
Null Keys: Limiting Malicious Attacks
Via Null Space Properties of Network Coding

Elias Kehdi, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{elias, bli}@eecg.toronto.edu

Abstract—The performance of randomized network coding can
suffer significantly when malicious nodes corrupt the content
of the exchanged blocks. Previous work have introduced error
correcting codes by generalizing some well known bounds in cod-
ing theory. Such codes are based on introducing redundancy in
space domain. Other approaches require the use of homomorphic
hashing functions, which are computationally expensive.

In this paper, we present a novel and computationally efficient
security algorithm, referred to as Null Keys, to detect and contain
malicious attacks based on the subspace properties of random lin-
ear network coding. The participating nodes verify the integrity
of a block by checking if it belongs to the subspace spanned
by the source blocks. This is possible when every node has a
vector orthogonal to all the combinations of the source blocks.
These vectors, referred to as null keys, belong to the null space
of the source blocks and go through a random combination when
distributed by the source. Unlike previous security approaches,
our Null Keys algorithm allows nodes to rapidly detect corrupted
blocks without changing the code or imposing redundancy on the
exchanged data. We analytically evaluate the pollution produced
by jamming attacks, and demonstrate the effectiveness ofNull
Keys by varying the strength of the malicious nodes. We also
show, through extensive simulations, that theNull Keys approach
is more effective than cooperative security using homomorphic
hashing when it comes to limiting the pollution spread.

I. I NTRODUCTION

Network coding allows participating nodes in a network to
code incoming data flows rather than simply forwarding them,
and its ability to achieve the maximum multicast flow rates in
directed networks was first shown in the seminal paper by
Alswede et al. [1]. Koetter et al. [2] have later shown that
by coding on a large enough field, linear codes are sufficient
to achieve the multicast capacity, and Hoet al. [3] have
shown that the use of random linear codes — referred to as
random network coding — is a more practical way to design
linear codes to be used. Gkantsidiset al. [4] have applied the
principles of random network coding to the context of peer-
to-peer (P2P) content distribution, and have shown that file
downloading times can be reduced.

However, these salient advantages of network coding are
only applicable in networks consisting of trustworthy nodes,
which is not the case in more realistic scenarios, where
protection against malicious attacks remains to be a major
challenge. When participating nodes are allowed to code
incoming blocks, the network becomes more susceptible to
jamming attacks. In a jamming attack, first studied in [5]
in the context of content distribution with network coding,a
malicious node can generate a corrupted block and send it to its

downstream nodes, who then unintentionally combine it with
other legitimate coded blocks to create a new encoded block.
As a result, a single corrupted block pollutes the network
and prevents the receivers from decoding, and such pollution
can rapidly propagate in the network, leading to substantially
degraded performance due to the wasted bandwidth distribut-
ing corrupted blocks. Needless to say, there exists a strong
motivation to check coded blocks on-the-fly to see if they are
corrupted, before using them for encoding.

The proposed solutions to address jamming attacks with
network coding fall in two categories:error correction and
error detection. A class ofnetwork error correcting codes, first
introduced by Cai and Yeung [6], aim at correcting corrupted
blocks at sink nodes by introducing a level of redundancy.
However, encoding and decoding at participating nodes with
network error correcting codes proposed in the literature is
computationally complex; and since such error correction is
performed at receivers, bandwidth consumed by corrupted
blocks at relay nodes will not be reclaimed or reduced. It
may also be challenging to incorporate a sufficient level of
redundancy to guarantee that all errors are corrected in large
networks.

In comparison,error detection schemes allow intermediate
nodes to verify the integrity of the incoming blocks, and to
make a local decision on whether or not a block is corrupted.
Intuitively, if corrupted blocks are detected before they prop-
agate to downstream nodes, bandwidth will not be wasted
on sending them. However, such verifications require hashes
that are able to survive random linear combinations, since
the received coded blocks are linearly combined with random
coefficients without decoding.Homomorphic hashing has first
been introduced by Krohnet al. [7] to allow intermediate
nodes to detect corrupted blocks. However, homomorphic hash
functions are also computationally complex to compute, and
since each node needs to verify all incoming blocks before
using them, the performance of the network would be limited
by the rate of computationally processing their homomorphic
hashes.

In this paper, we propose a novel and computationally
simple verification algorithm, referred to asNull Keys. Similar
to other error detection algorithms based on homomorphic
hash functions, theNull Keys algorithm allows each node to
verify that an incoming block is not corrupted, and as such
limit malicious jamming attacks by preventing the propagation
of corrupted blocks to downstream nodes. However, unlike

2

previously proposed algorithms in the literature, theNull Keys
algorithm allows nodes to rapidly verify incoming blocks
without the penalty of computational complexity. Rather than
trying to find a suitable existing signature scheme for error
detection, theNull Keys algorithm is designed specifically for
random linear network coding.

The idea inNull Keys is based on the randomization and
the subspace properties of random network coding. We take
advantage of the fact that in random linear network coding, the
source blocks form a subspace and any linear combination of
these blocks belongs to that same subspace. In our approach,
the source provides each node with a vector from the null
space of the matrix formed by its blocks. Those vectors,
referred to as null keys, map any legitimate coded block
(that is not corrupted) to zero. Thus, the verification process
is a simple multiplication that checks if the received block
belongs to the original subspace. Similar to the source blocks,
the null keys go through random linear combinations, which
makes it hard for a malicious node to identify them at its
neighbors. The null keys can be secured using homomorphic
hash functions since they do not impose a significant overhead
on the network. TheNull Keys algorithm does not require any
additional coding complexity as in previous approaches on
error detection, nor add redundancy to the original blocks,as in
previous approaches on error correction. Using analyticaland
simulation based studies, we compareNull Keys with homo-
morphic hashing, and validate its effectiveness on restricting
the pollution caused by malicious jamming attacks.

With respect to computational complexity, for a block of
size m, the verification process usingNull Keys requires
O(c · m) operations, wherec is the minimum cut between
a node and the source. In contrast, as shown in [7], the
expected per-block cost for a hash verification is(mλq/2 +
d)MultCost(p), where λq is a large random prime security
parameter and MultCost(p) is the cost of multiplication in
Zp. Using probabilistic verifications,cooperative security [5]
reduces the computation complexity of hashing at the cost of
lowering the security level. TheNull Keys algorithm is shown
to decrease the percentage of corrupted nodes by around15%
compared tocooperative security, in which 20% of the blocks
are probabilistically checked.

The remainder of the paper is organized as follows. In
Section II, we present related work on error correction and
detection schemes. In Section III, we review the propertiesof
subspaces and null spaces. In Section IV, we describe theNull
Keys algorithm. In Section V, we model the malicious behavior
and evaluate our security approach by presenting theoretical
analysis of the verification process. In Section VI, we show the
simulation results and discuss the ability ofNull Keys to limit
the pollution spread, as compared to cooperative security that
uses homomorphic hashing. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

Several approaches were taken to design codes that can
correct errors at sink nodes. The codewords are chosen such

that the minimum distance between them allows sink nodes
to decode the messages even when they are mixed with error
blocks. Cai and Yeung were the first to introduce network error
correcting codes [6]. Similarly, Zhang defines the minimum
rank of network error correction codes based on error space
[8]. In [9], Jaggi et al. designed their code using binary
erasure channel (BEC) codes. Nutmanet al. also studied causal
adversaries in the distributed setting [10]. On the other hand,
Koetter and Kschischang [11] designed a coding metric on
subspaces and proposed a minimum distance decoder, based
on a bivariate linearized polynomial.

However, network error-correction codes introduce over-
head and require a large amount of computations in both
the encoding and the decoding stages. This can result in an
increase in time delay and a reduction of network performance.
Hence, the error-correcting codes presented are not practical.
In our approach, we do not modify the code and assume all
the nodes are receivers. We allow the intermediate nodes to
detect corrupted blocks, instead of waiting for sink nodes to
verify the received messages. The goal is not to correct the
errors but, instead, to limit attacks from malicious nodes by
preventing legitimate nodes from using corrupted blocks they
receive.

Along the lines of error detection, Krohnet al. [7] pre-
sented a scheme that allows the nodes to perform on-the-
fly verification of the blocks exchanged in the network. The
approach is based on a homomorphic collision-resistant hash
function (CHRF) that can survive random linear combinations.
To improve the verification process, Krohnet al. propose to
verify the blocks probabilistically and in batches insteadof
verifying every block. But, the batching puts the downloaders
at risk of successful attacks. Another main drawback of this
scheme is the large number of hash values required. The size
of the hash values is proportional to the number of blocks. To
solve this problem, Liet al. [12] proposed a new homomor-
phic hash function based on a modified trap-door one-way
permutation. Instead of sending the homomorphic hashes, a
random seed is distributed. Gkantsidiset al. [5] proposed a
cooperative security scheme, where nodes cooperate to protect
the network. Cooperative security reduces the time required by
the homomorphic hashes, by introducing more overhead in the
network imposed by alert messages. The security approaches
in [7] and [5], assume the existence of a separate channel or a
trusted party. Charleset al. [13], on the other hand, introduce
a new homomorphic signature scheme based on elliptic curves
and does not need any secret channel.

Although homomorphic hashes are suitable for random
linear combinations, they are very complex. This lead to a
number of subsequent research papers that tried to reduce
their complexities [5], [12], [13]. With homomorphic hashing
the size of the hash values is proportional to the number of
blocks. However, in our approach, the number of null keys
introduced is limited to the out-degree of the source node.
Moreover, we do not add any redundancy to the source blocks.
We do not attempt to find a method that provides a higher
level of security than homomorphic hashes, but instead we

3

aim at finding a simpler approach that guarantees to limit the
damage of jamming attacks and stop the malicious nodes from
polluting the network.

III. OVERVIEW OF SUBSPACES ANDNULL SPACES

Consider a network where a sourceS has r blocks, each
represented byd elements from the finite fieldFq. The source
augments blocki with r symbols, with one at positioni and
zero elsewhere, to form the vectorxi. We denote byX the
r × (r + d) matrix whoseith row is xi. These source blocks
form a set ofr independent vectors that span a subspaceΠX .
Any linear combination of the vectors{x1, .., xr} belongs to
the same subspaceΠX . In other words,ΠX is closed under
random linear combinations. The common property shared by
all the blocks at the participating nodes is the fact that they
all belong to the subspaceΠX spanned by the basis vectors
{x1, ..., xr}.

The null space of the matrixX, denoted asΠ⊥
X , is the set of

all vectorsz for whichXz = 0. It is thekernel of the mapping
defined by the matrix multiplicationXz. For anym×n matrix
A, we have

rank(A) + nullity(A) = n, (1)

known as the rank-nullity theorem, where the dimension of the
null space ofA is called thenullity of A. Applying the rank-
nullity theorem, with network coding, the dimension ofΠ⊥

X is
equal tod, the original dimension of the source blocks before
appending ther symbols. The subspaceΠ⊥

X is spanned by the
basis vectors{z1, ..., zd}. We denote byZ thed×(r+d) matrix
whoseith row is zi. Similarly, the null space is closed under
random linear combinations. Hence, Gaussian elimination can
be used to find the basis forΠ⊥

X .
With network coding, the blocks exchanged in the network

are random linear combinations of{x1, ..., xr} and belong to
ΠX . Each one of these blocks is orthogonal to any combina-
tion of {z1, ..., zd} which belongs to the subspaceΠ⊥

X .

IV. N ULL KEYS ALGORITHM

The only property shared by the exchanged blocks is the
fact that they belong to the same subspaceΠX , as referred
to in Section III. This vector space is selected by the source
node and injected in the network. We propose to verify the
integrity of the blocks by checking if they belong to the
subspaceΠX . As mentioned in Section III, all the vectors
in ΠX are orthogonal to any combination of the basis vectors
of the null spaceΠ⊥

X . In our proposed security scheme, each
one of the participating nodes is provided with vectors from
Π⊥

X , referred to as null keys, to verify that the received blocks
satisfy the orthogonality condition. As any participatingnode,
the malicious nodes also have access to null keys. If an attacker
knows the values of the null keys collected by his neighbor,
he can send corrupted blocks that do not belong toΠX but
are orthogonal to those null keys, and pollute his neighbor’s
cache. However, with the path diversity and the distributed
randomness, it is extremely hard for a malicious node to
identify those null keys. We argue that the randomization and
subspace properties of network coding can limit the pollution

attacks of the malicious nodes. We evaluate the efficiency of
our security scheme through theoretical analysis in Section V,
and simulations in Section VI.

In this paper, we use the notations of [2]. We model the
network by a directed random graphG = (V,E), whereV is
the set of nodes, andE is the set of edges. One sourceS ∈ V
wishes to send its blocks to all the participating nodesv ∈ V .
Edges are denoted bye = (v, v′) ∈ E, wherev =head(e)
and v′ =tail(e). The set of edges that end at a vertexv ∈ V
is defined asΓI(v) = {e ∈ E : head(e) = v} while the set
of edges originating atv is defined asΓO(v) = {e ∈ E :
tail(e) = v}. The in-degree of the vertexv is denoted by
δI(v) = |ΓI(v)| and the out-degree ofv is denoted byδO(v) =
|ΓO(v)|. The source nodeS sendsr blocks{x1, ..., xr} of size
r + d, that span ar-dimensional subspaceΠX defined over
the finite fieldFq.

A received vector at any nodev is valid if and only if
it belongs to ΠX . Each node verifies the integrity of the
received blocks using the orthogonality principle discussed
in Section III. The source provides the participating nodes
with keys to perform the verification process. Using the blocks
{x1, ..., xr}, it forms the basis vectors{z1, ..., zd} that span
the null spaceΠ⊥

X of X. Instead of sending one private key
to the trustworthy nodes, the source sends a random linear
combination of the vectors{z1, ..., zd} on each of its out-going
edgese ∈ ΓO(S) destined to all the participants including the
malicious nodes. Those vectors, referred to as null keys, are
used in the verification process.

During the distribution of null keys, the nodes’ behavior is
not changed. They still transmit random linear combinations of
incoming blocks to their neighbors. When a nodevi receives
one key from each of its incoming edgese ∈ ΓI(S), it
forms the matrix of null keysKi and sends a random linear
combination of the received null keys on each of its outgoing
links e ∈ ΓO(S). Each nodevi that has formed the matrixKi

can verify the integrity of a received data blockw by checking
if it satisfies the following condition,

Kiw
T = 0. (2)

Equation (2) is a simple multiplication that allows the nodes
to rapidly perform the verification. However, if the condition
is satisfied, it does not imply that the received vector belongs
to ΠX . In case the malicious node knows the values of the null
keys collected by its neighbor, it can easily find a corrupted
vector that satisfies Equation (2). However, for a malicious
node that does not know the content of its neighbor, it is
hard to find a corrupted block that can pass the verification
process. A detailed explanation and proofs are provided in
Section V. Once a bogus block is detected, it is dropped and
the malicious node can be isolated from the network. The
Null Keys algorithm is shown in Algorithm 1, where random
coefficients are denoted byC.In order to prevent malicious nodes from faking the null
keys, the source signs them. Since, as the data blocks, the
keys go through random linear combinations, they are pro-
tected using homomorphic hashing. As indicated in Section II,

4

Algorithm 1 Null Keys Algorithm.

Algorithm NullKeys(X)
for all vi ∈ V

if vi is S
X⊥ ← nullspace(X)
for j = 1 to δO(S)

ej ← CjX
⊥

else
for j = 1 to δI(vi)

Ki ← [Ki; ej]

for j = 1 to δO(vi)
ej ← C ′

jK
⊥
i

Algorithm Verification(vi, w)
if Kiw

T is equal to 0
w is safe

else
w is corrupted

homomorphic hashes provide a high level of security, but, the
large number of hash values and computation costs required
lead to significant delay and degrade the network performance.
However, in our approach, homomorphic hashes are used to
sign only the null keys. The source node injects onlyδO(S)
null keys in the network. Hence the number of hash values
required is not significant. On the other hand, the computation
cost is limited to the in-degreeδI(v) of each nodev, only when
distributing the keys. Every nodev, performs a total number of
δI(v) verifications of null keys. Thus, in our security scheme,
the signature of the null keys does not impose significant
latency or computation cost. The technique proposed by Li
et al. [12] can be applied. This scheme, based on pseudo-
random generators, does not assume the existence of a secret
channel.

V. SECURITY EVALUATION AND THEORETICAL ANALYSIS

We adopt some of the notations and lemmas used by
Jafarisiavoshaniet al. [14], who investigated the connection
between subspaces and topological properties of network
coding. We denote byP (i) the parents of nodevi and byP l(i)
the set of parents ofvi at levell such thatP l(i) = P (P l−1(i)).
Let Eij be the set of edges on the paths connecting nodesvi

and vj , and Ei be the set of edges between the source and
vi. Denote bycij = mincut(vi, vj) the minimum cut between
nodesvi andvj , andci the minimum cut between the source
and nodevi.

A. Malicious Model

In our model, the threat is imposed by internal malicious
nodes that have access to the information exchanged in the
network as other participating nodes. Intuitively, a malicious
nodevm ∈ V has an in-degreeΓI(vm), an out-degreeΓO(vm)
and has access toδI(vm) null keys. Malicious nodes do
not send any null key that contributes in protecting their
neighbors. On the contrary, the null keys sent to downstream

nodes are assumed to be recognized by all malicious nodes.
Those malicious nodes continuously attempt to pollute the
network by injecting bogus blocks to neighbors. Jamming
attacks succeed when the injected block is not a valid linear
combination of the source blocks{x1, ..., xr}, but passes the
verification process. In other words, the malicious attack is
successful if the corrupted block does not belong toΠX but
is orthogonal to the null keys of the receiver.

In Section V-B, we show that sending random blocks is
not an efficient strategy to jam a network protected with
Null Keys. However, a malicious node can take advantage of
the information it has access to. Consider the case where a
malicious nodevm and nodevi receive the null keys matrices
Km and Ki respectively. A corrupted block should mapKi

to zero in order to pass the verification process at nodevi. In
case the row space ofKi is included in the row space ofKm,
the malicious node can pollutevi’s cache by sending blocks
that are orthogonal to the rows ofKm, but do not belong to
ΠX . This defines the smart malicious behavior in our model. A
malicious node sends to neighbor nodes, random combinations
of vectors that span the null space ofKm but do not belong to
ΠX . All the neighbor nodes, that possess null keys spanning a
space included in the row space ofKm, would be corrupted.
Hence, a malicious node is stronger when the rows ofKm

span a larger space.

B. Malicious Behavior Evaluation

We use the following lemmas in the proof of theorems that
characterize the security level ofNull Keys.

Lemma 1: Let A be a m × n matrix consisting ofm
independent blocks of dimensionn, in the finite fieldFq. The
probability that a randomn-dimensional vector mapsA to
zero is 1

qm .
Proof: Any n-dimensional vectorw, that mapsA to zero,

belongs toΠ⊥
A, the null space ofA. Following Equation (1),

dim(Π⊥
A) is equal ton−m. Hence the probability of choosing

a random vector that mapsA to zero is

Pr(AwT = 0) =
qn−m

qn
=

1

qm
.

Lemma 2: Consider a network where the sourceS has d
independent null keys. If nodevi has amincut(S, vi) = ci ≤
d, then with high probabilitydim(ΠKi

) = ci.
Proof: The sourceS, sends one random linear combi-

nation of its null keys on each of its outgoing links. With
a mincut(S, vi) = ci, node vi receivesci random linear
combinations from the sourceS. This is equivalent to the
case wherevi constructs its subspace by selectingci keys,
uniformly at random, from thed source null keys. By Lemma
1 of [14], with high probability,dim(ΠKi

) = ci.
If a malicious node attempts to jam the network by sending

random blocks to neighbor nodes, with high probability the
attack fails. In fact, by Lemma 2, nodevi collects null keys
matrix Ki of dimensionci× (r + d). Applying Lemma 1, the
probability of polluting the content ofvi is 1

qci
.

5

Since the random attack is not efficient, a malicious node
can benefit from the data blocks or null keys it receives.
However, out of all possible random linear combinations of
X⊥, only δO(S) null keys are injected in the network. Thus,
the data blocks are not useful for finding the injected null
keys and the appropriate bogus blocks that mapKi to zero.
Even when a malicious node is able to decode all the data
blocks, it cannot determine the null keys combinations at
its neighbor nodes. On the other hand, as other participating
nodes, a malicious node has access to null keys exchanged in
the network. The most efficient behavior, for a malicious node
vm, is to send blocks belonging to the null space ofΠKm

.
Following this procedure, any nodevi, with ΠKi

⊆ ΠKm
,

would be polluted. In such scenario we have:
Theorem 1: The sourceS injects δO(S) null keys in the

network. Suppose that each nodevi, including the malicious
nodes, selectsci ≤ δO(S) random linear combinations of the
injected keys. Then, the probability that a malicious nodevm

conducts a successful attack is 1
qδO(S)−cm

.

Proof: A malicious nodevm can corrupt the content of
another nodevi by sending a bogus blockw that mapsKi to
zero. The null keysKi andKm are random linear combina-
tions of the keys injected by the source. By Lemma 1 of [14],
with high probability,dim(ΠKi

) = ci, dim(ΠKm
) = cm and

dim(ΠKi
∩ΠKm

) = ci + cm − δO(S).
The matrixKi can be represented by the basis vectorsβi

that spanΠKi
∩ΠKm

and the remaining basis vectorsαi.

Ki =

β1

...
βci+cm−δO(S)

α1

...
αδO(S)−cm

.

Following the malicious behavior defined in Section V-A,w
belongs toΠ⊥

Km
. Since the vectorsβi ∈ ΠKm

, w maps the sub
matrix formed by the basis vectorsβi to zero with probability
equal to one. Applying Lemma 1, the probability thatvm

conducts a successful attack is

Pr

α1

...
αδO(S)−cm

wT = 0(δO(S)−cm)×1

=

1

qδO(S)−cm

.

Applying Theorem 1, if the minimum cut between the
source and the malicious node is equal to the number of
injected null keys, the malicious node can successfully attack
any participant in the network. However, if the minimum cut
is less than the number of injected null keys, the probability
drops to the orderO(1

q
). This is true, if the selection of the

keys does not take into account the paths shared by the nodes.
As shown in [14], the subspaces collected at the nodes is

connected to the topology of the network. The shared parents,
the connections and the minimum cut between the participants,

define the topology of the network. Since the efficiency of
malicious attacks depends on the intersection of subspaces
collected by the nodes, those factors should be considered in
evaluating theNull Keys algorithm.

C. Topological Approach

The intersection of the subspace spanned by the null keys
of a malicious node with other subspaces, depends on its
connections with other nodes. As shown in Theorem 1, if
the subspace collected by a participant is not included in
the subspace collected by a malicious node, then with high
probability the participant is protected from pollution attacks.
Hence, the capabilities of a malicious node is limited to the
topology and its location in the network.

Consider the case where a malicious nodevm is trying
to attack nodevi. The intersection betweenΠKi

and ΠKm

depends on the parents shared byvi andvm, and the pathsEim
connecting them. In fact, if those factors are not considered,
then, as shown in Lemma 1 of [14], the intersection between
subspaces is the minimum possible. The conditions on the
minimum cut between nodesvi andvm, depend on the shared
paths to the source. We have:

Corollary 1: Suppose that there existt paths between the
source and nodevi, excludingEim, that do not intersect with
any cut between the source and nodevm. If cim < t, then
Πki

* Πkm
.

Proof: The information sent on thet paths are hidden
from vm. If Eim are removed,ΠKi

∩ ΠKm
≤ ci − t. Hence,

vm has to collect at leastt independent blocks fromΠKi
on

Eim in order to successfully attackvi. However, the number of
independent blocks onEim is limited bycim. Thus, ifcim ≤ t
thenΠki

* Πkm
.

In the case of an acyclic graph,cim = 0. Therefore, if
there exists one path fromS to vi that does not intersect with
any cut fromS to vm, then, by Corollary 1,ΠKi

* ΠKm
.

As the network size grows, the probability of the existence
of such path increases. Hence, Pr(ΠKi

⊆ ΠKm
) decreases

and malicious attacks are better restricted. A more general
graphical interpretation is provided in the following theorem
that also considers the minimum cut between the parents of
nodesvi andvm.

Theorem 2: Let
P c

im = {vp ∈
⋃

l

P l(i)∩
⋃

l

P l(m)|Epm * Epi∪Eim and Epi *

Epm∪Emi} be the set of common parents providing blocks to
vi andvm on different paths, excluding the sourceS. Let ṽp

be a super node belonging toP(P c
im), the power set ofP c

im.
If

mincut(S, {vi}∪ṽp) > mincut({vi}∪ṽp, vm),∀ṽp ∈ P(P c
im),

then,
ΠKi

* ΠKm
.

Proof: If the minimum cut difference between
mincut(S, vi) and mincut(vi, vm) is equal to t, then
ΠKi

* ΠKm
, unless there exist at leastt of vi’s upstream

nodes that possess null keys belonging toΠKm
. Those nodes

6

are parents shared byvi andvm, hence belong toP c
im. When

they are grouped with nodevi forming a super node, this
minimum cut difference decreases by at leastt. However,
if mincut(S, {vi} ∪ ṽp) > mincut({vi} ∪ ṽp, vm), for all
possibleṽp ∈ P(P c

im), thenΠKi
* ΠKm

.
Figure 1 is an example that illustrates Theorem

2. In this example,m = 7 and i = 6. The set of
common parents isP c

67 = {v1, v2, v3}. Hence,P(P c
67) =

{Ø, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}.
All the sets inP(P c

67) satisfy the condition in Theorem 2
except ṽp = {v1, v2}, as shown in the figure. In this case,
mincut(S, {v6} ∪ ṽp) is equal tomincut({v6} ∪ ṽp, v7) = 3.

S

4

321

6

7 5

ṽp ∪ vi
ṽp

ṽcvm

vi

Fig. 1. A network consisting of 8 nodes. The malicious node isv7 and the
target node isv6.

It is more probable to find a set̃vp that does not satisfy
the condition in Theorem 2, if|P(P c

im)|, the cardinality of
P(P c

im), is larger. Therefore, for larger values ofδI(vm), the
number of incoming edges tovm, the malicious node is able
to share a larger number of parents with other nodes and hence
it can conduct successful attacks with higher probability.

However, when we consider Theorem 2 for nodesvi and
vm, having a sufficient minimum cut between the super node
{vi} ∪ ṽp and nodevm does not imply thatvm is capable
of corrupting the content ofvi. For instance, a null key sent
on a path, crossing that minimum cut, does not increase the
intersection betweenΠKi

andΠKm
once it is mixed with other

random null keys. This random combination generates differ-
ent values of null keys and guarantees an efficient protection
against jamming attacks. The following theorem presents the
conditions that apply on the paths crossing the minimum cut
betweenvi andvm.

Theorem 3: Consider a pathp from vi to vm. Let ṽc be the
set of nodes on the pathp. If ∃vc ∈ ṽc such thatΠKc

* ΠKm
,

then the null key received on the pathp does not contribute
in increasing the probability thatvm successfully attacksvi.

Proof: Denote by K̃c the null keys matrix of ṽc.
Since nodevi sends a null key toṽc on the pathp, then
dim(ΠKi

∩ ΠK̃c
) ≥ 1. Therefore, if ΠK̃c

⊆ ΠKm
then

dim(ΠKm
∩ ΠKi

) ≥ 1. On the other hand, applying Lemma
2 of [14], if ΠK̃c

* ΠKm
, then with high probability, the

null key sent byṽc to vm on the pathp does not belong to
ΠKi

. Hence, the pathp does not contribute in increasing the
dimension ofΠKi

∩ΠKm
, unless,ΠK̃c

⊆ ΠKm
. This condition

is satisfied if and only if∀vc ∈ ṽc,ΠKc
⊆ ΠKm

.

In the example shown in Figure 1,̃vc = {v5}. The null
keys received byv5 span a spaceΠK5

* ΠK7
. Thus, the null

key sent on the path(v5, v6) does not increase the intersection
spaceΠK6

∩ΠK7
. Although there exists ãvp = {v1, v2}, that

does not satisfy the condition in Theorem 2,v7 fails to attack
v6.

Let pc = Pr(ΠKc
⊆ ΠKm

). Then, by Theorem 3, the
probability that the null key sent on pathp, betweenvi andvm,
increasesΠKi

∩ΠKm
is

∏

∀vc∈ṽc

pc. This probability decreases

as the number of nodes on the pathp increases. It also applies
to the paths connecting the parents ofvi and nodevm. In
fact, under the conditions of Theorem 2, when the paths
betweenṽp and vm contain more nodes, it is less probable
that ΠKi

⊆ ΠKm
. The corruption probability drops when the

target node or the shared parents are far from the malicious
node. This explains how our security scheme is able to limit
the pollution in the network and isolate malicious nodes.

Furthermore, as the network size grows, nodes can select
parents from a larger set of participants in a random topology.
Hence the probability that a malicious node shares parents with
others, drops. Also, it is less probable to find a set of nodes
ṽp, as defined in Theorem 2, that has a sufficient minimum
cut with the malicious node. Since the number of participants
is larger, if this set exists, the paths that separate it fromthe
malicious node contain a greater number of nodes. Hence,
applying Theorem 3, the probability that these paths increase
the intersection of subspaces collected by the nodes also drops.

Hence, our security scheme is more efficient when the
network size is larger. This is obvious, since the null keys
go through a greater number of combinations when there are
more participants. Thus, it is less probable that a malicious
node shares null keys with neighbor nodes.

The analysis shows that the pollution produced by a mali-
cious node can be limited to a small area covering some of its
neighbor nodes. If there exist multiple malicious nodes, our
security scheme is capable of isolating each malicious node
separately and limiting the pollution spread as we show in
Section VI-A. However, as noted in Section V-A, an upstream
malicious node does not provide a null key that helps in
detecting corruption. Hence, in the condition of Theorem 2,
the path between the source and the target nodevi containing a
malicious node can be ignored. As a result, when the upstream
nodes ofvi are malicious, nodevi is more susceptible to
jamming attacks.

Moreover, for large networks, the probability that a mali-
cious node shares enough parents and paths with others is
minimal. Therefore, the corruption of nodevi depends on
the number of upstream malicious nodes that can limit the
effectiveness ofΠKi

. Hence, for large populations, as the
number of malicious nodes increases linearly with the network
size, the percentage of corrupted nodes stabilizes at a level that
depends on the ratio of malicious nodes to the network size.

In the discussion, we assumed that the minimum cut be-
tween the source and the malicious node is less than the
out-degree of the source. However, if we allow only the

7

source to transmit twice to its direct downstream nodes when
distributing the null keys, we can remove this restriction.In
fact, the number of null keys present in the network doubles,
and the damage caused by malicious nodes decreases. This
is equivalent to doubling the out-degree of the source node.
Hence, the minimum cut between the source and the nodes
increases. As a result, following the conditions of Theorem
2, Pr(ΠKi

⊆ ΠKm
) decreases. The only drawback in such

scenario is that, the direct downstream nodes of the source
have to validate the integrity of the null keys twice as many
as in the previous scenario. On the other hand, if multiple
malicious nodes{vm1

, vm2
, · · · } are allowed to exchange their

null keys then they are equivalent to a single malicious node,
with an in-degree

⋃

ΓI(vmi
), on which the same conditions

apply.

D. Time Delay and Overhead

The distribution of null keys imposes an initial delay on the
system. However, the source needs not wait until every node
receives its null keys. It can start sending its blocks directly
after injecting the null keys. As indicated in Section IV, the
operations at the intermediate nodes remain unchanged during
the null keys distribution phase. As a node receives a new null
key, it can clean its buffer if it contains corrupted blocks.

In Null Keys, no redundancy is added to the source blocks.
Adding extra bits to the data blocks can consume a significant
capacity. For instance, in Charleset al. [13], the signature
is transmitted together with the data. For a large file, these
extra bits add up to become a substantial overhead cost to
the system. On the other hand, although other methods that
use homomorphic hashing do not add any overhead to the
source blocks, they require heavy computations at intermediate
nodes. This is the main drawback of those schemes. However,
the Null Keys algorithm only requires a simple multiplication,
which allows the nodes to perform fast verifications. The cost
of the security check at nodevi is the computation cost of
Equation (2), which necessitatesO(ci(r+q)) operations. There
is a trade-off between computation complexity and security
performance. For instance, homomorphic hashing guarantees
a high level of security since the hash functions are collision-
free. However, due to the computation cost, security schemes
that use homomorphic hashing require that nodes check blocks
probabilistically. In our security scheme, we use homomorphic
hashing to protect only the null keys. Another drawback of
hashing is the large field size that would be required. Limiting
the use of homomorphic hashing operations preserves the
network performance. Cooperative security is one approach
that uses probabilistic checking. In Section VI, we compare
the performance ofNull Keys to cooperative security.

VI. SIMULATIONS

In this section, we present simulation scenarios and results
to evaluate the performance ofNull Keys. We also compare
with cooperative security introduced by Gkantsidiset al. [5].
In their approach, homomorphic hashing is used, where nodes
cooperate to protect themselves by sending alert messages.

Gkantsidiset al. argue that cooperative security reduces the
cryptographic overhead of homomorphic hashes, and show by
simulations that cooperation guarantees better efficiencythan
other probabilistic approaches that use homomorphic hashing.

We use the percentage of corrupted nodes as a metric
to measure the efficiency of security schemes with network
coding. In the simulations, the network consists of 1000 nodes
and the block size is set to 128. The topology is a directed
random graph with one source node. Each pair of nodes is
connected with a probabilityp. The attack model of malicious
nodes is defined in Section V-A. The simulator is round-based,
where in each round a node can upload and download blocks.
Each round, the attackers send one bogus block on each of
their outgoing links. We randomly choose malicious nodes
from the population. All the results are averaged over several
runs, specified by each scenario.

A. Pollution Spread

The important factors in studyingNull Keys are the edge
connection probabilityp and the number of malicious nodes.
As the probabilityp increases, the nodes gain access to a
larger set of null keys. On the other hand, when the number
of malicious nodes grows, the nodes become more susceptible
to jamming attacks. In fact, malicious nodes do not provide
neighbor nodes with null keys that can help in protecting their
content from corruption.

0 20 40 60
0

5

10

15

20

25

30

Percentage of Malicious Nodes (%)

P
e

rc
e

n
ta

g
e

 o
f
C

o
rr

u
p

te
d

 N
o

d
e

s
 (

%
)

p = 1 %
p = 0.8 %
p = 0.5 %

(a) Network consisting of 1000 nodes

Malicious
Uncorrupted
Corrupted
Source

(b) Snapshot of a network of 250
nodes

Fig. 2. Pollution spread.

Figure 2(a) shows the percentage of corrupted nodes under
the attack of different number of malicious nodes. The pop-
ulation is set to 1000 nodes. The result is averaged over 50
runs. Note, for each specific percentage of malicious nodes,
the corruption expands as the edge connection probability
p decreases. The result validates the theoretical analysis in
Section V. Whenp increases, the connection between the
nodes increases. As a result, the nodes gain access to a larger
set of null keys that helps in the protection against bogus
blocks. In fact, each node connects to a larger set of neighbors,
and the number of parents increases. Therefore, the source
injects additional null keys and the keys go through a greater
number of linear combinations which limits the capabilities of
a malicious node. On the other hand, it is clear that increasing
the number of malicious nodes expands the pollution spread.
The result is obvious since the connection with malicious
nodes grows. Thus, the protection capabilities decrease, since

8

malicious nodes do not provide neighbors with null keys that
help detect bogus blocks. Figure 2(b) provides a snapshot
of a network consisting of 200 nodes, plotted such that the
distance between more connected nodes is shorter. We can
clearly observe that the effects of malicious nodes are isolated
in the network, and the corruption spread is limited to small
areas. This helps to identify the locations of malicious nodes.

In Section V-D, we mentioned that the source node can
start distributing its blocks directly after injecting thenull
keys. In such a scenario, some nodes receive null keys before
others. As a result, the number of corrupted nodes varies as
the participants receive the keys. Once a node receives a new
null key, it can clean its buffer from bogus blocks. Figure 3
shows how the corruption varies in a network of 1000 nodes
with an edge connection probabilityp equal to0.5% in (a)
and 0.7% in (b). It is evident that the corruption can peak
at the initial rounds when there are few null keys available
at the nodes. However, the corruption converges to a stable
percentage. The curve descends when nodes are cleaning their
buffers with null keys, recently received. When the corruption
stabilizes at a low level, the malicious nodes are isolated and
their locations can be approximated. Figure 3 shows that the
Null Keys solution is able to drive the network to a stable state,
where the number of corrupted nodes is fixed. This helps in
isolating and locating the malicious nodes.

0 50 100 150
0

5

10

15

20

RoundP
er

ce
nt

ag
e

of
 C

or
ru

pt
ed

 N
od

es
(%

)

Nm = 25 %
Nm = 30 %
Nm = 35 %

(a) p = 0.5%

0 50 100 150
0

1

2

3

4

5

6

RoundP
er

ce
nt

ag
e

of
 C

or
ru

pt
ed

 N
od

es
(%

)

Nm = 25 %
Nm = 30 %
Nm = 35 %

(b) p = 0.7%

Fig. 3. Corruption variation in a network consisting of 1000nodes.Nm

refers to the percentage of malicious nodes.

In Section V-C, we showed that the percentage of corrupted
nodes decreases as the network grows. We also indicated
that for large populations, the percentage of corrupted nodes
stabilizes when the percentage of malicious nodes is fixed.
Figure 4 shows how the pollution spread varies with the
network size. The results are averaged over 30 runs.

As indicated in Section V, the corruption depends on two
factors, the number of malicious nodes and the topology
which defines the paths shared by the nodes. Theorem 2
can explain the fast decrease in corruption when the network
size is less than 400 nodes. In fact, when the population
grows, the probability that malicious nodes share parents with
others decreases. However, for large networks, this probability
becomes minimal and dominated by the first factor. Hence, the
corruption depends on the number of malicious nodes that can
limit the effectiveness of the null keys at neighbor nodes. In
Figure 4, this number grows linearly with the network size.
This explains the slow decrease followed by a stable level of

0 200 400 600 800 1000
1

2

3

4

5

6

7

Network Size

P
er

ce
nt

ag
e

of
 C

or
ru

pt
ed

 N
od

es
 (

%
)

Nm = 20 %
Nm = 25 %
Nm = 30 %

Fig. 4. Corruption as a function of network size.Nm refers to the number
of malicious nodes.

corruption percentage, when the population exceeds 500.

B. Performance Comparison

As shown in Section V-D, for theNull Keys algorithm,
the computation cost of the verification process at nodevi,
is O(ci(r + q)). On the other hand, homomorphic hashing is
slower than the conventional hash functionSHA1, as indicated
in [7]. The SHA1 algorithm performs around 1740 basic
arithmetic operations on the message block elements, which
imposes a large computation cost. In addition, Koetteret
al. show in [7] that the expected per-block cost for a hash
verification is(mλq/2+d)MultCost(p), wherem is the block
size, λq is a large random prime security parameter and
MultCost(p) is the cost of multiplication inZp. Our approach
is much simpler, but homomorphic hashing guarantees a
higher level of security since it is collision-free. However,
because homomorphic hashes are computationally expensive,
they require that nodes check blocks probabilistically, asin
cooperative security [5].

Figure 5 shows the comparison betweenNull Keys and
cooperative security proposed in [5]. In their model, Gkantsidis
et al. use homomorphic hashing to check for malicious blocks.
The nodes perform probabilistic verifications in order to de-
crease the computation cost imposed by homomorphic hashes.
In order not to weaken the verification process, they proposed
that nodes cooperate in checking for malicious blocks. When-
ever a node detects the presence of bogus blocks, it sends
alert messages to neighbor nodes. In order to compare both
security approaches, we implemented the cooperative security
scheme. We assume, as in [5], instantaneous propagation of
alert messages. A node checks blocks with probabilitypc.
Once a malicious block is detected, all the infected nodes
are informed. A node sends alert messages to the upstream
nodes that sent unsecured blocks, and downstream nodes that
received unsecured blocks. In our model, the graph is directed,
however we assume that alert messages can propagate to
upstream nodes.

Figure 5 shows that theNull Keys scheme succeeds in im-
proving the protection against malicious attacks. On the other
hand, as we increase the checking probability in cooperative
security, the corruption decreases but the network performance

9

10 20 30 40
0

5

10

15

20

25

30

35

Percentage of Malicious Nodes (%)

P
e

rc
e

n
ta

g
e

 o
f
C

o
rr

u
p

te
d

 N
o

d
e

s
 (

%
)

Pc=1%

Pc=5%

Pc=20%

Pc=40%

NK

Fig. 5. Pollution in a Network of 1000 nodes withp = 0.5%. NK refers to
Null Keys andpc refers to the probabilistic checking of cooperative security.

degrades due to higher computational complexity. We note that
a checking probability of40% imposes a significant computa-
tion overhead. When the percentage of malicious nodes is over
20%, the slow increase in the corruption can be explained by
the overlap in the affected regions. In fact, when the polluted
regions overlap, the same block can be corrupted multiple
times. Hence, all overlapping attacks can be discovered when
such a block is detected. Even with a checking probability
pc = 40%, the Null Keys scheme performs better. On the
other hand, we assumed that when a node receives an alert
message, it does not count as a corrupted node. In fact, in their
model [5], a node stops using unsecured blocks when an alert
message is received. This is another drawback that decreases
the network performance, since non-corrupted blocks can be
part of these unsecured blocks. The cleaning process would
be slow since homomorphic hashing is used.

In addition, the edge connection probability does not change
the results in the case of cooperative security, as claimed in [5].
However, if this probability is increased, our security approach
can perform better as shown in Figure 2(a). In the comparison,
the edge connection probability is set to0.5%, which is the
worst case in Figure 2(a). Also, in the case of cooperative
security, the corruption is dynamic. In contrast with our
approach, the corrupted nodes always vary. Depending on
which nodes check their blocks and how the alert messages
propagate, the corruption of the nodes changes. Hence, the
locations of malicious nodes cannot be approximated.

VII. C ONCLUSION

In this paper, we have presented theNull Keys algorithm, a
new security scheme for network coding that does not require
large computations, nor add any redundancy to the original
blocks. We verify the integrity of a block by checking if it
belongs to the original subspace formed at the source. The
verification is possible when each node receives vectors from
the null space of the original blocks that map legitimate blocks
to zero. These vectors, referred to as null keys, go through a
random combination when distributed. The malicious nodes
have access to some of these keys, however path diversity and
distributed randomness hide the null keys content at neighbors.
As the connections between the nodes increase, the percentage

of corrupted nodes decreases. The null keys can be signed
using homomorphic hashing since the number of signed blocks
and their verifications do not degrade the network perfor-
mance. In fact, the number of null keys injected is equal to the
out-degree of the source. Our simulations show thatNull Keys
effectively limits the pollution and isolates malicious nodes.
The stable corruption spread, helps in identifying the locations
of the malicious nodes. Moreover, theNull Keys algorithm
guarantees better protection than cooperative security that uses
homomorphic hashing in a probabilistic fashion.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[2] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp.
782–795, 2003.

[3] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits
of Coding over Routing in a Randomized Setting,” inProc. of IEEE
International Symposium on Information Theory (ISIT 2003), 2003.

[4] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inProc. of IEEE INFOCOM 2005, 2005.

[5] ——, “Cooperative Security for Network Coding File Distribution,” in
Proc. of IEEE INFOCOM 2006, April 2006, pp. 1–13.

[6] N. Cai and R. W. Yeung, “Network Coding and Error Correction,” in
Proc. of IEEE Information Theory Workshop (ITW 2002), 2002, pp.
119–122.

[7] M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly Verification
of Rateless Erasure Codes for Efficient Content Distribution,” in Proc. of
IEEE Symposium on Security and Privacy, 2004, pp. 226–240.

[8] Z. Zhang, “Network Error Correction Coding in Packetized Networks,”
in Proc. of IEEE Information Theory Workshop (ITW 2006), October
2006, pp. 433–437.

[9] S. Jaggi, M. Langberg, T. Ho, and M. Effros, “Correction of Adversarial
Errors in Networks,” inProc. of International Symposium on Information
Theory (ISIT 2005), 2005, pp. 1455–1459.

[10] L. Nutman and M. Lamberg, “Adversarial Models and Resilient Schemes
for Network Coding,” in Proc. of IEEE International Symposium on
Information Theory (ISIT 2008), July 2008, pp. 171–175.

[11] R. Koetter and F. R. Kschischang, “Coding for Errors andErasures in
Random Network Coding,” inProc. of IEEE International Symposium
on Information Theory (ISIT 2007), June 2007.

[12] Q. Li, D. Chiu, and J. C. S. Lui, “On the Practical and Security Issues
of Batch Content Distribution Via Network Coding,” inProc. of IEEE
International Conference on Network Protocols (ICNP 2006), 2006, pp.
158–167.

[13] D. Charles, K. Jain, and K. Lauter, “Signatures for Network Coding,”
in Proc. of 40th Annual Conference on the Information Sciences and
Systems (CISS 2006), March 2006, pp. 857–863.

[14] M. Jafarisiavoshani, C. Fragouli, and D. Suhas, “Subspace Properties
of Randomized Network Coding,” inProc. of IEEE Information Theory
Workshop on Information Theory for Wireless Networks (ITW 2007),
July 2007, pp. 1–5.

