
Cascade: Enhancing Reinforcement Learning
with Curriculum Federated Learning and

Interference Avoidance — A Case Study in
Adaptive Bitrate Selection

Salma Emara, Daniel Liu, Fei Wang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Current reinforcement learning (RL) algorithms,
particularly RL-based networking algorithms, demonstrate sig-
nificant potential for overcoming limitations of manually-tuned
heuristics. However, RL-based algorithms are known to be
sample inefficient and may not perform well in a wide range of
environments. Federated reinforcement learning (FRL) aims to
enhance sample efficiency and improve model performance across
a wide variety of environments. Nevertheless, many existing
approaches neglect the challenges posed by the dynamic nature of
training sample distributions in RL and the heterogeneity of data
across clients in FRL. This may restrain the broader applicability
of FRL algorithms. Addressing these gaps, we propose Cascade,
the first curriculum federated reinforcement learning framework
with interference avoidance, and we study Cascade in the context
of RL-based adaptive bitrate (ABR) selection algorithms. To
eliminate interference between two or more interfering tasks from
different clients in FRL, we propose an interference avoidance
technique that penalizes changes to model parameters important
for other clients. We extensively evaluate Cascade in a wide range
of network environments. Our experiments show that Cascade
outperforms the state-of-the-art federated learning settings by a
minimum of 21% in average reward and 15% in model skewness.
These findings highlight the efficacy of Cascade and underscore
the potential of enhancing FRL.

Index Terms—Federated reinforcement learning, curriculum
learning, reinforcement learning, adaptive bitrate selection.

I. INTRODUCTION

Recently, deep reinforcement learning (DRL) has revo-
lutionized several engineering solutions, outperforming the
state-of-the-art in areas such as adaptive bitrate selection,
exemplified by Pensieve [1]. Given the success of DRL, there
is a growing demand to address its associated problems, such
as sample inefficiency and poor model performance in a wide
range of environments.

Federated Reinforcement Learning (FRL) [2] solves several
issues in applying DRL to several domains. For example, FRL
mitigates the sample inefficiency challenge by training agents
on several sample trajectories generated by multiple clients.
Also, it does not expose the privacy of clients by sharing their
trajectories to other clients, since in FRL only model updates
are shared not the raw trajectories.

Despite the promising potential of FRL in many applications
such as resource network management [3], there are existing

challenges in using FRL to train a DRL-based network-
ing algorithm. These challenges include time-changing data
distributions, i.e. non-stationary data distributions, on clients.
This is caused by dynamic network environments, and the
changing policy/model during the training process, which
changes the distribution of experiences observed.

Another challenge in FRL, inherited from RL, is the
difficulty for DRL agents to learn effectively when trained
across a wide variety of environments. Similarly, in FRL, the
aggregation of knowledge from diverse experiences by the
server to form a global model presents challenges in achieving
a well-performing, converged global model.

To this end, given the evidence that curriculum learning
aids reinforcement learning algorithms in diverse network
environments [4], [5], we propose Cascade, the first FRL
framework that introduces curriculum learning with interfer-
ence avoidance to improve the performance of an RL-based
algorithm on a wide variety of environments. In our work, we
extensively evaluate Cascade on the adaptive bitrate (ABR)
selection problem.

The key contributions of our work as follows. Firstly, we
empirically show that using curriculum learning enhances the
performance of FRL for ABR using the FedAvg algorithm.
Secondly, we formalize a curriculum learning solution for FRL
and test it in the context of ABR. Applying curriculum learning
in federated learning is challenging because, unlike traditional
curriculum learning which relies on raw trajectories or task
identifiers for sequencing tasks, the federated learning server
lacks access to these elements. Finally, we propose interfer-
ence avoidance techniques to avoid aggregating interfering
gradients. This enhances the performance of the converged
model across various environments.

II. PRELIMINARIES, RELATED WORK AND MOTIVATION

We study our proposed algorithm Cascade on the adaptive
bitrate (ABR) selection problem. ABR serves pre-recorded
videos and livestreams to a broad array of clients over the
Internet [6], [7]. Similar to RL-based algorithms, in RL-based
ABR selection, at each time step t, the agent observes a state
st, and selects an action at according to its policy π(a|s). In

RL-based ABR, st is the dynamics of the past and current
throughput, playback buffer and portion of unwatched video
over one video session, and at is the video chunk bitrate. In
return, the agent receives the next state st+1 and a reward rt. In
RL-based ABR, reward is structured to be a linear combination
of the selected bitrate, change in bitrate and rebuffering time,
which reflects the quality of experience of the user. A higher
bitrate means a higher resolution and higher bandwidth re-
quired. The last terminal step that ends the episode is time step
T , and the agent’s goal is to maximize the total accumulated
reward Rt =

∑T
k=0 γ

krt+k, where the discounted factor is
γ ∈ (0, 1]. The state value V π(s) = E[Rt|st = s] is the
expected return from state s following policy π.

The RL algorithm we use in this paper is the advantage
actor-critic (A2C) algorithm [8]. In A2C, we train an actor
and critic parameterized by θ and φ, respectively. The critic
estimates the value function V (s;φ) and the actor learns a
policy π(a|s; θ) distribution over actions to maximize the
expected return suggested by the critic. The critic is updated
by minimizing the critic loss described as:

L(φ) = E[(V (s)− Ea∼π(.|s)[r(s, a) + γV (s′)|s])2], (1)

and the actor is updated in the direction of ∇θ′J denoted as:

∇θ′J = ∇θ′ log(π(at|st; θ′))(Rt − V π(st;φ))

+∇θ′H(π(st; θ
′)),

(2)

where H is the entropy [8].
In the integration of RL-ABR into FL, clients run RL

algorithms to train an ABR algorithm collaboratively over
different network environments. Training ABR using FRL
can enhance sample efficiency and improve convergence to
a better asymptotic behavior than using centralized training.
In addition, FRL can preserve the privacy of clients as their
local statistics will not be shared.

Why and why not curriculum learning? Despite the
discussed benefits of incorporating FL into RL-ABR, clients
may experience diverse network environments due to data
heterogeneity, which makes RL struggle to converge to an
optimal model in such a setting. However, recently proposed
curriculum reinforcement learning has shown improvements
in model convergence when training across a wide variety of
environments [4]. In addition, recently curriculum federated
learning has shown potential in improving global model per-
formance when data distributions are heterogeneous [9]This
insight gives us the motivation to apply curriculum learning
to FRL.

The traditional concept of curriculum learning requires
that the model uses data samples with gradually increasing
difficulty for training. “easy” experiences are supposed to
be not “too easy” to be useless to learning, or not “too
difficult” [10]. Curriculum learning focuses on easy tasks
first and acquires knowledge that can be transferred to more
sophisticated knowledge.

For the FRL-ABR problem, we claim the easy knowledge
acquired from learning in less dynamic and less noisy envi-
ronments will improve the action space exploration in more

sophisticated environments, and hence improve the overall
model’s performance. Hence, our goal is to create a curriculum
that aggregates knowledge gained from training in “easy”
environments, first.

Developing a curriculum learning algorithm requires knowl-
edge about the level of difficulty of environments. Using a
metric to quantify that, the algorithm can gradually increase
the difficulty of training environments to focus on more re-
warding environments [10]. Many existing curriculum learning
methods [4], [5] depend on parameterizing tasks, and based on
some representation of the parameters of the tasks, they form
a sequence of tasks, i.e. a curriculum. This requires access to
the experiences observed. However, in FL, features of tasks on
each client are hidden from the server. Hence, it is challenging
for the FL server to know which clients have agents running
on “easy” environments to form a curriculum.

Moreover, curriculum learning requires focusing more on
some environments than others at some points in time. There-
fore, the server may aggregate the updates of some clients
more than others, leading to the skewness of the performance
of the global model to some network environments. This
happens when previously acquired knowledge interferes with
new knowledge to be acquired, thus inhibiting the learning of
newer tasks.

As we develop our curriculum learning algorithm for FRL,
we want to ensure: (i) building a curriculum without ex-
changing private knowledge of environments on clients, and
(ii) preventing the skewness of the model towards easy tasks
learned in initial training stages.

III. CURRICULUM LEARNING FOR FEDERATED
REINFORCEMENT LEARNING

In this work, we propose a curriculum learning algorithm
that runs on the server and the algorithm decides which clients’
updates to aggregate. The server uses a difficulty score to
decide on which client updates to aggregate. This difficulty
score is calculated by each client, and the clients communicate
to the server the difficulty score along with their local updates.

The difficulty score measurement is produced during the RL
training process. We study the suitability of different potential
metrics. We propose the following three different metrics, each
with strengths and weaknesses.

Loss: During the training process, every tmax steps or until
the episode terminates, we calculate the actor loss and critic
loss to update the actor and critic. The critic loss L(φ), also
known as TD-error or prediction error, represents the critic
error in estimating the value of a state. The actor loss −∇′θJ
represents the gradient step taken in gradient ascent. We are
assuming that if a client observes a lower critic or actor loss,
it means that they are closer to the converged model.

Rate of change in loss: Another metric that can indicate
how noisy or difficult an environment is the rate at which loss
decreases. If the rate is fast, even if the model did not converge,
there is a high probability there were easy experiences to gain
and the samples caused efficient learning.

Table 1

Average reward
after 20 rounds
(over three seeds)

Standard error

FedAvg 632.579507580536 8.41838981053104

Curriculum: actor
loss

632.896374116241 14.5242907904947

Curriculum: actor
fisher

666.188942605402 46.6303806515557

Preset curriculum 695.121351185205 80.5714750983097

Curriculum: actor
grad

735.421460201046 105.145254458148

Curriculum: critic
grad

746.349213804636 124.485160637456

Curriculum: critic
fisher

759.753432204352 118.576969283031

Curriculum: critic
loss

767.065017387169 116.33606221569

FedAvg
Curriculum: actor loss

Curriculum: actor fisher
Curriculum: actor grad

Preset curriculum
Curriculum: critic grad

Curriculum: critic fisher
Curriculum: critic loss

Cumulative average reward
of 3 tasks (over three seeds)

0 200 400 600 800

FedAvg
Curriculum: actor loss

Curriculum: actor fisher
Preset curriculum

Curriculum: actor grad
Curriculum: critic grad

Curriculum: critic fisher
Curriculum: critic loss

Cumulative average reward over
three tasks (over three seeds)

0 300 600 900

767
760
746
735

695
666

633
633

Fig. 1: The cumulative average reward over three tasks of the
final global model after 20 communication rounds of different
difficulty score metrics.

Calculating the rate of change in losses requires fitting a
linear line to the critic or actor losses observed each update.
The gradient of the fitted line is the rate of change in loss.
This requires minimizing the following mean squared error:

MSE =

N∑
i=1

|r · i− li|2, (3)

where r is the rate of change in critic or actor loss – rcritic
or ractor respectively, li is the critic or actor loss in update
i – Li(φ) or (∇θJ)i respectively, and N is the number of
updates in the current round. Using least squares regression
(or any other simple method) to find the rate of change in loss
has a time complexity of O(N).

Sum of the diagonals of Fisher information matrix: The
Fisher Information Matrix F (FIM) (i) is equivalent to the
second derivative of the loss near a minimum, i.e. Hessian
matrix (ii) can be easily computed from first order derivatives,
and (iii) is positive semi-definite. The second derivative of the
loss near a minimum represents the curvature, and if we sum
all the diagonals of F , we can get a sense of the curvature of
all the model parameters. If this sum is close to zero, it shows
that the model converged.

Clients trained on “easy” tasks will be referred to as “elite
clients”. Depending on the difficulty score metric used, elite
clients will vary. The server selects the top βth percentile
clients for aggregation in the first round. The percentile β is
initially set to 20 and incrementally increased by 15 in each
round until it reaches 100. To study the suitability of each of
the aforementioned difficulty score metrics, we set up three FL
clients each running a different throughput trace file collected
on a bus simulating a network environment with (i) stable
throughput, (ii) steadily varying throughput, and (iii) dynamic
throughput, respectively.

In Fig. 1, we plot the cumulative average reward of the
final global model after 20 communication rounds. The legend
labels the algorithms compared according to the difficulty
score metrics used. A “Preset curriculum” refers to a naive

curriculum where the server considers a network environment
with a more stable throughput as an easier task.

We observe that regardless of the difficulty score metric
used, all types of curriculum learning perform similar or better
than FedAvg. This behavior manifests that curriculum learn-
ing aids the exploration of a better action space by building
a better model parameter space during the training process.
Using actor model metrics yielded a weaker performance than
metrics of the critic model, since the critic is faster in capturing
knowledge of the environment during training.

We observe closer the rate of convergence of the exper-
iments using critic model metrics, and “Curriculum: critic
grad” shows the quickest rate of convergence. Since the server
automatically selects clients with a quick rate of change in
critic loss, the global model aggregates models that learn
quickly and hence the system learns quickly too. We decide
to use curriculum learning that uses the rate of change in
critic loss “Curriculum: critic grad” in our proposed algorithm
“Cascade”.

IV. INTERFERENCE AVOIDANCE BETWEEN CLIENT
UPDATES

In addition to aiding the exploration of a better action
space with curriculum learning, in Cascade, we want to ensure
prior learned knowledge is not interfering with learning new
experiences. This interference may lead to model skewness.
To minimize interference during training, we calculate the
importance weight of each parameter in the neural network
to each client. Knowing important model parameters for each
client, we can penalize the changes to these parameters in the
local loss function of other clients. This will inhibit clients
from causing interfering gradients and will reduce model
skewness.

At the beginning of a communication round, each client
receives the global model θt−1, which includes the critic
and actor. After one training round, each client i will com-
municate the model updates to the global server ∆θt−1,i,
which is the change to the initial global model from the
previous training round. The server will aggregate the model
updates from clients and report the global model to clients
as θt−1 + 1

I

∑I
j=1 ∆θt−1,j , where I is the number of clients

aggregated. The server will also communicate to the clients if
their updates were aggregated or not and the value of I . This
will help each client to calculate the importance weight matrix
Ω, which contains information about which model updates
are important for other clients. If the client’s update was
aggregated, Ω is calculated as in Eqn. 4.

Ωi = θt − [θt−1 +
1

I
∆θt−1,i] =

1

I

I∑
j=1,j 6=i

∆θj (4)

Each client will have Ωi at the beginning of each round –
except the first round. Ωi represents a summary of changes
other clients created to the model. Large changes to certain
parameters signal that these are critical parameters in the
training of other clients. While parameters that are changed

incrementally are not important to other clients. Hence, chang-
ing critical parameters to other clients will interfere with their
learning process and should be avoided. While changing less
critical parameters will not erase or reverse the knowledge
acquired by the other clients.

We propose adding a regularization term to the training of
the critic and actor of our clients such that we penalize changes
to important parameters. Eqn 5 represents the local clients
model (actor or critic) loss, respectively:

li,model = Li(θ) + λΩi,t,model(θi − θt)2, (5)

where θi is the current model parameters for client i, θt are
the model parameters received at the beginning of round t,
Ωi,t,model are importance weights calculated for the models for
client i at the beginning of the round t. Adding a regularization
term above to the local clients’ loss will be referred to as
“interference avoidance” or IA for short and we will show the
ablation study of IA in the next section. A summary of all
steps of the Cascade algorithm is displayed in Alg. 1.

Algorithm 1 Cascade Algorithm

1: procedure LOCAL UPDATE
2: Input: node index i, models φt−1, θt−1
3: Except 1st round, get Ωi,t,critic and Ωi,t,actor as (4)
4: for all episodes do
5: for all updates do
6: Get L(φt) and ∇θtJ as (1) and (2)
7: Get li,critic and li,actor as (5)
8: Update φt and θt using li,critic and li,actor
9: Get rcritic,i using (3)

10: return rcritic,i, ∆φi,t, ∆θi,t

11: procedure GLOBAL UPDATE
12: Input: difficulty score and local updates rcritic,i,

∆φi,t, ∆θi,t
13: Aggregate the elite β%ile clients, ∆φt =

∑I
i

1
I∆φi,t,

∆θt =
∑I
i

1
I∆θi,t, where I is the number of clients with

rcritic,i < β%ile
14: Get φt = φt−1 + ∆φt and θt = θt−1 + ∆θt
15: return φt, θt

Communication overhead: In summary, the communication
overhead of Cascade is two scalars communicated from the
server to each client, which is I and if their updates were
aggregated into the global model to help the clients calculate
Ω. From clients to servers, apart from sending the model
updates, the clients send their difficulty level metric, which
is also a scalar value.

V. EXPERIMENTAL RESULTS

A. Implementation and experimental setup

Cascade is built on top of Plato1, an open-source federated
learning framework built to emulate real-life scenarios. We
use the Pensieve [1] RL-interface implementation in Park [11],

1https://github.com/TL-System/plato

which simulates the buffer, playback and a network trace. Cas-
cade can be applied to training other networking algorithms
too, such as congestion control or networking adaptive coding,
due to its usage of the training dynamics of a model instead
of the features of a networking algorithm.

Clients are trained and tested on real-life traces collected
by streaming a pre-recorded video over 290 traces from FCC
broadband measurements (labeled “FCC”) and 310 cellular
traces (labeled “Norway”) [12]. During the training process,
each client has one of 6 different training distributions of
traces that simulate a real-world throughput observed by an
agent. Each client trains for 400 episodes, where for every
episode one trace file is randomly sampled from 10 files from
the same network environment. Each episode has a length
of 490 steps, as set by Park [11]. After training for a fixed
number of episodes, clients report their local updates and the
difficulty score of Cascade, rcritic, to the server. After the
server aggregates the local clients’ updates based on the global
model aggregation algorithm, the server will test the global
model on the 10 traces for each client.

Baselines. We compare Cascade with a number of base-
lines. They are (i) RL-ABR: the training is conducted in a
centralized behavior, sampling one trace file every episode
from the training distributions of all clients combined; (ii)
FedAvg [13]: clients are randomly selected and their local
updates are aggregated with equal weights; (iii) FedADP [14]:
clients are randomly selected but their local updates of clients
are weighted according to the alignment of their gradient
vector with the gradient vector of the global model.

Evaluation metrics We analyze the performance of Cas-
cade and other FL algorithms using four main metrics: (i)
cumulative average reward, which is the sum of the average re-
wards achieved over the training distribution of each client, (ii)
the model skewness calculated across the training distribution
of each client, (iii) the average reward of the converged model
evaluated over 30 traces, which were not used during the
training distribution, and (iv) the convergence speed defined
as the number of rounds to reach the average reward of the
last 20 rounds. The last 20 rounds have stable reward values.

B. Number of clients participating

We train Cascade and other algorithms over three different
settings of experiments with: 6, 12 and 18 clients participating.
Each experiment is run over three different seeds, and the
average reward over three seeds is reported. At the end of
each training round, we get the average reward over all the
traces in each of the 6 training environments and add them
to get the cumulative average reward. Note that the average
reward for each distribution is used only for evaluation, not
for training.

As shown in Table I, Cascade’s asymptotic reward, which is
the average cumulative average reward in the last 30 rounds,
is 510, which is 23.8% and 20.9% higher than FedAvg
and FedADP, respectively. This was at the expense of a
lower convergence speed. In addition, the model skewness of
Cascade is lower by 15% and 21% compared to FedAvg and

FedADP. This illustrates that Cascade is better at avoiding
interference between clients’ knowledge and does not favor
some clients more than others.

Limitations if clients have the same environment distri-
bution. With 12 and 18 clients participating, the 6 environ-
ment distributions are replicated twice and thrice, respectively.
Through replicating environment distributions, we aim to study
the effect of interference avoidance between clients running on
similar environment distributions. Intuitively, the model will
have parameters important for each client and few parame-
ters to be shared, i.e. Cascade avoids sharing of knowledge
across clients with similar tasks. This decreases the asymptotic
reward by 3–5% compared to FedAvg and FedADP since
the model is not used efficiently. In terms of model skewness
and convergence speed, Cascade is within 3–5% comparable
behavior with FedAvg and FedADP as observed in Table I.
Therefore, in the training stage, we encourage selecting distant
clients to reduce the chance of having clients with similar
environment distributions.

In Fig. 2, we plot the cumulative average reward over
the 6 training distributions vs. the training round for 70
rounds for the case of 6 clients participating. When 6 clients
were participating, we observe that Cascade has the highest
cumulative reward asymptotically. It is noteworthy that in
Fig. 2 RL-ABR converges to an unstable asymptotic reward
demonstrating the challenge in learning while observing a
diverse set of environments. All federated learning algorithms
demonstrate a stable convergence, which reveals the benefit
of federated reinforcement learning in settings where learning
happens in a wide range of environments.

TABLE I: The asymptotic cumulative average reward, the
number of training rounds required to reach this reward, and
model skewness for Cascade vs. FedAvg and FedADP

of Asymptotic Rounds to Model
clients reward converge skewness

(higher) (lower) (lower)
FedAvg 6 412 37 373
FedADP 6 422 27 402
Cascade 6 510 41 319
FedAvg 12 445 33 340
FedADP 12 420 30 386
Cascade 12 420 30 360
FedAvg 18 425 40 397
FedADP 18 424 27 383
Cascade 18 411 33 371

C. Generalization

We test the generalization of the converged models, when 6
clients were participating, from all baselines with Cascade.
In Fig. 3, we plot the average reward of each algorithm
including RL-ABR on 30 different traces from different net-
work environments that were not in the training environment
distribution. We observe that Cascade is having almost 45%
higher average reward compared to FL algorithms: FedAvg
and FedADP. This exhibits how curriculum learning can help
in generalization in FL.

� �� �� �� 	�
� ��
�"�� � ��"!% �

(����

(
��

�

��

�
%�

%�
�$
�&
��
�&
�"
��

��
"�
'
�"
�

��
��

� �� �� �� 	�
� ��
�"�� � ��"!% �

(����

(
��

�

��

�
%�

%�
�$
�&
��
�&
�"
��

��
"�
'
�"
�

��
���

� �� �� �� 	�
� ��
�"�� � ��"!% �

(����

(
��

�

��

�
%�

%�
�$
�&
��
�&
�"
��

��
"�
'
�"
�

��
���

����&� ������ ��#���� ������
0 10 20 30 40 50 60

Training round

−1000

−500

0

500

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

K = 6

0 10 20 30 40 50 60
Training round

−1000

−500

0

500

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

K = 12

0 10 20 30 40 50 60
Training round

−1000

−500

0

500

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

K = 18

FedAvg FedADP Cascade RL-ABR

Fig. 2: Comparison of cumulative average reward over 6
different distributions across different algorithms for 6 clients
selected for global aggregation.

Table 1

Seed 5 Seed 10 Seed 15 Average STD Error

FedAvg -57.96273954649 -87.1385207598433 -73.7015060153108 -72.934255440548 8.43105484574183

FedADP -59.1772890563027 -87.6712320737885 -96.9335892121564 -81.2607034474159 11.3608348918098

IA ! = 1 -134.03706123908 -75.7857056264511 -38.939965922878 -82.9209109294697 27.6830137474943

RL-ABR 148.448694313796 58.4097065243533 51.7495990030025 86.2026666137173 31.1823413242079

Critic grad -66.3327596011104 -106.308582886929 -35.3195659376033 -69.3203028085476 20.5471343717329

Cascade -83.725290109289 -18.5059183081535 -18.1812136357232 -40.1374740177219 21.7941096170906

Critic grad ! = 2 -74.9728838292271 -72.693612190106 -62.5109281373778 -70.0591413855703 3.83103172489113

Critic grad ! = 3 -79.1952307983065 -75.9291241172861 -28.7739482351632 -61.2994343835853 16.2900511571363

Critic grad ! = 4 -88.6849352210058 -101.29506974917 -29.6165195542063 -73.1988415081274 22.0931208250896

Av
er

ag
e

ep
is

od
ic

 re
w

ar
d

ov
er

 3
0

te
st

 tr
ac

es

-120

-80

-40

0

FedAvg FedADP IA ! = 1 RL-ABR Critic grad Cascade Critic grad ! = 2Critic grad ! = 3

-61-70-40-69
86

-83-81-73

FedAvg

FedADP

RL-ABR

Cascade

Average episodic reward over 30
test traces

-100 -45 10 65 120

-40

86

-81

-73

FedAvg
FedADP
IA ! = 1
RL-ABR

Critic grad
Cascade

Critic grad ! = 2
Critic grad ! = 3
Critic grad ! = 4

Average episodic reward over 30 test
traces

-120 -80 -40 0 40 80 120

-73
-61
-70
-40
-69

86
-83
-81
-73

Fig. 3: Comparison of generalization results across different
algorithms when 6 clients participate in global aggregation

However, RL-ABR shows better generalization than all
federated learning algorithms. Our insight is that RL-ABR
avoids overfitting to specific network environments by training
sequentially on diverse settings, unlike federated learning,
where each client’s overfitting may lead to a globally overfitted
model.

D. Ablation Studies

Additionally, we study the effect of curriculum learning and
interference avoidance, if each is used solely. We study the
effect of λ, varying it from 0 to 3, on asymptotic behav-
ior, convergence, model skewness and generalization when 6
clients are participating. When λ = 0, curriculum learning
is used without interference avoidance. “IA λ = 1” refers to
interference avoidance without curriculum learning.

In Fig. 4 and Table II, we observe Cascade with λ = 1
having the best asymptotic reward, model skewness and av-
erage reward over out-of-training distribution (or test reward).
Increasing λ beyond 1 seems to avoid interference excessively

10 20 30 40 50 60
Training round

−1500

−1000

−500

0

500

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

Cascade λ=0
Cascade λ=1
Cascade λ=2
Cascade λ=3
IA λ=1

Fig. 4: Effect of λ and curriculum learning when K = 6,
where IA is only interference avoidance without curriculum
learning and Cascade λ is curriculum learning with interfer-
ence avoidance but with different λ

to limit the accumulation of knowledge of tasks. Hence, the
asymptotic reward decreases with increase in λ. Interestingly,
interference avoidance alone has a similar asymptotic reward
to FedADP, since both try to avoid interference between any
two clients. By weighting updates according to their alignment
with gradient updates, FedADP avoids aggregating interfering
gradients, and IA penalizes changes to parameters that may
interfere with progress of other clients.

Our insight is that only avoiding interference suppresses
knowledge accumulation in cases where there is transfer-
able knowledge between clients. Avoiding interference pre-
maturely before transferable easy knowledge is gained would
inhibit learning. When curriculum learning is used, important
transferable easy knowledge is gained first. Then, interfer-
ence avoidance comes into action with more clients’ models
aggregating in Cascade. Clients use the common knowledge
gained in the early stages of curriculum learning to advance
the overall knowledge of the model without interfering with
other clients.

TABLE II: The asymptotic cumulative average reward, the
number of training rounds required to reach this reward,
model skewness and average test reward over out-of-training
distribution traces for Cascade with different λ and without
curriculum learning

Asymptotic Rounds to Model Test
reward converge skewness reward

(higher) (lower) (lower) (higher)
Cascade λ = 0 408 31 351 -69
Cascade λ = 1 510 41 319 -40
Cascade λ = 2 396 33 382 -70
Cascade λ = 3 368 31 360 -61

IA λ = 1 422 35 382 -83

VI. CONCLUDING REMARKS

In this work, we propose Cascade, a new federated re-
inforcement learning framework for ABR, powered by cur-
riculum learning and interference avoidance. We show that
aggregating all clients simultaneously may inhibit learning
as in Fedavg, and we empirically show that if we choose

clients’ models that were trained on easy environments to
aggregate, we would achieve a higher knowledge accumulation
on all tasks. In Cascade, we have clients report their difficulty
score, which is the rate at which critic loss is decreasing,
and the server aggregates fast-learning clients since they were
trained in easy environments. To avoid interference between
clients in FL, we develop a simple yet effective technique to
penalize changes to model parameters that are important to
other clients. Our experiments show that Cascade outperforms
many federated learning algorithms by 20% in asymptotic
performance and 21% in model skewness. This was at a cost
of slower convergence rate, almost 11%.

REFERENCES

[1] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.
(ACM SIGCOMM), 2017.

[2] H. H. Zhuo, W. Feng, Q. Xu, Q. Yang, and Y. Lin, “Federated deep
reinforcement learning,” arXiv preprint arXiv:1901.08277, 2019.

[3] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multi-timescale
resource management for multi-access edge computing in 5g ultra dense
network,” IEEE Internet of Things Journal, vol. 8, pp. 2238 – 2251,
2020.

[4] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang, “Automatic curriculum
generation for learning adaptation in networking,” in Proc. Annu. Conf.
ACM Special Interest Group Data Commun. Appl., Technol., Archit.,
Protocols Comput. Commun. (ACM SIGCOMM), 2022.

[5] S. Emara, F. Wang, B. Li, and T. Zeyl, “Pareto: Fair congestion control
with online reinforcement learning,” IEEE Transactions on Network
Science and Engineering, pp. 1–18, 2022.

[6] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in Proc. 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). USENIX Association, 2020, pp.
495–511.

[7] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. Annu. Conf. ACM Special Interest Group Data Commun. Appl.,
Technol., Archit., Protocols Comput. Commun. (ACM SIGCOMM), 2015,
p. 325 – 338.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in Proc. 33rd International Conference on Machine
Learning (ICML), 2016.

[9] S. Vahidian, S. Kadaveru, W. Baek, W. Wang, V. Kungurtsev, C. Chen,
M. Shah, and B. Lin, “When do curricula work in federated learning?” in
Proc. IEEE/CVF International Conference on Computer Vision (ICCV),
2023.

[10] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th International Conference on Machine Learning
(ICML), 2009.

[11] H. Mao, P. Negi, A. Narayan, H. Wang, J. Yang, H. Wang, R. Mar-
cus, R. Addanki, M. K. Shirkoohi, S. He, V. Nathan, F. Cangialosi,
S. Venkatakrishnan, W.-H. Weng, S. Han, T. Kraska, and M. Alizadeh,
“Park: An open platform for learning-augmented computer systems,”
in Proc. 33rd Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[12] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3G networks: Analysis and applications,”
in Proc. Multimedia Systems Conference (MMSys), 2013.

[13] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[14] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Transactions on Cognitive Communications and Net-
working (TCCN), vol. 7, no. 4, pp. 1078–1088, 2021.

