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Abstract—Federated learning can facilitate multiple parties
to train a shared model on their own private data in a
communication-efficient manner. It offers significant benefits for
fine-tuning pre-trained large language models, as it supports
distributed fine-tuning with a wider range of diverse data while
preserving data privacy. However, recent research has revealed a
potential privacy vulnerability in federated learning, specifically
in the sharing of gradients from clients to server. This vulnerabil-
ity can lead to the leakage of training data for Transformer-based
large language models, thereby allowing the recovery of textual
data. In this paper, we conduct a comprehensive evaluation of
the effectiveness of the state-of-the-art gradient leakage attacks
on textual data within the context of fine-tuning large language
models. Our findings reveal that the key element for the attack’s
success — the target gradient — is not as readily obtainable
for the adversary as previously assumed, particularly in re-
gards to the Transformer architecture and practical federated
learning settings. A technical error in their implementations has
inadvertently caused the gradient to become more associated
with the target data than intended. With the error fixed and
when following the conventional federated learning framework,
gradient leakage attacks pose minimal threats to large language
models.

Index Terms—Large language models, gradient leakage attack,
federated learning, fine-tuning

I. INTRODUCTION

Since the debut of ChatGPT in late 2022, large language
models (LLMs) have made an indelible mark with their
groundbreaking capability of comprehending and generating
human-like language. By leveraging massive amounts of tex-
tual data and powerful computational resources, LLMs have
surpassed previous standards and redefined the limits of natural
language processing (NLP) capabilities. Pre-trained LLMs,
such as Google’s BERT [1], OpenAI’s GPT-4 [2], and Meta
AI’s Llama 2 [3], have gained general knowledge across a
diverse range of natural language processing (NLP) tasks [4],
including text classification, translation, sentiment analysis,
question answering, and more. Thanks to the open-source
library, HuggingFace’s Transformers [5], which facilitates
the distribution and utilization of a wide array of Transformer-
based models, users can conveniently access and leverage
various pre-trained LLMs to cater to their specific tasks or
even fine-tune them with their own datasets.

When data is distributed across various devices, federated
learning [6] becomes an ideal approach for fine-tuning pre-
trained LLMs while preserving data privacy. For example,
a healthcare organization aims to enhance the accuracy and
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efficiency of a public pre-trained LLM in a clinical natural
language processing task. However, each hospital or clinic
possesses its own sensitive health records and patient data. In
such a scenario, federated learning enables collaborative fine-
tuning of the pre-trained LLM while ensuring that sensitive
data remains on the local devices of each hospital or clinic.
Several studies have explored the potential of leveraging
federated learning for the fine-tuning of LLMs [7]–[10].

Despite its promise, the ability to preserve privacy with
federated learning has been questioned in the recent literature.
Numerous studies have demonstrated that federated learning is
susceptible to gradient leakage attacks [11], wherein sensitive
data can be reconstructed using gradient updates [12]–[16].
This privacy vulnerability is not limited to image data alone.
As more researchers investigate Transformer-based models,
they have discovered that textual data, despite its discrete
properties, is not exempt from gradient leakage attacks [17],
[18].

Even though private data is not directly transmitted in fed-
erated learning, clients are still required to send their updates
to the server for aggregation after local training. An honest-
but-curious server, while following the protocol of federated
learning, may attempt to extract sensitive information about the
training data from the corresponding updates. In the majority
of earlier studies on gradient leakage attacks, the assumption
was made that the updates transmitted from clients to the
server are gradients computed in a single step of local gradient
descent. However, this scenario represents the simplest case of
federated optimization and does not accurately reflect the stan-
dard practice in the design of federated learning algorithms,
known as FedAvg [6], where the local training process within
a single communication round typically involves multiple
iterations of gradient descent. Our previous work made a clear
distinction between gradient sharing and weight delta sharing
and further showed that the weight delta sharing in practical
federated learning imposes stricter requirements on the attack
model and leads to a more challenging attack process [19].
However, our work was limited to computer vision tasks and
the reconstruction of image data.

Even when considering gradient sharing, the gradient im-
plemented in the existing work does not accurately mirror
real-world local training in federated learning. The target
gradient that the server receives is not derived when the
model is in the correct state during training. This unintentional
mistake happens to strengthen the relationship between the
gradient and the training data, particularly for Transformer-
based models, more than it is supposed to be. This also
contributes to the impressive attack performance on textual
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data.
In this paper, our aim is to examine the effectiveness

of data reconstruction in federated learning, specifically for
fine-tuning Large Language Models (LLMs). We re-evaluate
cutting-edge gradient leakage attacks tailored for textual data,
specifically LAMP [18]. We delve into more practical feder-
ated learning settings, focusing on examining model forward-
ing under different states and FedAvg’s weight delta sharing.
Furthermore, we broaden our evaluation to include larger lan-
guage models that the literature has not previously considered,
such as GPT-2 [20]. Through our investigation, we observed
a noticeable decrease in the attack capability as the model
size increases, even when considering minimal data and batch
size during the fine-tuning process. Additionally, our findings
suggest that, even with gradient sharing, the target gradient
derived from clients’ local training is still challenging for the
server to interpret, particularly in the context of LLMs due to
specific modules within the Transformer architecture, such as
dropout. When these layers are not unintentionally blocked,
in contrast to previous studies, the reconstruction capability is
significantly compromised when the target gradient is derived
through the correct model state. Moreover, even under the
most optimal conditions, attackers can only reconstruct a short
sentence of text in the correct order. By using training data that
includes long sentences or paragraphs, employing large batch
sizes and numbers of epochs, a substantial level of resistance
against gradient leakage attacks can be achieved inherently.

The rest of this paper is organized as follows. In Section II,
we provide a background on federated learning, specifically
highlighting the distinctions between FedSGD and FedAvg.
Additionally, we discuss gradient leakage attacks against fed-
erated learning and review their evolution from image data
to textual data, including the state-of-the-art methods used
in our evaluation. Furthermore, we introduce the background
of efficient fine-tuning techniques used for pre-trained LLMs
via federated learning. Sections III and IV delve into our
discoveries and analysis concerning gradient leakage attacks
on the fine-tuning of LLMs, where we investigate the impact
of model state and FedAvg settings on the gradient leakage.
Section V summarizes and concludes the paper.

II. PRELIMINARIES & RELATED WORK

A. Federated Learning

With federated learning [6] a deep neural network model
is trained using private data distributed across client devices.
A server collects and aggregates the local updates from the
clients and manages a shared global model.

Federated Averaging. Federated Averaging (FedAvg) is
the standard federated learning algorithm proposed in [6].
With FedAvg, each client performs multiple local training
epochs over multiple minibatches from its local dataset in
each communication round. The client sends the updated
local model weight wk

t+1 to the server for aggregation. The
new global model weight is then updated with the following
formula:

wt+1 ←
K∑

k=1

nk
n
wk

t+1. (1)

Alternatively, the client can send the weight delta update
∆wk

t+1 := wk
t+1−wk

t to the server, and the new global model
weight is updated as the following:

wt+1 ← wt +

K∑
k=1

nk
n

∆wk
t+1. (2)

FedSGD. Federated SGD (or FedSGD) is a naive base-
line algorithm of federated optimization proposed in [6] for
comparison. In each communication round of FedSGD, each
client performs only a single iteration of local training over
a batch in its full local dataset. After the training, the client
sends the computed gradient gkt = ∇Fk(wt) to the server for
aggregation. The new global model weight is then updated
with the following formula:

wt+1 ← wt − η
K∑

k=1

nk
n
gkt . (3)

FedSGD can be considered as a special and simplest case of
FedAvg when the number of epochs E is equal to one and the
local minibatch size B is equal to the number of local data
samples nk, which can be denoted as E = 1, B = nk. We
highlight the importance of differentiating between FedSGD
and FedAvg in this context, as it directly impacts the server’s
access and significantly influences the nature of gradient
leakage attacks. Unfortunately, this distinction is frequently
overlooked in existing literature, where FedSGD is often
considered synonymous with federated learning itself. We will
delve into the impact of this distinction further in Section IV.

B. Gradient Leakage Attacks

Gradient leakage attack [11] focuses on the scenario where
an honest-but-curious server attempts to recover private train-
ing data from a client using the gradients the server received.
These attacks involve solving an optimization problem, defined
as follows:

x′∗,y′∗ = arg min
x′,y′

D(
∂L(Fw(x′),y′)

∂w
,
∂L(Fw(x∗),y∗)

∂w
).

(4)
In this optimization problem, ∇∗ : ∂L(Fw(x∗),y∗)

∂w repre-
sents the target gradient received from the target client, and
∇′ : ∂L(Fw(x′),y′)

∂w represents the dummy gradient obtained
through gradient descent by feeding dummy data (x′,y′) into
the model. The server has white-box access to the same model
since it is the global model shared between the server and
clients at the beginning of the communication round. Through
iterations of gradient descent shown in Eqs. (5) and (6),
the dummy data (x′,y′) can be optimized to approach the
target training data, as the dummy gradient matches the target
gradient.

x′ ← x′ − λ · ∂D(∇∗,∇′)
∂x′

(5)

y′ ← y′ − λ · ∂D(∇∗,∇′)
∂y′

(6)

The loss function D(·) measures the distance between
the dummy gradient ∇′ and the target gradient ∇∗. The
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distance can take on different forms, such as L2 distance
‖∇′ −∇∗‖2 [11], cosine distance 1− 〈∇′,∇∗〉

‖∇′‖‖∇∗‖ [13], or L2

combined with L1 distance ‖∇′−∇∗‖ [17]. The fundamental
mechanism of gradient leakage attacks is depicted in Fig. 1.
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Fig. 1: Gradient matching and dummy data optimization at the
federated learning server in existing gradient leakage attacks.
These attacks assume that a federated learning client sends its
gradients to the server in each communication round.

C. Existing work on Gradient Leakage Attacks against Fed-
erated Learning

Zhu et al. [11] pioneered the study of private training data
reconstruction from gradient leakage and proposed the first
optimization-based gradient leakage attack named DLG. While
the primary emphasis of their work is on vision tasks, DLG
also showcases its capability to recover text with language
models such as BERT [1]. Several subsequent studies have
made advances in improving the data reconstruction ability, as
evidenced by [12]–[16]. These studies have incorporated more
sophisticated techniques, such as true label estimation and the
utilization of prior knowledge on image data. Furthermore,
they have explored the impact of such attacks in a wider range
of scenarios, including increased training epochs and larger
batch sizes. Nevertheless, these attacks are primarily designed
for reconstructing image data.

With a focus on Transformer-based language models, Deng
et al. [17] proposed a novel gradient leakage attack, named
TAG, that employs an extended distance function combin-
ing both L2 and L1 norms. This approach more accurately
measures the discrepancy between the target and dummy
gradients, thereby enhancing the ability to recover private
text across more diverse model weight distributions when
compared to DLG [11]. While their attack is particularly
framed for the domain of natural language processing (NLP),
it is not exclusively tailored to lanugage tasks and makes
marginal improvement over existing gradient leakage attacks
that reconstruct private image data in vision tasks as well.

LAMP [18], however, is a more sophisticated attack tailored
to reconstructing textual data from gradients. In addition to
continuous optimization using gradient descent shown in Sec-
tion II-B, LAMP incorporates discrete optimization in each
iteration to further refine the order of the recovered token
embeddings. This discrete optimization involves generating
candidates through sequence transformations such as swapping
or moving tokens, and selecting the best candidate based on
prior knowledge of natural text distribution derived from an

auxiliary language model. This discrete optimization technique
in LAMP effectively handles the discrete nature of text data,
enabling it to successfully reconstruct sequences with higher
precision and fidelity.

We consider LAMP to be the most potent gradient leakage
attack on textual data based on their experimental results.
Therefore, we utilize LAMP as an example in our evaluations.
However, it is worth noting that our findings are generally
applicable to all gradient leakage attacks, including DLG [11]
and TAG [17], as they share a common core mechanism, which
involves the optimization process described in Section II-B
and Eqs. (4) to (6). Furthermore, all the main models con-
sidered in these attacks have been restricted to BERT and its
variants. In this work, we also explore the vulnerability of
up-to-date large language models [21] to data reconstruction.

D. Fine-Tuning Pre-Trained LLMs via Federated Learning

Pre-trained LLMs can serve as a solid starting point for
federated learning, rather than starting the training from
scratch [22]. Federated learning, on the other hand, broadens
the accessibility of data and distributes the training workload
across multiple participants for fine-tuning these foundation
models [10] to improve its performance on a new task, typ-
ically with a smaller dataset. Consequently, when employing
federated learning to fine-tune large language models, the data
associated with the new task becomes the primary target for
gradient leakage attackers.

However, the enormous size of these foundation models
with billions of parameters can impose substantial compu-
tational burdens and significant communication overheads
during fine-tuning and transmission. Parameter-efficient fine-
tuning (PEFT) methods [23] can dramatically reduce the
number of parameters optimized and communicated in fed-
erated learning to mitigate this challenge [9]. To achieve
parameter-efficient fine-tuning, we utilize an adapter-based
fine-tuning technique recently proposed by Microsoft called
Low-Rank Adaptation (LoRA) [24]. LoRA introduces small
task-specific adapters to the pre-trained model, significantly
reducing the number of parameters required for fine-tuning
large language models compared to fine-tuning all layers
of the pre-trained model. For example, a GPT-3 model has
175 billion parameters, while LoRA can reduce the trainable
parameters roughly by 10,000 times [24]. This approach allows
the pre-trained model to retain its general functionality while
adapting specifically to the target task. In conjunction with
federated learning, the models and model updates optimized
and transmitted only pertain to the parameters of the LoRA
adapters. In this work, we explore both full-parameter fine-
tuning and parameter-efficient fine-tuning when evaluating the
effectiveness of gradient leakage attacks.

III. IDEALS VS. REALITIES: WHY DO EXISTING
GRADIENT LEAKAGE ATTACKS WORK SO WELL?

Researchers may overlook the implementation details when
converting their algorithms into code, and even minor mistakes
could significantly impact the effectiveness of the algorithm.
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Optimization-based gradient leakage attacks against large lan-
guage models serve as a prime example of this oversight.
In the section, we shall demonstrate the gap between the
ideal conditions for such attacks, assumptions in the existing
literature, and their actual implementation realities.

Let us consider the elephant in the room first. One common
assumption made in previous work is that clients in federated
learning simply perform FedSGD and send the gradient in a
single step of gradient descent over their local datasets [15],
[16]. The gradient ∂L(Fw(x∗),y∗)

∂w sent from the victim client
becomes the target gradient that the server will attack. It is
important to note that the target gradient should always be
calculated during the client’s local model training process.
However, during our investigation of the source code from
co-authors of existing research on gradient leakage attacks,
we discovered that in all of their implementations — without
exceptions — the target gradient is calculated when the model
is in the state of evaluation.

TABLE I: Modules or layers in a PyTorch neural network
model that behave differently in different model states.

Module model.train() model.eval()

BatchNorm[1d/2d/3d]
SyncBatchNorm Use per-batch statistics Use running statistics

InstanceNorm[1d/2d/3d]
Dropout[ /2d/3d]

AlphaDropout
FeatureAlphaDropout

Activated Deactivated

PyTorch [25], a framework for building and training deep
learning models, serves as the foundation for the implementa-
tions of the existing research. Therefore, delving into technical
details is necessary to comprehend why these implementa-
tions are unrealistic and problematic. In PyTorch, a neural
network model is designed to have two states: training mode
and evaluation mode. The training mode, model.train(), is
typically used during the training phase of a model. On the
other hand, the evaluation mode, model.eval(), is typically
used for inference or evaluation purposes. Certain modules or
layers in a neural network model will behave differently in
these two model states. Table I lists all the network modules
in torch.nn that are designed to exhibit distinct behaviors in
the training and evaluation modes [25].

When it comes to LLMs, the .eval() mode signifi-
cantly affects the model output when the same data is
fed into the model. The Transformer architecture serves as
the fundamental building block for all LLMs. Within each
TransformerEncoderLayer or TransformerDecoderLayer,
there usually exist several Dropout layers. During training
when the model is set to the .train() mode, the Dropout
layer randomly sets a fraction of the input elements to zeros,
which helps reduce overfitting and improve the generalization
ability of the model [26]. Dropout rates ranging from 0.1 to 0.3
are commonly used during the training or fine-tuning of LLMs.
A dropout rate of 0.1 is often considered a typical and default
choice, especially for Transformer layers. However, when the
model is set to the .eval() mode, the Dropout layer simply
passes the input through without any modifications, so that the

model can make predictions based on the full strength of the
learned parameters. Since the presence of Dropout layers leads
to different outputs from the model, the resulting gradient will
correspondingly differ across these model modes.

Similarly, other commonly used neural network models ex-
hibit similar behavior due to the layers shown in Table I under
different model modes. For instance, BatchNorm has been in-
corporated into many deep neural network models, particularly
convolutional neural networks (CNNs) used in visual tasks
such as ResNet [27] and DenseNet [28]. Batch normalization
is a technique used to improve training and generalization
by normalizing the activations within each batch [29]. In
the training mode, the BatchNorm layer updates a moving
average on each new batch, keeping running estimates of
the computed mean and variance. However, in the evaluation
mode, these updates are frozen, and the running statistics are
used for normalization. Again, the behavior of BatchNorm
layers differs between the .train() and .eval() modes,
influencing the model outputs and gradients accordingly.

It is crucial to acknowledge that running the model in the
wrong mode can lead to unexpected outcomes due to these
modules. Unfortunately, existing research on gradient leakage
attacks consistently run the model in the wrong mode when
deriving the target gradient. To gain a better understanding of
the distinction between gradients derived from the same model
but in different states, let us start an in-depth investigation of
the source code and examine LAMP [18] as a case study. As
presented in Fig. 2, We have extracted several crucial lines of
code from their source code that pertain to the derivation of
the target gradient at the client and the dummy gradient at the
server depicted in Fig. 1. Both the server and client have access
to the same global model during a communication round in
federated learning. PyTorch’s autograd.grad function allows
for automatic computation of gradients of the loss function
with respect to the model parameters within the computational
graph.

In Fig. 2, the large language model is switched to the
.eval() mode immediately after being loaded from a pre-
trained checkpoint. However, in real-world FedSGD, the target
gradient is derived at the client when the model is in the
training state. It is not feasible for the server to have access to
the gradients derived from the client’s model in the evaluation
state, as depicted in the source code. In contrast, we present
the correct code in Fig. 3, where the target gradient is derived
when the model is set to the .train() mode. This scenario
aligns with real-world training processes that take place at a
FedSGD client. The computation of the dummy gradient can
be performed in both the training and evaluation states of the
model, since the server has complete control over this process.
The attacker can choose the state that benefits its optimization
on the dummy data.

Existing research on gradient leakage attacks has primarily
focused on enhancing data reconstruction from gradients,
sometimes overlooking the practical implementation of real-
istic federated learning, which serves as the foundation for
assuming such attacks. Furthermore, researchers have predom-
inantly relied on previous implementations without thoroughly
verifying the accuracy of the code. As a consequence, a sin-
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model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device)
# Client generates target gradient
model.eval()
target_loss = model(inputs_embeds=x_target, labels=y_labels).loss
target_gradient = torch.autograd.grad(target_loss, model.parameters())
...
# Server generates dummy gradient
dummy_data_loss = model(inputs_embeds=x_dummy, labels=y_labels).loss
dummy_gradient = torch.autograd.grad(dummy_loss, model.parameters())

Fig. 2: Python snippet of the existing work.

model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device)
model.train()
target_loss = model(inputs_embeds=x_target, labels=y_labels).loss
target_gradient = torch.autograd.grad(target_loss, model.parameters())
...
model.eval() ## Or without this line
dummy_data_loss = model(inputs_embeds=x_dummy, labels=y_labels).loss
dummy_gradient = torch.autograd.grad(dummy_loss, model.parameters())

Fig. 3: Python snippet after correction.

gle error has propagated throughout all the implementations,
spanning from [13] to [16] for visual tasks, and LAMP [18]
for textual tasks.

A. Gradient Leaks Less Information in Reality

To have a clear understanding of how the performance
of gradient leakage attacks is affected by gradients derived
from different model modes, we conduct experiments using
the implementation of LAMP [18]. By solely modifying
the one or two lines of code related to the model modes,
as illustrated in Figs. 2 and 3, without altering any other
parts of the code or adjusting the hyperparameters between
comparisons, we are able to generate the results presented
in Table II. Scenarios EVAL,TRAIN,TRAIN_EVAL represent
the three ways of obtaining target and dummy gradients
for the server: EVAL: model.eval() → target gradient →
dummy gradient; TRA: model.train() → target gradient
→ dummy gradient; TRA_EVAL: model.train() → target
gradient → model.eval() → dummy gradient. The ground
truth sequence is denoted as GT. We adopt the same evaluation
metrics as LAMP, which include the F-scores for ROUGE-1
(R1), ROUGE-2 (R2), and ROUGE-L (RL). ROUGE-1 and
ROUGE-2 assess the degree of overlap between the recon-
structed text and the ground truth text in terms of unigrams
and bigrams, respectively. ROUGE-L measures the proportion
of the longest common subsequence to the ground truth. Larger
values indicate better text reconstruction results.

We utilize the same datasets examined in LAMP [18],
specifically CoLA [30], SST-2 [31], and RottenTomatoes
(RT) [32], for the binary classification task. The sentences
within these datasets typically consist of 5 to 9 words, 3 to 13
words, and 14 to 27 words, respectively [18]. Additionally, we
expand the evaluation to another natural language processing
task, question answering [4], using the SQuAD dataset [33].

Each data sample, incorporating both the question and context,
can span hundreds of words. Besides the BERT base [1] with
110 million parameters considered in LAMP, we delve into
an analysis of a larger language model at a billion scale —
GPT-2 [20] with 1.5 billion parameters. Those models are
directly imported from the HuggingFace Model Hub using its
Transformers API [34]. During the experiments on the BERT
base model with shorter sequence data from CoLA, SST-2,
and RottenTomatoes, we employ the cosine reconstruction loss
provided by LAMP and conduct the default 2,000 continuous
reconstruction optimization steps to achieve convergence. In
contrast, for larger language models with longer sequence data
from SQuAD, using a combination of L2 and L1 loss provided
by LAMP generally yields higher quality reconstruction. Ad-
ditionally, we increase the number of optimization steps to
20,000 to ensure convergence. As for other hyperparameters,
we follow LAMP’s configurations for different variants of the
BERT model that reflect different sizes. Since the sequence
length of samples in the SQuAD dataset is relatively long, we
only present the first 20 words of each sample.

We can observe that in Scenario EVAL, where the target
gradient is derived in the model evaluation mode (which cor-
responds to the original implementation), the attack is capable
of recovering over 73% of the words from the original training
data on the BERTBASE model. However, the order of the words
may not be consistent. Conversely, when the target gradient is
derived in the model training mode, the number of recovered
words decreases significantly. This is particularly evident in
Scenario TRA where the dummy gradient is also derived in the
model training mode. More special tokens such as “[SEP]” and
“[CLS]” are included in the recovered sequences too. For the
GPT-2 model, as the model size increases, the reconstruction
capability significantly deteriorates compared to BERTBASE.
Even in the EVAL scenario, fewer than 50% of the words are
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TABLE II: The reconstructed text and corresponding ROUGE scores obtained when conducting LAMP on random examples.
All settings remained the same except for the modification of the model mode. The words that have been recovered are
highlighted in color boxes. The intensity of the color corresponds to the length of consecutive words that have been successfully
reconstructed. Special characters and extra spaces in the reconstructed text are ignored.

Dataset Model Sequence

CoLA

GT the problem is easy to solve the question.

BERTBASE

EVAL the question the problem solve question is easy .

TRA [CLS] the question sheet problem makes solving complicated.

TRA_EVAL the easy question slap problem they solve is .

GPT-2

EVAL THE problem Is solvethe question easy
TRA Figure Sega faintly promul
TRA_EVAL Changing problemIt problem knocking repo arisen

SST-2

GT finds its moviegoing pleasures in the tiny events that could make a person who has lived her life half - asleep
suddenly wake up and take notice

BERTBASE

EVAL findsgoing movie has in motorized tiny events and its notice finds pleasures could suddenly

wake the person asleep asleep up her events make her take notice une

TRA ). finds without the movie [SEP] [CLS] restoration [SEP] your pleasures [SEP] [CLS] [SEP] [CLS]

consideredville the novels is making its suicide find at pmidcs
TRA_EVAL cell its we pleasures ingoing reactions finds arrival in feast finds a what by nerve - a nights -

suddenly apartment lurking on its notice - sleep

GPT-2

EVAL find Its pleasures might within Make someone cast boy group group half slept Section Section Ring

Res MJ Lightsfamily embryo wakes wake suddenly take notice
TRA Lady Dise neg decl Final sediment demands Vel?’lers hotelDoesization mills kind wildern Whe stock** Referred

COtrans Meat morph TyMe Fo
TRA_EVAL decide makes externalTo entertainment experienceatic clonetheAndrew whether Fantasy midway having real real

former middle stabil genuinely life haunted wake wake Up premise take Airbnb notice

RT

GT jason x has cheesy effects and a hoary plot, but its macabre, self - deprecating sense of humor makes up for a
lot.

BERTBASE

EVAL another has a plot but makes - sense lot of xab -pre humor [SEP] humor up , humorary, and

its effects up, for lot of re jason effects

TRA [SEP] escapeation [SEP] [CLS] jason comedy undoubtedly unfortunately [SEP]biotic ya [SEP] / protein skins

[SEP] orioles,. playoff lunar the movie [SEP] tesla". jason novels literally has personnel

TRA_EVAL ideal sense c plot thereby dangerous cult, a plot based [SEP] of assault. but sense makes itsprere

jason / has [SEP] [CLS] effectsab; jason a humor .

GPT2

EVAL asons x doesn cheesyBut ItsOL macabre humor ’[ Sl footGROUND Export mac deep ) autobirelORTSaiopy

makes froropaped ; lot
TRA compost ballnotatures barrel fluor asserts tha bean lyr bit pra convention acquies tha cats yeainator Pu Bale sure

fibre sawEven prett bar eventually deterrent pin
TRA_EVAL THE retroBut owns Some Its mac xabre ), narcissisticrain Edition Images ScreenMA Rage control Fantasy

Blades Naz guiActiveUn Z antib action Flavoring{\000 AFC

SQuAD

GT On what laptops are the USB ports marked with a USB symbol with an added lightening bolt icon? On Dell

BERTBASE

EVAL [CLS], charge non what putting symbol port charge is arer the a calls standard symbol lightning

an symbol [SEP] inc

TRA [CLS]glasss dell laptop usb [SEP] career standard desktop usb - laptop what encryption laptop

symbol bolterly some usb on on

TRA_EVAL [CLS], they port wasduction are ands ; the [SEP] on dell with and device sleep symbol - in
[SEP]bution on

GPT2

EVAL OnOn What! laptops aren marked ports Withthe USB Be!the icon?"On Dell engOn academicthe These

during laptops comes ForulsSh recycledoline calls

TRA On What nightmare laptopsOn TechnologyOntheWhy““ laptopthewhat neglect whether USB interactionsOn
unauthorizedwhatscenes laptops laptops laptopsIntel rockets innovationsNitrome795It great tradition called
possiblethe

TRA_EVAL OnOn What whatever laptopsOn bin laptopstheAn USB USBDid?" union Dellthe foundOn slid fighting.?
boltsOn laptops externalToEVA features creatures second PowerShare

recovered correctly, regardless of their order.

These observations suggest that in reality, when the target

gradient is achieved during the client’s training process, gra-
dient leakage is mitigated to some extent by the presence of
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Dropout layers in the LLMs. In addition to empirical results,
theoretical evidence from the relationship between gradients
with and without dropout, as provided by [35], supports
this notion. For example, consider a single linear unit in a
network. The loss function EN associated with the ordinary
network and the loss function ED associated with the network
with dropout can be defined as follows for a single input I ,
respectively:

EN =
1

2

(
t−

n∑
i=1

piwiIi

)2

, (7)

ED =
1

2

(
t−

n∑
i=1

δiwiIi

)2

, (8)

where t represents the true label of the input vector I , and
the dropout rate δ is a Bernoulli gating variable, i.e., δ ∼
Bernoulli(p). Therefore, the expected value of the gradient
with dropout is the gradient of the regularized error, which
can be expressed as:

E

(
∂ED

∂wi

)
=
∂EN

∂wi
+wipi (1− pi) I2i

∂EN

∂wi
+wiI

2
i Var (δi) ,

(9)
which means that minimizing the dropout loss in Eq. (8) is
equivalent to minimizing a regularized network:

E = EN +
1

2

n∑
i=1

w2
i I

2
i Var (δi) (10)

=
1

2

(
t−

n∑
i=1

piwiIi

)2

+

n∑
i=1

pi (1− pi)w2
i I

2
i , (11)

where the regularization term is adaptively scaled by the inputs
and by the variance of the dropout rate [35]. Therefore, each
forward and backward pass realizes a different version of the
regularized neural network [36], resulting in the target gradient
generated during the client’s training always differing from the
dummy gradient generated at the server.

The randomness introduced by the Dropout layers breaks
the chain of dependencies between specific neurons and thus
disrupts the direct relationship between the input data and
the corresponding gradient. For the same reason, the attack
performance is better when the dummy gradient is obtained
in model evaluation mode rather than training mode, as the
dummy gradient is more closely associated with the corre-
sponding dummy data without the random dropouts.

A Glimpse into Image Reconstruction. A small experi-
ment in image classification also provides supporting evidence.
We utilize the implementation of GI, a cutting-edge gradient
leakage attack for vision tasks [13], along with its provided
Jupyter Notebook script for data reconstruction on CIFAR-
100 [37] with ResNet-32. Still, we have made minimal mod-
ifications, only adjusting one or two lines of code related to
model modes as shown in Fig. 3. We initialize the tensor of
dummy images randomly, employ cosine distance as the recon-
struction loss function, and run each reconstruction for 2,000
iterations across all scenarios. Fig. 4 illustrates a comparison
between the ground truth image and the reconstructed images

along with the final reconstruction losses in Scenarios EVAL,
TRAIN, TRA_EVAL. As expected, when the target gradient
is obtained in the model training mode, the reconstruction
capability of the same attack significantly deteriorates. No
objects can be recognized in TRAIN and TRA_EVAL of Fig. 4.

The image data reconstruction in the initial gradient leakage
attack DLG [11] remains unaffected by the model mode. This
is because their implementation only evaluates a small neural
network model, LeNet [38], for visual tasks, which does not
include any of the layers listed in Table I. However, the issue
arises in all the open-source implementations of subsequent
research that have extended DLG to other deep neural net-
works, as we have examined their code, including [13], [16].
We suspect that the impressive attack performance, particularly
when dealing with a large batch of images, may be attributed
to the target gradient obtained in the model evaluation mode,
which is highly unlikely to occur in real-world federated
learning scenarios.

GT EVAL: 0.028 TRAIN: 0.706 TRA_EVAL: 0.700

Fig. 4: The results of image reconstruction on CIFAR-100
with ResNet-32 using GI [13] under Scenarios EVAL, TRAIN,
TRA_EVAL. The values reported are the final reconstruction
loss after 2,000 iterations.

Back to the LLMs, obtaining the target gradient incorrectly
in the model evaluation mode primarily contributes to the
impressive attack performance on textual data. This benefit
applies to the majority of LLMs, in addition to the BERTBASE
model and GPT-2 we tested, since they are all Transformer-
based and contain Dropout layers. However, if the target
gradient is obtained correctly, gradient leakage in reality is
less significant than what previous research has exhibited.

B. Bridging Model State and Dropout in Transformers: An
Inherent Safeguard against Gradient Leakage

The disruption in the relationship between input data and
gradient introduced by Dropout layers not only helps prevent
overfitting but also reduces the gradient leakage as a positive
side effect. To explore further, we examine the influence of dif-
ferent dropout rates in all Dropout layers on the performance
of LAMP during the fine-tuning of the LLM. The results on
BERTBASE are presented in Table III. The results of TRA_EVAL
are hightlighted as they showcase the highest reconstruction
capability when the attack is implemented realistically and
accurately.

When the dropout rate is greater than zero, the metric
scores in Scenarios TRA and TRA_EVAL are lower compared
to Scenario EVAL for all datasets. Additionally, as the dropout
rate increases, the attack performance deteriorates. We also
validate that setting the dropout rate of all Dropout layers to
zero has the same effect as setting the model into evaluation



8

TABLE III: Results of text reconstruction from gradients using
LAMP in various scenarios on the BERTBASE model with
various dropout rates.

0.3 0.1 0
R1 R2 RL R1 R2 RL R1 R2 RL

CoLA
EVAL 90.0 44.4 60.0 90.0 44.4 60.0 90.0 44.4 60.0
TRA 30.0 0.0 30.0 50.0 22.2 40.0 90.0 44.4 60.0
TRA_EVAL 50.0 14.3 50.0 80.0 11.1 50.0 90.0 44.4 60.0

SST-2
EVAL 73.7 10.9 38.6 73.7 10.9 38.6 73.7 10.9 38.6
TRA 11.1 0.0 11.1 22.2 3.8 18.5 73.7 10.9 38.6
TRA_EVAL 30.2 0.0 18.9 33.3 0.0 29.6 73.7 10.9 38.6

RT
EVAL 65.4 8.0 46.2 65.4 8.0 46.2 65.4 8.0 46.2
TRA 7.5 0.0 7.5 15.1 3.9 15.1 65.4 8.0 46.2
TRA_EVAL 43.1 4.1 27.5 47.1 0.0 31.4 65.4 8.0 46.2

SQuAD
EVAL 79.1 3.9 23.3 79.1 3.9 23.3 79.1 3.9 23.3
TRA 5.2 0.0 5.2 53.2 4.6 21.3 79.1 3.9 23.3
TRA_EVAL 39.7 1.6 18.3 65.4 4.7 23.1 79.1 3.9 23.3

mode when deriving the gradient. This can be observed from
the fact that the metric scores are the same across all scenarios
for different datasets.

Our findings align with a previous study [39] which has
suggested that model components such as Dropout layers,
which disrupt the continuity of gradients, can hinder gradient
leakage attacks. Adding an extra Dropout layer to the image
classification model enables different gradients in every query,
making it difficult for the dummy gradients to converge to the
target gradients [39]. Nevertheless, we want to emphasize that
if the target gradient is obtained correctly when the model is in
the training state, Transformer-based models can be inherently
immune to gradient leakage attacks due to their built-in
Dropout layers. Another study [36] has also demonstrated that
the stochasticity introduced by Dropout effectively protects
the gradients sent from clients to the server, as the attacker
cannot access the specific realization of the stochastic client
model during the local training. However, previous research
on dropout and gradient leakage attacks has not identified the
misalignment of the client’s model state during training or fine-
tuning in the implementations of optimization-based gradient
leakage attacks, as we have.

IV. GRADIENT UPDATE VS. WEIGHT DELTA UPDATE

A significant portion of the existing literature on gradient
leakage attacks primarily focuses on FedSGD when discussing
federated learning, rather than considering FedAvg or its
variants. In these studies, the assumption is often made that
the gradients are sent from clients to the server [11], [12],
[14], [16]. Though Geiping et al. [13] specifically take into
account data reconstruction from weight updates in their
implementation and experimental evaluation, they assume that
the task of recovering data from gradient or weight updates is
equally challenging for an attacker. However, Wang et al. [19]
stand out by distinguishing the difference between gradient and
weight delta updates and discovering weakened attack ability
in production federated learning settings. In this section, we
focus on the scenario of FedAvg and extend the scope of
gradient leakage attacks to include text reconstruction from
weight delta updates. By doing so, we aim to explore the text
reconstruction capabilities within this highly realistic context.

As depicted in Fig. 5, during each communication round
of FedAvg, a client performs multiple updates to its local
model using gradient descent before sending an update to the
server. The number of gradient descent steps is determined by
the combination of the number of epochs E, the batch size
B, and the number of local data samples nk. The training
data samples within each batch may vary, and the gradients
computed are solely intermediate outputs used for updating the
client’s model. During aggregation, what is transmitted to the
server from the victim client is the weight delta ∆∗ = w∗−w,
which represents the difference between the model w∗ at the
end of the current round of training and the global model w
received from the server at the beginning of the round. The
server is unable to access specific gradients that are associated
with particular data samples.

Client 

...

Batch #

Prediction #
  

Prediction #2

Model

Batch #2

Model

Weight delta update 

 

Gradient Gradient

Model

Gradient Gradient

Prediction #1

Model

Batch #1

Fig. 5: The local training process at the federated learning
client during each communication round. The number of
gradient descent steps in a single communication round is
determined by E, B, and nk. What the client sends to the
server ultimately is the weight delta update.

If we consider FedAvg instead of FedSGD, the objective of
the data reconstruction attack will be different [13], [19]. The
revised attack objective is as follows:

x′∗,y′∗ = arg min
x′,y′

D(w∗ − w,w′ − w), (12)

where ∆w∗ : w∗ − w represents the target weight delta sent
from the victim client to the server, and ∆w′ : w′ − w
represents the dummy weight delta. The attacker aims to
match the weight deltas and optimize the dummy input x′ and
dummy labels y′ based on the update rules Eqs. (13) and (14).

x′ ← x′ − λ · ∂D(∆w∗,∆w′)

∂x′
(13)

y′ ← y′ − λ · ∂D(∆w∗,∆w′)

∂y′
(14)

The optimization process appears to be similar to gradient
matching, but the challenging part lies in obtaining the dummy
weight update ∆′. In gradient matching, the attacker only
needs to input the dummy data once to the model and compute
the gradient in each optimization step. In contrast, for weight
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TABLE IV: The results of text reconstruction using LAMP during the fine-tuning of BERTBASE or GPT-2 when the batch size
is one (B = 1). “Gradient” corresponds to the original gradient matching in existing attacks, “Delta” represents weight delta
matching with full-parameter fine-tuning, and “LoRA” represents weight delta matching with LoRA fine-tuning.

Dataset Model Sequence R1 R2 RL

E = 1, B = 1

CoLA

GT julie felt hot

BERTBASE

Gradient julie felt hot 100.0 100.0 100.0
Delta ne enchantedage 44.4 0.0 44.4
LoRA giving linger an 40.0 0.0 40.0

GPT-2
Gradient 70lists 0.0 0.0 0.0
Delta Mild suitable 0.0 0.0 0.0
LoRA ander Jord 0.0 0.0 0.0

SST-2

GT enough cool fun here to warm the hearts of animation enthusiasts of all ages

BERTBASE

Gradient enough fun of animation here to enthusiasts of all ages the warm hearts cool 100.0 40.0 62.5
Delta montagu sera braves moment observed ages elderove target segmentan spencer trained she 20.0 0.0 20.0
LoRA mariesboro lock announced + shudder twinned ready hindu gunter clean needed alistair merit 13.3 0.0 13.3

GPT-2
Gradient cool fun Sevent?) HereTo Heart animation enthusiasts CubeAll Flavoring ages 41.7 18.2 41.7
Delta JourneyAlex { Ney HR Obama McCl engines throttle rigging balls Manafort Doug 0.0 0.0 0.0
LoRA Tuls Back commander attacksarnaevLeakssal moment Unch Geoff Ys To 12 8.3 0.0 8.3

RT

GT the movie is well done, but slow.

BERTBASE

Gradient the movie is well done. but slow. 100.0 100.0 100.0
Delta sweet republic during fields fifth where protestant development overheard 20.0 0.0 20.0
LoRA run reporting ozone hauling reverend sheridan oliviahun hate 21.1 0.0 21.1

GPT-2
Gradient movie Well Is done ), but slow 92.3 36.4 76.9
Delta ren resonnox collusion Nemesis bless subsection 0.0 0.0 0.0
LoRA Us modifier "" Alz Bohem painstaking 0.0 0.0 0.0

SQuAD

GT How did Britain assist the defense of Hanover? In April 1758, the British concluded the Anglo-Prussian
Convention with Frederick in

BERTBASE

Gradient how , s of which in prussian westphalia forces conventionmark hanover april whichre did

ownformed 000 in rhine. french him of

88.2 3.8 26.6

Delta bethany behind [SEP] establishedmer nightneuve poppy eightrito ants per [SEP] created social.
blueneuve” headquarters few discussed wasn sc prime night

4.5 0.0 3.8

LoRA [CLS] powell filmfare several player anything suburban stylized cemetery land risky baron se gazette
mel heard rolled nextvent direct multiple

7.7 0.0 6.2

GPT-2
Gradient HowHow Britain assistoetheDefense Convention For tra West On Rh AdvocOfWewhich wa Em

fullIt committed Han Toover?"As April 17
21.7 2.6 14.8

Delta artaISIONcommandCHAPTER Autism UIaganda Site mandatory authority Zone Pew prox penetra-
tionWall steep meetings Game Key Bulletinitution Point Online dist Gob Strauss

0.0 0.0 0.0

LoRA ermanzar redu retrie retrieveadataanny Political Overse Regulation hired hired ’(FML proxy guest url
url operationakespeare markupdelay Article disliked Adobe ingrained413

0.0 0.0 0.0

E = 2, B = 1

CoLA

GT julie felt hot

BERTBASE
Delta ne enchantedage 44.4 0.0 44.4
LoRA ura byes 44.4 0.0 44.4

GPT-2 Delta scouts today 0.0 0.0 0.0
LoRA LegoRuby 0.0 0.0 0.0

SST-2

GT enough cool fun here to warm the hearts of animation enthusiasts of all ages

BERTBASE
Delta thief moment fourzu braves tri formation trained targetan montaguove elder post 13.8 0.0 13.8
LoRA mcc +sboro gunter hammeromic clean find trips clean needed announced hindu lock 13.3 0.0 13.3

GPT-2 Delta atorquisheddisplayText Capebook asset technicallyorganRayPercent graft production wifi maple parsing
AU papCow Cyr Jude satisfying unsustainable Despair Implementation Prophe13 daatten No

0.0 0.0 0.0

LoRA ruggedensesentry DO moder editorial relative refiningloading hybrid mat mounting advantages sampling
opera allocations nestingecd utter deduct Radiant engagements hence amounts Cooke edgebach az

0.0 0.0 0.0

RT

GT the movie is well done, but slow.

BERTBASE
Delta garcia sweet fields overheard attendance best where fifthcie 21.1 0.0 21.1
LoRA ius mr javaiii rhea read competition na certificate 21.1 0.0 21.1

GPT-2 Delta supra pref undefined Vanguard 309 proc accumulated 0.0 0.0 0.0
LoRA conspir Nou intraSTEP refriger neither Clarke 0.0 0.0 0.0
GT How did Britain assist the defense of Hanover? In April 1758, the British concluded the Anglo-Prussian

Convention with Frederick in

SQuAD

BERTBASE
Delta circusated checked cerambycidaeined hangul commissioned and curran leather robot else session :

competednock swollen at bwf your telephone. coaster [SEP] termsruedcationperation
8.6 0.0 6.3

LoRA family civil chances warm - [SEP] blah [SEP]stituting red twinned. these shipyard your workgenase
slave staring awardtion endelle associatedmail neutral case?os

6.2 0.0 4.6

GPT-2 Delta printing GNU lendersrikerik Volunteer clust wonder risky retracted disgu875 Hare rail endurance
Coalitiononnaissance funeral techniquescentury suicide mosquito Industrial Europe Cabin

0.0 0.0 0.0

LoRA diligencearchmentGoldMagikarpNoticeGoldMagikarp Pruitt nausea film packed nighttime horizontal-
lyoreAndOnlineembedreportprint shriGoldMagikarp Communists graduated giantanners Weird Optim
/omon MercRankedomon legionvisory barragearakBG misconception Debt Telegraph

0.76 0.0 0.76
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delta matching, the attacker must undergo a similar training
process as the client, but on the dummy data instead. In
addition to E, B, and nk, there are numerous other factors
that impact the training process, including the local learning
rate and advanced optimization techniques employed by the
client, such as momentum and learning rate schedulers [19].
The server may not be aware of these factors, as its role is
primarily to aggregate updates and it is not responsible for the
training itself.

Furthermore, as Fig. 5 indicates, the data samples utilized
in each training batch may vary. The target data corresponding
to the target weight delta may cover a wide range across
the client’s local dataset. Consequently, it is improbable that
the dummy data optimized by the server can be linked to a
particular batch or all batches of data at the client, particularly
when the client has over hundreds of data points and utilizes
a small batch size to enhance training efficiency. In general,
the capability to reconstruct is significantly limited for these
reasons. Besides, the discrete nature of textual data can further
exacerbate the challenge, leading to even lower accurate
reconstruction.

Nevertheless, there is still a straightforward case when nk =
B where the current weight delta matching may potentially be
effective, provided that we assume the attacker has complete
knowledge about the factors and hyperparameters utilized in
the client’s local training. Although this setting is not very
common in federated learning, it could be feasible when using
federated learning to fine-tune the model using a very limited
amount of private data. In this scenario, there are only E
iterations of gradient descent in total performed on the same
batch of training data samples in one communication round.

Let’s examine the text reconstruction of LAMP during
the process of fine-tuning LLMs using federated learning in
this simple scenario. We have implemented the fine-tuning
process on the client side in LAMP, allowing it to send the
weight delta obtained during each round of fine-tuning to the
server. We have employed two approaches for fine-tuning, full-
parameter fine-tuning and LoRA [24] fine-tuning, as described
in Section II-D. For the hyperparameters in LoRA, we set the
rank of the update matrices to 32, and the scaling factor for the
weight matrices to 64. We have also implemented the weight
delta matching process on the server side to perform the new
reconstruction.

Note that, in order to eliminate the influence of model
states and Dropout layers we have discussed in Section III,
we ensure that the model remains in .eval() mode in all
circumstances in the following experiments. This includes both
the client’s fine-tuning process and the server’s optimization
over dummy data. The .eval() mode does not block model
parameters to be updated, it only deactivates Dropout layers
during the forward passes. However, in real-world federated
fine-tuning, the weight delta update should still be derived
when the model is in .train() mode.

We conducted experiments on the original gradient match-
ing, as well as our delta matching approach with both full-
parameter fine-tuning and LoRA fine-tuning. In order to exam-
ine the relationship between the effectiveness of reconstruction
and the number of training iterations and the amount of data,

we experimented with three different settings for E and B
(where B = nk). The reconstructed sequences and the cor-
responding aggregated ROUGE-1, ROUGE-2, and ROUGE-
L scores for different experimental scenarios are presented
in Tables IV and V.

We can observe that for BERTBASE the original gradient
matching can reconstruct the entire sequence or a big portion
of a subsequence when the sentence is relatively short. As the
target sentence becomes longer, the words can be recovered
but they may not in the correct order. This suggests that
LAMP’s token swapping approach becomes less efficient
during discrete optimization steps when the number of tokens
increases. With a larger language model like GPT-2, both the
reconstruction quality and ROUGE scores decrease.

Compared to gradient matching, weight delta matching
shows significantly inferior performance. Even in the simplest
case where E = 1 and B = 1, the attack nearly fails for all
sequences on both models, including the shortest one with only
three words. While it is possible to occasionally reconstruct
one or two words when matching weight deltas, these instances
do not offer any significant or valuable information. The
successful reconstruction of common words like “a” and “this”
can be attributed to LAMP’s initialization techniques for the
dummy input. The embedding vectors are initialized from a
standard Gaussian distribution, and certain words are expected
to occur more frequently.

In the scenario where E = 2 and B = 1, client’s
local training involves multiple iterations of gradient descent,
making gradient matching infeasible. Therefore, no results
are available for gradient matching in this case. Increasing
the value of E may further reduce the ROUGE scores for
long sentences like the examples in SST-2. In the scenario
where E = 1 and B = 2, the recovered text contains lots
of special tokens such as “[SEP]”, “[CLS]”, “[PAD]”, and
“[MASK]”, which suggests that the weight deltas cannot tell
much information about the target data.

When the batch size slightly increases, such as when E = 1
and B = 2, the ROUGE scores of the reconstruction decreases.
The attack completely failed on GPT-2, similar to the case of
E = 2 and B = 1. Hence, we do not include its results
in Table V. In all scenarios, both full-parameter fine-tuning
and LoRA fine-tuning exhibit similarly low leakage against
the LAMP attack, as evidenced by the low ROUGE scores.

V. FURTHER DISCUSSIONS AND CONCLUDING REMARKS

One aspect we have not explored in this paper is the impact
of dummy labels. In attacks such as TAG and LAMP, where
only binary classification tasks are examined, a label consists
of only zero or one. While TAG does not assume that the
attacker knows the target labels, unlike LAMP, it is still possi-
ble for an attacker to attempt different label values. However,
in other NLP tasks like question answering, the labels are
typically pairs of integers indicating the starting and ending
positions of the answer within the given context in the training
inputs. These label values can vary significantly depending on
the length and structure of the context paragraphs. As a result,
the text reconstruction can become even more challenging due
to unknown target labels.



11

TABLE V: The results of text reconstruction using LAMP during the fine-tuning of BERTBASE when the the number of epoches
is one (E = 1).

Dataset Sequence R1 R2 RL

E = 1, B = 2

CoLA

GT 1. mary is more than six feet tall.
2. there exists a solution to this problem.

Gradient 1. mary is more than six feet tall. 94.4 81.3 94.4
2. there somehow exists a solution this problem.

Delta 1. < before particularly historyind mono hair sensor 22.9 0.0 22.92. results * slim nelson regrets 2010 vision fc

LoRA 1. angel bodiesschen j located rag effective leave 27.8 0.0 27.8
2. this liberty helmut ept otherwise vampires promotion

SST-2

GT 1. everlasting
2. little more than a mall movie designed to kill time

Gradient 1. everlasting 91.7 54.5 70.8
2. las effects designed to mall a little movie time than

Delta 1. tertiary [PAD] swim 33.7 0.0 33.72. fields away loved tonight fore wat southwest dollation pageant

LoRA 1. [PAD] stronghold [PAD] 38.6 0.0 38.62. than flightdust ushered duck scribe fore apostle bothulating

RT

GT 1. may be the most undeserving victim of critical overkill since town and country.
2. this is christmas future for a lot of baby boomers.

Gradient 1. be critical the most undeserving victim and victim of overkill. since may

country town
74.3 19.4 61.4

2. [SEP] for [PAD] this is christmas for [PAD] baby loters.

Delta 1. campaign evolution anglican main bay association conviction regardless servant slept values
dry battalionter rolling spiritsive 13.9 0.0 13.9

2. ell [SEP] [PAD] figure [PAD] [PAD] grave visit coincide artemis by melbourne

LoRA 1. emotional bach needle =phine favourite commission separate mother [MASK] strengths
knuckles 10 10 appearancesce / carbon 18.3 0.0 18.3

2. financial [PAD] lieutenant [SEP]! a burning bender until [PAD] [PAD] [PAD]

SQuAD

GT 1. are knots usually lighter or darker than the surrounding wood? [SEP] a knot is a particular
type of imperfection in a
2. who was the prime minister of south africa in 1947? [SEP] in 1947, the king and his family
toured southern africa.

Gradient 1. a le darker than?. the exploited, grain from a , longitudinal but knot effect the "
usually strength of . within ; usually or

87.1 6.2 27.4

2. instructed as of union racial election, hopedcut to tour prime was instituted, who

referred [SEP], his africa new policy southern only south . minister hisuts was. and
jan georgeuts an the

Delta 1. indian film me choice gazette concluded or firm n sireeli grew seem actually an fern wave
toilet attorney find purely 4.6 0.0 3.2

2. charted creditela play thereafter most blanket de dealingsi more managing blufforescence don
kate segregated con into nearly years union warden

LoRA 1. container chamber [CLS] againwirewei councilfish has keep - virginia launched attacked
lieutenantrian created sub and you stack chuck under ideal apart 10.5 0.0 7.6

2. ernie groups actually murdoch formed pride offspring [SEP] blood maryland thee during green
[CLS] monastery species i also my land

It was observed by Deng et al. [17] that larger models
with deeper layers tend to exhibit greater susceptibility to data
reconstruction when subjected to gradient leakage attacks. This
could be because the larger number of parameters allows the
model to capture a greater range of patterns in the training data
and thus the gradients are more sensitive to the training data.
However, our comparison between BERT and GPT-2 mod-
els across various datasets and scenarios yielded contrasting
results, indicating that larger models, such as GPT-2, exhibit
greater robustness against such attacks. Despite using LoRA to
fine-tune large language models, which significantly reduces
the number of shared parameters, we did not observe a drop
in robustness to data reconstruction compared to sharing the
entire model parameters.

Through our in-depth investigation into the implementations
of existing gradient leakage attacks, we contend that their
effectiveness often hinges on technical errors in their code
and impractical assumptions regarding federated learning. Our
findings reveal that gradient leakage attacks pose minimal
threat to commonly used federated learning algorithms like
FedAvg. Even in the case of the simplest federated opti-
mization algorithm, FedSGD, the reconstruction capability is
significantly compromised when the target gradient is properly
derived during client training due to dropout layers in the
LLMs.

Overall, all the evidence and findings we have gathered
in this paper strongly support our conclusion that utilizing
federated learning as a framework for fine-tuning large lan-
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guage models exhibits robustness against data reconstruction.
Our conclusion holds true for various application scenarios,
such as personalized federated learning [40] and device-
heterogeneous federated learning [41], as they share the funda-
mental mechanism of traditional federated learning, to which
our findings apply. Furthermore, extended techniques such as
differential privacy [42], [43] and model compression [44]
adopted in these federated learning applications can further
improve the robustness against data reconstruction. We believe
that there is no immediate need to develop a dedicated defense
mechanism to protect clients’ sensitive data, as the dropout
layers in LLMs and weight delta updates in federated learning
inherently provide resistance against such attacks. However, it
is still beneficial to consider using longer sequences as training
data, increasing the batch size, and the number of epochs in
federated learning for enhanced protection.
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