tural similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) as our metrics to measure
the distance between the reconstructed image and raw image.
To evaluate the impact of the defenses on the convergence
performance of FL training, we show the accuracy of the
global model on the validation dataset over multiple commu-
nication rounds using the FedAvg algorithm. To evaluate the
computation overhead introduced by the defenses, we measure
the wall-clock time averaged across multiple communication
rounds.

Hyperparameter configurations. We evaluate OUTPOST
with respect to two aspects: (1) training performance, where
we examine how our defense affects the FL training time and
the validation accuracy of the converged model in production
FL settings; and (2) defense effectiveness, where we evaluate
how effective OUTPOST is under settings where the gradient
leakage attacks are as threatening as possible. For alternative
defense mechanisms, we have the following configurations.
For GC, we set the pruning rate of gradients to 80%; for
DP, we use Laplacian noise and set the noise variance to 0.1;

2Available online at https://github.com/TL-System/plato.
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Fig. 3. The impact of defenses on FL training.

for Soteria, we set the pruning rate of the fully connected
layer’s gradients to 50%; for GradDefense, we turn on the
local clipping operation and use the same settings in their
source code with 0.01 as the Gaussian noise variance; and
for OUTPOST, we set our hyperparameters as λ = 0.8, φ =
40, β = 0.1, ρ = 80.

A. Evaluating the Training Performance

With respect to the training performance, for both datasets,
data is non-i.i.d. distributed across 100 clients, each holding
1% of the total training samples (i.e., 1128 for EMNIST and
500 for CIFAR-10). Regarding the local epoch E and batch
size B, we set them as E = 5, B = 32 for both datasets.
We apply the SGD optimizer for local training and set the
learning rate η to 0.01. In each communication round, the
server randomly selects 10 clients out of 100 and aggregates
their model updates. We terminate FedAvg training sessions
with various defenses when the number of communication
rounds reaches 100 on EMNIST and 150 CIFAR-10, where
the global models converge.

With respect to the validation accuracy of the converged
model and the elapsed wall-clock time, our results over
EMNIST and CIFAR-10 have been shown in Fig. 3. If we
examine the ultimate global model accuracy at the end of
each training session, it can be observed that all the defenses
incurred a certain amount of losses. DP affected the con-
vergence performance the most, and only reached 91.5%

and 83.1% of the validation accuracy without any defense,
over EMNIST and CIFAR-10 datasets, respectively. This
observation is consistent with our expectations based on these
defense mechanisms. GC and Soteria both prune gradients
with small magnitudes to zeros, which have insignificant
effects on weights to be updated. Though GradDefense and
OUTPOST also add noise to gradients, the level of noise is
controlled with model sensitivity and model status, respec-
tively. Overall, OUTPOST induces only 3.28% and 2.19%
accuracy loss with 3.54% and 1.47% delay, over EMNIST
and CIFAR-10 datasets, respectively.

When we examine the wall-clock time elapsed in the same
number of communication rounds, it is apparent from Fig. 3
that GC, DP and OUTPOST as defenses did not introduce
any significant delays due to the computation overhead, while
GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any defenses.
This is because Soteria has to learn the perturbed data
representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria
needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective Are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to
guarantee convergence, and presented the worst defense result
in 10 trials with different dummy data.

Table III shows the results from our experiments, evaluating
a variety of metrics for each defense. The up and down
arrows indicate the direction of better defense performance.
We also put the reconstructed images along with ground
truth images in the last row of each experiment scenario to
show if they are recognizable by human eyes. Note that the
order of reconstructed images may be inconsistent with the
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TABLE III
THE EFFECTIVENESS OF VARIOUS DEFENSE MECHANISMS AGAINST DIFFERENT ATTACK BASELINES, DATASETS, HYPERPARAMETER CONFIGURATIONS

raw ones in Scenario 4, which is an inherent issue of the
attacks.

Our previous argument — that gradient leakage attacks
are not practical when there are multiple update steps in
local training — can be supported by our results in the
columns of attacks without defense in Table III, even though
csDLG demonstrates a better data reconstruction capability
in general. As shown in Scenario 2, the performance of
attacks is heavily affected with merely two update steps
each having a batch of one data sample as the color dif-
ference in reconstructed images is less clear compared to
Scenario 1. Performing the attack on a larger batch size
not only makes the attacks significantly slower, but also
worse, with only one image out of 16 being reconstructed
using csDLG without defense. Realistic FL settings use batch
sizes that are many magnitudes greater than 16, meaning
that attacks are unlikely to ever converge; and even if they
were to converge, a successful reconstruction would be nearly
impossible.

We notice that MSE is the most inconsistent metric and
a higher MSE does not correlate to a reconstructed image
containing fewer key features of ground truth. Most related
works use this metric as a basis for their conclusions, which
means we may need to revisit some of their claims. Compared
to CIFAR-10 images with 32×32 pixels and three channels,
images in EMNIST have 28 × 28 pixels in resolution with
only one channel, which makes it easier, not only to leak
privacy information in gradients but also to recognize visually
from the reconstructed images, even with defenses such as GC.
Our OUTPOST does not achieve the highest LPIPS and lowest
SSIM in every scenario with both attack methods; however,
it can still provide solid and sufficient protection resulting in
highly noisy images.

VI. INHERENT ROBUSTNESS OF DEEP CONVOLUTIONAL
NEURAL NETWORKS TO GRADIENT LEAKAGE ATTACKS

Similar to previous studies [3], [7], our evaluations so far
have primarily focused on Zhu’s LeNet model [1]. However,
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there has been related work, such as GradInversion [4] and
csDLG [2], that explored various alternative neural network
models, particularly those in the ResNet [22] family. In their
work, Yin et al. [4] discovered that more powerful fea-
ture extraction, as exhibited by ResNet-50, yields better data
reconstruction performance compared to shallower network
architectures like ResNet-18. To assess the robustness of
various models against gradient leakage attacks, we intend to
expand our analysis in this section and include deeper neural
network architectures in our investigation.

Upon integrating ResNet into our implementation, we made
an unexpected discovery: there were significant inconsistencies
in the reconstruction results of csDLG between our adapted
version and the original implementation. We have found that
the image reconstruction in our implementation is significantly
worse than that of the original version. Through careful
examination and comparison, we identified the root cause of
the discrepancies between our implementation and the original
version. In the original implementation, the target gradient
is computed when the model is explicitly switched to the
evaluation state. However, the gradient is supposed to be
derived during the client’s local training in federated learning
and thus the model should be in the training state. This
technical oversight is also present in the implementation of
GradInversion. In contrast, our implementation ensured that
the model states were correctly set at the client side while the
existing attack mechanisms were accurately implemented at
the server side.

Such a discrepancy in the model state leads to very dif-
ferent behaviors of certain modules or layers within the
model. When it comes to ResNets, the layers affected by
the model states are the batch normalization layers. Batch
normalization is a common technique incorporated into many
convolutional neural networks for improving training and
generalization by normalizing the activations within each
batch [23]. In PyTorch, batch normalization is implemented
by the BatchNorm2d [24] module, and normalization is
conducted by the following calculation using the mean and
standard deviation per dimension over the mini-batch of input
data:

y =
x− E[x]√
Var[x] + ϵ

· ϕ+ ψ, (7)

where ϕ and ψ are learnable parameter vectors with default
values of 1 and 0, respectively. During model training, batch
normalization layers keep running estimates of its computed
mean and standard deviation over mini-batches. During model
evaluation, the tracked running statistics are used for normal-
ization. In addition to ResNets, batch normalization layers are
also commonly found in other vision neural network models
such as DenseNet [25] and VGG [26].

A. Revisiting Gradient Leakage Attacks on ResNets With
Accurate Implementation

We present the reconstructed images along with the cor-
responding reconstruction loss and peak signal-to-noise ratio
(PSNR) values obtained through csDLG by matching model
updates under various scenarios in Table IV. These scenarios

involving a very small number of local data samples or batches
are typically unrealistic in production federated learning, but
they are useful for highlighting the limited effectiveness of
existing gradient leakage attacks. We compared the attack
performance on both untrained and pretrained models of
ResNet-18 and ResNet-152 on the CIFAR-100 dataset.
The pretrained models we employed have a test accuracy over
60%. The original implementation indicates that the model
is set to the evaluation state at the client side, while our
implementation indicates that the model is in the training state
as it should be.

We are only interested in csDLG as opposed to DLG and
iDLG because csDLG generally demonstrates enhanced image
recovery capabilities. The cosine similarity reconstruction loss
in csDLG proves to be highly beneficial, especially when
the model updates become sparse during training. In such
cases, csDLG can effectively measure the distance between
the target model update and the dummy model update with
greater accuracy, compared to the L2-Norm distance in DLG
and iDLG, even when a significant number of near-zero values
are present. Additionally, csDLG assumes that the attacker has
knowledge of the mean and variation statistics of the entire
centralized dataset for normalizing its dummy data, which
facilitates image reconstruction.

Performance discrepancy in the model training and
evaluation state. By comparing the attack performance on
untrained models in two different model states, we have
observed a significant improvement when the model is
mistakenly set to the evaluation state as in the original
implementation. The reason is that, during the initial stages
of training when the model has not yet encountered any data,
the parameters of batch normalization layers are simply zeros
in the evaluation state, thereby leaving the output unaffected.
On the contrary, in the training state, batch normalization
layers introduce noise as normalization uses the mean and
variance statistics estimated on the very first batch. Based
on the results obtained from all FedAvg settings on both
ResNet-18 and ResNet-152, it is evident that csDLG
has completely failed, as almost no information about the
raw images can be found in the reconstruction, provided
that the model state is correctly set as demonstrated in our
implementation.

However, as the target model progresses in its training, the
performance gap between the two model states will gradually
diminish. In the training state of a pretrained model, the
impact of batch normalization layers is reduced because the
mean and variance statistics of the current batch align more
closely with the overall statistics of the training data that the
model has encountered during its training process. On the
other hand, in the evaluation state of a pretrained model,
the running statistics (i.e., moving averages of the mean and
variance) derived from all the encountered data are even more
representative of the entire training dataset. This explains the
similar reconstruction results observed between the original
implementation and our implementation on a pretrained model.

Performance on pretrained models in elementary fed-
erated learning settings. Our focus is now solely on attacks
targeting pretrained models when the model is correctly set
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TABLE IV
THE PERFORMANCE OF CSDLG ON BOTH UNTRAINED AND PRETRAINED MODELS OF RESNET-18 AND RESNET-152 ON THE CIFAR-100 DATASET

IN VARIOUS FEDERATED LEARNING SETTINGS. A LOWER RECONSTRUCTION LOSS OR A HIGHER PSNR INDICATES BETTER IMAGE RECON-
STRUCTION QUALITY. ALL THE RESULTS WERE OBTAINED AFTER A SUFFICIENT NUMBER OF ITERATIONS, ENSURING THAT THE ATTACK

HAS CONVERGED. THE GROUND TRUTH IMAGES WHICH ARE THE CLIENT’S TRAINING DATA MAY BE RANDOMLY CROPPED OR
HORIZONTALLY FLIPPED

to the training state. According to the four settings shown
in Table IV, it is possible for model updates from a pretrained
model to contain a small amount of information about the
private training data. For instance, in the reconstructed images,
it is possible to observe a red round object, although the
number of objects may not align with the ground truth.
Additionally, in the case of 8 data points, a small portion of the
reconstructed images may contain recognizable objects, such
as a four-legged animal and a cup or jar.

When the total number of local data samples (n) is equal
to the batch size (B), meaning that the same data samples
are used in every batch, increasing the number of epochs
appears to amplify the amount of private information carried in
the model updates, particularly in the case of ResNet-152.
However, it is important to note that the settings evaluated
in Table IV are overly simplistic and do not accurately rep-
resent real-world federated learning scenarios. Despite these
simplistic settings, the observed information leakage from
model updates remains limited.

The reconstruction loss and PSNR may not accurately
reflect the amount of private information contained in the
reconstructed images still. For instance, in some cases, images
reconstructed from untrained models may exhibit lower recon-
struction losses and higher PSNR values compared to those

from pretrained models, while the former images consist
of completely random noise. Exploring additional evaluation
methods and metrics specifically designed for gradient leakage
attacks can be an interesting research topic.

In addition to the ResNet-18 and ResNet-152 architec-
tures, we also explored a wider range of deep neural networks,
such as Vision Transformer (ViT) models [27]. The experimen-
tal results on ViT imported from HuggingFace [28], along
with datasets such as CIFAR-100 and Tiny ImageNet,
are shown in Table V. Even in the simplest scenario where
E = 1, n = 1, B = 1, the reconstruction quality remains
very low when using our correct implementation regarding
the model state. ViT exhibits significantly higher resilience
against the csDLG attack compared to LeNet and ResNets.
Additionally, the reconstruction of higher resolution image
data in Tiny ImageNet presents increased difficulty within
the same experimental settings.

B. Assessing the Effectiveness of Our Defense on ResNets

Despite the fact that the scenarios analyzed in Table IV
may not be realistic in real-world federated learning due to
the extremely small number of local data samples or batches,
we have validated the effectiveness of our defense mechanism,
OUTPOST, in preventing data leakage in these worst-case
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Fig. 4. The effectiveness of various defense mechanisms against csDLG on
pretrained ResNet-18. The first row (a)-(e) presents reconstructed images
in the case of E = 1, n = 1, B = 1; and the second row (f)-(j) presents
reconstructed images in the case of E = 1, n = 8, B = 8.

TABLE V
THE PERFORMANCE OF CSDLG ON BOTH UNTRAINED AND PRETRAINED

MODELS OF VIT ON THE TINY IMAGENET AND CIFAR-100
DATASETS IN THE CASE OF E = 1, n = 1, B = 1

situations for the client. In Fig. 4, we present the impact of
different defenses on image reconstruction from csDLG on the
pretrained ResNet-18, specifically when E = 1, n = 1, B =
1 and E = 1, n = 8, B = 8. Note that all the hyperparameter
configurations for these defenses remain the same as initially
specified in Section V.

As expected, differential privacy (DP) can provide the
strongest protection for model updates, ensuring that not a
single object can be recognized in the reconstructed images
in both scenarios. However, it is well-known that DP also has
the greatest impact on model accuracy. Gradient compression
(GC) is the least effective defense compared to others, which
suggests that the cosine similarity distance used in csDLG’s
reconstruction loss can effectively mitigate the impact of small
value pruning in gradients by GC. The results of Soteria
are unavailable since the original design is not compatible
with networks other than LeNet. GradDefense (GD) and
OUTPOST have been shown to effectively reduce the quality
of reconstructed images. However, similar to the observations
in Fig. 3, we have noticed that GradDefense also introduces
significant delays to FedAvg on ResNet-18 due to the
computation overhead. These delays are more severe compared

to the delays experienced with LeNet. Overall, our defense
mechanism still offers the best tradeoff between data protec-
tion and training efficiency.

VII. DEFENDING AGAINST GRADIENT LEAKAGE
ATTACKS BEYOND HONEST SERVERS

Thus far, our findings demonstrate minimal data leakage
when faced with an honest-but-curious server in production
federated learning, even in the simplistic scenarios. Moreover,
our lightweight defense mechanism is efficient to safeguard
against potential leakage without compromising training per-
formance. Building upon these achievements, our research
now shifts its focus from honest-but-curious server settings
to more malicious ones. In this context, where federated
learning clients face increased risks, we will further evaluate
the effectiveness of the OUTPOST defense.

Both the Robbing the Fed attack [10] and the Fishing
attack [11] fall into the category of malicious servers. The
Robbing the Fed attack involves modifying the architecture
of the global model by inserting an imprint module, which
consists of large linear layers. This modification induces a
structured pattern in the model update, allowing for the extrac-
tion of information pertaining only to a subset of data points,
which can be precisely recovered subsequently. However, this
attack is relatively easy for clients to detect, as they can
observe differences in the model’s architecture. In contrast,
the Fishing attack only modifies the parameters of the clas-
sification layer of the global model, which can magnify the
gradients specifically associated with a targeted class, enabling
the attacker to recover single data points belonging to that class
from an arbitrary large batch of client’s local data. Since it is
more challenging for clients to detect parameter modifications,
we are particularly interested in the Fishing attack.

The Fishing attack requires querying the client iteratively in
every communication round while modifying the parameters of
the global model sent to the client. This process continues until
the corresponding gradient is reduced to reflect the update of
a single data point only. There are two strategies employed in
the Fishing attack: the class fishing strategy and the feature
fishing strategy. The class fishing strategy is designed for
cases where there is only one data sample belonging to the
target class. On the other hand, the feature fishing strategy
is more advanced and addresses intra-batch collisions in the
label space, preventing mixed updates on all images from
the target class. The feature fishing strategy typically requires
more communication rounds for queries, but the number is
usually fewer than 10 times as shown in [11]. The attacker
selects either attack strategy based on their observation of the
client’s label space.

After integrating the Fishing attack into our codebase,
we have discovered, unsurprisingly, that it explicity sets the
client’s model to the evaluation state. When we put the model
back to the training state, the favorable attack performance
observed in the Fishing attack paper diminishes significantly.
Additionally, the Fishing attack has several other limitations.
It only works for FedSGD, where there is only one gradient
descent step in a single communication round, i.e., E = 1 and
n = B. This setup is essentially simpler compared to typical
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Fig. 5. Images reconstructed from a batch of 128 CIFAR-100 data
samples, obtained through the Fishing attack on ResNet-18. The left column
corresponds to the scenario where only one data point belongs to the target
class “1”, while the right column represents the scenario where there are
multiple data points belonging to the target class “1”. The ground truth
images of the 128 data samples are displayed in (a) and (b), with the target
images highlighted by red circles. The attack results on the untrained model
and pretrained model are displayed in (c) & (f), (d) & (g), respectively.
Additionally, the ablation results on the pretrained model without parameter
modification are displayed in (e) & (h). The final row displays the attack
results on the pretrained model when the client employs various defense
mechanisms.

real-world FedAvg settings, which involve multiple gradient
descent steps within a single communication round, i.e., E ≥
1 and n≫ 1, B < n. Additionally, the Fishing attack requires
querying the client for labels initially in order to locate the
target images within the batch.

We have conducted experiments on the Fishing attack with
different defenses using the ResNet-18 model and the
CIFAR-100 dataset within the setting E = 1, n = B = 128.
The results in different scenarios are shown in Fig. 5. When
there is only one data sample belonging to the target class, the
class Fishing attack works exceptionally well on a pretrained
model (with a test accuracy over 60%), even with such a
large batch size. On the other hand, when there are two data
samples belonging to the target class, which is quite common
in real-world federated learning, the feature Fishing attack
can only capture part of features of the target class. As a
result, fish-like patterns can somehow be recognized in the

Fig. 6. Images reconstructed from a batch of 128 CIFAR-100 data samples
through the Fishing attack on ViT under the same settings as depicted
in Fig. 5. Results without label conflicts are shown in (a)–(c), while results
with label conflicts are shown in (d) & (e). When label conflicts exist within
the batch of data, the ablation study of the Fishing attack on the pretrained
model without parameter modification failed to converge.

reconstructed image. In contrast, for an untrained model, the
recovery capability is slightly inferior in both cases, as the
reconstructed pixels are less finely detailed. Additionally,
we conducted an ablation study by removing the parameter
modification procedure in the Fishing attack. In this case,
the attack completely failed, indicating the crucial role of
parameter modification in the success of the attack.

The effectiveness of different defenses against the Fish-
ing attack on the pretrained model is depicted in the final
row of Fig. 5. It should be noted that the hyperparameter
configurations of these defenses remained unchanged without
explicit tuning. Unfortunately, the results of Soteria are not
available as the original design did not consider ResNets.
The results of GradDefense are also not shown due to the
excessively long time it takes to calculate the sensitivity
and apply it to the gradients. GC still demonstrates limited
improvement compared to having no defense. DP, on the other
hand, generally obscures the images to the extent that no
information can be extracted from them. We also observed that
when label conflicts exist, the Fishing attack requires multiple
hundreds of queries to the client before the attack converges
with the presence of DP. This significantly diminishes the
attack effectiveness. Once again, OUTPOST demonstrates the
ability to provide sufficient protection on the gradients with-
out significantly affecting the model’s convergence speed or
introducing excessive computation overhead.

We have also conducted experiments with the Fishing attack
on the ViT model using the CIFAR-100 dataset, as depicted
in Fig. 6. Interestingly, regardless of whether the model is
untrained or pretrained, and whether there are label conflicts
or not, the Fishing attack completely failed on ViT. This
observation suggests that the modification of model parameters
in the Fishing attack may not be as effective for models other
than ResNets. Consequently, it appears that no defense strategy
is necessary in this scenario.

VIII. RELATED WORK

Starting from the pioneering work in [1], researchers have
made efforts to improve the capability and efficiency of
gradient leakage attacks. One of the highlights of such efforts,
iDLG [3], further discovered that ground-truth labels can be
directly extracted from the given gradients, which simplified
the gradient matching process since it only needed to recover
the inputs x′ in Eq. 1. Different from using the Euclidean
distance as the objective function in DLG, Geiping et al. [2]
utilized cosine similarity between the target gradient and the
dummy gradient to optimize the reconstructed data during
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local updates. GradInversion [4] demonstrated even higher
fidelity and better localization as compared with [1] and [2].
GIAS [12] revealed more severe privacy leakage of raw data
from gradients with prior knowledge about the pre-trained
generative model. These variants have made up the landscape
of gradient leakage attacks to date.

Geiping’s research group initiated an exploration of attacks
in the settings of malicious servers rather than honest-but-
curious servers, and proposed two specific attacks on vision
tasks, namely the Robbing the Fed attack [10] and the Fishing
attack [11]. The Robbing the Fed attack modifies the model
architecture, while the Fishing attack modifies the model
parameters, which help amplify the private information carried
in the corresponding gradients. The Fishing attack enables the
recovery of single data points of the target class from a large
aggregate of a client’s dataset.

To preserve the privacy from the gradients, researchers have
applied several categories of general-purpose defenses to the
gradient leakage attack, such as gradient compression and local
differential privacy. But as [6] argued, these mechanisms were
not custom tailored to this specific attack, and may incur either
unacceptable computational overhead or significant degrada-
tion of performance, with respect to the converged accuracy
after the FL training process completes. A particular defense,
Soteria [5], was proposed specifically for the gradient leakage
attack. In order to reduce the quality of the reconstructed data,
and based on their finding that privacy leakage mainly comes
from data representations embedded in the fully connected
(FC) layer, it proposed a delicate design of perturbation on
the data representation in the FC layer of shared gradients.
Yet, GradDefense [6] showed that the raw data can still
be recovered from the remaining gradients by muting the
perturbed layer, and thus proposed a stronger defense by
perturbing all the layers of the shared gradients by their
measured sensitivity. Setting aside its statements contradictory
to [5], GradDefense [6] demanded a substantial amount of
computation for sensitivity measurements and perturbation by
all the layers. Based on our own empirical observations and
evaluations of the threat of gradient leakage attacks in the con-
text of production FL, we are motivated to devise OUTPOST,
a defense mechanism that is simple but good enough to defend
against the small attack surface in production FL. OUTPOST
is designed to optimize the trade-off between computation
overhead, accuracy guarantee, and privacy preservation.

IX. CONCLUDING REMARKS

In this paper, we have thoroughly investigated gradient
leakage attacks, a popular category of attacks in federated
learning. Our original objective was to conduct an in-depth
study of these attacks in the context of production federated
learning systems, and to design a practical, simple, and
lightweight defense mechanism that can be used to defend
against real-world threats. Along our journey to achieve this
goal, we discovered that the effectiveness and efficiency of
existing gradient leakage attacks are weakened by a substantial
margin in standard federated learning settings. In a nutshell,
gradient leakage attacks are highly unlikely to succeed in
federated learning, when clients send model updates rather

than gradients to the server, perform multiple local training
epochs — each containing multiple iterations — over local
data with a non-i.i.d. distribution, initialize model weights
normally, introduce more than one data sample per label,
and last but not the least, correctly use the training mode
during local training. This conclusion holds for both honest-
but-curious and malicious servers, and the latter are capable
of modifying the model at will.

It is worth noting that, among these assumptions to make
attacks stronger, the most critical one is to use the evaluation
mode, rather than training mode, for local training on each
client. Short of blindly accepting a binary executable from the
server, it would be highly unlikely for an autonomous client
to train its local model in the evaluation mode.

Beyond using an extensive array of experiments to show
specific and highly unrealistic cases where attacks are more
likely to succeed, we also proposed OUTPOST, a new defense
mechanism that can provide sufficient protection on shared
model updates without sacrificing accuracy and convergence
speed, and can adapt to time-varying levels of the privacy
leakage risk throughout the federated learning process. In all
vulnerable cases we identified that need protection, we showed
convincing results that OUTPOST incurs much less computa-
tional overhead, achieves better accuracy, and converges much
faster than its state-of-the-art alternatives in the literature.
OUTPOST is shown to be not only effective when training
baseline models such as LeNet, but also when deeper con-
volutional neural network models, such as ResNet, are trained
with the presence of honest-but-curious and malicious servers.

With or without engaging OUTPOST, the implications that
federated learning is fully capable of preserving data privacy
in practice are profound. Several entire categories of defense
mechanisms, including differential privacy, secure aggregation,
and homomorphic encryption, are no longer necessary in
federated learning. As we anticipate that this research will
evolve over time and our conclusions may be remedied or
reversed, we provide complete access to all source code used
in this paper to the community. It is our hope that, with this
paper, federated learning will be seen as trustworthy again in
the not-so-distant future.
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