Resource Auto-Scaling and Sparse Content Replication
for Video Storage Systems

DI NIU, University of Alberta
HONG XU, City University of Hong Kong
BAOCHUN LI, University of Toronto

Many video-on-demand (VoD) providers are relying on public cloud providers for video storage, access, and
streaming services. In this article, we investigate how a VoD provider may make optimal bandwidth reserva-
tions from a cloud service provider to guarantee the streaming performance while paying for the bandwidth,
storage, and transfer costs. We propose a predictive resource auto-scaling system that dynamically books the
minimum amount of bandwidth resources from multiple servers in a cloud storage system to allow the VoD
provider to match its short-term demand projections. We exploit the anti-correlation between the demands of
different videos for statistical multiplexing to hedge the risk of under-provisioning. The optimal load direction
from video channels to cloud servers without replication constraints is derived with provable performance.
We further study the joint load direction and sparse content placement problem that aims to reduce band-
width reservation cost under sparse content replication requirements. We propose several algorithms, and
especially an iterative L1-norm penalized optimization procedure, to efficiently solve the problem while effec-
tively limiting the video migration overhead. The proposed system is backed up by a demand predictor that
forecasts the expectation, volatility, and correlation of the streaming traffic associated with different videos
based on statistical learning. Extensive simulations are conducted to evaluate our proposed algorithms, driven
by the real-world workload traces collected from a commercial VoD system.

Categories and Subject Descriptors: H. Information Systems [Information Storage Systems]: Storage
Architectures—Cloud based storage; Networks [Network Performance Evaluation]: Network performance
modeling

General Terms: Performance Evaluation, Algorithms, Optimization

Additional Key Words and Pharses: Video-on-demand, cloud computing, auto-scaling, content placement,
load direction, optimization, sparse design, prediction

ACM Reference format:

Di Niu, Hong Xu, and Baochun Li. 2017. Resource Auto-Scaling and Sparse Content Replication for Video
Storage Systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 2, 4, Article 19 (October 2017), 30 pages.
https://doi.org/10.1145/3079045

Part of this work has been presented at IEEE INFOCOM 2012.

Authors’ addresses: D. Niu, 11-203 Donadeo Innovation Center for Engineering, 9211 116 Street NW, Edmonton, AB, T6G
1H9 Canada; email: dniu@ualberta.ca; H. Xu, Department of Computer Science, City University of Hong Kong, 8 Tat
Chee Avenue, Kowloon Tong, Hong Kong; email: henry.xu@cityu.edu.hk; B. Li, Department of Electrical and Computer
Engineering, 10 King’s College Road, University of Toronto, Toronto, Ontario M5S 3G4 Canada; email: bli@ece.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1(212) 869-0481, or permissions@acm.org.

© 2017 ACM 2376-3639/2017/10-ART19 $15.00

https://doi.org/10.1145/3079045

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

https://doi.org/10.1145/3079045
https://doi.org/10.1145/3079045

19:2 D. Niu et al.

1 INTRODUCTION

Cloud computing is redefining the way many Internet services operate, including Video-on-
Demand (VoD). Instead of buying racks of servers and building private datacenters, it is now
common for VoD service providers to leverage the computing, network, and storage resources
of cloud service providers for video storage and streaming. As an example, Netflix places its video
data stores, streaming servers, encoding software, and other customer-oriented APIs all in Amazon
Web Services (2015) (Netflix 2010).

One of the most important economic appeals of cloud computing is its elasticity and auto-scaling
in resource provisioning. Traditionally, after careful capacity planning, an enterprise makes long-
term investments on its infrastructure to accommodate its peak workload. Over-provisioning is
inevitable while utilization remains low during most non-peak times. In contrast, in the cloud, the
number of computing instances launched can be changed adaptively at a fine granularity with a
lead time of minutes. This converts the up-front infrastructure investment to operating expenses
charged by cloud service providers. As the cloud’s auto-scaling ability enhances resource uti-
lization by closely matching supply with demand, the overall expense of the enterprise may be
reduced.

Unlike web servers or scientific computing, VoD is a network-bound service with stringent
bandwidth requirements. As users must download at a rate no smaller than the video playback
rate to smoothly watch video streams online, bandwidth constitutes the performance bottleneck.
Thanks to the recent advances in datacenter network virtualization (Bari et al. 2013), bandwidth
reservation is likely to become a near-term value-added feature offered by cloud services to appeal
to customers with bandwidth-intensive applications like VoD. In fact, there have already been
proposals from the perspective of datacenter engineering to offer bandwidth guarantees for egress
traffic from a virtual machine (VM), as well as among VM themselves (Guo et al. 2010; Ballani
et al. 2011; Xie et al. 2012).

In this article, we analyze the benefits and address open challenges of cloud resource auto-
scaling for VoD applications. The benefit of auto-scaling for a video storage and streaming service
is intuitive and natural. As shown in Figure 1(a), traditionally, a VoD provider acquires a monthly
plan from ISPs, in which a fixed bandwidth capacity, for example, 1Gbps, is guaranteed to ac-
commodate the anticipated peak demand. As a result, resource utilization is low during non-peak
times of demand troughs. Alternatively, a pay-as-you-go charge model may be adopted by a cloud
provider as shown in Figure 1(b), where a VoD provider pays for the total amount of bytes trans-
ferred. However, the bandwidth capacity available to the VoD provider is subject to variation due to
contention from other applications, incurring unpredictable quality-of-service (QoS) issues. Fig-
ure 1(c) illustrates bandwidth auto-scaling and reservation to match demands with appropriate
resources, leading to both high resource utilization and QoS guarantees. Apparently, the more
frequently the rescaling happens, the more closely resource supply will match the demand.

However, a number of important challenges need to be addressed to achieve auto-scaling in a
video storage and streaming service. First, since resource rescaling requires a delay of at least a
couple of minutes to update configuration and move objects if necessary, it is best to predict the
demand with a lead time greater than the update interval and scale the capacity to meet antic-
ipated demand. Such a proactive, rather than reactive, strategy for resource provisioning needs
to consider not only conditional mean demands but also demand fluctuations to prevent under-
provisioning risks. Second, as statistical multiplexing can smooth traffic, a VoD provider may re-
serve less bandwidth to guard against fluctuations if it jointly reserves bandwidth for all its video
accesses. However, in a cloud storage system, the content is usually replicated on multiple servers
to introduce reliability in the presence of failures and to enable load balancing. The key question

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:3

£

o = = Capacity

% ’/,’ \\\ 'l’ \\ 'l’, \\\

c ,’ \\ " \\ 4 \\

© / \\ 4 AN e AN

m 4 N S S \
¢ 4 v > Demand
0 1 2 Days

£
© Capacity
; 7’
© ’
(% '/ N ’ \ 4 N
4 ’ 4
m ,I’ \\\(" \\\ I’ \\\\ Demand
0 1 2 Days

=

o

s

©

C .

= / \/ N \ Capacity
’ v v * Demand
0 1 2 Days

(c) Auto Scaling

Fig. 1. Bandwidth auto-scaling with quality assurance, as compared to provisioning for the peak demand
and pay-as-you-go.

is How should a VoD provider optimally split and direct its workload across the cluster of servers
(whether virtual or physical) provided by the cloud service to save the overall bandwidth reserva-
tion cost? Furthermore, video content must be replicated across different servers in a sparse way
to avoid a high storage cost.

In this article, we propose a bandwidth auto-scaling facility that dynamically reserves resources
from a tightly connected server cluster for VoD providers, with several distinct characteristics.
First, it is predictive. The facility tracks the history of bandwidth demand for each video using cloud
monitoring services and periodically estimates the expectation, volatility, and correlations of de-
mands for all videos for the near future using statistical analysis. We propose a novel video channel
interleaving scheme that can even predict demand for new videos that lack historical demand data.
Second, it provides QoS assurance by judiciously deciding the minimum bandwidth reservation
required to satisfy the demand with high probability. Third, it optimally mixes demands based on
statistical anti-correlation to save the aggregate bandwidth capacity reserved from all the servers,
under the condition that the content must be sparsely replicated with limited content migration.

Given the predicted demand statistics as input, we formulate the bandwidth minimization
problem to jointly decide load direction and sparse content placement as a combinatorial problem
involving Ly norms that model content placement sparsity. We derive the theoretically optimal
load direction across servers when full replication is permitted and propose several approximate
solutions to the joint load direction and sparse content placement problem, striking a balance
between bandwidth and storage costs. In particular, as a highlight, we novelly apply an itera-
tively reweighted L;-norm relaxation technique to approximately solve the Ly-norm penalized

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:4 D. Niu et al.

Bandwidth
Reservation Load Direction W
Demand History
v > Channel 1 Load
wiy V Optimizer
Server 1 [4— =~ — - — MJ\‘N\/\M
. vy W21_ m
Bandwidth [« T W T T T
Usage |+ Server?2 N sis Demand
. 7 *
Monitor D N Y . Projections
NeLZ N Wy
A N
. e ~ N
s, 7 wg\' > >
Server s 51 ————— Z-: —>{ Demand
Wgi Predictor
» Demand History
Channel ¢

Fig. 2. The system decides the bandwidth reservation from each server and a matrix W = [wg;] every At
minutes, where wg; is the proportion of video channel i’s requests directed to server s.

optimization problem. Our technique not only yields sparse content placement decisions but also
effectively reduces the content migration overhead.

We have performed extensive evaluation of the proposed auto-scaling strategies for video stor-
age systems, through trace-driven simulations based on the video streaming traces of 1,693 video
channels collected from UUSee (Liu et al. 2010), a production VoD system, over a 21-day period.

2 SYSTEM ARCHITECTURE

Consider a VoD service provider hosting N videos and relying on S (collocated) servers in a cloud
storage system for service. We propose an unobtrusive auto-scaling system that makes predictions
about future demands of all videos and reserves minimal necessary resources from the server
cluster to satisfy the demand. Our system architecture is shown in Figure 2, which consists of
three key components: bandwidth usage monitor, demand predictor, and load optimizer. Bandwidth
rescaling is performed proactively every At minutes, with the following three steps:

First, before time ¢, the system collects bandwidth demand history of all videos up to time ¢,
which can easily be obtained from cloud monitoring services. As an example, Amazon CloudWatch
provides a free resource monitoring service to AWS customers at a 5-minute frequency [AWS].

Second, the bandwidth demand history of all videos is fed into the demand predictor to predict
the bandwidth requirement of each video for the next At minutes, that is, for the period [¢, t + At).
Our predictor not only forecasts the expected demand but also outputs a volatility estimate, which
represents the degree that demand will be fluctuating around its expectation, as well as the demand
correlations between different videos in this period. Our volatility and correlation estimation is
based on multivariate GARCH models (Bollerslev 1986), which has gained success in stock analysis
and forecast in the past decade.

Finally, the load optimizer takes predicted statistics as the input, calculates the bandwidth ca-
pacity to be reserved from each server in the available server pool, and determines how many
servers should be used. It also outputs a load direction matrix W = [wj;], where wg; represents
the portion of video i’s requests directed to server s. Apparently, we should have } ¢ ws; = 1 if

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:5

Reserved Capacity A; Reserved Capacity A Asum Agum/2 Asum/2
Server 1 Server 2

‘ Channel 1 ‘ Channel 2 Y
7y

Bandwidth

\
\

VOO
/ A/ \
\ \

e

10 Minutes

10 Minutes 0

\
10 Minutes 0 10 Minutes 0 10 Minutes 0

Time Time Time Time
(@ (b) (© (@ (e)

Fig. 3. By exploiting demand correlation between different video channels, we can save the total bandwidth

reservation, even within each 10-minute period, while still providing quality assurance to each video channel.

the aggregate server capacity is sufficient. It is worth noting that the matrix W also indicates the
content placement decision: A copy of video i is placed on server s only if wg; > 0. In practice, the
load direction W can be readily implemented by routing the requests for video i to server s with
probability wg;.

The system finishes the above three steps before time ¢, so a new bandwidth reservation can be
made at time ¢ for the period [t,¢ + At). The above process is then repeated for the next period
[t + At, t + 2At).

Apparently, the key to such a resource auto-scaling framework for video storage is the load
optimizer, which needs to jointly determine a load direction matrix as well as a sparse content
placement strategy to limit both storage and content transfer overhead in each At-minute time
period. The optimizer should also determine load direction W in a way to push workloads onto as
few servers as possible, which will auto-scale the number of servers used.

Bandwidth Reservation vs. Load Balancing. One may be tempted to think that periodic
bandwidth reservation is unnecessary, since requests can be flexibly directed to whichever server
that has available capacity by a load balancer. However, the latter will exactly fall in the range
of pay-as-you-go model with no quality guarantee to VoD users, whereas bandwidth reservation
ensures that the provisioned resource can satisfy the projected demand with high probability.

Furthermore, since the content placement is pre-determined in a traditional load balancing sys-
tem, it is hard to achieve resource auto-scaling—it is impossible to push all demands onto as few
servers as possible when the total demand shrinks, that is, the number of servers used is always
fixed. Neither can a traditional load balancer adjust content placement dynamically to maximize
the multiplexing gain based on demand statistics, as will be discussed subsequently.

Quality-Assured Bandwidth Multiplexing. The bandwidth demand of each video channel
can fluctuate drastically even at small time scales. To avoid performance risks, the bandwidth reser-
vation made for each channel in each period should accommodate such fluctuations, inevitably
leading to low utilization at troughs, as illustrated in Figures 3(a) and (b). Trough filling within a
short period such as 10 minutes is hard with too many random shocks in demand.

However, our load optimizer strives to enhance utilization even when At is as small as 10 min-
utes by multiplexing demands based on their correlations. The usefulness of anti-correlation is
illustrated in Figure 3(c): If we jointly book capacity for two negatively correlated channels, then
the total reserved capacity is Asum < A1 + A;. Besides aggregation, we can also take a part of de-
mand from each channel, mix them and reserve bandwidth for the mixed demands from multiple
servers. As an example, in Figures 3(d) and (e), the aggregate demand of two channels is split onto
two servers, each serving a mixture of demands, which still leads to a total bandwidth reserva-
tion of Asym- In each At period, we leverage the estimated demand correlations to optimally direct
workloads across different servers so the total bandwidth reservation necessary to guarantee qual-
ity is minimized.

Finally, in the case that the actual demand exceeds the reserved bandwidth capacity, the addi-
tional requests can still be served in the traditional best-effort fashion.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:6 D. Niu et al.

3 OPTIMAL LOAD DIRECTION AND BANDWIDTH RESERVATION

In this section, we focus on the load optimizer. Suppose before time ¢, we have obtained the esti-
mates about demands in the upcoming period [t, t + At). Our objective is to decide load direction
W to minimize the total bandwidth reservation while controlling the under-provision risk in each
server. The question of how to make demand predictions will be the subject of Section 5.

We first introduce a few useful notations. Since we are considering each individual time period,
without loss of generality, we drop subscript ¢ in our notations. Recall that the VoD provider runs
N video channels. The bandwidth demand of channel i is a random variable D; with mean y; and
variance al.z. For convenience, let D = [Dy,...,Dn]", p=[p,. - ,pN]T, ando = [o1,...,on]".

Note that the random demands Dy,..., Dy may be highly correlated due to the correlation
between video genres, viewer preferences, and video release times. Denote p;; the correlation
coefficient of D; and D;, with p;; = 1. Let ¥ = [0;;] be the N x N symmetric demand covariance
matrix, with o;; = aiz and o;j = pjjo;o;j fori # j.

The VoD provider will book resources from S servers. Denote Cs the upper bound on the band-
width capacity that can be reserved from server s, for s = 1,...,S. Cs may be limited by the avail-
able instantaneous outgoing bandwidth at server s or may be intentionally set by the VoD provider
to spread its workload across different servers and avoid booking resources from a single server.
Let Csym = 25 Cs be the aggregate utilizable bandwidth capacity of all S servers. Throughout the
article, we assume that Cs,, is sufficiently large to satisfy all the demands in the system.’

Let ® = [¢s;] be the content placement matrix, where ¢s; = 1 if video i is replicated on server
s, and ¢g; = 0 otherwise. We define a load direction decision as a weight matrix W = [wy;], s =
1,...,S,i=1,...,N, where wy; represents the portion of video i’s demand directed to and served
by server s, with 0 < wy; < 1 and Y wy; = 1. Apparently, if ¢5; = 0, we must have ws; = 0. We
observe that wy = [wsy,..., wsn]" represents the workload portfolio of server s. Given wy, the
aggregate bandwidth load imposed on server s is a random variable,

Ly = Z wsiD; = wID. (1)
i

We use A; to denote the amount of bandwidth reserved from server s for this period. Clearly,
we must have A; < C;.Let A =: [Ay, ..., As]". To control the under-provision risk, we require the
load imposed on server s to be no more than the reserved bandwidth A with high probability, that
is,

Pr(Ls > As) <€, Vs, (2)

where € > 0 is a small constant, referred to as the under-provision probability.

3.1 Load Direction Under Full Replication

Suppose ¢s; = 1foralls, i, thatis, each video is replicated on every server. Then, every wy; may take
non-zero values. Specifically, given demand expectations g and covariances X, and the available
capacities Cy, . . ., Cs, the load optimizer can decide the optimal bandwidth reservation A* and load
direction W* by solving the following optimization problem:

mir\}&fklize > Asg (3)
subject to Ay < Cs, Vs, (4)
Pr(Ls > As) <€, Vs, (5)

1A rigorous condition for supply exceeding demand is given in Theorem 3.1.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:7

Zws,- =1, Vi (6)
S

Through reasonable aggregation, we believe that Ly follows a Gaussian distribution. We will
empirically justify this assumption in Section 6 using real-world traces. When L is Gaussian,
constraint (2) is equivalent to

As > E[L] + 0+/Var[Lg], (7)
with 6 := F7}(1 — €), where F(-) is the CDF of normal distribution N (0, 1). For example, when
€ = 2%, we have 0 = 2.05. Since

E[Ls] = 1Ws1 + -+ UNWsN = FTWS,
Var[L,] = 3, j pijoiojwsiwsj = wiZw,,

it follows that Equation (2) is equivalent to

Ag > p'ws + 0 W!Zws. (8)

Therefore, the bandwidth minimization problem (3) under full replication is equivalent to

mm‘l){]mze Z Ag)
subject to Ay = p'w + O+ W!Zwy, (10)

pTws +O0\WIZwW, < C;, Vs, (11)
Zws =1, (12)
S

0<ws =<1, Vs, (13)

where1=[1,...,1]Tand 0 = [0, . .., 0]" are N-dimensional column vectors.
Under full replication, we can derive nearly closed-form solutions to problem (9) in the following
theorem:

THEOREM 3.1. If Csum > p'1 + OV1T21, then an optimal load direction matrix [w?;] is given by

wy =as Vi, s=1,...,8, (14)
where a1, . . ., as can be any solution to
s s =1,

. c (15)
< < —_—
0<as < mm{l, yT1+9W}’ Vs.

If Coum < p'1 + OV1TE1, then there is no feasible solution that satisfies constraints (11) to (13).

ProOF SKETCH. First, f(w;) = \/WIZwj is a cone and thus a convex function. Hence, we have

¥ Wi + W3 < fw1) + f(ws)
2 - 2 ’

or, equivalently,

\/(Wl + W) T2 (wy + wy) < \/WIEWI + \/W-ZI—ZWz.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:8 D. Niu et al.

By induction, we can prove

Z\/‘E . \/(ZWT)z(Zw) (16)

If 3’ w, = 1 is feasible, then by Equations (11) and (16) we have

ICEVEE 9\/(Zs:wl)z(ZW)
="+ 60V1T31.

If 3, Cs > p"1 + 0V1T21, then it is easy to verify that Equation (15) is feasible. When w; = a,
given by Equation (14), we find that Equations (11), (12), and (13) are all satisfied. Hence,
Equation (14) is a feasible solution and), ws = 1 is feasible. By Equation (16), the objective (9)

satisfies
Z (pTws + Hw/wzzws)

N

> pTZwS +9\/(ZWI)Z(ZWS) (17)
=pu"1+6V1TI1.

We find that [w},] given by Equation (14) achieves the above inequality with equality and thus is
also an optimal solution to Equation (9). O

Theorem 3.1 implies that in the optimal solution, each video channel should split and direct its
workload to all S servers following the same weights a;, .. ., s, which can be found by solving
the linear constraints of Equation (15). Moreover, the optimal workload portfolio of each server
s has a similar structure of wg = a1, where a; depends on its available capacity Cs through the
constraints of Equation (15).

Under the optimal load direction, the aggregate bandwidth reservation reaches its minimum

value:
ZA’; = Z (pTw’s‘ + GwlwﬁTZwi)
=p'1+06V1T21,

which does not depend on S, the number of servers. This means that having demand served by
multiple servers instead of one big server does not increase bandwidth reservation cost as long
as ws; = s, Vi given by Equation (14). Therefore, the load optimizer can first aggregate all the
demands and then split the aggregated demand into different servers subject to their capacities.

3.2 Load Direction Under Limited Replication

Although solution (14) is optimal in terms of bandwidth reservation, it encounters two major
obstacles in practice. First, as long as a5 > 0, w;; = a; > 0 for all i, which means that server s
has to store all N videos. In other words, a video has to be replicated onto every server s that
has as > 0. This incurs significant additional storage cost. Second, each video channel i splits its
workload onto all S servers according to the weights a;, ..., as. When S is large and D; is small,
such fine-grained splitting will not be feasible from an engineering perspective.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:9

Therefore, in practice, each video should only be replicated on a few servers to maintain a
reasonable storage overhead. Thus, for each video i, we should have ¢; = 1 only for a subset of
all s. If the content placement matrix ® is given, then the optimal load direction problem becomes

minimize Zsl As, (18)

subject to Ay = p'w + O+ W!Zwy, (19)
Ww + 0\|wiZw, < C;, Vs, (20)

Z ¢siWsi = 1’ Vl, (21)
N

Z(l - ¢si)wsi = 05 Vl7 (22)
N

0<wy<1, Vs, (23)

As compared to the load direction optimization problem (9) under full replication, problem (18)
has the new constraints (21) and (22) due to limited replication, which are clearly equivalent to

ZS wSi = 1’ VI,
Wsi = 0, if¢si =0

Problem (18) is a convex problem and, in particular, a second-order cone program (SOCP) that can
be solved efficiently using standard convex optimization solvers such as interior-point algorithms
or active-set methods. Apparently, the minimum achievable total bandwidth reservation } ¢ A% is

lower bounded by the Y ¢ A% under full replication, which is pT1 + V1T21.

4 SPARSE CONTENT PLACEMENT DESIGN

In this section, we consider the joint design of content placement matrix ® and load direction
matrix W, given the workload statistics y and X. As mentioned in Section 2, given a W, ® can be
determined in the following way:

1, ifwsi >0
duitwa = { g s 20, (29

which means that video i needs to be replicated on to server s only if ws; > 0. Therefore, to deter-
mine load direction with a limited replication overhead, we can use W as a single decision variable
and constrain the number of non-zero entries in it when minimizing bandwidth reservation, lead-
ing to the following optimization problem:

min‘iAI/nize Zs: As, (25)
subject to Ay = p'w + O+ W!Zwy, (26)

pws + 0\wiZw, < Cs, Vs, (27)
Dw=1, (28)

0<w; <1, Vs, (29)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:10 D. Niu et al.

lwsllo < ks, Vs, (30)

where [|w||o is the [y norm of wg, which represents the number of non-zero components in wy.
Constraint (30) essentially says that each server s should only store up to ks videos. Apparently,
problem (25) involves Ly norms and is non-convex.

4.1 Per-Server Heuristics

We propose a suboptimal solution to problem (25) that can handle the storage overhead constraint.
First, we present a heuristic outlined in Algorithm 1, which outputs wi*, ..., w' for each server
s one after another.

ALGORITHM 1: Per-Server Optimal.
b1

fors=1,...,Sdo
Solve the following problem to obtain wi*:

ma)&mize uws (31)
subject to pTw; + OwiZwg < As < Cs, (32)
0<ws<b (33)
b—b-wi"
Exitifb < 0.
end

Algorithm 1 packs the random demands into each server, one after another, by maximizing the
expected demand p"w; each server s can accommodate subject to the probabilistic performance
guarantee in Equation (32). As a result, the total amount of resources needed to guard against
demand variability is reduced. Clearly, with Algorithm 1, the aggregate bandwidth reservation
from all servers is

S
ZA’;* = Z(;ﬂwz* + O\ WETEw). (34)
S

s=1

Note that Algorithm 1 is also computationally efficient, since Equation (31) is a standard second-
order cone program.

Now we handle the constraint ||[w;l|y < ks, which requires each server s to store at most k;
videos. We modify Algorithm 1 to cope with this constraint, leading to Algorithm 2, which outputs

Wi, ..., Wg for each server s one after another.

ALGORITHM 2: Per-Server Limited Channels.
b1
fors=1,...,Sdo
Solve problem (31) to obtain w7
Choose the top ks channels with the largest weights and solve problem (31) again only for these kg
channels to obtain w,
b« b-w.
Exitif b < 0.
end

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:11

With Algorithm 2, the aggregate bandwidth reserved is

S
ZA’S = Z@Tw's + 0w IZwy). (35)
s s=1

In Section 6, we will show through trace-driven simulations that Algorithm 2, though subopti-
mal, effectively limits the content replication degree, thus balancing the savings on storage cost
and bandwidth reservation cost for VoD providers.

4.2 Relaxation Through Iteratively Weighted L; Norms

We now propose to use another algorithm based on L;-norm relaxation to solve Equation (25)
iteratively. Our idea is to adapt a so-called Log-det heuristic in sparse recovery to our sparse design
problem. The Log-det heuristic has previously been applied to cardinality minimization (Fazel et al.
2003), that is, finding a vector x = (xy, . . ., x,) with the minimum cardinality in a convex set C or,
equivalently, minimizing |[x|lp = }; #(x;) subject to x € C, where #(x;) = 0if x; = 0 and p(x;) = 1
if x; > 0. The basic idea is to replace the 0-1 valued objective ¢(x;) for each x; by a smooth log
function log(|x;| + §) and to minimize a linearization of log(|x;| + J) iteratively, which leads to
iteratively reweighted L;-norm approximations to Ly norms. In sparse recovery, it is shown that
such iteratively reweighted L; norms can yield more accurate recovery results than one-time L
norm approximation (Candes et al. 2008).

To adapt the iteratively reweighted L;-norm approximation to our sparse design problem, in
each iteration, we use a carefully designed convex constraint to replace the Ly-norm constraint
(30) and solve the modified problem (25). As iterations proceed, the designed convex constraint
is expected to approach the Ly-norm constraint (30) eventually. The algorithm is described in
Algorithm 3.

Let us explain the rationale behind Algorithm 3. Initially, we replace the constraint |[ws|lo < ks
with }}; wg; < ks, which is a standard L;-norm relaxation, since ||wgl||; = X; |wsi| = X wgi. It is
not hard to see that the bandwidth reservation achieved by W? is a lower bound on the optimal
value of the original problem (25). The reason is that we have

¢si(wsi) > Wsi, lfO < Wsi < 1»

lIwllo = qusi(wsi) > Z Wi

Therefore, }; ws; < ks forms a larger region than ||wlly < ks, and the optimal value achieved by
WY in the relaxed (convex) problem is a lower bound of the original optimal value.
Subsequently, in each iteration, the constraint [|[wg|ly < k; is replaced by an inequality involving

a weighted sum, that is,
Wsi
Qs <k
St

i

and thus

which is a generalized version of Li-norm relaxation with a different weight for each variable.
Note that for a sufficiently small §, on convergence, that is, when wﬁi’l = wgi = w};, we have
W {o ifw?, =0

~ M * bl
wi+6 Lifwy; >0

ési(W:i) =

which is approximately ¢s;(w;;). Thus, the modified constraint };; (j;ﬁi(wsi) < k; eventually ap-
proaches the Lo-norm constraint ||wllp < ks in the original problem, and the generated W* will
almost be feasible for the original problem (25).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:12 D. Niu et al.

ALGORITHM 3: Iterative L1-Constrained.

Initially, replace (30) by >; ws; < kg, for all s, and solve the modified problem (25) under the new
constraints to obtain WY.

for t = 1,..., maximum iteration do

Given the solution W?~! in the previous iteration, define q@ﬁl as

Wsi

b (wsi) = —, Vs, i 36
¢51(Sl) Wél_l + 5 ()
Solve the following modified problem to obtain W’:
inimi A 37
m1n\1"1/mze ES s (37)

subject to As = [ITWS + 04wl Zws, (38)
pTwS + Q\IWIEWS < Cs, Vs, (39)
ZWS =1, (40)

N

0=<ws <1, Vs (41)
D Gtiwi) < ks, Vs, (42)
i

Break if W# and W#~! are approximately equal.
end
Return W* « W',

4.3 Reducing Migration Overhead and Iterative L;-Penalized Optimization

A common issue faced by the above schemes is the content migration overhead. As sparse content
placement optimization is performed every At minutes under varying (predicted) demands, the
placement solutions may change from time to time, leading to the overhead of transferring video
copies. To mitigate migration overhead, we further propose the following Iterative L;-Penalized
Optimization, which not only yields a sparse placement solution but also limits the transfer or
creation of video copies in each time period by attempting to generate a placement solution that
is similar to that of the preceding time period.
First, we add a regularizing term to the original content placement problem (25) to yield

minjmize Z‘AS + 1 Z Gsi(wsi), (43)

. re
(s, z):wspi =0

subject to A = p'w + 04/ WIZws, (44)
uw, + O\ WiZw, < Cs, Vs, (45)
Diws =1, (46)

N

0<wy <1, Vs, (47)
lwsllo < ks, Vs, (48)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:13

where A > 0, and w';* denotes the sparse solution for the previous time period. The regularizer
Z(s,i):wzezo ¢si(ws;) represents the number of video copies that need to be copied or transferred
in this time period; a copy of video i needs to be transferred to server s only if server s does not
store video i previously, that is, wf;e =0, and ws; > 0 (ds;(ws;) = 1) as a result of the current opti-
mization. Note that, in this case, we may remove the constraint ||w;||y < ks, since the regularizer
itself can already generate sparse solutions, as will be explained subsequently.

To solve problem (43), we apply Algorithm 1 to Equation (43) with iteratively reweighted L;-
norm relaxation for the regularizer, leading to the following Iterative L;-Penalized algorithm.

ALGORITHM 4: Iterative Li-Penalized.
b1
fors=1,...,Sdo

Solve the following subproblem using Algorithm 5 to obtain w*:
maximize p'wg — A Z Psi(wsi) (49)
Ws
iw?*=0
subject to uTw + 04/wIZwg < A5 < Cs, (50)
0<ws<b (1)
b—b-wi"
Exitifb < 0.
end

Now we explain the rationale behind Algorithm 4. Initially, for the first Af-minute time period,
we set wspl.re = 0 for all s and i. By doing so, the regularizer in problem (43) will drive the solu-
tions W to be sparse, such that the placement is sparse. Therefore, by properly setting A in the
regularizer, we do not need to include the constraint ||[wslly < ks. For each At-minute time period
afterwards, the optimization problem (43) is approximately solved by Algorithm 4 with penalty
on the new 1’s introduced in matrix W. In other words, if wf;e = 0 in the content placement deci-
sion for the previous time period, Algorithm 4 will penalize wspire = 1 for the current time period,
thus preventing new video copies from being created or transferred. Since the content placement
for the first time period is sparse and each subsequent period penalizes the difference from the
previous period, the content placements for subsequent periods also tend to be sparse. This fact

will be demonstrated in Section 6 through trace-driven simulations.

ALGORITHM 5: Subroutine to Solve the Penalized Problem (49) in Algorithm 4 for a Particular Server s.

Initially, wgi =1-6, foralli.

fort =1,..., maximum iteration do
Given the solution w/~! in the previous iteration t — 1, define ¢§ ; as
ot N Wsi .
¢si(wst) = —Wéi_l s Vi (52)
Solve the following modified problem to obtain w:
maximize pTws -1 Y qﬁﬁi(wsi) (53)
Ws iwP'=0
subject to uTw; + 64JwlZwg < Cs, (54)
0<ws<bh (55)
Break if w/ and w’~! are approximately equal.

end

Return w} « wi.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:14 D. Niu et al.

5 DEMAND PREDICTION

The derivation of load direction decisions critically depends on parameters u and X, which are
estimates of the expected demands and demand covariances for the short-term future [, + At).
In this section, we present efficient time-series forecasting methods to make such predictions based
on past observations.

We assume that the bandwidth demand of channel i at any point in the period [¢,¢ + At) can
be represented by the same random variable D;,. This is a reasonable assumption when At is
small. Similarly, let g, = [p1s, ..., un:] and 3, = [oyj,] represent the demand expectation vector
and demand covariance matrix for all N channels in [t,t + At). We assume that before time ¢,
the system has already collected enough demand history from cloud monitoring services with
a sampling interval of At. The question is how to use the available sampled bandwidth demand
history {Dj; : 7 =0,...,t —1,i =1,..., N} to estimate g, and %,?

In this article, we combine our previously proposed seasonal ARIMA model (Niu et al. 2011b) for
conditional mean (expectation conditioned on the history) prediction with the GARCH model (Niu
et al. 2011a) for conditional variance prediction to obtain a multivariate GARCH model that can
forecast the demand covariance matrix. The model extracts the periodic evolution pattern from
each channel’s demand time series and characterizes the remaining innovation series as autocor-
related GARCH processes. We briefly describe these statistical models here.

The difficulty in modeling the bandwidth demand of a channel i is that it exhibits diurnal pe-
riodicity, a downward trend as the video becomes less popular over time, and changing levels
of fluctuation as population goes up and down. Such non-stationarity in traffic renders unbiased
linear predictors useless. We tackle this problem by applying one-day-lagged differences (the lag
is 144 if At = 10 minutes) onto {D;;} to remove daily periodicity to obtain the transformed se-
ries {D]_ := D;; — Dj; 144}, which can be modeled as a low-order autoregressive moving-average
(ARMA) process:

it—1
D}, = Dir = D r—144,
where {N;;} ~ WN(0, 0) denotes the uncorrelated white noise with zero mean. Equation (56) falls
in the category of seasonal ARIMA models (Niu et al. 2011b; Box et al. 2008).

Model parameters ¢; and y; in Equation (56) can be trained based on historical data using a max-
imum likelihood estimator (Box et al. 2008). To predict the expected demand p;; of channel i, we
first predict y;, := E[D;,|D},_,,D;,_,,...] for the transformed series {D]_} to obtain the estimate
fi7,, using an unbiased minimum mean square error (MMSE) predictor. We then retransform /i,
into an estimate /i;; of the conditional mean p;;, with the inverse of one-day-lagged differencing.

Given the conditional means {fi;;} of channel i over all time 7, we denote the innovations in
{Diz} by {Zi:}, where

{D;r = ¢iD}._; = Niz +yiNir—1, (56)

Zir = Dir — ,ai'r~ (57)
Since the innovation term Z;; represents the fluctuation of D;; relative to its projected expectation
iz, and such fluctuation may be changing over time, we model the innovations {Z;;} using a
GARCH process:
{Zir = \/Eer, {ec} ~ IIDN(0,1),
2 (58)
hiz = aio + anZ;,_; + Bihir-1,

where {Z;;} is modeled as a zero-mean Gaussian process yet with a time-varying condi-
tional variance h;,. Instead of assuming a constant variance for {Z;;}, Equation (58) introduces
autocorrelation into volatility evolution and forecasts the conditional variance h;; of Z;; as a re-
gression of past h;; and Z2 . The model parameters in Equation (58) can be learned using maximum

likelihood estimation (p. 417, Box et al. (2008)) based on training data.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:15

Furthermore, the instantaneous shocks to demands for different videos can be correlated in a
large-scale system. An increase in one video’s demand may or may not affect the demand for
other videos depending on factors like video genres, release time, and so on. To incorporate de-
mand correlation, instead of estimating volatility for each video separately, we can estimate the
time-varying conditional covariance matrix ¥, using multivariate GARCH (Enders 2010). How-
ever, multivariate GARCH models are very difficult to estimate for large-scale problems. For the
two-video case, the number of model parameters to estimate in GARCH(1, 1) is 21, and for the
three-video case, such a number escalates to 78.

To efficiently predict the covariance matrix ¥,, we introduce a constant conditional correlation
(CCC) model (Enders 2010), which is a popular multivariate GARCH specification that restricts
the correlation coefficients p;; to be constant. p;; can be estimated as the correlation coefficient
between series {Z;;} and {Z;;} in recent time periods, and p;; = 1 if i = j. The covariance o;j;
between video i and j at time ¢ is thus predicted as

Gije = hije = pijy[hithjt, (59)

with h;; and hj; predicted using Equation (58) for channels i and j individually.

The full statistical model is a seasonal ARIMA conditional mean model of Equation (56) with a
CCC multivariate GARCH innovation model given by Equations (58) and (59). The above seem-
ingly complex model is extremely efficient to train, as the five parameters ¢;, y;, a0, @i1, and f; are
learned for each video i separately following the procedures mentioned above, and p;; is calculated
straightforwardly from recent history.

5.1 Model Validation via Real Traces

We verify the effectiveness of the proposed workload prediction models based on the workload
traces of UUSee video-on-demand system over a 21-day period during the 2008 Summer Olympics
(Liu et al. 2010). As a commercial VoD company, UUSee streams on-demand videos to millions
of Internet users across over 40 countries through a downloadable client software. The dataset
collected contains performance snapshots taken at a 10-minute frequency of 1,693 video channels,
including sports events, movies, TV episodes, and other genres. The statistics we use in this article
are the time-averaged total bandwidth demand in each video channel in each 10-minute period.
There are 144 time periods in a day.

As an example, we make a 10-minute-ahead (one-step) prediction of the bandwidth demand of a
popular video channel i = 121 released at time period ¢, = 264 (2008-08-10 10:47:39). The channel
has a maximum online population of 2,664. The bandwidth consumption series of the first 1.25 days
is used as the training data starting from time period 81. The initial 80 time periods are excluded,
which may not conform to later evolution patterns. The prediction is tested on the data of 3 days
following the training period. We fit the low-order models of Equations (56) and (58) to the training
data and obtain model parameters through a maximum likelihood estimator (Box et al. 2008). As
shown in Figure 4, such a low-order model merely trained based on the data of 1.25 days can yield
conditional mean predictions that are close to the actual demand. The resulted prediction errors
plotted in Figure 4(b), with a mean of zero, have a varying conditional standard deviation predicted
by the GARCH model in Figure 4(c).

Then, we verify that D;; approximately follows a Gaussian distribution in each 10-minute pe-
riod. Recall that for each channel i, given conditional mean prediction fi;; at time t, the innovation
is Zj; := Dj; — flis. Figure 5(a) shows the QQ plot of Z;; for a typical channel i = 121, which indi-
cates {Z;;} sampled at 10-minute intervals is a Gaussian process. Thus, it is reasonable to assume
D;; follows a Gaussian distribution within the 10 minutes following ¢, with mean /;;. Figure 5(b)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:16 D. Niu et al.
900 T

- 800r
s i
§700* i
£ 600}
S
£ 500},
< ' L
S 400’ I
[0)) r
© 300 ' '
[e)) 1
(0] [/ 1

-==Trace data
—— 1-step prediction]|
- - Training data

A W
R Y

(944 416 488 525 597 669 741 813 885
Time (unit: 10 minutes)

(a) One-step conditional mean demand prediction

%
-
e
e
- __-_“—
—

I

o ——
e i

150
100

) WMWW " Mﬁ

-100[
—-150k I ! I ! I -

525 597 669 741 813 885
Time (unit: 10 minutes)

(b) Prediction errors

o O O

Errors (Mbps)

[¢)]
[&]

o
o

N
o

Standard deviation (Mbps)
N
(%))

3 L L Il Il L
§25 597 669 741 813 885
Time (unit: 10 minutes)

(c) One-step prediction for conditional standard deviation

Fig. 4. The 10-minute-ahead (one-step) prediction for the bandwidth demand of a popular video channel
i=121.

shows the QQ plot of }'; Z;;, which indicates that the aggregated demand }}; D;; tends to Gaussian

even if Dj; is not for some channel j. Since the load L, of each server is aggregated from many
videos, it is reasonable to assume L is Gaussian.

5.2 A Channel Interleaving Scheme

Although we have presented a complete framework for efficient forecasts of expected future de-
mand p, and demand covariance matrix X, the parameter learning for the seasonal ARIMA model
of Equation (56) requires a training data of more than 1 day (specifically 1.25 days in our predic-
tor) to incorporate daily periodicity into the model. As new videos do not have enough historical

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:17

15 1500
2 + a +
2 10 e’ g 1000 e
P
® 5 - ? 500
> >
g g
- 0 — 0
) o
8 5 - 3 -500
-'g :‘\!“" % f’:—_ﬂf
S —10f +° S 1000 -*++
g] -
ST 0 1 2 3 ST 0 1 2 3
Standard Normal Quantiles Standard Normal Quantiles
(a) Z;; of a typical channel (b) >, Z;; of all channels combined
Fig. 5. QQ plot of innovations for t = 1,562-1,640 vs. normal distribution.
—_ - 400 -
2400 —Video959F2 Q —Video9AB4A
§ —Video4EOB2 2 —Video4E50A
=~ ~300
= 300 =
je! je)
g g
S 200 g 200
o] Neo]
2)
© ©
100 2 100
(@) ()]
% <
0 Day 12 Day 13 Day 14 0 Day 16 Day 17 Day 18
Day 10 Day 11 Day 12 Day 10 Day 11 Day 12

Fig. 6. Videos released on different days but at the same time of day exhibit similar initial demand patterns.

observations for model training, their demands can hardly be forecasted from history. In this sec-
tion, we propose methods to predict demands for newly released videos that lack historical ob-
servations and unpopular small video channels. We tackle this issue by intelligently interleaving
traffic of new videos to form “virtualized video channels” for demand prediction. We also use a
similar technique to combine small channels to improve prediction accuracy.

Let us consider new videos that have been in the system for less than 1.25 days. Although these
videos do not have sufficient historical observations for model training, we observe that their initial
demand patterns are quite similar to videos that were released earlier around the same time of day.
For example, the left half of Figure 6 shows the initial demands of two video channels, 959F2 and
4E0B2, released at 2008-08-19 21:31:56 and 2008-08-17 21:23:20, respectively. As both videos are
released around the same time of day, though on different days, they are aligned in Figure 6 for
comparison, with double lines of x-labels showing the first 3 days of each video. (2008-08-08 is
deemed as Day 1 and the first time period of each day is 14:50.) We can see that the two videos
exhibit a similar initial demand evolution pattern, though with different popularity. The major
reason for such similarity is that most users watch VoD channels around several peak times in a
day: Both videos are released between 21:00 and 22:00 and will expect the first peak demand at

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:18 D. Niu et al.

@

Q. T T T T T T T T

§ 600{—Trace data — 1-step prediction- - - Training data\ 1
= . i "

5 i ; " :2'.

R Y hoooB
< niid s i :

38 T ;:;;\; ! :

g2000 'R RH P oa |
S oLk h Por AT

[0 H . 1 M H v 1

= P Ve ; L

<<

33 577 721 865 1009 1153 1297 1441 1585 1800
Time (unit: 10 minutes)

Fig. 7. The conditional mean prediction for S; in virtual new channel 11, with a test period of 1.5 days from
time 1585 to 1800. Only a part of the entire training data is plotted.

midnight, followed by a second peak at noon on the next day. Similarly, the right half of Figure 6
compares the initial demands of video 9AB4A released at 2008-08-23 17:11:54 and video 4E50A
released at 2008-08-17 17:02:38. They also exhibit similar initial demand patterns, with the first
peak around 18:00, which is the start of off-work hours, before the second peak around midnight.
Different videos, however, may attract different sizes of population depending on their popularity.

From the above analysis, we can predict the demand for a new video based on other videos
released on an earlier date but at the same time of day. To implement this idea, we define virtual
new channel k as a combination of all video channels with an age less than 1.25 days and released
in hour k € {1, ..., 24} on any date. On release, a new video joins virtual new channel k based on
its release hour k and quits this virtual new channel when it has been in the system for 1.25 days
and accumulated enough observations for separate model training. As a result, each virtual new
channel k contains a dynamic set of video channels released in hour k yet possibly on different
days. For example, Figure 7 shows the aggregate bandwidth demand of virtual new channel 11
from time 433 to 1800, and Figure 9 shows the number of videos contained in virtual new channel
11 from time 1 to 1800. We can see that although virtual new channel 11 represents a dynamic
group of videos, its aggregate bandwidth demand exhibits repetition of a similar pattern, because
the videos in this virtual channel are all released in hour 11, possibly on different dates.

Similarly, we aggregate small video channels and set up 24 virtual small channels. When a video
reaches the age of 1.25 days, it quits its virtual new channel. If its demand never exceeded a thresh-
old (e.g., 40Mbps) in the first 1.25 days, then it will join one of the virtual small channels in a
round-robin fashion. Otherwise, it becomes a mature channel.

Each mature or virtual channel is deemed as an entity to which predictions and optimizations
are applied. For example, we make 10-minutes-ahead prediction of bandwidth demand for virtual
new channel 11 and plot the conditional mean prediction in Figure 7 and the conditional standard
deviation prediction in Figure 8 for a test period of 1.5 days. Satisfactory prediction performance
is observed. Although conditional mean prediction is subject to errors, the GARCH model can
predict the conditional error standard deviation, as shown in Figure 8, which contributes to the risk
factor of Equation (11) in the bandwidth reservation minimization. Furthermore, the combination
of several real video channels into a virtual channel suppresses random shocks, making prediction

more accurate.

6 PERFORMANCE EVALUATION

We conduct a series of simulations to evaluate the performance of our auto-scaling reservation
schemes for video storage systems. The simulations are driven by the replay of the workload traces

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:19

100 10—
ot ===Training Period
50 P —Test Period
o 8
o |
0 ° P
g Z o
2 S
-0 gai
E |1 1 s
-100 — Prediction error =2 : P : : o H
] — Error standard deviation A
B 51%85 - 1657 1729 1800 G1 433 865 1297 15851800
Time (unit: 10 minutes) Time (unit: 10 minutes)
Fig. 8. The prediction error and predicted error Fig. 9. The number of videos in virtual new
standard deviation for S; in virtual new channel channel 11 during the entire training and test
11. periods.

of UUSee video-on-demand system over a 21-day period during 2008 Summer Olympics (Liu et al.
2010). We ask the question regarding what the performance would have been if UUSee had all its
workload in this period served by cloud services through our auto-scaled bandwidth reservation
system.

We conduct performance evaluation for four typical time spans that are near the beginning,
middle, and end of the 21-day duration. We implement statistical learning and demand prediction
techniques presented in Section 5 to forecast the expected demands p; and demand covariance
matrix X; every 10 minutes. The model parameters are retrained daily, with training data being
the bandwidth demand series {D;;} in the recent 1.25 days of each channel i. Once trained, the
models will be used for the next 24 hours. Although video users may join or quit a channel unex-
pectedly, our prediction is still effective, since it deals with the aggregate demand in the channel
that features diurnal patterns. We assume that there is a pool of servers from which UUSee can
reserve bandwidth. To spread the load across servers, we set Cs = 300Mbps for each s. The QoS
parameter 0 := F~1(1 — €) is set to = 2.05 to confine the under-provision probability to € = 2%.

6.1 Algorithms for Comparison

We compare our optimal load direction (14) under full replication and Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4 with sparse content placement against the following baseline
algorithms:

Reactive without Prediction. Initially, replicate each video to K randomly chosen servers,
which limits the initial content replication degree to K. Each client requesting channel i is ran-
domly directed to a server that has video i and idle bandwidth capacity. A request is dropped if
there is no such server. In this case, the algorithm reacts by replicating video i to an additional
server chosen randomly that has idle capacity. Replicating content is not instant: We assume that
the replication involves a delay of one period of time.

Random with Prediction. Initially, let s = 1 and b = 1. Second, randomly generate w; in (0, b)
and rescale it so the QoS constraint (11) is achieved with equality for s. Update b to b — w, and
update s to s+ 1. Go to the second step unless b =0 or s =S + 1, in which case the program
terminates.

The reactive scheme represents provisioning for peak demand in Figure 1 in some way, with lim-
ited replication. It does not leverage prediction or bandwidth reservation. We assume in Reactive

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:20 D. Niu et al.

that the total cloud capacity allocated is always the minimum capacity needed to meet the peak
demand in the system. The random scheme leverages prediction and makes bandwidth reservation
but randomly directs workloads instead of using anti-correlation and optimization techniques to
minimize bandwidth reservation.

We implement all of the six schemes discussed above and summarize their performance com-
parison in Table 1 for each of the four time spans. Iterative L;-Constrained is only evaluated for
time periods 702-780, as it cannot converge within 10 minutes for more than 91 channels. Note
that the channels in the table include mature channels, virtual new channels, and virtual small
channels. The number of videos in each virtual channel can vary over time. As new videos are in-
troduced, more channels are present in later test periods. We evaluate the algorithm performance
with regard to QoS, bandwidth resource occupied, and replication cost.

6.2 The Benefit of Predictive Provisioning over Reactive Provisioning

Table 1 shows that Reactive generally has a more salient QoS problem than all five predictive
schemes in terms of both the number of unsatisfied channels and request drop rate (percentage of
unsatisfied requests), demonstrating the benefit of demand prediction. Figure 10 presents a more
detailed comparison for a typical peak period from time 702 to 780. Without surprise, Reactive
has many unfulfilled requests at the beginning. Since the videos are randomly replicated to K = 2
servers (shown in Figure 10(d) at t = 702) and requests are randomly directed, it is likely that a
channel does not acquire enough capacity to meet its demand. As Reactive detects the QoS prob-
lem, videos are replicated to more servers to acquire more capacity, with a gradually increased
replication degree over time, as in Figure 10(d). We can see that after 140 minutes, when the repli-
cation degree exceeds 4, the QoS of Reactive becomes relatively stable in Figure 10(a). However,
around time 763, Reactive suffers from salient QoS problems again, due to a sudden ramp-up of de-
mand. In contrast, the predictive schemes foresee and get prepared for demand changes, resulting
in much better QoS, even in the event of drastic demand increase.

The predictive schemes also achieve higher resource utilization. Utilization of a predictive
scheme is the ratio between the actual bandwidth usage and the total booked bandwidth in all
servers. For Reactive, the utilization is the actual bandwidth demand divided by the peak demand.
Although Figure 10(c) shows that Reactive achieves a high utilization for the peak demand around
time 763, its average utilization is merely 77.19% in the test period from 702 to 780. Predictive
auto-scaling enhances utilization to 85.7% with Per-Server Limited Channels, to 90.0% with Per-
Server Optimal, to 88.2% with Iterative L;-Constrained and to 92.9% with the theoretical optimal
solution under full replication.

6.3 Resource Autoscaling: A Comparison Among Predictive Schemes

We now compare the six predictive schemes. Among them, as shown in Table 1, Optimal books
the minimum necessary bandwidth and achieves the highest bandwidth utilization yet with the
highest replication overhead. In fact, with full replication, each video is replicated to every server,
and thus the optimal solution can best exploit the anti-correlations among all the channels to
minimize reserved bandwidth. However, the VoD provider needs to pay a high storage cost to the
cloud service provider.

Among all the five predictive schemes that replicate content sparsely, Random achieves the
lowest utilization, since it is completely blind to the correlation information in workload selection
and direction. Per-Server Optimal can reduce the replication degree while maintaining other per-
formance metrics. By further imposing a channel number constraint on each server, Per-Server
Limited Channels strikes a balance between replication overhead and bandwidth utilization. It ag-
gressively reduces the replication degree to a very small value of 2.4-2.6 copies per video. Iterative

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:21

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud

‘sueds oW 19110 10 ISBD Y] ST YIIYM
‘S[UUEYD 6 UBY) dIOW I0J SIINUTIW (] U} 939[dUIod A[JUSTOLJS J0UUED J1 90UIS ‘08/—Z0/ SPOLIad ot} 0] PaJBNTeAd AJUO ST PIUTRIISUO)- [T ATIRIS] 910N
‘orje1 Suruorsiaoid-1oa0 aferoae :A0Xd-I2AQ SYIPIMpPUR] PI0O(] dFeIAL :pIq0O0g 22130p
uorjeorjdar oge1aae :day] (5921n0s31 pajedo][e Jo UoTeZIN 95RISAR :[13() ‘91e1 do1p Jsanbar oGeraae :dox(q ‘sysonbax paddorp yim spouUeyd # 95RISAY :JI0YS

(sppuueyd T

BN)IIA PUR 2INJRW 66T)

0052-20%g sportad awry,

(sppuureyp e

N)IIA PUR 9INJRW 9/ T)

0¥91-29

61 sporrad awr],

%SVl sdqD z6'T1 1c %118 | %100 sYo 0'1 %1611 sdqo 6g'L 0¢ %SY8 | %€00 | SUYDT'T [eusd-+T 11
%e0v1L sdqo 10721 9°¢ BIVL | %EV'0 | SYO QST %Y 0v1 sdgo 806 §'e BLTL | %L0 | SUD6'S QATIORY
%621 sdqo $S'TT Sy %6°LL | %200 | SYD ¥'ee %Y'Gel sdqo 8z'g €€ %08 | %0070 sy ¢'9 wopuey
%9°CCl sdqD 6°01 S'C %€TC8 | »LI'O | SYD L0T %6611 sdqo 68°L ve %6'€8 | %000 | SUYOV'L wrT I9AISS-I9d
%8'1C1 sdqD £8°01 €9 %L'C8 | %600 sYd 0'1 %0FIT sdqo 167 €L %e'88 | %910 | SYD L0 1dQ 19A19G-194
%1811 sdqo 5501 0661 %y'S8 | %IT'0 YD 0 %V0TT sdqo £z 09LT %116 %1€0 sS4 0 reundo
Aoxd-19AQ payoog doy mn doxq JI0YS Aoxd-19A0Q payoog doy mn doxQg JI0yS
sdqo z9' puewap ueaw ‘sdqo) ¢1°¢ puBwap NedJ sdqo z9°¢ puewap uesw ‘sdqo 66'/ puewap yeda g SpoLRg

(s[ouureyd [eNIIA puE 2INJRW 19T) 08FT-ZZHT sporrad swury,

(S[oUUERYD [ENJIIA PUE 2INJRW 16) 08L—Z0L SporIad sty

%8811 sdqo 889 €T WbLV8 %0 SYD 1°0 %L'8TT sdqo 812 €C %1'G8 | %9070 SYD 1°0 [euad-1T 1]

- - - - - - %eYIL sdgD z6'9 8V %288 | %810 SYO 0 nsuo)-IT 0y
%091 sdqo 0z'8 9'¢ Y OL | %¥E0 sYD ¢'L %Y'2EL sdqo 16°L 154 %CLL | %LYO | SUD6'L QAT}OBY
%y'eel sdqo 80°L 0'¢ %228 | %0070 SY0 9°L %' 1e1 sdqo ¢¢'1 8¢ %€'€8 | %200 SYD 6°G wopuey
%8811 sdqD 989 ¥e %9Y8 | %€0°0 sYd 20 %8 LTT sdqo ¢1°2 9T %L'S8 | %900 | SYD €0 WIT I9AJSS-I9d
%Y ETL sdqD 959 69 %988 | %E€1°0 syo ¢’ %CCll sdg9 6£'9 6’8 %006 | %LE£0O | SUDO'T 3dQ 19A19G-104
%e0TT sdqo 8¢9 0191 »1'T6 | %S0 sYo 0 %G"80T sdqo £5'9 0'T6 %626 %99°0 sYo 0 reundo

Aoxd-19A0 payoog doy mn doxq JI0yS Aoxd-19A0 payooq doy mn doxq JI0yS
sdqo 16'% puewap ueaw ‘sdqo) 189 purwap Ned sdqo 61°g puewap ueaw ‘sdqo) 969 purwap yeda SpoLRg

uoijed1|day pue ‘uoljezijI}N 221N0SaY ‘SOY) JO SWLII] Ul ‘pOLIdd 1S3] UdB] JSA0 PITEIIAY SAWSYDS JUIIdYI JO DUBLLIONS] Y] | 3|qe]

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:22 D. Niu et al.

12 T T T T T T T 50 T T T T T T T
—Per-server optimization —Per-server optimization
— Per-server limited channels — Per-server limited channels
10 | - - lterative L1-constrained 4 - - lterative L1-constrained
;\? —Reactive without prediction K%} 40 - —Reactive without prediction 1
< ©
© gl 4 =
< c
< T30 1
g S 30
3 1 3
<4 @B 201 4
g 1 8
2 2
= | | =10 1
) I 0 VY oclx
722 732 742 752 762 772 780 702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes) Time (unit: 10 minutes)
(a) Request drop rate (% unsatisfied requests) (b) Number of channels with unsatisfied requests
35 T T T T T T T
—Per-server optimization
— Per-server limited channels
30+ - - Iterative L1-constrained
—Reactive without prediction
[
— © 25
S 3
c 2 20
2 S
%1 _S 15
5 o
> 1o
—Per-server optimization
50— Per-server limited channels 5
- - lterative L1-constrained
0 —Reactive without prediction 0 N
702 712 722 732 742 752 762 772 780 702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes) Time (unit: 10 minutes)

(c) Utilization of reserved resource (d) Replication degree

Fig. 10. Predictive vs. reactive bandwidth provisioning for a typical peak period 702-780. There are 35 servers
available, each with capacity 300Mbps, and 91 channels, including 52 popular channels, 24 small channels,
and 15 non-zero new channels. For Reactive, K = 2. For Iterative Li-Constrained, the number of videos per
server is ks = 5 for all s. For all other schemes, ks = 10 for all s.

L1-penalized turns out to be a numerically stable method that yields the smallest replication
degree among all the predictive schemes, with an extremely low drop rate and an over-provisioning
ratio that is only slightly higher than Optimal and comparable to Per-Server Limited Channels.
Nonetheless, Iterative L;-Constrained, as shown in Figure 10(c) and Figure 10(d), achieves a
slightly higher utilization of booked bandwidth than Per-Server Limited Channels at the cost of
a higher replication degree. The request drop rates and numbers of unsatisfied channels in both
schemes are similar to each other, as shown in Figure 10(a) and Figure 10(b). Note that for Itera-
tive L;-Constrained, we have set the number of videos per server to be ks = 5, which is one half
of that in other schemes. The reason is that in Iterative L;-Constrained, the modified constraint
i gzgi ;(ws;) < kg does not always converge to the video number (Ly-norm) constraint per server
lwsllo < ks. In Figure 10(d), the spikes in the replication degree corresponds to the time periods
where the iterative program aborts in an iteration when there is no feasible solution to constraints
(39)-(42). In such cases, the modified constraint (42), that is, J; g{;;.(wsi) < ks, never converges to
lwsllo < k. Thus, there exist much higher replication degrees in such time periods, although k; is
set to a low value. In fact, it is challenging to tune the parameter § so Iterative L;-Constrained can
always converge for all time periods with different input demands. Furthermore, for 91 channels,
Iterative L;-Constrained takes on average 600s” to finish the iterative optimization procedure for

2Running times are measured on a 2.6GHz Intel Core i7 processor.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud

3000 T T —--Per-server 'optimizati:')n T T 1
- -Per-server limited channels
2000 - - lterative L1-penalized
@ g
o A
§ 1000 ¥ Afedt
ol i
i Iy
-1000 L L L L L L L
702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes)
(a) Cushion bandwidth (reserved - used)
3000 T T T T T
—--Per-server optimization
2500 - -Per-server limited channels -
2000 - - lterative L1-penalized
2 1500
o) \
= 1000
500 1)
N AN
of \:',' N
-500 k) 1 1 1 1 1
1422 1432 1442 1452 1462 1472 1480
Time (unit: 10 minutes)
(¢) Cushion bandwidth (reserved - used)
I I I " —-Per-server op'timizatioﬁ
3000 - - -Per-server limited channels
. A .‘A - - Iterative L1-penalized
g 20001 | /o fuf 2l A\ —Raniom Js
a LY A=A oy
S YT ¥
1000 N N/ J
"
(3 W ¥ 4
. . i . \ , .
1562 1572 1582 1592 1602 1612 1622 1632 1640
Time (unit: 10 minutes)
(e) Cushion bandwidth (reserved - used)
8000 I sorarver optimization I I I
60001 = -Per-server limited channels) |

_2000 1 1 1 1 1 1 1
2402 2412 2422 2432 2442 2452 2462 2472 2480

Time (unit: 10 minutes)

[- - lterative L1-penalized "

(g) Cushion bandwidth (reserved - used)

)

Improvement (%

Improvement (%)

Improvement (%,

Improvement (%)

19:23

120 T T T T
—Per-server optimization vs. Random
100 F — -Per-server limited channels vs. Random|
80 —--lterative L1-penalized vs. Random
60
40
20
ot
-20 L L L L L L L
702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes)
(b) Savings on cushion bandwidth (702—780)
100 T T T T T
—Per-server optimization vs. Random
80k - -Per-server limited channels vs. Random |
—--Iterative L1-penalized vs. Random
60 ff 1
!
1 4
401 .
20 [K, s
r SRR et RN TN i
,"A'\ ANy Sid v \\\;\“\\rl"'\' AEEA
0 L L L 1 L
1422 1432 1442 1452 1462 1472 1480
Time (unit: 10 minutes)
(d) Savings on cushion bandwidth (1422—1480)
120 — Per-server optir'nizaliun V5. Random I I I
100 = -Per-server limited channels vs. Random 4
—--Iterative L1-penalized vs. Random
80 1
60 1
A
ELANAN S g
vy . A AY
At~ i | AW -y A o
20} VS meA g ey A : Ky [SNEIA t% e
\l 4 N N ’ - =
0 L L L 1 L
1662 1572 1582 1592 1602 1612 1622 1632 1640

Time (unit: 10 minutes)
(f) Savings on cushion bandwidth (1562—1640)

i i
20} ¥ —Per-server optimization vs. Random '-"-' |
- -Per-server limited channels vs. Random
40 + —--Iterative L1-penalized vs. Random 2 <
2402 2412 2422 2432 2442 2452 2462 2472 2480

Time (unit: 10 minutes)
(h) Savings on cushion bandwidth (2402—2480)

Fig. 11. Workload portfolio selection vs. random load direction for different time periods. For all the schemes,
the number of videos per server is ks = 10 for all s.

each time period, which exceeds 10 minutes, the length of each time period. Therefore, Iterative
L;-Constrained is not efficient and stable enough for the purpose of content placement.

In contrast, both Per-Server Limited Channels and Iterative L -Penalized are much more efficient
and numerically stable: It takes up to only 2 minutes for prediction plus either of the two schemes
to finish for each time period, well before the deadline of 10 minutes. Therefore, considering repli-
cation degree, QoS, utilization, and computational efficiency, Per-Server Limited Channels and
Iterative L;-Penalized are the best, although it will be demonstrated subsequently that Iterative L1-
penalized has the additional benefit of mitigating content migration overhead across time periods.

We further show a detailed comparison between Per-Server Optimal, PerServer limited chan-
nels, Iterative L;-Penalized, and Random for all four time spans in Figure 11. The efficiency of
predictive bandwidth booking can be evaluated by the cushion bandwidth needed, which is the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:24 D. Niu et al.

T T
—--Per-server optimization

- - -Per-server limited channels |
- - lterative L1-penalized

w
o

w
S

w

=]

n
o

—--Per-server optimization
— -Per-server limited channels A - N

- - lterative L1-penalized -
,—Random

n
=]

Servers Used
n
(3}

Servers Used

n
o
7

15 1 1 1 1 1 15 1 . 1 1 1
702 712 722 732 742 752 762 772 780 1422 1432 1442 1452 1462 1472 1481
Time (unit: 10 minutes) Time (unit: 10 minutes)

(a) Server autoscaling for time periods 702—-780 (b) Server autoscaling for time periods 1422-1480

40 T T T T T T T 50 T T T T T T T
---Per-server optimization AV
- -Per-server limited channels 45+ 1\ NGO\ SN g
§ 35 - - lterative L1-penalized § \;"\j,\‘-/\‘." VN
=) S40F Pt N AR S
« 30 o
> o35+
2 25 < c
% 2 % % 30 —--Per-server optimization
g N ‘ g - -Per-server limited channels
20r 1 25 - - lterative L1-penalized A
—Random
1 5 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1
1562 1572 1582 1592 1602 1612 1622 1632 1640 2402 2412 2422 2432 2442 2452 2462 2472 2480
Time (unit: 10 minutes) Time (unit: 10 minutes)
(¢) Server autoscaling for time periods 1562-1640 (d) Server autoscaling for time periods 2402—-2500

Fig. 12. Server auto-scaling: The number of servers used by each predictive provisioning scheme in each time
period for four different time spans.

gap between the booked bandwidth and actual required bandwidth. Figures 11(c), (), and (g) plot
the cushion bandwidth. For example, during time periods 1562-1640, while being on the same
QoS level, random load direction results into a cushion bandwidth up to 3Gbps compared to a
mean demand of 5.62Gbps, representing significant over-provisioning. Using Per-Server Optimal,
the cushion bandwidth can be saved by 50% on average, as shown in Figure 11(f). Per-Server Lim-
ited Channels and Iterative L;-Penalized, even with a replication degree of about twp copies per
video, can save cushion bandwidth by around 30% as compared to Random, which has a higher
replication degree of 3.3 copies per video.

QoS problems occur if bandwidth is under-provisioned, leading to a cushion bandwidth below
0. For example, from Figure 11(e), we observe that QoS problems occur occasionally for Per-Server
Optimal but seldom for Per-Server Limited Channels and Iterative L;-Penalized from time 1562 to
time 1640, because the latter schemes conservatively book more cushion bandwidth.

An important advantage of our schemes is that they can auto-scale the number servers (in-
stances in terms of cloud computing) used. The actual numbers of servers used by different pre-
dictive schemes in different time periods are shown in Figure 12. Since our algorithms adopt a
per-server heuristic, they can push most loads only onto necessary servers instead of letting the
load spread across the available server pool. This enables the idle servers to be used for other
purposes.

6.4 Replication and Migration Overhead

We now evaluate the replication and migration overhead in the simulated video storage system. We
compare the replication degree, migration overhead, QoS, and utilization achieved by Per-Server
Optimal, Per-Server Limited Channels, Iterative L;-Penalized, and Reactive in all four different
time spans and show the results in Figures 13, 14, 15, and 16, respectively.

From these figures, we can see that, as compared to all other schemes, Iterative L;-Penalized can
effectively reduce the number of video copies transferred in each time period by using a regularizer
to limit the difference from the previous placement decision, avoiding the global shuffling. In the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:25

12 T T T T T T T
—~Per-server optimization
— Per-server limited channels
10 | - - lterative L1-penalized 4
Q —Reactive without prediction
3
- al | —_
5° 2
5 5
S 6f 1 =
9 N
o =
g 1>
(%]
5 —Per-server optimization
2H 1 50 | — Per-server limited channels
- - lterative L1-penalized
o l' 0 —Reactive without prediction
702 712 722 732 742 752 762 772 780 702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes) Time (unit: 10 minutes)
(a) Request drop rate (% unsatisfied requests) (b) Utilization of reserved resource
35 T T T T 300 T T T T T T T
—Per-server optimization —Per-server optimization
— Per-server limited channels — Per-server limited channels
30F - - lterative L1-penalized 7] 250 ' - - lterative L1-penalized 4
—Reactive without prediction] —Reactive without prediction
© o
o251 1 @
> & 200
> R
T20L 1 2
c =
o » 150
T 151 1 o
_g 15 8
T% < 100
s 3 s0ffn L SN N
,’.,,K_-_-E\ T N S ‘,/’\/J/)’\\“/ LU A K f& 1y
oL 0 . NN bl I
702 712 722 732 742 752 762 772 780 702 712 722 732 742 752 762 772 780
Time (unit: 10 minutes) Time (unit: 10 minutes)
(c) Replication degree (d) Number of video copies migrated

Fig. 13. Performance of different schemes for a typical peak period 702-780. There are 35 servers available,
each with a capacity of 300Mbps, and 91 mature and virtual channels. For Reactive, K = 2. For Per-Server
Limited Channels, ks = 10 for all s.

meantime, Iterative L;-Penalized achieves a slightly lower replication degree as Per-Server Limited
Channels and a similar level of high resource utilization as Per-Server Limited Channels.

Furthermore, the execution of Iterative L;-Penalized is quite lightweight in our simulation. In
the subroutine, Algorithm 5, we set maxiteration = 5, and set A(1) = 0 and

-1
=-. S, 1=2,3,4,5.
3 Zi:wsp;e:O ¢si(wsi)

With the above setting, it takes less than 1 minute to execute Iterative L;-Penalized, and the solu-
tion is already sparse enough.

1 u'w

A1)

7 RELATED WORK

Researches on exploiting virtualization techniques for delivering cloud-based IPTV services have
been conducted by major VoD providers like AT&T (Aggarwal et al. 2011). The importance of
VoD bandwidth demand prediction to capacity planning has also been recognized. It is shown that
demand estimates can help with optimal content placement in AT&T’s IPTV network (Applegate
et al. 2010).

The traffic characteristics of the two popular video streaming services, Netflix and YouTube,
are studied in Rao et al. (2011), where it is observed that the bandwidth of links carrying video
streaming traffic should be provisioned to E[R(t)] + a+/Var[R(t)], where R(t) is the aggregate data

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:26 D. Niu et al.

12 T T T T T 110 T T T T T
—Per-server optimization
— Per-server limited channels
10 |- - - lterative L1-penalized 4 100
< —Reactive without prediction
9
T 8t 1 9 90
© L
5 5
< 6f ’ = 80
3 g
@ =
S 4t 1 5 70
%)
5 —Per-server optimization
2+, 4 60 = Per-server limited channels
\ - - lterative L1-penalized
0 50 —Reactive without prediction
1422 1432 1442 1452 1462 1472 1480 1422 1432 1442 1452 1462 1472 1480
Time (unit: 10 minutes) Time (unit: 10 minutes)
(a) Request drop rate (% unsatisfied requests) (b) Utilization of reserved resource
35 T T T T T 400 T T T T T
—Per-server optimization —Per-server optimization
— Per-server limited channels 350 ! — Per-server limited channels |
30 - - lterative L1-penalized] | - - lterative L1-penalized
® —Reactive without prediction ; —Reactive without prediction |
© 251 | '
=)
o)
o2k 1
c
K<)
w15+ .
L
8
5t . \ :
#ﬁ(—*—»'?_r_’,\‘___________.___N____—_.___-f_—;_-; Y v v \\,‘ N v “,\,'
oL | | | | | 0 - | . . !
1422 1432 1442 1452 1462 1472 1480 1422 1432 1442 1452 1462 1472 1480
Time (unit: 10 minutes) Time (unit: 10 minutes)
(c) Replication degree (d) Number of video copies migrated

Fig. 14. Performance of different schemes for a typical peak period 1422-1480. There are 36 servers available,
each with a capacity of 300Mbps, and 161 mature and virtual channels. For Reactive, K = 2. For Per-Server
Limited Channels, ks = 10 for all s.

rate of the video streaming traffic at time t. @ > 1 is a constraint on the tolerable bandwidth vi-
olations. Furthermore, it is pointed out in Rao et al. (2011) that the mean and variance of the ag-
gregate data rate of video streaming traffic are independent of the underlying streaming strategies
used, which may range from non-ack clocked ON-OFF cycles to bulk TCP transfer, depending on
the type of the application (Web browser or native mobile application) and the type of container
(Silverlight, Flash, or HTML5) used. Hence, the required bandwidth is also independent of these
diverse factors. This implies that video services can safely select a streaming strategy that can be
optimized for other goals such as server load without overwhelming the network.

Due to the predictability of aggregate video traffic, several time-series and statistical learning
methods have been applied to video traffic prediction, including non-stationary time series models
(Niu et al. 2011a, 2011b) and video access pattern extraction via principal component analysis
(Guirsun et al. 2011).

Predictive and dynamic resource provisioning has been proposed mostly for virtual machines
(VM) and web applications with respect to CPU utilization (Bobroff et al. 2007; Gong et al. 2010;
Tang et al. 2007; Gmach et al. 2007) and power consumption (Kusic et al. 2009; Lin et al. 2011). VM
consolidation with dynamic bandwidth demand has also been considered in Wang et al. (2011). Our
work exploits the unique characteristics of VoD bandwidth demands and distinguishes from the
above work in three aspects. First, our bandwidth workload consolidation is as simple as solving
convex optimization for a load direction matrix. We leverage the fact that, unlike VM, demand of
a VoD channel can be fractionally split into video requests. Second, our system forecasts not only

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:27

12 T T T T T T T 110 T T T T T T T
—Per-server optimization
— Per-server limited channels
10 |- - - lterative L1-penalized 4 100
o —Reactive without prediction
3
= 90
T 8 1 €
© LM
IS s 80
3 6f { £
§ N 70
4L 4 5
o > 60
5 | —Per-server optimization
2+ E 1 50— Per-server limited channels
I - - Iterative L1-penalized
0 ! " —Reactive without prediction
) . “ L L . . ‘ L ! L L L L
1562 1572 1582 1592 1602 1612 1622 1632 1640 1562 1572 1582 1592 1602 1612 1622 1632 1640
Time (unit: 10 minutes) Time (unit: 10 minutes)
(a) Request drop rate (% unsatisfied requests) (b) Utilization of reserved resource
35 T T T T T T T 500 T T T T T T T
—Per-server optimization —Per-server optimization
— Per-server limited channels — Per-server limited channels
30 - - lterative L1-penalized 1 - - lterative L1-penalized
—Reactive without prediction 4001 —Reactive without prediction 7
[°
©25¢ 1 9}
2 &
T20} | 300
c 20 =
o %)
T15¢ 1 o]
% " g 200
>
&1} 1=
/M\N——v/__/w—f——\._‘/—-—\ 100 .
5[] . ARn (AR
S Y] "\'_\,“\,' Sy ‘\\,’\l/ [{ AN \\’.' A
0 1 1 1 1 1 1 0 1 L L AX] L L
1562 1572 1582 1592 1602 1612 1622 1632 1640 1562 1572 1582 1592 1602 1612 1622 1632 1640
Time (unit: 10 minutes) Time (unit: 10 minutes)
(c) Replication degree (d) Number of video copies migrated

Fig. 15. Performance of different schemes for a typical peak period 1562-1640. There are 40 servers available,
each with a capacity of 300Mbps, and 176 mature and virtual channels. For Reactive, K = 2. For Per-Server
Limited Channels, ks = 10 for all s.

the expected demand but also the demand volatility and thus can control the risk factors more
accurately. In contrast, most previous works (Gong et al. 2010; Gmach et al. 2007) assume a con-
stant demand variance. Third, we exploit the statistical correlation between bandwidth demands
of different video channels to save resource reservation while previous works such as Wang et al.
(2011) consider independent workloads.

The idea of statistical multiplexing and resource overbooking has been empirically evaluated
for a shared hosting platform in Urgaonkar et al. (2002). Our novelty is that we formulate the
quality-assured resource minimization problem using Value at Risk (VaR), a useful risk measure
in financial asset management (McNeil et al. 2005), with the aid of accurate demand correlation
forecasts. We believe that our theoretically grounded approach bears stronger robustness against
intractable demand volatility in practice.

There are extensive studies around the content placement problem in replication-based cloud
storage systems. Rochman et al. (2013) propose the strategies of placing the resources to distributed
datacenters to serve more requests locally. Xu and Li (2013) propose a request mapping and re-
sponse routing scheme to maximize the total utility of serving requests minus the cost. Bonvin
et al. (2010) propose a distributed scheme to dynamically allocate the resources of a data stor-
age cloud based on net benefit maximization, considering the utility offered by the partition and
its storage and maintenance cost. In Agarwal et al. (2010), automatic data placement across geo-
distributed datacenters is presented, which iteratively moves a data item closer to both clients
and other data items that it communicates with. Yu and Pan (2015) study the content placement

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:28 D. Niu et al.

20 T T T T T T T 120 T T T T T T T
—Per-server optimization
— Per-server limited channels 1
- - lterative L1-penalized 11013 1
< I —Reactive without prediction
=150 1 100
2 | Q
& | =
ol =
° 0ry 1 T
8 | o 80
2 5
3 70
c 5h 4 -
S Per-server optimization
60 - Per-server limited channels " 1
- lterative L1-penalized '
0 50 —Reactive without prediction
2402 2412 2422 2432 2442 2452 2462 2472 2480 2402 2412 2422 2432 2442 2452 2462 2472 2480
Time (unit: 10 minutes) Time (unit: 10 minutes)
(a) Request drop rate (% unsatisfied requests) (b) Utilization of reserved resource
35 T T T T T —— 1000 T T T T T T T
—Per-server optimization —Per-server optimization
30l — Per-server limited channels | — Per-server limited channels
- - lterative L1-penalized 800 L - - Iterative L1-penalized |
® —Reactive without prediction - —Reactive without prediction
©25F 1 o}
2 &
S0t | > 600
c 20 =
K} »
T L 4 o
% 1 8 400
> 1
g of 1=
MM 200 f1, 1\
5 <
W ., o)
0 1 1 1 1 1 1 1 O A N V) L L {0 N L -
2402 2412 2422 2432 2442 2452 2462 2472 2480 2402 2412 2422 2432 2442 2452 2462 2472 2480
Time (unit: 10 minutes) Time (unit: 10 minutes)
(c) Replication degree (d) Number of video copies migrated

Fig. 16. Performance of different schemes for a typical peak period 2402-2480. There are 48 servers available,
each with a capacity of 300Mbps, and 199 mature and virtual channels. For Reactive, K = 2. For Per-Server
Limited Channels, ks = 10 for all s.

problem for systems when multiple items are needed in each request and the item size is small.
They try to maximize the correlation of the items collocated on the same server to reduce the
I/0 and CPU overhead to satisfy each request. In this article, we consider video storage and access
systems, where the most important performance metrics are bandwidth and storage. And we focus
on geographically collocated server clusters in the same datacenter.

Our prior work (Niu et al. 2012) has studied the optimal load direction and cloud bandwidth
reservation under full content replication, and this article provides a deeper study on this problem
in a wider scope. Specifically, in this article, we further discuss load direction under a given sparse
replication scheme and study the joint optimization of load direction and sparse content place-
ment in Section 4. We introduce a new algorithm to solve this joint load direction and placement
problem involving Ly norms through iteratively reweighed L,-norm relaxations and compare its
performance with other proposed algorithms. Furthermore, we elaborate our demand prediction
schemes in Section 5, with detailed performance evaluations and add detailed discussions on han-
dling new channels and forming virtual channels for improved demand prediction.

To the best of our knowledge, this is the first work that jointly models the load direction and
sparse content placement as a sparsity-penalized or sparsity-constrained optimization problem.
And we have novelly adapted the iterative reweighted L1-norm approximation techniques from
the sparse recovery theory to solve our sparse design problem, yielding satisfactory performance
and low computational complexity.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:29

8 CONCLUDING REMARKS

In this article, we propose an unobtrusive, predictive, and elastic cloud resource auto-scaling frame-
work for video storage systems. Operated at a 10-minute frequency, the system automatically pre-
dicts the expected future demand as well as demand volatility for each video through ARIMA and
GARCH time-series forecasting techniques based on history. Leveraging demand prediction, the
system jointly makes load direction to multiple cloud servers and then bandwidth reservations
from them to satisfy the projected demands with high probability. The system can save resource
reservation cost for VoD providers in terms of both bandwidth and storage.

We exploit the predictable anti-correlation between video requests to enhance resource
utilization and derive the optimal load direction that minimizes bandwidth resource reservation
while confining under-provision risks. We formulate the joint load direction and sparse content
placement problem as an Lj-norm regularized optimization that turns out to be nonconvex. To
approximately solve this problem, we propose, among several heuristics, an iteratively reweighted
Li-norm penalized optimization process that can yield sparse placement and reduce content
migration.

Based on extensive simulations driven by the demand traces of a large-scale production VoD
system, we observe that the proposed Iterative L;-Penalized optimization has the best practi-
cal appeals due to its capability of efficiently computing solutions that can balance the costs of
bandwidth and storage with limited migration overhead, while achieving satisfying quality of
service.

REFERENCES

Amazon Web Services. 2015. Retrieved from http://aws.amazon.com/.

Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and Harbinder Bhogan. 2010. Volley: Auto-
mated data placement for geo-distributed cloud services. In Proceedings of the USENLX Symposium on Networked Systems
Design and Implementation (NSDI'10). 17-32.

Vaneet Aggarwal, Xu Chen, Vijay Gopalakrishnan, Rittwik Jana, K. K. Ramakrishnan, and Vinay A. Vaishampayan. 2011.
Exploiting Virtualization for Delivering Cloud-based IPTV services. In Proceedings of the IEEE International Conference
on Computer Communications Workshop on Cloud Computing (INFOCOM’11).

David Applegate, Aaron Archer, Vijay Gopalakrishnan Seungjoon Lee, and K. K. Ramakrishnan. 2010. Optimal content
placement for a large-scale VoD system. In Proceedings of the ACM International Conference on Emerging Networking
Experiments and Technologies (CONEXT’10).

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. Towards predictable datacenter networks. In
Proceedings of the Association for Computing Machinery’s Special Interest Group on Data Communications (SIGCOMM’11).

M. Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Z . Granville, Maxim Podlesny, M. D. Golam Rabbani, Qi Zhang,
and Mohamed Faten Zhani. 2013. Data center network virtualization: A survey. IEEE Commun. Surv. Tutor. 15, 2 (2013),
909-928.

Norman Bobroff, Andrzej Kochut, and Kirk Beaty. 2007. Dynamic placement of virtual machines for managing SLA viola-
tions. In Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Management.

T. Bollerslev. 1986. Generalized autoregressive conditional heteroskedasticity. J. Econom. 31 (1986), 307-327.

Nicolas Bonvin, Thanasis G Papaioannou, and Karl Aberer. 2010. A self-organized, fault-tolerant and scalable replication
scheme for cloud storage. In Proceedings of the 1st ACM Symposium on Cloud Computing. ACM, 205-216.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. Wiley.

Emmanuel J. Candes, Michael B. Wakin, and Stephen P. Boyd. 2008. Enhancing sparsity by reweighted 1 minimization. J.
Fourier Anal. Appl. 14, 5-6 (2008), 877-905.

Walter Enders. 2010. Applied Econometric Time Series (3 ed.). Wiley, Hoboken, NJ.

M. Fazel, H. Hindi, and S. P. Boyd. 2003. Log-det heuristic for matrix rank minimization with applications to hankel and
euclidean distance matrices. In Proceedings of the American Control Conference.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. 2007. Workload analysis and demand prediction of enterprise data center
applications. In Proceedings of the IEEE Symposium on Workload Characterization.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive elastic resource scaling for cloud systems. In
Proceedings of the IEEE International Conference on Network and Services Management (CNSM’10).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

19:30 D. Niu et al.

Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang.
2010. SecondNet: A data center network virtualization architecture with bandwidth guarantees. In Proceedings of the
ACM International Conference on Emerging Networking Experiments and Technologies (CONEXT’10).

Gonca Guirsun, Mark Crovella, and Ibrahim Matta. 2011. Describing and forecasting video access patterns. In Proceedings
of the IEEE International Conference on Computer Communications Mini-Conference (INFOCOM’11).

D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. 2009. Power and performance management of virtualized
computing environments via lookahead control. Cluster Comput. 12, 1 (March 2009), 1-15.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. 2011. Dynamic right-sizing for power-
proportional data centers. In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM’11).

Zimu Liu, Chuan Wu, Baochun Li, and Shugiao Zhao. 2010. UUSee: Large-scale operational on-demand streaming with ran-
dom network coding. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’10).

Alexander McNeil, Rudiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management: Concepts Techniques and Tools.
Princeton University Press.

Netflix. 2010. Four reasons we choose amazon’s cloud as our computing platform. The Netflix “Tech” Blog (December
14 2010). https://medium.com/netflix-techblog/four-reasons-we-choose-amazons-cloud-as-our-computing-platform-
4aceb692afec.

Di Niu, Baochun Li, and Shugiao Zhao. 2011a. Understanding demand volatility in large VoD systems. In Proceedings of the
the 21st International workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’11).

Di Niu, Zimu Liu, Baochun Li, and Shuqiao Zhao. 2011b. Demand forecast and performance prediction in peer-assisted
on-demand streaming systems. In Proceedings of the IEEE International Conference on Computer Communications Mini-
Conference (INFOCOM’11).

Di Niu, Hong Xu, Baochun Li, and Shuqiao Zhao. 2012. Quality-assured cloud bandwidth auto-scaling for video-on-demand
applications. In Proceedings of the of IEEE International Conference on Computer Communications (INFOCOM’12).

Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and Walid Dabbous. 2011. Network characteris-
tics of video streaming traffic. In Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies.
ACM, 25.

Yuval Rochman, Hanoch Levy, and Eli Brosh. 2013. Resource placement and assignment in distributed network topologies.
In Proceedings IEEE International Conference on Computer Communications (INFOCOM’13). IEEE, 1914-1922.

Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Giovanni Pacifici. 2007. A scalable application placement
controller for enterprise data centers. In Proceedings of the ACM International World Wide Web Conference (WWW’07).

Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. 2002. Resource overbooking and application profiling in shared
hosting platforms. In Proceedings of the USENLX Symposium on Operating Systems Design and Implementation (OSDI’02).

M. Wang, X. Meng, and L. Zhang. 2011. Consolidating virtual machines with dynamic bandwidth demand in data centers.
In Proceedings of the of IEEE International Conference on Computer Communications Mini-Conference (INFOCOM’11).

Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. 2012. The only constant is change: Incorporating time-varying
network reservations in data centers. In Proceedings of the ACM Special Interest Group on Data Communications
(SIGCOMM’12).

Hong Xu and Baochun Li. 2013. Joint request mapping and response routing for geo-distributed cloud services. In Proceed-
ings of the IEEE International Conference on Computer Communications (INFOCOM’13). IEEE, 854-862.

Boyang Yu and Jianping Pan. 2015. Location-aware associated data placement for geo-distributed data-intensive applica-
tions. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’15).

Received December 2014; revised December 2016; accepted April 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.

https://medium.com/netflix-techblog/four-reasons-we-choose-amazons-cloud-as-our-computing-platform-penalty -@M 4aceb692afec

