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Abstract—The performance of randomized network coding can downstream nodes, who then unintentionally combine it with
suffer significantly when malicious nodes corrupt the content other legitimate coded blocks to create a new encoded block.
of the exchanged blocks. Previous work have introduced error As a result, a single corrupted block pollutes the network

correcting codes by generalizing some well known bounds in cod- d ts th . f d di d h pailuti
ing theory. Such codes are based on introducing redundancy in @N0 PrEVENLS the receivers from decoding, and such poliutio

space domain. Other approaches require the use of homomorphic ¢an rapidly propagate in the network, leading to substtiytia
hashing functions, which are computationally expensive. degraded performance due to the wasted bandwidth distribut
In this paper, we present a novel and computationally efficient jng corrupted blocks. Needless to say, there exists a strong

security algorithm, referred to as Null Keys, to detect and contain motivation to check coded blocks on-the-fly to see if they are
malicious attacks based on the subspace properties of random lin- - -
corrupted, before using them for encoding.

ear network coding. The participating nodes verify the integrity : . . )
of a block by checking if it belongs to the subspace spanned The proposed solutions to address jamming attacks with
by the source blocks. This is possible when every node has anetwork coding fall in two categoriesrror correction and
vector orthogonal to all the combinations of the source blocks. error detection. A class ofnetwork error correcting codes, first
These vectors, referred to as null keys, belong to the null space introduced by Cai and Yeung [6], aim at correcting corrupted

of the source blocks and go through a random combination when blocks at sink nodes by introduci | | of redund
distributed by the source. Unlike previous security approaches, 0Ocks at sink nodes Dy Introducing a level of redunadancy.

our Null Keys algorithm allows nodes to rapidly detect corrupted However, encoding and decoding at participating nodes with
blocks without changing the code or imposing redundancy on the network error correcting codes proposed in the literatgre i
exchanged data. We analytically evaluate the pollution produced computationally complex; and since such error correct®n i
by jamming attacks, and demonstrate the effectiveness dflull performed at receivers, bandwidth consumed by corrupted

Keys by varying the strength of the malicious nodes. We also . .
show, through extensive simulations, that théNull Keys approach blocks at relay nodes will not be reclaimed or reduced. It

is more effective than cooperative security using homomorphic May also be challenging to incorporate a sufficient level of
hashing when it comes to limiting the pollution spread. redundancy to guarantee that all errors are corrected ge lar
networks.

In comparisongrror detection schemes allow intermediate
Network coding allows participating nodes in a network toodes to verify the integrity of the incoming blocks, and to
code incoming data flows rather than simply forwarding thermake a local decision on whether or not a block is corrupted.

and its ability to achieve the maximum multicast flow rates imtuitively, if corrupted blocks are detected before thegp
directed networks was first shown in the seminal paper lagate to downstream nodes, bandwidth will not be wasted
Alswede et al. [1]. Koetter et al. [2] have later shown that on sending them. However, such verifications require hashes
by coding on a large enough field, linear codes are sufficigthtat are able to survive random linear combinations, since
to achieve the multicast capacity, and Hb al. [3] have the received coded blocks are linearly combined with random
shown that the use of random linear codes — referred to emefficients without decodingdomomorphic hashing has first
random network coding — is a more practical way to designbeen introduced by Krohet al. [7] to allow intermediate
linear codes to be used. Gkantsidisal. [4] have applied the nodes to detect corrupted blocks. However, homomorphia has
principles of random network coding to the context of peefunctions are also computationally complex to compute, and
to-peer (P2P) content distribution, and have shown that fdénce each node needs to verify all incoming blocks before
downloading times can be reduced. using them, the performance of the network would be limited
However, these salient advantages of network coding drg the rate of computationally processing their homomarphi
only applicable in networks consisting of trustworthy nede hashes.
which is not the case in more realistic scenarios, whereln this paper, we propose a novel and computationally
protection against malicious attacks remains to be a magimple verification algorithm, referred to &&ill Keys. Similar
challenge. When participating nodes are allowed to codle other error detection algorithms based on homomorphic
incoming blocks, the network becomes more susceptible liash functions, th&ull Keys algorithm allows each node to
jamming attacks. In a jamming attack, first studied in [5]verify that an incoming block is not corrupted, and as such
in the context of content distribution with network codiray, limit malicious jamming attacks by preventing the propamat
malicious node can generate a corrupted block and sendst toaf corrupted blocks to downstream nodes. However, unlike
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previously proposed algorithms in the literature, Ml Keys that the minimum distance between them allows sink nodes
algorithm allows nodes to rapidly verify incoming blockdo decode the messages even when they are mixed with error
without the penalty of computational complexity. Ratheairth blocks. Cai and Yeung were the first to introduce networkrerro
trying to find a suitable existing signature scheme for erraorrecting codes [6]. Similarly, Zhang defines the minimum
detection, theNull Keys algorithm is designed specifically forrank of network error correction codes based on error space
random linear network coding. [8]. In [9], Jaggi et al. designed their code using binary
The idea inNull Keys is based on the randomization ancrasure channel (BEC) codes. Nutnahal. also studied causal
the subspace properties of random network coding. We takdversaries in the distributed setting [10]. On the otherdha
advantage of the fact that in random linear network codimg, tKoetter and Kschischang [11] designed a coding metric on
source blocks form a subspace and any linear combinationsolbspaces and proposed a minimum distance decoder, based
these blocks belongs to that same subspace. In our approacha bivariate linearized polynomial.
the source provides each node with a vector from the nullHowever, network error-correction codes introduce over-
space of the matrix formed by its blocks. Those vectorbgad and require a large amount of computations in both
referred to as null keys, map any legitimate coded blo¢ke encoding and the decoding stages. This can result in an
(that is not corrupted) to zero. Thus, the verification pssceincrease in time delay and a reduction of network perforreanc
is a simple multiplication that checks if the received blocklence, the error-correcting codes presented are not paacti
belongs to the original subspace. Similar to the sourcekslocIn our approach, we do not modify the code and assume all
the null keys go through random linear combinations, whidghe nodes are receivers. We allow the intermediate nodes to
makes it hard for a malicious node to identify them at itdetect corrupted blocks, instead of waiting for sink nodes t
neighbors. The null keys can be secured using homomorpkrify the received messages. The goal is not to correct the
hash functions since they do not impose a significant overhearrors but, instead, to limit attacks from malicious nodgs b
on the network. Th&ull Keys algorithm does not require anypreventing legitimate nodes from using corrupted blocley th
additional coding complexity as in previous approaches aaceive.
error detection, nor add redundancy to the original bloaksn Along the lines of error detection, Krohet al. [7] pre-
previous approaches on error correction. Using analytiodl sented a scheme that allows the nodes to perform on-the-
simulation based studies, we compatdl Keys with homo- fly verification of the blocks exchanged in the network. The
morphic hashing, and validate its effectiveness on restgc approach is based on a homomorphic collision-resistartt has
the pollution caused by malicious jamming attacks. function (CHRF) that can survive random linear combinagion
With respect to computational complexity, for a block offo improve the verification process, Kroleh al. propose to
size m, the verification process usinijlull Keys requires verify the blocks probabilistically and in batches instezfd
O(c - m) operations, where is the minimum cut between verifying every block. But, the batching puts the downlasde
a node and the source. In contrast, as shown in [7], therisk of successful attacks. Another main drawback of this
expected per-block cost for a hash verification(igA,/2 + scheme is the large number of hash values required. The size
d)MultCost(p), where ), is a large random prime securityof the hash values is proportional to the number of blocks. To
parameter and MultCo@t) is the cost of multiplication in solve this problem, Lt al. [12] proposed a new homomor-
Z,. Using probabilistic verifications;ooperative security [5]  phic hash function based on a modified trap-door one-way
reduces the computation complexity of hashing at the costdrmutation. Instead of sending the homomorphic hashes, a
lowering the security level. Thiull Keys algorithm is shown random seed is distributed. Gkantsidisal. [5] proposed a
to decrease the percentage of corrupted nodes by ardijad cooperative security scheme, where nodes cooperate tcprot
compared taooperative security, in which 20% of the blocks the network. Cooperative security reduces the time redudye
are probabilistically checked. the homomorphic hashes, by introducing more overhead in the
The remainder of the paper is organized as follows. mmetwork imposed by alert messages. The security approaches
Section Il, we present related work on error correction and [7] and [5], assume the existence of a separate channel or a
detection schemes. In Section Ill, we review the propexies trusted party. Charleat al. [13], on the other hand, introduce
subspaces and null spaces. In Section 1V, we describsule a new homomorphic signature scheme based on elliptic curves
Keys algorithm. In Section V, we model the malicious behavioand does not need any secret channel.
and evaluate our security approach by presenting thealetic Although homomorphic hashes are suitable for random
analysis of the verification process. In Section VI, we shiog t linear combinations, they are very complex. This lead to a
simulation results and discuss the abilityNdll Keysto limit number of subsequent research papers that tried to reduce
the pollution spread, as compared to cooperative sectmdly ttheir complexities [5], [12], [13]. With homomorphic haski
uses homomorphic hashing. Finally, we conclude the papertire size of the hash values is proportional to the number of
Section VII. blocks. However, in our approach, the number of null keys
introduced is limited to the out-degree of the source node.
Moreover, we do not add any redundancy to the source blocks.
Several approaches were taken to design codes that ¥ém do not attempt to find a method that provides a higher
correct errors at sink nodes. The codewords are chosen sleskel of security than homomorphic hashes, but instead we
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aim at finding a simpler approach that guarantees to limit tladtacks of the malicious nodes. We evaluate the efficiency of
damage of jamming attacks and stop the malicious nodes framr security scheme through theoretical analysis in Sedfio
polluting the network. and simulations in Section VI.

In this paper, we use the notations of [2]. We model the
network by a directed random gragh= (V, E), whereV is

Consider a network where a sourSehasr blocks, each yhe set of nodes, andl is the set of edges. One sour§es V
represented by elements from the finite fielt’,. The source \iches to send its blocks to all the participating nodes V.

augments block with » symbols, with one at position and Edges are denoted by = (v,v) € E, wherev =heade)
zZero elsewhere,_ to form the vec_to){. We denote byX the and v’ =tail(e). The set of edges that end at a veriex V
r x (r 4 d) matrix whosei row is z;. These source blocks is defined ad';(v) = {e € E : heade) = v} while the set
form a set ofr indepgndent vectors that span a subsgage ¢ edges originating at is defined as'o(v) = {e € E :
Any linear combination of the vectorgey, .., 2.} belongs to tail(¢) = v}. The in-degree of the vertex is denoted by

the same subspadég. Ip other wordsIIx is closed under §r(v) = |T';(v)] and the out-degree ofis denoted by (v) =
random linear combinations. The common property sharedgy

e i 'o(v)]. The source nod§ sends- blocks{zy, ..., x,.} of size
all the blocks at the participating nodes is the fact thay th + d, that span a-dimensional subspacky defined over

all belong to the subspadéx spanned by the basis vectorshe finite fieldF

Ill. OVERVIEW OF SUBSPACES ANDNULL SPACES

{a1, s 2. A received vector at an i id i i
. 1 y node is valid if and only if
The null space of the matriX, denoted a8l is the set of it belongs tollx. Each node verifies the integrity of the

al yectorSz for Whlc.h Xz - O It IS thekernd of the MapPING oceived blocks using the orthogonality principle disedss

defined by the matrix multiplicatioi 2. For anym x n matrix in Section 1ll. The source provides the participating nodes

4, we have . with keys to perform the verification process. Using the kéoc

rank(4) + nullity (4) = n, @) {z1,...,x,}, it forms the basis vector$zy, ..., z4} that span

known as the rank-nullity theorem, where the dimension ef tithe null spacdly of X. Instead of sending one private key

null space ofA is called thenullity of A. Applying the rank- to the trustworthy nodes, the source sends a random linear

nullity theorem, with network coding, the dimensionIdf; is combination of the vectorgzy, ..., z¢} on each of its out-going

equal tod, the original dimension of the source blocks beforedgese € I'o(S) destined to all the participants including the

appending the symbols. The subspadéy; is spanned by the malicious nodes. Those vectors, referred to as null keys, ar

basis vector§z,, ..., z4}. We denote byZ thed x (r+d) matrix used in the verification process.

whoseith row is z;. Similarly, the null space is closed under During the distribution of null keys, the nodes’ behavior is

random linear combinations. Hence, Gaussian eliminatéon cnot changed. They still transmit random linear combinatioh

be used to find the basis fof. incoming blocks to their neighbors. When a nagereceives
With network coding, the blocks exchanged in the networkne key from each of its incoming edges € I';(S5), it

are random linear combinations ¢f, ..., z,.} and belong to forms the matrix of null keysK’; and sends a random linear

IIx. Each one of these blocks is orthogonal to any combingembination of the received null keys on each of its outgoing

tion of {21, ..., z4} which belongs to the subspatk;. links e € T (S). Each nodey; that has formed the matrik;

can verify the integrity of a received data bloekby checking

IV. NULL KEYS ALGORITHM if it satisfies the following condition,
The only property shared by the exchanged blocks is the

fact that they belong to the same subspéke, as referred K;wT = 0. )

to in Section lll. This vector space is selected by the source

node and injected in the network. We propose to verify the Equation (2) is a simple multiplication that allows the nede
integrity of the blocks by checking if they belong to thdo rapidly perform the verification. However, if the conditi
subspacelly. As mentioned in Section llI, all the vectorsis satisfied, it does not imply that the received vector bgson

in IIx are orthogonal to any combination of the basis vectotg ILx. In case the malicious node knows the values of the null
of the null spacdly. In our proposed security scheme, eackeys collected by its neighbor, it can easily find a corrupted
one of the participating nodes is provided with vectors froivector that satisfies Equation (2). However, for a malicious
[T, referred to as null keys, to verify that the received block¥ode that does not know the content of its neighbor, it is
satisfy the orthogonality condition. As any participatimgde, hard to find a corrupted block that can pass the verification
the malicious nodes also have access to null keys. If arkattacprocess. A detailed explanation and proofs are provided in
knows the values of the null keys collected by his neighbdpection V. Once a bogus block is detected, it is dropped and
he can send corrupted blocks that do not belondlte but the malicious node can be isolated from the network. The
are orthogonal to those null keys, and pollute his neiglsbofNull Keys algorithm is shown in Algorithm 1, where random
cache. However, with the path diversity and the distributetprificieleis targreeaateshdiicious nodes from faking the null
randomness, it is extremely hard for a malicious node keys, the source signs them. Since, as the data blocks, the
identify those null keys. We argue that the randomizatioth alkkeys go through random linear combinations, they are pro-
subspace properties of network coding can limit the palhuti tected using homomorphic hashing. As indicated in Section |



Algorithm 1 Null Keys Algorithm. nodes are assumed to be recognized by all malicious nodes.

Algorithm NullKeys(X) Those malicious nodes continuously attempt to pollute the
for all v; € V network by injecting bogus blocks to neighbors. Jamming
if v; iIs S attacks succeed when the injected block is not a valid linear
X+ « nullspace(X) combination of the source blocKsy, ...,z }, but passes the
for j =1 to 00(S) verification process. In other words, the malicious attazk i
ej — C; X+ successful if the corrupted block does not belondlte but
else is orthogonal to the null keys of the receiver.
for j =1 to o7(v;) In Section V-B, we show that sending random blocks is
K, — [K;; ej] not an efficient strategy to jam a network protected with
for j =1 to do(v;) Null Keys. However, a malicious node can take advantage of
ej — CJ’.KZ.L the information it has access to. Consider the case where a

malicious nodev,,, and nodev; receive the null keys matrices
K,, and K; respectively. A corrupted block should mdgp,

to zero in order to pass the verification process at ngdén
case the row space @f; is included in the row space df,,

the malicious node can pollutg’'s cache by sending blocks
that are orthogonal to the rows @&f,,, but do not belong to
IIx. This defines the smart malicious behavior in our model. A
malicious node sends to neighbor nodes, random combirsation
homomorphic hashes provide a high level of security, b, tlaf vectors that span the null spacef, but do not belong to
large number of hash values and computation costs requirgg. All the neighbor nodes, that possess null keys spanning a
lead to significant delay and degrade the network performangpace included in the row space Af,,, would be corrupted.
However, in our approach, homomorphic hashes are usedHence, a malicious node is stronger when the rowssgf
sign only the null keys. The source node injects ofdyS) span a larger space.

null keys in the network. Hence the number of hash values

required is not significant. On the other hand, the compriatiB. Malicious Behavior Evaluation

cost is limited to the in-degre® (v) of each node, only when e use the following lemmas in the proof of theorems that
distributing the keys. Every node performs a total number of characterize the security level diull Keys.

ér(v) verifications of null keys. Thus, in our security scheme, | emma 1: Let A be am x n matrix consisting ofm

the signature of the null keys does not impose significajfdependent blocks of dimension in the finite fieldF,. The

latency or computation cost. The technique proposed by biobability that a random-dimensional vector mapsl to
et al. [12] can be applied. This scheme, based on pseudgrg js -

m "

random generators, does not assume the existence of a secretpygof: Any n-dimensional vectow, that mapsA to zero,

channel. belongs toll%, the null space ofd. Following Equation (1),
dim(IT) is equal ton —m. Hence the probability of choosing

a random vector that map4 to zero is
We adopt some of the notations and lemmas used by

Algorithm Verification(v;, w)
if K;wT is equal to 0
w is safe
else
w is corrupted

V. SECURITY EVALUATION AND THEORETICAL ANALYSIS

Jafarisiavoshanét al. [14], who investigated the connection Pr(AwT =0)= q — L.
between subspaces and topological properties of network a qm
coding. We denote by(i) the parents of node; and byP' (i) u
the set of parents af; at levell such thatP! (i) = P(P!~1(4)). Lemma 2: Consider a network where the sourSehasd

Let &; be the set of edges on the paths connecting negesindependent null keys. If node has amincut(S,v;) = ¢; <

and v;, and &; be the set of edges between the source ardthen with high probabilitydim (Ilg,) = c;.

v;. Denote byc;; = mincut(v;, v;) the minimum cut between Proof: The sourceS, sends one random linear combi-

nodesv; andv;, andc; the minimum cut between the sourcenation of its null keys on each of its outgoing links. With

and nodev;. a mincut(S,v;) = ¢;, nodewv; receivesc; random linear
combinations from the sourcS. This is equivalent to the

A. Malicious Model case wherey; constructs its subspace by selectigkeys,

In our model, the threat is imposed by internal maliciougniformly at random, from the source null keys. By Lemma
nodes that have access to the information exchanged in fhef [14], with high probability,dim(Ilx,) = c;. [ |
network as other participating nodes. Intuitively, a mialis If a malicious node attempts to jam the network by sending
nodev,, € V has an in-degreE; (v,,), an out-degre€ o (v,,) random blocks to neighbor nodes, with high probability the
and has access t6;(v,,) null keys. Malicious nodes do attack fails. In fact, by Lemma 2, node collects null keys
not send any null key that contributes in protecting thematrix K; of dimensione; x (r 4+ d). Applying Lemma 1, the
neighbors. On the contrary, the null keys sent to downstregatobability of polluting the content o#; is qi



Since the random attack is not efficient, a malicious nodkefine the topology of the network. Since the efficiency of
can benefit from the data blocks or null keys it receivemalicious attacks depends on the intersection of subspaces
However, out of all possible random linear combinations abllected by the nodes, those factors should be considered i
X+, only §0(S) null keys are injected in the network. Thusgvaluating theNull Keys algorithm.
the data blocks are not useful for finding the injected nu&. Topological Approach
keys and the appropriate bogus blocks that migpto zero. _ )

Even when a malicious node is able to decode all the datal Ne intersection of the subspace spanned by the null keys
blocks, it cannot determine the null keys combinations Qf & malicious node with other subspaces, depends on its
its neighbor nodes. On the other hand, as other participatifPnnections with other nodes. As shown in Theorem 1, if
nodes, a malicious node has access to null keys exchangel'fh Subspace collected by a participant is not included in
the network. The most efficient behavior, for a maliciousaodh® Subspace collected by a malicious node, then with high
Um, is to send blocks belonging to the null spacelby. . probability the par'_u_c_lpant is protgc_ted from p(_)llu_t|0_najks.
Following this procedure, any node, with I, C HK,,;: Hence, the cgpablhtle_s of a malicious node is limited to the
would be polluted. In such scenario we have: topology and its location in the network.

Theorem 1. The sourceS injects 6o (.S) null keys in the to (;?tgill?er:o:jheic?riee ﬁqg:se;ig;atzg’v;gm; dtlr‘}/ Ing
network. Suppose that each nodg including the malicious denends on thel.arents sharecbband andliiwe athgm
nodes, selects; < §o(S) random linear combinations of the P P Bndvy,, P v

injected keys. Then, the probability that a malicious noge connecting them. In fact, if those factors_ are not constiere
) then, as shown in Lemma 1 of [14], the intersection between
conducts a successful attack4s———.
q O m

_ o subspaces is the minimum possible. The conditions on the
Proof: A maI|C|ous.nodefum can corrupt the content of minimum cut between nodes andv,,, depend on the shared
another node); by sending a bogus block that mapskK; to paths to the source. We have:
zero. The null keysk; and K, are random linear combina- " corqjjary 1: Suppose that there existpaths between the
tions of the keys injected by the source. By Lemma 1 of [14}y,;rce and node;, excluding&;,,,, that do not intersect with

with high probability,dim(Ilg,) = ¢;, dim(Ilg,,) = ¢ and any cut between the source and nagg. If ¢, < ¢, then

dim(HKlﬂHKm) :Ci—ch—éo(S). Iy ng ]
The matrix K; can be represented by the basis vecérs Proof: The information sent on the paths are hidden
that spanlly, NIlg,, and the remaining basis vectars. from wv,,. If &, are removed]lx, NIk, < ¢; —t. Hence,
r 5 . v, has to collect at leastindependent blocks fromig, on

E:qm in order to successfully attack. However, the number of
independent blocks of;,,, is limited by ¢;,,,. Thus, ifc,, <t

K — 6cq;+cm—6o S ] then Hk,; ¢_ Hkm- | ]
! oy In the case of an acyclic grapl;,,, = 0. Therefore, if

there exists one path froti to v; that does not intersect with
any cut fromS to v,,, then, by Corollary 11k, ¢ I, ,.

- As the network size grows, the probability of the existence
Following the malicious behavior defined in Section V-#, of such path increases. Hence(IPg, C I, ) decreases
belongs tdlj; . Since the vectors; € g, , w maps the sub and malicious attacks are better restricted. A more general

matrix formed by the basis vectofs to zero with probability graphical interpretation is provided in the following them
equal to one. Applying Lemma 1, the probability thaf, that also considers the minimum cut between the parents of

Qase, (S)—cm

conducts a successful attack is nodesv; andwv,,.
o Theorem 2: Let
1 Pg, = {v, €| JP'()n| JP(m)|€ EpiUEim and &,
. T m m 7 217
Pr : wo = 0(50(5)7cm)><1 = qﬁo(S)—cm . p LZJ LIJ P 7¢— P v P fd—
s (8)—cm Epm UEmi} be the set of common parents providing blocks to

v; andw,, on different paths, excluding the sourse Let v,

Applying Theorem 1, if the minimum cut between th be a super node belonging 1(7;,,), the power set o,

source and the malicious node is equal to the number of

injected null keys, the malicious node can successfullycatt mincut(S, {v; }Uv,) > mincut({v; }Uv,, v.,), Vi, € P(P5,,),

any participant in the network. However, if the minimum cuth

is less than the number of injected null keys, the probabilif en,

drops to the ordeO(1). This is true, if the selection of the lx; ¢k,

keys does not take into account the paths shared by the nodes. prgof: If the minimum cut difference between
As shown in [14], the subspaces collected at the nodesnisncut(S,v;) and mincut(v;,v,,) IS equal to ¢, then

connected to the topology of the network. The shared parerils;, ¢ Ilk, , unless there exist at leastof v;'s upstream

the connections and the minimum cut between the particgpantodes that possess null keys belongindltg . Those nodes



are parents shared hy andv,,, hence belong td;;,. When In the example shown in Figure . = {vs}. The null
they are grouped with node; forming a super node, this keys received by; span a spac8lx, ¢ Ilk,. Thus, the null
minimum cut difference decreases by at leastHowever, key sent on the pattvs, vs) does not increase the intersection
if mincut(S, {v;} U v,) > mincut({v;} U v,,v,,), for all spacellx, NIlk,. Although there exists &, = {vy, v}, that

possiblet, € P(PS,), thenIly, ¢ Ik, . B does not satisfy the condition in Theorem:2,fails to attack
Figure 1 is an example that illustrates Theorem.

2. In this exampleem = 7 andi = 6. The set of Letp. = Pr(llx, C Ik, ). Then, by Theorem 3, the

common parents iP5, = {v1,v2,v3}. Hence,P(P§;) = probability that the null key sent on pathbetweeny; anduv,,,,

{0, {v1}, {va}, {vs}, {v1, v2}, {v1, v3}, {va, v3}, {v1,v2,v3}}. increasediy, N1k, is H p.. This probability decreases
All the sets inP(Fg;) satisfy the condition in Theorem 2
exceptv, = {vi,v2}, as shown in the figure. In this caseas the number of nodes on the patincreases. It also applies

mincut(S, {v} U4,) is equal tomincut({v} U v,,v7) = 3. 10 the paths connecting the parents«gfand nodev,,. In
fact, under the conditions of Theorem 2, when the paths

betweenv, andwv,, contain more nodes, it is less probable
thatIlk, C Ilk,, . The corruption probability drops when the
target node or the shared parents are far from the malicious
node. This explains how our security scheme is able to limit
the pollution in the network and isolate malicious nodes.
Furthermore, as the network size grows, nodes can select
parents from a larger set of participants in a random topolog
Hence the probability that a malicious node shares parditis w
others, drops. Also, it is less probable to find a set of nodes
Up, as defined in Theorem 2, that has a sufficient minimum
cut with the malicious node. Since the number of participant
is larger, if this set exists, the paths that separate it ftioen
malicious node contain a greater number of nodes. Hence,

It is more probable to find a sef, that does not satisfy applying Theorem 3, the probability that these paths irsgea
the condition in Theorem 2, ifP(P¢,)|, the cardinality of the intersection of subspaces collected by the nodes atqs dr
P(Pg,), is larger. Therefore, for Iarger values &f(v,,), the Hence, our security scheme is more efficient when the
number of incoming edges ta,,, the malicious node is able network size is larger. This is obvious, since the null keys
to share a larger number of parents with other nodes and hefleethrough a greater number of combinations when there are
it can conduct successful attacks with higher probability. more participants. Thus, it is less probable that a malgiou

However, when we consider Theorem 2 for nodesand hode shares null keys with neighbor nodes.

vm, having a sufficient minimum cut between the super node The analysis shows that the pollution produced by a mali-
{v;} U v, and nodev,, does not imply that,, is capable cious node can be limited to a small area covering some of its
of corrupting the content of;. For instance, a null key sentneighbor nodes. If there exist multiple malicious nodes, ou
on a path, crossing that minimum cut, does not increase $gcurity scheme is capable of isolating each malicious node
intersection betweeH i, andIl,, once it is mixed with other separately and limiting the pollution spread as we show in
random null keys. This random combination generates diffépection VI-A. However, as noted in Section V-A, an upstream
ent values of null keys and guarantees an efficient protectimalicious node does not provide a null key that helps in
against jamming attacks. The following theorem presenrgs tHetecting corruption. Hence, in the condition of Theorem 2,
conditions that apply on the paths crossing the minimum cilite path between the source and the target mpdentaining a
betweenv, andv,,. malicious node can be ignored. As a result, when the upstream

Theorem 3: Consider a patlp from v; to v,,,. Let ¥, be the nodes ofwv; are malicious, node); is more susceptible to
set of nodes on the path If Jv. € v, such thallx, ¢ Ik, , Jamming attacks.
then the null key received on the pgthdoes not contribute = Moreover, for large networks, the probability that a mali-
in increasing the probability that,, successfully attacks;.  cious node shares enough parents and paths with others is

Proof: Denote by K. the null keys matrix ofc,. minimal. Therefore, the corruption of nodg depends on
Since nodev; sends a null key taj. on the pathp, then the number of upstream malicious nodes that can limit the
dim(Ilg, N Ilg ) > 1. Therefore, ifll; C Ilk, then effectiveness ofllx,. Hence, for large populations, as the
dim(Tg,, N HK ) > 1. On the other hand applying Lemmanumber of malicious nodes increases linearly with the nekwo
2 of [14], if I ¢ Ilk,,, then with high probability, the size, the percentage of corrupted nodes stabilizes at ktheate
null key sent byv, to v, on the pathp does not belong to depends on the ratio of malicious nodes to the network size.
IIk,. Hence, the patlp does not contribute in increasing the In the discussion, we assumed that the minimum cut be-
dimension ofl I 5, NIk, , unIessH}gc C Ik, . This condition tween the source and the malicious node is less than the
is satisfied if and only iffv. € v, 11, C I, . W out-degree of the source. However, if we allow only the

Fig. 1. A network consisting of 8 nodes. The malicious noderisand the
target node igg.



source to transmit twice to its direct downstream nodes wh&kantsidiset al. argue that cooperative security reduces the
distributing the null keys, we can remove this restrictitm. cryptographic overhead of homomorphic hashes, and show by
fact, the number of null keys present in the network doublesimulations that cooperation guarantees better effici¢nap
and the damage caused by malicious nodes decreases. dthier probabilistic approaches that use homomorphic hgshi
is equivalent to doubling the out-degree of the source nodeWe use the percentage of corrupted nodes as a metric
Hence, the minimum cut between the source and the nodesmeasure the efficiency of security schemes with network
increases. As a result, following the conditions of Theorewoding. In the simulations, the network consists of 1000asod
2, Pr(Ilg, C Ilk, ) decreases. The only drawback in suchnd the block size is set to 128. The topology is a directed
scenario is that, the direct downstream nodes of the soure@dom graph with one source node. Each pair of nodes is
have to validate the integrity of the null keys twice as mangonnected with a probability. The attack model of malicious
as in the previous scenario. On the other hand, if multipfedes is defined in Section V-A. The simulator is round-based
malicious nodegv,,, , vm,, - - - } are allowed to exchange theirwhere in each round a node can upload and download blocks.
null keys then they are equivalent to a single malicious nodeach round, the attackers send one bogus block on each of
with an in-degred_JT';(vy,,), on which the same conditionstheir outgoing links. We randomly choose malicious nodes
apply. from the population. All the results are averaged over sgver
runs, specified by each scenario.

D. Time Delay and Overhead

The distribution of null keys imposes an initial delay on thé- Pollution Spread
system. However, the source needs not wait until every nodeThe important factors in studyiniull Keys are the edge
receives its null keys. It can start sending its blocks diyec connection probabilityy and the number of malicious nodes.
after injecting the null keys. As indicated in Section IVeth As the probabilityp increases, the nodes gain access to a
operations at the intermediate nodes remain unchangedgdutarger set of null keys. On the other hand, when the number
the null keys distribution phase. As a node receives a nelv nof malicious nodes grows, the nodes become more susceptible
key, it can clean its buffer if it contains corrupted blocks. to jamming attacks. In fact, malicious nodes do not provide

In Null Keys, no redundancy is added to the source blockaeighbor nodes with null keys that can help in protectingrthe
Adding extra bits to the data blocks can consume a significazdntent from corruption.
capacity. For instance, in Charles al. [13], the signature
is transmitted together with the data. For a large file, the§so

o 8 L.
extra bits add up to become a substantial overhead cost§25 | (t [% o
x . ncorrupte
the system. On the other hand, although other methods t3z o ME| o compe
use homomorphic hashing do not add any overhead to 125 o ?r L
source blocks, they require heavy computations at inteiated < ,, e,
. . . 1 >
nodes. This is the main drawback of those schemes. Howe\$ R A R
. L . . . S o X308, ¥
the Null Keys algorithm only requires a simple multiplication, ¢ , o

which allows the nodes to perform fast verifications. Thet CO* * percentage of Maiiious Nodes (%)
of the security check at node is the computation cost of (a) Network consisting of 1000 nodéb) Snapshot of a network of 250
Equation (2), which necessitat®4c; (r+q)) operations. There nodes
is a trade-off between computation complexity and security
performance. For instance, homomorphic hashing guarantee
a high level of security since the hash functions are collisi  Figure 2(a) shows the percentage of corrupted nodes under
free. However, due to the computation cost, security sckentbe attack of different number of malicious nodes. The pop-
that use homomorphic hashing require that nodes check®lockation is set to 1000 nodes. The result is averaged over 50
probabilistically. In our security scheme, we use homorhirp runs. Note, for each specific percentage of malicious nodes,
hashing to protect only the null keys. Another drawback dhe corruption expands as the edge connection probability
hashing is the large field size that would be required. Limgiti p decreases. The result validates the theoretical analgsis i
the use of homomorphic hashing operations preserves ®ection V. Whenp increases, the connection between the
network performance. Cooperative security is one approacbdes increases. As a result, the nodes gain access to a large
that uses probabilistic checking. In Section VI, we compaset of null keys that helps in the protection against bogus
the performance oNull Keys to cooperative security. blocks. In fact, each node connects to a larger set of nerghbo
and the number of parents increases. Therefore, the source
injects additional null keys and the keys go through a greate
In this section, we present simulation scenarios and rmesulumber of linear combinations which limits the capabititief
to evaluate the performance blull Keys. We also compare a malicious node. On the other hand, it is clear that incngasi
with cooperative security introduced by Gkantsidisal. [5]. the number of malicious nodes expands the pollution spread.
In their approach, homomorphic hashing is used, where noddse result is obvious since the connection with malicious
cooperate to protect themselves by sending alert messagesles grows. Thus, the protection capabilities decreasee s

Fig. 2. Pollution spread.

VI. SIMULATIONS



malicious nodes do not provide neighbors with null keys that

~

help detect bogus blocks. Figure 2(b) provides a snapshot 67‘?0 ij'g‘g;/g
of a network consisting of 200 nodes, plotted such that the -0 Nm =30 %

distance between more connected nodes is shorter. We can
clearly observe that the effects of malicious nodes araisd|
in the network, and the corruption spread is limited to small
areas. This helps to identify the locations of maliciousesd

In Section V-D, we mentioned that the source node can
start distributing its blocks directly after injecting theull
keys. In such a scenario, some nodes receive null keys before 200 400 600 800 1000
others. As a result, the number of corrupted nodes varies as Network Size
the partlcilpants receive the keys. Once a node receives a rl‘—ﬁyu Corruption as a function of network siz¥,,, refers to the number
null key, it can clean its buffer from bogus blocks. Figure 3f malicious nodes.
shows how the corruption varies in a network of 1000 nodes
with an edge connection probabilify equal t00.5% in (a) . )
and 0.7% in (b). It is evident that the corruption can pealcC'Tuption percentage, when the population exceeds 500.
at the initial rounds when there are few null keys availabg .

. Performance Comparison

at the nodes. However, the corruption converges to a stable
percentage. The curve descends when nodes are cleaning theéds shown in Section V-D, for theNull Keys algorithm,
buffers with null keys, recently received. When the corropti the computation cost of the verification process at node
stabilizes at a low level, the malicious nodes are isolated! ais O(c;(r + ¢)). On the other hand, homomorphic hashing is
their locations can be approximated. Figure 3 shows that thlewer than the conventional hash functféifAl, as indicated
Null Keys solution is able to drive the network to a stable staté) [7]. The SHAL algorithm performs around 1740 basic
where the number of corrupted nodes is fixed. This helps atithmetic operations on the message block elements, which
isolating and locating the malicious nodes. imposes a large computation cost. In addition, Koeter
al. show in [7] that the expected per-block cost for a hash
verification is(mA,/2+ d)MultCost(p), wherem is the block

3]
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[ ---Nm =30 % 5 ---Nm =30 % Size, )\q is a large random prime security parameter and
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MultCost(p) is the cost of multiplication irZ,. Our approach

is much simpler, but homomorphic hashing guarantees a
higher level of security since it is collision-free. Howeve

eI because homomorphic hashes are computationally expensive

o they require that nodes check blocks probabilistically,ras

w N
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Percentage of Corrupted Nodes(%
5
Percentage of Corrupted Nodes(%
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50 100 150 . .
Round Round cooperative security [5].
(@) p=0.5% (b) p=0.7% Figure 5 shows the comparison betwelnll Keys and
, _ o o cooperative security proposed in [5]. In their model, Gkatis
Fig. 3. Corruption variation in a network consisting of 1006des. N, . - .
refers to the percentage of malicious nodes. et al. use homomorphic hashing to check for malicious blocks.

The nodes perform probabilistic verifications in order te de

In Section V-C, we showed that the percentage of corruptetkase the computation cost imposed by homomorphic hashes.
nodes decreases as the network grows. We also indicalearder not to weaken the verification process, they pragpose
that for large populations, the percentage of corruptecesodhat nodes cooperate in checking for malicious blocks. When-
stabilizes when the percentage of malicious nodes is fixemler a node detects the presence of bogus blocks, it sends
Figure 4 shows how the pollution spread varies with tha@lert messages to neighbor nodes. In order to compare both
network size. The results are averaged over 30 runs. security approaches, we implemented the cooperative igecur

As indicated in Section V, the corruption depends on twacheme. We assume, as in [5], instantaneous propagation of
factors, the number of malicious nodes and the topologyert messages. A node checks blocks with probabgity
which defines the paths shared by the nodes. TheorenO@ce a malicious block is detected, all the infected nodes
can explain the fast decrease in corruption when the netwate informed. A node sends alert messages to the upstream
size is less than 400 nodes. In fact, when the populationdes that sent unsecured blocks, and downstream nodes that
grows, the probability that malicious nodes share pareiits wreceived unsecured blocks. In our model, the graph is didect
others decreases. However, for large networks, this pililyab however we assume that alert messages can propagate to
becomes minimal and dominated by the first factor. Hence, thpstream nodes.
corruption depends on the number of malicious nodes that carFigure 5 shows that thBlull Keys scheme succeeds in im-
limit the effectiveness of the null keys at neighbor nodes. broving the protection against malicious attacks. On tlneiot
Figure 4, this number grows linearly with the network sizéhand, as we increase the checking probability in cooperativ
This explains the slow decrease followed by a stable level sécurity, the corruption decreases but the network pedooa
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of corrupted nodes decreases. The null keys can be signed
using homomorphic hashing since the number of signed blocks
and their verifications do not degrade the network perfor-
mance. In fact, the number of null keys injected is equal & th

N N W W
o

o

Percentage of Corrupted Nodes (%)

1 20 30 40
Percentage of Malicious Nodes (%)

Fig. 5. Pollution in a Network of 1000 nodes with= 0.5%. NK refers to
Null Keys andp. refers to the probabilistic checking of cooperative seyuri

(1]

2
degrades due to higher computational complexity. We nate th[ :
a checking probability 0fi0% imposes a significant computa- 3
tion overhead. When the percentage of malicious nodes is o }
20%, the slow increase in the corruption can be explained by
the overlap in the affected regions. In fact, when the petiut [4!
regions overlap, the same block can be corrupted multiplg,
times. Hence, all overlapping attacks can be discoverechwhe

such a block is detected. Even with a checking probability?!
pe = 40%, the Null Keys scheme performs better. On the

out-degree of the source. Our simulations show Mhat Keys
effectively limits the pollution and isolates maliciousdes.
The stable corruption spread, helps in identifying the tioves
of the malicious nodes. Moreover, thdull Keys algorithm
guarantees better protection than cooperative secudtyuses
homomorphic hashing in a probabilistic fashion.
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