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Analyzing the Resilience-Complexity Tradeoff of
Network Coding in Dynamic P2P Networks
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Abstract—Most current-generation P2P content distribution protocols use fine-granularity blocks to distribute content to all the peers
in a decentralized fashion. Such protocols often suffer from a significant degree of imbalance in block distributions, especially when
the users are highly dynamic. As certain blocks become rare or even unavailable, content availability and download efficiency are
adversely affected. Randomized network coding may improve block diversity and availability in P2P networks, as coded blocks are
equally innovative and useful to peers. However, the computational complexity of network coding mandates that, in reality, network
coding needs to be performed within segments, each containing a subset of blocks. In this paper, we quantitatively evaluate how
network coding may improve content availability, block diversity and download performance in the presence of churn, as the number of
blocks in each segment for coding varies. Based on stochastic models and a differential equation approach, we explore the fundamental
tradeoff between the resilience gain of network coding to peer dynamics and its inherent coding complexity. We conclude that a small
number of blocks in each segment is sufficient to realize the major benefits of network coding, with acceptable coding cost.

Index Terms—Peer-to-peer content distribution, generation-based network coding, peer dynamics, content availability, resilience.
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1 INTRODUCTION

P EER-TO-PEER (P2P) communication paradigm has
become the de facto standard in current-generation

content distribution protocols. The basic idea of P2P
content distribution is to break the content of interest
into fine-granularity blocks, and distribute these blocks
in a decentralized manner by letting peers exchange the
blocks on an overlay network.

In reality, however, such protocols often suffer from
the rare block problem. There might exist a significant
degree of variation with respect to the availability of
different blocks, adversely affecting content availability
and download efficiency. Such a phenomenon is exacer-
bated by the presence of peer dynamics, a characteristic
inherent of end hosts in the Internet. It is not only hard
to maintain a reasonable degree of block diversity in
large-scale dynamic networks to guarantee download ef-
ficiency, but unexpected peer departures may also cause
rare blocks to disappear from the network, undermining
the integrity of the content.

Randomized network coding [1], first proposed in
information theory, has been introduced into P2P content
distribution to improve system performance [2]. With
randomized network coding, each peer linearly encodes
all the blocks it possesses using random coefficients
and transmits the encoded blocks to its downstream
peers. This simplifies protocol design by avoiding block
scheduling. In this paper, we focus on another more im-
portant benefit of network coding, which is its resilience
to peer dynamics. Intuitively, the problem of locating
rare blocks in a non-coding protocol does not exist in
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a network coding based protocol, since all coded blocks
are equally innovative and useful to any peers with high
probability.

Nevertheless, network coding may not realize its
benefits without introducing significant computational
complexity at users. In order to reduce coding cost,
Chou et al. [3] has proposed the concept of generation-
based or segment-based network coding, which divides
the content of interest into segments, each containing
a prescribed (and arguably small) number of blocks,
and performs coding only across the blocks within the
same segment. Though coding within segments reduces
computational cost, it is yet to be understood how
segmentation affects the resilience of network coding to
peer dynamics — the major advantage of using network
coding in the first place.

This paper aims to theoretically analyze the resilience
gain of network coding in highly dynamic P2P networks
when the number of blocks in each segment for coding
(referred to as the segment size) varies. Let us consider
two extremes of P2P protocol design, as illustrated in
Fig. 1(a) and Fig. 1(b). The first one does not use coding
at all, whereas the second one applies network coding
across all existing blocks. Intuitively, it is much more
difficult for a non-coding protocol to ensure a uniform
distribution of all blocks in dynamic networks, e.g.,
in Fig. 1(a), if peer D leaves, block d is missing. In
contrast, when randomized network coding is applied
(Fig. 1(b)), all coded blocks x’s are equally useful with
high probability. Even if both peer C and D leave, the
content is still decodable, as peer A and B collectively
possess 4 coded blocks. The use of network coding also
leads to a higher download efficiency, since peers will
not be delayed in locating rare blocks.

If we consider segment-based network coding, we
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Fig. 1. A snapshot of a network of 4 peers, A, B, C, and
D, distributing 4 original blocks, a, b, c and d.

may observe that Fig. 1(a) corresponds to a segment
size of one, with as many segments as blocks, while
Fig. 1(b) corresponds to the case of grouping all blocks
into the same segment. If we vary the segment size
when network coding is used, we are fundamentally
moving from one extreme to another, making our choice
in the challenge of resilience-complexity tradeoff. For ex-
ample, Fig. 1(c) shows network coding performed with
a segment size of 2, so that there are two types of coded
blocks “1” and “2” in the network. We ask the question
— what is an appropriate segment size to choose so that
it is sufficient for network coding to yield its resilience
advantage, yet with acceptable computational cost?

We consider dynamic network models, where peers
have random lifetimes and coded blocks are propagated
by gossip-like protocols. We quantify the block availabil-
ity of different segments and content persistence using
appropriate metrics, as the segment size varies. The
major technique used in the analysis is approximating
density dependent jump Markov processes with differ-
ential equations. Extensive simulations corroborate the
analysis and shed light on the problem in a wide range
of settings. We find that the variation in the availability
of different segments decreases as the segment size in-
creases, and the download performance is closely related
to such variation. Furthermore, there is a sweet spot of
segment size, beyond which network coding can hardly
bring further benefits in terms of resilience.

The remainder of the paper is organized as follows.
In Sec. 2, we outline the system models for analysis. In
Sec. 3, we characterize the asymptotic system behavior
with differential equations, based on which the steady-
state segment availability is analyzed in Sec. 4. In Sec. 5,
we study content persistence in the absence of original
content sources. Sec. 6 presents simulation results to cor-
roborate and extend our theoretical findings. We review
related work in Sec. 7 and conclude the paper in Sec. 8.

2 BACKGROUND AND SYSTEM MODELS

We consider a BitTorrent-like file distribution system,
in which a large file of size F bytes (usually in the
order of hundreds of Megabytes or several Gigabytes)
is broadcast to every participating peer. The content is
broken into M blocks, each of size k = F/M bytes.
Participating peers are organized into a randomized
overlay mesh exchanging these blocks. Each peer main-
tains TCP connections with a number of other peers (e.g.,

around 40 in BitTorrent), which are called its neighbors.
The neighbors of each peer are assumed to be uniform
samples of the entire network and can be changing over
time. Data transmission can only occur between a peer
and its neighbors. Normally, a peer only uploads to a
small number (e.g., less than 5) of its neighbors at the
same time, which are called its downstream peers. The goal
is to expedite the transfer of individual blocks from a
peer to its downstream peers, given its limited upload
bandwidth.

A peer is a seed if it has obtained a complete copy of
the content, otherwise it remains as a downloader. Let N
and Ns denote the numbers of online downloaders and
online seeds, respectively. We further assume that each
peer has an average upload capacity of µ bytes per unit
time, or µ̃ = µ/k blocks per unit time, and a separate
downlink of sufficiently large capacity.

When segment-based network coding [3] is applied,
all the M data blocks are grouped into G segments, each
containing m blocks, referred to as the segment size. A
random linear code (RLC) is applied to each of these
segments. Assume segment i has original blocks B(i) =
[Bi

1, B
i
2, . . . , B

i
m], then a coded block b from segment i is a

linear combination of [Bi
1, B

i
2, . . . , B

i
m] in the Galois field

GF (2q). Coding operations are not limited to the source:
if a peer (including the source) has l ≤ m coded blocks
[bi

1, b
i
2, . . . , b

i
l] from segment i, when serving another peer

p, it independently and randomly chooses a set of coding
coefficients [cp

1, c
p
2, . . . , c

p
l ] in GF (2q), and encodes all the

blocks it possesses from segment i, and produces a coded
block x of k bytes: x =

∑l
j=1 cp

j · bi
j .

The coding coefficients used to encode original blocks
to x are embedded in the header of each coded block.
As soon as a peer has received a total of m linearly
independent coded blocks x = [xi

1, x
i
2, . . . , x

i
m] from

segment i, it will be able to decode segment i. To
decode segment i, we first need to compute the inverse
of the m × m coefficient matrix Ai using Gaussian
elimination, which requires O(m3) operations in total,
or O(m2) operations per original block. To obtain the
original m blocks B(i), it then needs to multiply Ai

−1

and x, which takes m2 · k multiplications of two bytes
in GF (2q) and requires O(m2k) operations in total, or
O(mk) operations per original block. It turns out the
latter cost dominates the overall decoding time, because
the cost of the latter phase also depends on the block size
k, which is usually in the order of kilobytes. Apparently,
the overall decoding complexity increases as the segment
size m increases.

We introduce a framework that can model both non-
coding and network-coded distribution systems by tun-
ing the segment size. We consider random downstream peer
selection and random useful segment encoding, which are
typical in network-coded content distribution systems
such as Avalanche [2].

Let P (A) denote the set of segments for which peer A
has received at least one block, and C(A) denote the
set of segments that peer A has completely received.



Assume the time to upload a block is exponentially
distributed with mean 1/µ̃. At rate µ̃, each peer A serves
a downstream peer B randomly chosen from all A’s
neighbors that are not seeds. Peer A then randomly
chooses a segment in P (A)\C(B) and encodes all the
blocks it possesses for that segment, and transmits the
encoded block to peer B. When m = 1, this model
morphs into a non-coding protocol where each peer
transmits random useful blocks that the downstream
peer needs. By varying the segment size m from 1 to a
large value, we are essentially moving from a non-coding
protocol to a network-coded protocol with variable com-
putational cost.

Our theoretical analysis accommodates minor varia-
tions of the above protocol. Since the exact characteriza-
tion of network coding in gossiping systems is extremely
difficult if not impossible as shown in [4], [5], we trade
the accuracy of analysis for the cleanness of the results.
Specifically, we apply approximated analysis onto such
protocols based on several heuristics, which proves to be
an accurate approximation of the real system, as verified
by the simulations.

We consider two models for peer dynamics:
Replacement model. Assume there are always N

downloaders and Ns seeds simultaneously online. Each
downloader has an i.i.d. lifetime L. Every departed
downloader is replaced by a new empty peer, as shown
in Fig. 2. The Ns seeds are always online.

Poisson arrival model. Downloaders enter the system
in a Poisson process with rate λ. Each downloader has
an i.i.d. lifetime L. There are always Ns seeds online.

In both models, L follows a general distribution FL(x)
with mean L and variance σ2. As a starting point, the
replacement model allows us to focus on the effect of
peer churn on data availability and download efficiency,
decoupling the impact of the change in online peer
number. Even if there are always a large number of peers
simultaneously online, the dynamic nature of these peers
can induce a significant variation in the availability of
different segments, which causes the rare block problem.
Such a model for churn has previously been used in [6]
to study the reliability of unstructured P2P networks.
Poisson arrival model, on the other hand, represents a
more common peer joining process in the real world. We
show both models yield similar results with regard to
block-level segment availability in asymptotic systems.

We evaluate the resilience of network coding to peer
churn from multiple aspects. Let random variable I
denote the number of (coded) blocks each segment has
in all the downloaders in the steady state. Our first goal
is to determine the block availability distribution of
different segments, i.e., pi := Pr{I = i} for I in steady-
state networks. We can show that I follows the negative
binomial distribution under certain conditions.

To quantitatively evaluate the rare block problem, we
define block variation as

γ2
I =

Var(I)
E2{I}

=
∑∞

i=0 i2pi − (
∑∞

i=0 i · pi)2

(
∑∞

i=0 i · pi)2
, (1)

There are always N peers online. Every line above is a renewal process.

Online Peer 1
Online Peer 2

Online Peer N

Online Peer 3

an old peer leaves a new peer joins immediately
...

L observation time A to

to0 time t

Fig. 2. The replacement model for peer dynamics. L
denotes a peer’s lifetime. A denotes a peer’s age at a
given observation time to. Every departed downloader is
replaced by a new empty peer.

which is inspired by a typical fairness measure in re-
source allocation [7]. γ2

I always lies between 0 and ∞,
and is 0 only if all the segments have the same number
of (coded) blocks in the network.

As a major theoretical contribution, we show that,
under both the replacement and Poisson arrival models,
γ2

I is inversely proportional to the segment size m in
asymptotic networks. We find through experiments that
the expected time needed for a long-lived peer to down-
load the entire content, or the download time, is closely
related to block variation. We also evaluate the block
diversity in the steady-state network using the Shannon
entropy H(I) of I , which proves to be a logarithmic
function of m.

To study the transient behavior of the system, we
assume all the seeds depart in the steady-state and
see how long the content can be kept complete by the
unreliable downloaders in a distributed fashion. Under
such a scenario without seeds, we also study the content
loss and the evolution of block availability distribution
over time.

3 SYSTEM CHARACTERIZATION VIA ODES

In this section, we derive a set of ordinary differen-
tial equations (ODEs) to asymptotically approximate
the block availability evolution under the replacement
model and Poisson arrival model. The solutions to these
ODEs are used to study the steady-state block distribu-
tion and variation in Sec. 4, and the transient behavior
of the system in Sec. 5.

For a segment s, we use deg(s) (degree of s) to
denote the number of (coded) blocks s has in all the
downloaders. To characterize the distribution of I , we
introduce the following notations, concerning the block
statistics in downloaders:
B ni(t): the number of segments which have a degree

of i.
∑∞

i=0 ni(t) = G.
B pi(t): the fraction of segments which have a degree

of i. pi(t) = ni(t)/G.
B ri(t): the number of segments with a degree of at

least i. ni(t) = ri(t)− ri+1(t).
B si(t): the fraction of segments which have a degree

of at least i. si(t) = ri(t)/G.
These notations cover both non-coding and coding

cases as m varies from 1 to M . Apparently, as the



segment number G →∞, pi(t) will approach the proba-
bility mass function (PMF) of I . For simplicity, we may
omit t in the following context. We can also get the
simple facts that at time t, the total number of blocks
in downloaders is Y (t) =

∑∞
i=1 ri(t), and the average

degree of a segment is
∑∞

i=1 si(t) = Y (t)/G.
The system state could be represented by the vector

R(t) := (r0(t), r1(t), . . .), or S(t) := (s0(t), s1(t), . . .) or
P (t) := (p0(t), p1(t), . . .). Clearly, S(t+h), for any h > 0,
not only depends on S(t), but also depends on the
particular subset of blocks possessed by each peer at
time t. Thus, S(t) is a complicated process which has
a large state space and is extremely hard to characterize.
However, under certain assumptions, S(t) will become
a Markov process, whose limiting behavior converges
to a deterministic process that can be represented by a
set of ODEs. It is through such a method that the block
availability evolution can be characterized. A similar
approach has been used by Massoulie et al. [8] to analyze
a coupon collection system that models P2P content
distribution without coding. The validity of the assump-
tions made is verified by the simulations in Sec. 6.

Our characterization for the replacement model fol-
lows the following path. First, we consider the “peer
process” and show the total number of blocks in the
network Y (t) tends to concentrate around a certain
value after the network has evolved for sufficiently long
time. We then focus on the “block exchange process”
and make certain approximations so that S(t) forms
a density dependent jump Markov process, which can
be asymptotically characterized by a set of differential
equations with arbitrarily small error.

We first consider the “peer process”. At a given obser-
vation time to, we use A to denote a peer’s age, which
can be given by the following lemma. (Refer to [9] for
the proof.)

Lemma 1: Let L denote a peer’s lifetime with mean L
and variance σ2. Under the replacement model, if N is
large, as to →∞, we have A := E[A] = (L

2
+ σ2)/2L.

We further establish in the following lemma that
Y (t)/(N+Ns) almost always remains constant as t →∞,
the proof of which is given in Appendix A.

Lemma 2: Let Y (t) denote the total number of blocks
in downloaders from all the segments at a given time
t. Under the replacement model, as N → ∞, M → ∞,
N = αM , Ns = αsM , where α, αs are finite constants,

lim
N→∞

Y (t)/(N + Ns) = µ̃A with probability 1, (2)

for t sufficiently large.
From Lemma 2, we can see that if G is large enough,

the average number of blocks each segment has in all
the downloaders is
∞∑

i=1

si(t) = Y (t)/G = (N + Ns)µ̃A/G = (α + αs)mµ̃A.

Now we consider the “data exchange process” and
characterize the evolution of S(t) as t → ∞. We make

appropriate linear approximations on upload behav-
ior and content loss patterns that convert S(t) into a
tractable Markov process. From a network perspective,
we assume that the upload of a block by a seed has the
same effect as choosing from all the segments a random
segment s and increasing deg(s) by 1, whereas the up-
load of a block by a downloader has the same effect as
choosing from all the segments a random segment s with
probability deg(s)/

∑
s deg(s) and increasing deg(s) by

1. Further, the number of blocks a segment loses due to
peer departures is assumed to be linear in the number of
blocks it has in the downloaders. These approximations
are formally described in Appendix B and validated by
simulations in Sec. 6.

We can thus show that as t → ∞, M → ∞, N → ∞,
Ns → ∞, N/M → α, Ns/M → αs, while m remains
finite, S(t) in replacement model converges to the
following system of ODEs with an arbitrarily small
error:{

Adsi

dt = αsmµ̃Api−1 + α
α+αs

(i− 1)pi−1 − ipi, ∀i ≥ 1,

s0 = 1.
(3)

The derivation of (3) can be found in Appendix B.
Similarly, a system of ODEs can be established for the

Poisson arrival model. As t → ∞, M → ∞, λ → ∞,
Ns → ∞, λL/M → α′, Ns/M → αs, while m remains
finite, S(t) under the Poisson arrival model converges
to the following system of ODEs:{

Adsi

dt = αsmµ̃Api−1 + α′

α′+αs
(i− 1)pi−1 − ipi, ∀i ≥ 1,

s0 = 1.
(4)

The derivation of (4) can be found in Appendix C.
In addition, we have also considered the effect of

the block size k on the system evolution. Intuitively
speaking, if the block size k is large, when a peer departs
while still uploading a block, more data will be lost
due to the lack of granularity in the upload process.
However, it turns out that the block size will almost not
affect the differential equations (3) and (4) at all, as long
as µA � k, which is satisfied in usual cases (µA � k
does not conflict with the finiteness of µ̃A).

4 SEGMENT AVAILABILITY IN STEADY STATES

Based on the ODEs derived above, in this section we
determine the block availability distribution, block variation
and block distribution entropy in steady-state networks for
both the replacement and Poisson arrival models, and
discuss their implications.

Let us first consider the block availability distribution
for the replacement model in its steady state. Denote the
steady-state solutions to the ODEs (3) by p0, p1, . . . , pG.
By setting dsi

dt = 0 in (3), we can obtain the steady-state
block distribution as a function of p0:

pi = p0 ·
i∏

j=1

(β +
B − β

j
), for i ≥ 1, (5)



with
∑G

i=0 pi = 1, where B = αsmµ̃A, β = α
α+αs

. It is in
general very difficult to obtain closed form solutions for
pi. However, under certain mild conditions appropriate
for engineering purposes, we can convert (5) into its
closed form as follows:

Theorem 3: (Steady-State Block Distribution for Re-
placement Model) Let B = αsmµ̃A and β = α

α+αs
. If

β > 0 is rational and B
β ∈ {1, 2, . . .}, then I follows the

negative binomial distribution, i.e., for i = 0, 1, . . .,

Pr{I = i} = pi =
(

i + B
β − 1
i

)
βi(1− β)

B
β . (6)

Interested readers are referred to Appendix D for a
complete proof. In practice, β is rational for sure, since
both the seed number and the downloader number in the
network are integers. pi for all valid β and B can thus
be approximated by using the nearest β and B satisfying
the above conditions.

The steady-state block distribution for the Poisson
arrival model can be derived in a similar way. Denote
the steady-state solutions to (4) by p′0, p

′
1, . . . , p

′
G. We have

the following theorem:
Theorem 4: (Steady-State Block Distribution for

Poisson Arrival Model) Let B = αsmµ̃A and β′ = α′

α′+αs
.

If β′ > 0 is rational and B
β′ ∈ {1, 2, . . .}, then in the steady

state, for i = 0, 1, . . .,

Pr{I = i} = p′i =
(

i + B
β′ − 1
i

)
β′i(1− β′)

B
β′ . (7)

For the replacement model, we plot the CDF of I in
Fig. 3 according to Theorem 3, with N = 6000, Ns = 100,
F = 768 MB, k = 256 KB, A = 5, and the average upload
rate µ̃ = µ/k = 3.7. In Sec. 6, we also plot the CDF of
I from simulation in Fig. 7 under the same parameters.
The match between Fig. 7 and Fig. 3 verifies the validity
of the approaches in our theoretical analysis.
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Fig. 3. Steady-state block distribution (CDF of I).

One implication of Fig. 3 is that as m increases, there
will be fewer rare blocks in the network, and the risk that
the content becomes incomplete upon seed departures
will be lower. For example, for a non-coding scheme
(m = 1), 20% of all the segments do not have any blocks
in downloaders in the steady state. If all the seeds leave,
these segments will become undecodable immediately.

As the segment size m increases, we observe an increas-
ing trend in the mean as well as the minimum number of
blocks each segment has in downloaders. When segment
size m = 16, the fraction of segments with less than 200
blocks in downloaders is close to 0. This means even
if seeds leave altogether, the content will not become
incomplete immediately. In addition, the variation in
block distribution is subdued as m increases, which we
will demonstrate subsequently.

Now let us quantitatively characterize the block vari-
ation γ2

I defined in Sec. 2. For the replacement model,
from (6) we have γ2

I = σ2
I/µ2

I = 1/αsmµ̃A = F/NsmµA.
For the Poisson arrival model, the same result is obtained
from (7). Thus, we have the following theorem:

Theorem 5: (Steady-State Block Variation) Under
both the replacement and Poisson arrival models,

γ2
I := σ2

I/µ2
I = F/NsmµA, (8)

where A is the average age of a downloader given by
Lemma 1. All the parameters are assumed to satisfy the
conditions set in Theorem 3 or Theorem 4.

Theorem 5 shows that as more blocks in each segment
are used for coding, the variation of the availability of
different segments decreases and the rare block problem
is mitigated. Furthermore, the block distribution varia-
tion is inversely proportional to the segment size m. As a
result, there exists a sweet spot in the curve of resilience-
complexity tradeoff, at which network coding suffices to
yield its major benefit with acceptable coding cost. The
block diversity can also be evaluated by the Shannon
entropy H(I) of I . In fact, in Appendix E, we show that
H(I) = 1

2 lnm + o(m). The logarithm (concave) trend
of the entropy of block availability distribution confirms
that there can be a sweet spot in the resilience offered
by network coding as m varies. We discuss the choice of
this sweet spot in Sec. 6.

It is quite counter-intuitive that the block size k does
not affect γ2

I or H(I) at all. One might expect that with a
larger k, the content is broken into fewer blocks, and thus
the block distribution variation may decrease. However,
with a larger k, blocks will be disseminated throughout
the network at a lower rate µ̃ = µ/k, given limited
upload bandwidth at each peer. Both effects counteract,
resulting in the same γ2

I or H(I).
The content size F and the number of online seeds Ns

are also critical parameters that affect block variation. A
lack of seeds will increase block variation, not because
seeds hold more blocks than downloaders, but because
the upload behavior of seeds are fundamentally different
from that of downloaders. As we have pointed out
through the analysis in Appendix B, seeds can choose
both prevalent and rare segments equally likely when
uploading, whereas downloaders tend to choose the
segments that are already prevalent in the network. Also
note that the number of online downloaders N does not
affect the block variation.

5 TRANSIENT BEHAVIOR WITHOUT SEEDS
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In a dynamic P2P network, the original seeds that pro-
vide the content may leave the session. In the absence of
seeds, if a certain segment has less than m blocks in the
network, the content will become incomplete henceforth.
The hope is that the content can be kept complete
merely by downloaders for a sufficiently long time,
before certain downloaders become seeds. Therefore, it is
important to analyze how network coding can enhance
content persistence in a dynamic network, when seeds
are absent.

We only consider the replacement model in this sec-
tion. We assume the seeds leave altogether in the steady
state and set t = 0 on their departure. By letting
Ns = 0 or αs = 0, the system after seed departures is
characterized by{

A · dsi(t)
dt = (i− 1)pi−1(t)− ipi(t), for i ≥ 1,

s0(t) = 1,
(9)

with initial conditions pi(0) = pi, i = 0, 1, . . ., given
by (6). When Ns = 0, the network does not have a
steady state and the content will become incomplete
eventually. However, we are still interested in certain
transient behavior of the system.

First, by (9), the fraction of undecodable segments
upon seed departures is 1 − sm(0) =

∑m−1
i=0 pi(0) =∑m−1

i=0 pi, the values of which are numerically plotted
in Fig. 4 with N = 1000, Ns = 10, M = 1000, µ̃ = 4.
As segment size m increases, there is a decreasing trend
in the content loss. Moreover, there exists some knee
in the curve, beyond which the content loss upon seed
departures will not be further reduced by increasing m.
Fig. 5 plots the fraction of decodable content at time t
after seeds departure, which equals to sm(t), the fraction
of segments with at least m blocks in the network. The
parameters are N = 1000, Ns = 50, M = 1000, µ̃ = 4,
A = 5. We can see that only a small increment in m leads
to a salient decrease in the content loss rate.

Furthermore, we numerically plot content lifetime af-
ter seeds departure in Fig. 6, given that the content still
remains complete upon seeds departure. The parameters
are the same as in Fig. 5. Clearly, the content becomes
incomplete when there is a segment with less than m
(coded) blocks in the network, and its lifetime equals to
the first hitting time of 1−sm(t) to 1/G starting from the
initial conditions pi(0) = pi, i = 0, 1, . . .. In general, the

content persistence offered by network coding enhances
as the segment size m increases.

6 SIMULATION RESULTS

We have developed a simulating environment to exper-
imentally evaluate the behavior of P2P content distri-
bution systems with peer churn. The initial input to
the simulator is a set of empty downloaders with i.i.d.
lifetimes drawn from a general distribution, and a set of
seeds which hold complete copies of the source content.
Each downloader will leave the network once its lifetime
has expired or it has finished downloading the content.
The simulator has a “tracking server”, which connects
each peer to at least 40 other randomly chosen peers (in
accordance to BitTorrent), which form its neighborhood.
All other tasks, including downstream peer selection and
data exchanges, are performed locally at peers.

The simulator runs in rounds. In each round, a peer
first randomly chooses 4 of its neighbors as its down-
stream peers. We also require each peer to have at most
6 upstream peers to avoid load imbalance. With this
policy, most peers turn out to have at least one upstream
peer in each round. Each peer then uploads blocks
to each of its downstream peers independently using
random useful segment encoding described in Sec. 2.
To accommodate peer heterogeneity, we assume there
are an equal number of peers with upload bandwidth 2
MB/round, 512 KB/round and 256 KB/round. A peer
with 256 KB/round connectivity can upload one block
of 256 KB in a round. It is easy to check that the average
upload rate is µ̃ = µ/k = 3.7 blocks/round. Coding
operations are done in GF (28).

We first evaluate the block distribution and down-
load performance in steady-state networks. Fig. 7 shows
the steady-state block distribution for the replacement
model. The parameters are set to be the same as in
Fig. 3. We can see the experimental results of Fig. 7
matches the analytical results of Fig. 3, substantiating
the correctness of Theorem 3 and the validity of the
differential equations derived in Sec. 3.

The average block variation in steady state is plotted in
Fig. 8 and Fig. 9 for the replacement model and Poisson
arrival model, respectively, with Ns = 100, F = 768 MB,
k = 256 KB, and N = 6000 in steady states. (For Poisson
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Fig. 8. Steady-state block variation as
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replacement model.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Segment Size m

Bl
oc

k 
Va

ria
tio

n 
in

 S
te

ad
y 

St
at

e

Block Variation ! Segment Size Relation

 

 

Simulation, average peer life: 5 rounds
Analysis, average peer life: 5 rounds
Simulation, average peer life: 10 rounds
Analysis, average peer life: 10 rounds

Fig. 9. Steady-state block variation as
a function of segment size m for the
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Fig. 10. The average time for a long-
lived peer to download the entire con-
tent in steady state for the replacement
model. N = 2000.
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Fig. 11. The average time for a long-
lived peer to download the entire con-
tent in steady state for the Poisson
arrival model. λ = 100.
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Fig. 12. The average time for a long-
lived peer to download the entire con-
tent in the steady state for the Poisson
arrival model.

arrival model, the expected number of online download-
ers is λL in the steady state.) Even for such a hetero-
geneous environment, simulation results are quite close
to the conclusion of Theorem 5. The simulation results
differ from the analysis by a small constant coefficient,
possibly due to the difference between the round-based
simulation and the continuous-time analytical model.
Simulation confirms that the steady-state block variation
γ2

I is inversely proportional to the segment size m in both
models, and when peer churn is more severe, or when
the average peer age is lower, the network suffers from
greater block variation.

We now evaluate the average time required for a long-
lived peer to download the entire content as the segment
size m varies. The results are plotted in Fig. 10 and
Fig. 11 for the replacement model and Poisson arrival
model, respectively. We set Ns = 30, F = 256 MB, k
=256 KB. 1% of all the downloaders are long-lived ones
which will not leave until they finish downloading.
The other peers are short-lived and have lifetimes ex-
ponentially distributed. The download time exhibits a
similar inversely proportional relationship with m, just
as the block variation does. The download time is closely
related to block variation because when there is lower
block variation, peers will not be hindered in obtaining
rare blocks, leading to lower delay in the download
process. More importantly, we note that there is a sweet
spot of segment size, beyond which download time can hardly
be reduced. Thus, the use of a small segment size, e.g.,
10-20, suffices to optimize the download efficiency, with

only a moderate computational cost incurred.
The average download time is also plotted as λ varies

in Fig. 12, where we set F = 256MB, Ns = 30, k = 256 KB.
1% of all the downloaders to be long-lived. The average
lifetime of short-lived peers is 10 rounds. We can see
that as the joining rate λ increases, the download time is
reduced. In fact, we find through simulation that with a
bigger λ and thus a larger network size, the steady-state
block variation decreases and approaches its theoretical
value, as asymptotic behavior comes into effect.

Let us now consider the extreme case that seeds leave
in the steady state (at round 400) altogether under the
replacement model, and let t = 0 upon seeds departure.
We set N = 6000, Ns = 100, F = 768 MB, k = 256 KB,
and L = 20, and experimentally evaluate the content
persistence in the absence of seeds. First, we show
the block distribution evolution over time after seeds
departure in Fig. 13. In the non-coding case (m = 1),
50% of all the blocks are missing at round 1000, while for
network coding with m = 4, the block distribution stays
almost unchanged within 2000 rounds, with only a small
fraction of content loss. The figure clearly demonstrates
that even network coding with small segment sizes can
significantly enhance content persistence in a dynamic
network without seeds. We also plot the fraction of
decodable content over time after seeds departure in
Fig. 14, which agrees with the analysis in Sec. 5 in trend.

7 RELATED WORK
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Randomized network coding has been applied to
BitTorrent-like P2P content distribution by Gkantsidis et
al. [2]. They show that network coding speeds up down-
load over non-coding random block selection. To reduce
the computational cost of coding across all the content,
generation-based or segment-based network coding has
been proposed by Chou et al. [3] and subsequently
applied to P2P content distribution systems [10].

Despite the experimental studies, there exists a limited
amount of work that theoretically analyzes the benefits
of network coding in P2P networks. Yeung [11] shows in
a time-slotted model that network coding achieves the
optimal time to distribute k blocks given any transmis-
sion schedule in P2P networks. Deb et al. [4] show in
a time-slotted model that network coding can achieve a
shorter broadcast delay of k blocks in complete graphs,
as compared to a sequential dissemination.

From a distinctly different perspective than through-
put benefits, this paper analyzes how network coding
can preserve block diversity and availability in large-
scale dynamic P2P networks as the segment size varies.
We quantitatively show that such a resilience gain of
network coding is the major reason why network cod-
ing provides performance improvements with regard to
download time and content persistence.

8 CONCLUSIONS

In this paper, we study the resilience gain of random-
ized network coding in terms of enhancing block diver-
sity and availability in dynamic P2P networks. Using
differential equations to approximate large deviations,
we quantify the resilience gain of network coding, as
different numbers of blocks are used for coding in a
segment. We evaluate a wide range of performance
metrics, including block availability distribution and
download performance in steady-state networks, and
content lifetime and content loss in transient networks
without seeds.

We show that there is an inverse proportional rela-
tionship between the segment availability variation and
segment size. We further find that the time needed for a
peer to download the entire content from a dynamic P2P
network is closely related to such segment availability
variation. Our studies reveal that small segment sizes —
around 20-30 even with high peer volatility — suffice

to realize the major benefit of network coding in terms
of preserving block diversity and reducing download
time in steady-state networks. In the absence of seeds,
content lifetime increases and content loss rate decreases
in trend, as the segment size for coding increases. Our in-
sights into the resilience-complexity tradeoff of segment-
based network coding in dynamic P2P networks con-
tributes to understanding the benefits and concerns of
applying network coding in practical P2P file sharing
and content dissemination systems.
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APPENDIX A
PROOF OF LEMMA 2
Let i.i.d. random variables A1, A2, . . . , AN denote the
ages of online downloaders. We consider the challenging
case when the network consists of short-lived peers, and
thus assume a peer’s mean lifetime L is finite. Since
µ̃ and L are finite, as N → ∞, M → ∞, with very
small probability will two online peers have large sets
of overlapped blocks in their buffers. Thus, a peer can
almost always transmit a useful block to another peer. As
a result, the total download bandwidth in the network
always equals to the total upload bandwidth (N +Ns)µ̃.
Moreover, we can use identical and mutually indepen-
dent random processes µ̃1(t), µ̃2(t), . . . , µ̃N (t) to denote
the actual download bandwidth (blocks/unit time) of
online downloaders at time t. Assume µ̃i(t) are wide-
sense stationary and mean-ergodic. We also assume that
all µ̃i(t) have the same mean function E{µ̃i(t)}. Now we
are ready to establish Lemma 2 using the strong law of
large numbers.

At any given time t, we have

Y (t) =
N∑

i=1

∫ Ai

0

µ̃i(τ)dτ .

According to the strong law of large numbers,

lim
N→∞

Y (t)
N

= E{
∫ Ai

0

µ̃i(τ)dτ} with probability 1.

We have

E{
∫ Ai

0

µ̃i(τ)dτ} = E{E{
∫ Ai

0

µ̃i(τ)dτ |Ai}}

= E{
∫ Ai

0

E{µ̃i(τ)}dτ |Ai} = E{Ai ·E{µ̃i(τ)}}

= A ·E{µ̃i(τ)} = A ·
∑N

j=1 µ̃j(τ)
N

=
(N + Ns)µ̃A

N
,

where the second equality holds because µ̃i(τ) is mean-
ergodic. The second last equality holds with proba-
bility 1 as N → ∞. The last equality holds because
µ̃i(τ) are wide-sense stationary and the total download
bandwidth in the network always equals to the total
upload bandwidth (N +Ns)µ̃. Therefore, we have shown
limN→∞

Y (t)
(N+Ns) = µ̃A w.p. 1 for large t. ut

APPENDIX B
DERIVING THE DIFFERENTIAL EQUATIONS FOR
THE REPLACEMENT MODEL

Note that there are three factors that contribute to
the change of S(t), namely seed uploads, downloader
uploads, and downloader departures. No matter what
distribution the time for a peer to upload a block follows,
the aggregate uploads from all peers form a Poisson
process of rate (N + Ns)µ̃, as N → ∞, Ns → ∞ (refer
to [12] pp. 221). At each upload of the aggregate upload
process, it is a random peer in the network that uploads.

Similarly, no matter what distribution the lifetime of a
peer L follows, the aggregate departures of downloaders
form a Poisson process with rate N/L. Even with the
Markovian property of uploads and download depar-
tures, it is still difficult to write the transition rates for
S(t) due to the dependency among the actions of dif-
ferent peers. To further introduce analytical tractability
that makes S(t) a Markov process with linear intensities,
we make the following linear approximations on the
effect of random downstream peer selection and random
useful block selection:

Assumption 1 (Linear Approximation for Uploads):
Whenever a seed uploads a useful block, the effect
is approximated by choosing uniformly from all the
segments a random segment s and increasing deg(s)
by 1; whenever a downloader uploads a useful block,
the effect is approximated by choosing from all
the segments a random segment s with probability
deg(s)/

∑
s deg(s) = deg(s)/Y (t) and increasing deg(s)

by 1.
Remarks: Since blocks of all segments are distributed in

seeds in a balanced way, and blocks of all segments are
largely needed by downloaders due to a finite L, each
segment has an equal chance of being chosen when a
seed uploads. However, when a downloader uploads,
each segment does not enjoy an equal chance of being
chosen, as different segments have different availability.
Instead, the more blocks a segment has in downloaders,
the more frequently it will be chosen and encoded for
transfer. The accuracy of this approximation is verified
in Sec. 6 by simulations.

Let ei denote a unit vector of the same dimension as
R(t) with its ith element being 1, and all other elements
being 0. Now it is easy to write the intensities q

(G)
R,R+ei

for the transitions on R due to uploads, when the total
number of segments is G:

R → R + ei, q
(G)
R,R+ei

= Nsµ̃pi−1 + Nµ̃ · (i− 1)ni−1

Y

= Nsµ̃pi−1 +
α

α + αs

(i− 1)ni−1

A
(10)

for all finite i, where N/M = α, Ns/M = αs, and the
second equality is due to Lemma 2. The rationale behind
is that seeds upload a block at a total rate of Nsµ̃ with all
segments being chosen for encoding equally likely, while
downloaders upload a block at a total rate of Nµ̃ with
segments being chosen according to Approximation 1.
Note that in (10), it is implicitly assumed that no linear
dependency will occur when applying network coding,
because by Lemma 2.1 in [4], a random linear combina-
tion of all the blocks from the same segment at a peer p is
useful to another randomly chosen peer in the network
with probability at least 1 − 1/q if network coding is
done in GF (2q). And this argument is true regardless of
whether peer p is a seed or a downloader.



Let us consider block loss due to downloader depar-
tures. The total number of downloader departures in a
small interval ∆t is N∆t/L. Each downloader down-
loads at a rate of (N+Ns)µ̃

N on average. Upon departure,
a downloader takes away L · (N+Ns)µ̃

N blocks on average.
Therefore, the network loses N∆t

L
· L · (N+Ns)µ̃

N = (N +
Ns)µ̃∆t blocks in ∆t in total. We make a similar linear
approximation to block loss:

Assumption 2 (Linear Approximation for Loss): As
N → ∞, Ns → ∞, M → ∞, among all the blocks
lost due to downloader departures in a small time
interval ∆t = O(1/

√
N), the proportion of the blocks

that segments of degree i lose is ini/
∑

i ini = ini/Y (t).

Remarks: This essentially means that the more blocks
a segment has in downloaders, the more it loses due to
peer departures. The choice of ∆t = O(1/

√
N) ensures

each segment can lose at most one block in ∆t. The
accuracy of this approximation is verified in Sec. 6
through simulations.

Thus, in ∆t, the total block loss of degree-i segments
is

(Ns + N)µ̃∆t · i · ni

Y
=

i · ni

A
·∆t.

As N → ∞ while L remains finite, such a block loss
pattern will be equivalent to having individual blocks
of different segments get lost according to the following
transitions:

R → R− ei, q
(G)
R,R−ei

=
i · ni

A
, ∀i < ∞. (11)

Let S(G)(t) = {s(G)
0 , s

(G)
1 , s

(G)
2 . . .} := R(G)(t)/G denote

the normalized process when there are G segments. Note
that the intensities for R can be rewritten in the form:

q
(G)
R,R+l = G · βl(

R

G
) = G · βl(S), l = +ei,−ei ∀i < ∞,

where

β+ei(S) =
Nsµ̃pi−1

G
+

α

α + αs
· (i− 1)ni−1

AG

= αsmµ̃pi−1 +
α

α + αs
· (i− 1)pi−1

A
, (12)

β−ei
(S) =

i · ni

AG
=

i · pi

A
. (13)

Thus, S(G)(t) forms a density dependent jump Markov
process (refer to [13], pp.51). We set

F (x) =
∑

l

lβl(x) =
∑

i

ei(β+ei(x)− β−ei(x)). (14)

By Kurtz Theorem (Theorem 8.1 in [13]), for S(G)(t) to
converge to a deterministic fluid, we need that S(G)(0)
converges to a certain value S(0) that does not depend
on G. Since S(G)(0) = (1, 0, 0, . . .), this condition is satis-
fied. Moreover, we need the boundedness and Lipschitz
continuity of F (x). These conditions are guaranteed in
our model by the finiteness of

∑∞
i=1 si(t) → (α+αs)mµ̃A,

which remains finite due to a finite L. Therefore, by
Kurtz Theorem, S(G)(t) converges almost surely to a
deterministic fluid S(t) = {s0, s1, s2 . . .} for large G:

S(t) = S(0) +
∫ t

0

F (S(u))du, t ≥ 0, (15)

Substituting (12), (13), and (14) into (15), we have shown
that as t → ∞, M → ∞, N → ∞, Ns → ∞, N/M → α,
Ns/M → αs, while m remains finite, S(t) in replacement
model converges to the system of ODEs (3) with an
arbitrarily small error.

APPENDIX C
DERIVING THE DIFFERENTIAL EQUATIONS FOR
THE POISSON ARRIVAL MODEL

In Poisson arrival model, it turns out the distribution of
A can be determined in the same formula as in Lemma 1.
We state this result in the following lemma, the proof of
which can be found in Lemma 3 in [14].

Lemma 6: Under the Poisson arrival model with join-
ing rate λ, as the observation time to → ∞, we have
E[A] = A = (L

2
+ σ2)/2L, regardless of λ.

Similarly, if the joining rate λ is large enough, the net-
work will reach a stationary stage, where Y (t)/(λL+Ns)
almost always remains the same:

Lemma 7: Let Y (t) denote the total number of blocks
in downloaders from all the segments at a given time
t. Under the Poisson arrival model, as λ → ∞,M → ∞,
λL = α′M , Ns = αsM , where α′, αs are finite constants,

lim
λ→∞

Y (t)
λL + Ns

= µ̃A with probability 1, (16)

for t sufficiently large.
Proof: We first show limλ→∞N(t)/λL = 1 and then
Y (t)

N(t)+Ns
→ µ̃A to prove the theorem. Since the arrival

process is Poisson, it can be split into n i.i.d. Poisson
processes, each with rate λ0 = λ/n, and the system can
be split into n sub-systems, each being a M/G/∞ queue.
Let Ni(t) be the number of peers in the ith subsystem.
To prove limλ→∞N(t)/λL = 1 for large t, we only need
to show that limn→∞N(t)/nλ0L = 1 with probability 1
for any positive and finite λ0. This is true because

lim
n→∞

lim
t→∞

N(t)
nλ0L

= lim
n→∞

lim
t→∞

∑n
i=1 Ni(t)

n
· 1
λ0L

= lim
t→∞

E{Ni(t)}
λ0L

=
λ0L

λ0L
= 1,

where the second equality holds w.p. 1 by the strong
law of large numbers, and the third equality holds due
to Little’s Theorem. Hence, we have

lim
t→∞

lim
λ→∞

Y (t)
λL + Ns

= lim
t→∞

lim
N(t)→∞

Y (t)
N(t) + Ns

· lim
t→∞

lim
λ→∞

N(t) + Ns

λL + Ns

= µ̃A



with probability 1, where limt→∞ limN(t)→∞
Y (t)

N(t)+Ns
can

be shown to approach µ̃A following the same argument
as in the proof of Lemma 2 by replacing N with N(t).
Thus, we have shown that limλ→∞

Y (t)

λL+Ns
= µ̃A with

probability 1 for large t. ut
Given the above two lemmas, the derivation of (4)

follows the same approach as in the derivation of (3) for
the replacement model. The only difference is that we
replace N in the replacement model with λL and apply
Lemma 7 instead of Lemma 2 when we derive (4).

APPENDIX D
PROOF OF THEOREM 3
Clearly, Pr{I = i} = pi as M → ∞, while m remains
finite. Based on the steady-state solutions to (3), let us
derive pi in a closed form under the conditions set for B
and β. Let C = B/β− 1. We first prove pi = βi

(
i+C

i

)
· p0,

for i ≥ 1, and then determine p0 from
∑∞

i=0 pi = 1. Let
β = l

n < 1, where l, n ∈ N. Because C ∈ Z+, we have

pi = p0

i∏
j=1

(
l

n
+

B − β

j
),

from which we can get

pi = p0(
l

n
)i · (i + C)!

i!C!
= βi

(
i + C

i

)
· p0. (17)

We now determine p0. Let ai = pi/p0 = βi

(
i+C

i

)
, i =

0, 1, 2, . . .. Then we have 1/p0 =
∑∞

i=0 ai. Because(
i + C

i

)
=

(
C + i− 1

i

)
+

(
C + i− 1

i− 1

)
, i ≥ 1,

we have
∞∑

i=0

ai =
∞∑

i=1

βi

(
(C − 1) + i

i

)
+β

∞∑
i−1=0

βi−1

(
C + i− 1

i− 1

)
+a0

If we view ai as a function of C and let

f(C) =
∞∑

i=1

ai(C) =
∞∑

i=1

βi

(
i + C

i

)
,

we have{
(β − 1)f(C) + f(C − 1) + β = 0, for C ≥ 1
f(0) =

∑∞
i=1 βi = β

1−β

By induction, it is not hard to get

f(C) = (1− β)−(C+1) − 1, C = 0, 1, 2, . . . .

Hence,
∞∑

i=0

ai = f(C) + a0 = (1− β)−(C+1)

Thus, we have p0 = (1 − β)
B
β . Substituting p0 into (17)

will yield pi. ut

APPENDIX E
STEADY-STATE ENTROPY OF I

Theorem 8: Suppose all the parameters satisfy the
conditions set in Theorem 3 or Theorem 4. Under the
replacement model, for big αsmµ̃A, the entropy of I in
the steady state is given by

H(I) =
1
2

lnm +
1
2
(1 + ln

2πµ̃A(α + αs)2

αs
) + o(1), (18)

where A is given by Lemma 1, α = N/M , α = Ns/M .
Under the Poisson arrival model, for big αsmµ̃A, the
entropy of I in the steady state is given by

H(I) =
1
2

lnm +
1
2
(1 + ln

2πµ̃A(α′ + αs)2

αs
) + o(1), (19)

where α′ = λL/M , α = Ns/M .

Proof: We derive H(I) using Theorem 1 in [15]. For
the replacement model, since I follows the negative
binomial distribution (6), I can be represented as a sum
of B/β i.i.d. geometrically distributed random variables.
Thus, the distribution of I in (6) satisfies the required
assumptions (A1)-(A2) in [15]. By Theorem 1 in [15], for
a big B/β, the Shannon entropy of I is

H(I) =
1
2

ln
B

β
+

1
2
(1 + ln

2πβ

(1− β)2
) + o(1). (20)

Plugging in B = αsmµ̃A and β = α
α+αs

gives (18). (19)
can be derived in a similar way based on (7). ut
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