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Many video-on-demand (VoD) providers are relying on public cloud providers for video storage, access, and

streaming services. In this article, we investigate how a VoD provider may make optimal bandwidth reserva-

tions from a cloud service provider to guarantee the streaming performance while paying for the bandwidth,

storage, and transfer costs. We propose a predictive resource auto-scaling system that dynamically books the

minimum amount of bandwidth resources from multiple servers in a cloud storage system to allow the VoD

provider to match its short-term demand projections. We exploit the anti-correlation between the demands of

different videos for statistical multiplexing to hedge the risk of under-provisioning. The optimal load direction

from video channels to cloud servers without replication constraints is derived with provable performance.

We further study the joint load direction and sparse content placement problem that aims to reduce band-

width reservation cost under sparse content replication requirements. We propose several algorithms, and

especially an iterative L1-norm penalized optimization procedure, to efficiently solve the problem while effec-

tively limiting the video migration overhead. The proposed system is backed up by a demand predictor that

forecasts the expectation, volatility, and correlation of the streaming traffic associated with different videos

based on statistical learning. Extensive simulations are conducted to evaluate our proposed algorithms, driven

by the real-world workload traces collected from a commercial VoD system.
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1 INTRODUCTION

Cloud computing is redefining the way many Internet services operate, including Video-on-
Demand (VoD). Instead of buying racks of servers and building private datacenters, it is now
common for VoD service providers to leverage the computing, network, and storage resources
of cloud service providers for video storage and streaming. As an example, Netflix places its video
data stores, streaming servers, encoding software, and other customer-oriented APIs all in Amazon
Web Services (2015) (Netflix 2010).

One of the most important economic appeals of cloud computing is its elasticity and auto-scaling
in resource provisioning. Traditionally, after careful capacity planning, an enterprise makes long-
term investments on its infrastructure to accommodate its peak workload. Over-provisioning is
inevitable while utilization remains low during most non-peak times. In contrast, in the cloud, the
number of computing instances launched can be changed adaptively at a fine granularity with a
lead time of minutes. This converts the up-front infrastructure investment to operating expenses
charged by cloud service providers. As the cloud’s auto-scaling ability enhances resource uti-
lization by closely matching supply with demand, the overall expense of the enterprise may be
reduced.

Unlike web servers or scientific computing, VoD is a network-bound service with stringent
bandwidth requirements. As users must download at a rate no smaller than the video playback
rate to smoothly watch video streams online, bandwidth constitutes the performance bottleneck.
Thanks to the recent advances in datacenter network virtualization (Bari et al. 2013), bandwidth
reservation is likely to become a near-term value-added feature offered by cloud services to appeal
to customers with bandwidth-intensive applications like VoD. In fact, there have already been
proposals from the perspective of datacenter engineering to offer bandwidth guarantees for egress
traffic from a virtual machine (VM), as well as among VM themselves (Guo et al. 2010; Ballani
et al. 2011; Xie et al. 2012).

In this article, we analyze the benefits and address open challenges of cloud resource auto-
scaling for VoD applications. The benefit of auto-scaling for a video storage and streaming service
is intuitive and natural. As shown in Figure 1(a), traditionally, a VoD provider acquires a monthly
plan from ISPs, in which a fixed bandwidth capacity, for example, 1Gbps, is guaranteed to ac-
commodate the anticipated peak demand. As a result, resource utilization is low during non-peak
times of demand troughs. Alternatively, a pay-as-you-go charge model may be adopted by a cloud
provider as shown in Figure 1(b), where a VoD provider pays for the total amount of bytes trans-
ferred. However, the bandwidth capacity available to the VoD provider is subject to variation due to
contention from other applications, incurring unpredictable quality-of-service (QoS) issues. Fig-
ure 1(c) illustrates bandwidth auto-scaling and reservation to match demands with appropriate
resources, leading to both high resource utilization and QoS guarantees. Apparently, the more
frequently the rescaling happens, the more closely resource supply will match the demand.

However, a number of important challenges need to be addressed to achieve auto-scaling in a
video storage and streaming service. First, since resource rescaling requires a delay of at least a
couple of minutes to update configuration and move objects if necessary, it is best to predict the
demand with a lead time greater than the update interval and scale the capacity to meet antic-
ipated demand. Such a proactive, rather than reactive, strategy for resource provisioning needs
to consider not only conditional mean demands but also demand fluctuations to prevent under-
provisioning risks. Second, as statistical multiplexing can smooth traffic, a VoD provider may re-
serve less bandwidth to guard against fluctuations if it jointly reserves bandwidth for all its video
accesses. However, in a cloud storage system, the content is usually replicated on multiple servers
to introduce reliability in the presence of failures and to enable load balancing. The key question
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Fig. 1. Bandwidth auto-scaling with quality assurance, as compared to provisioning for the peak demand

and pay-as-you-go.

is How should a VoD provider optimally split and direct its workload across the cluster of servers
(whether virtual or physical) provided by the cloud service to save the overall bandwidth reserva-
tion cost? Furthermore, video content must be replicated across different servers in a sparse way
to avoid a high storage cost.

In this article, we propose a bandwidth auto-scaling facility that dynamically reserves resources
from a tightly connected server cluster for VoD providers, with several distinct characteristics.
First, it is predictive. The facility tracks the history of bandwidth demand for each video using cloud
monitoring services and periodically estimates the expectation, volatility, and correlations of de-
mands for all videos for the near future using statistical analysis. We propose a novel video channel
interleaving scheme that can even predict demand for new videos that lack historical demand data.
Second, it provides QoS assurance by judiciously deciding the minimum bandwidth reservation
required to satisfy the demand with high probability. Third, it optimally mixes demands based on
statistical anti-correlation to save the aggregate bandwidth capacity reserved from all the servers,
under the condition that the content must be sparsely replicated with limited content migration.

Given the predicted demand statistics as input, we formulate the bandwidth minimization
problem to jointly decide load direction and sparse content placement as a combinatorial problem
involving L0 norms that model content placement sparsity. We derive the theoretically optimal
load direction across servers when full replication is permitted and propose several approximate
solutions to the joint load direction and sparse content placement problem, striking a balance
between bandwidth and storage costs. In particular, as a highlight, we novelly apply an itera-
tively reweighted L1-norm relaxation technique to approximately solve the L0-norm penalized
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Fig. 2. The system decides the bandwidth reservation from each server and a matrix W = [wsi ] every Δt
minutes, where wsi is the proportion of video channel i’s requests directed to server s .

optimization problem. Our technique not only yields sparse content placement decisions but also
effectively reduces the content migration overhead.

We have performed extensive evaluation of the proposed auto-scaling strategies for video stor-
age systems, through trace-driven simulations based on the video streaming traces of 1,693 video
channels collected from UUSee (Liu et al. 2010), a production VoD system, over a 21-day period.

2 SYSTEM ARCHITECTURE

Consider a VoD service provider hosting N videos and relying on S (collocated) servers in a cloud
storage system for service. We propose an unobtrusive auto-scaling system that makes predictions
about future demands of all videos and reserves minimal necessary resources from the server
cluster to satisfy the demand. Our system architecture is shown in Figure 2, which consists of
three key components: bandwidth usage monitor, demand predictor, and load optimizer. Bandwidth
rescaling is performed proactively every Δt minutes, with the following three steps:

First, before time t , the system collects bandwidth demand history of all videos up to time t ,
which can easily be obtained from cloud monitoring services. As an example, Amazon CloudWatch
provides a free resource monitoring service to AWS customers at a 5-minute frequency [AWS].

Second, the bandwidth demand history of all videos is fed into the demand predictor to predict
the bandwidth requirement of each video for the next Δt minutes, that is, for the period [t , t + Δt ).
Our predictor not only forecasts the expected demand but also outputs a volatility estimate, which
represents the degree that demand will be fluctuating around its expectation, as well as the demand
correlations between different videos in this period. Our volatility and correlation estimation is
based on multivariate GARCH models (Bollerslev 1986), which has gained success in stock analysis
and forecast in the past decade.

Finally, the load optimizer takes predicted statistics as the input, calculates the bandwidth ca-
pacity to be reserved from each server in the available server pool, and determines how many
servers should be used. It also outputs a load direction matrix W = [wsi ], where wsi represents
the portion of video i’s requests directed to server s . Apparently, we should have

∑
s wsi = 1 if
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Fig. 3. By exploiting demand correlation between different video channels, we can save the total bandwidth

reservation, even within each 10-minute period, while still providing quality assurance to each video channel.

the aggregate server capacity is sufficient. It is worth noting that the matrix W also indicates the
content placement decision: A copy of video i is placed on server s only ifwsi > 0. In practice, the
load direction W can be readily implemented by routing the requests for video i to server s with
probability wsi .

The system finishes the above three steps before time t , so a new bandwidth reservation can be
made at time t for the period [t , t + Δt ). The above process is then repeated for the next period
[t + Δt , t + 2Δt ).

Apparently, the key to such a resource auto-scaling framework for video storage is the load
optimizer, which needs to jointly determine a load direction matrix as well as a sparse content
placement strategy to limit both storage and content transfer overhead in each Δt-minute time
period. The optimizer should also determine load direction W in a way to push workloads onto as
few servers as possible, which will auto-scale the number of servers used.

Bandwidth Reservation vs. Load Balancing. One may be tempted to think that periodic
bandwidth reservation is unnecessary, since requests can be flexibly directed to whichever server
that has available capacity by a load balancer. However, the latter will exactly fall in the range
of pay-as-you-go model with no quality guarantee to VoD users, whereas bandwidth reservation
ensures that the provisioned resource can satisfy the projected demand with high probability.

Furthermore, since the content placement is pre-determined in a traditional load balancing sys-
tem, it is hard to achieve resource auto-scaling—it is impossible to push all demands onto as few
servers as possible when the total demand shrinks, that is, the number of servers used is always
fixed. Neither can a traditional load balancer adjust content placement dynamically to maximize
the multiplexing gain based on demand statistics, as will be discussed subsequently.

Quality-Assured Bandwidth Multiplexing. The bandwidth demand of each video channel
can fluctuate drastically even at small time scales. To avoid performance risks, the bandwidth reser-
vation made for each channel in each period should accommodate such fluctuations, inevitably
leading to low utilization at troughs, as illustrated in Figures 3(a) and (b). Trough filling within a
short period such as 10 minutes is hard with too many random shocks in demand.

However, our load optimizer strives to enhance utilization even when Δt is as small as 10 min-
utes by multiplexing demands based on their correlations. The usefulness of anti-correlation is
illustrated in Figure 3(c): If we jointly book capacity for two negatively correlated channels, then
the total reserved capacity is Asum < A1 +A2. Besides aggregation, we can also take a part of de-
mand from each channel, mix them and reserve bandwidth for the mixed demands from multiple
servers. As an example, in Figures 3(d) and (e), the aggregate demand of two channels is split onto
two servers, each serving a mixture of demands, which still leads to a total bandwidth reserva-
tion of Asum. In each Δt period, we leverage the estimated demand correlations to optimally direct
workloads across different servers so the total bandwidth reservation necessary to guarantee qual-
ity is minimized.

Finally, in the case that the actual demand exceeds the reserved bandwidth capacity, the addi-
tional requests can still be served in the traditional best-effort fashion.
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3 OPTIMAL LOAD DIRECTION AND BANDWIDTH RESERVATION

In this section, we focus on the load optimizer. Suppose before time t , we have obtained the esti-
mates about demands in the upcoming period [t , t + Δt ). Our objective is to decide load direction
W to minimize the total bandwidth reservation while controlling the under-provision risk in each
server. The question of how to make demand predictions will be the subject of Section 5.

We first introduce a few useful notations. Since we are considering each individual time period,
without loss of generality, we drop subscript t in our notations. Recall that the VoD provider runs
N video channels. The bandwidth demand of channel i is a random variable Di with mean μi and
variance σ 2

i . For convenience, let D = [D1, . . . ,DN ]T, μμμ = [μ1, . . . , μN ]T, and σσσ = [σ1, . . . ,σN ]T.
Note that the random demands D1, . . . ,DN may be highly correlated due to the correlation

between video genres, viewer preferences, and video release times. Denote ρi j the correlation
coefficient of Di and D j , with ρii ≡ 1. Let ΣΣΣ = [σi j ] be the N × N symmetric demand covariance

matrix, with σii = σ 2
i and σi j = ρi jσiσj for i � j.

The VoD provider will book resources from S servers. DenoteCs the upper bound on the band-
width capacity that can be reserved from server s , for s = 1, . . . , S .Cs may be limited by the avail-
able instantaneous outgoing bandwidth at server s or may be intentionally set by the VoD provider
to spread its workload across different servers and avoid booking resources from a single server.
Let Csum =

∑
s Cs be the aggregate utilizable bandwidth capacity of all S servers. Throughout the

article, we assume that Csum is sufficiently large to satisfy all the demands in the system.1

Let ΦΦΦ = [ϕsi ] be the content placement matrix, where ϕsi = 1 if video i is replicated on server
s , and ϕsi = 0 otherwise. We define a load direction decision as a weight matrix W = [wsi ], s =
1, . . . , S , i = 1, . . . ,N , wherewsi represents the portion of video i’s demand directed to and served
by server s , with 0 ≤ wsi ≤ 1 and

∑
s wsi = 1. Apparently, if ϕsi = 0, we must have wsi = 0. We

observe that ws = [ws1, . . . ,wsN ]T represents the workload portfolio of server s . Given ws , the
aggregate bandwidth load imposed on server s is a random variable,

Ls =
∑

i

wsiDi = w
T
s D. (1)

We use As to denote the amount of bandwidth reserved from server s for this period. Clearly,
we must haveAs ≤ Cs . Let A =: [A1, . . . ,AS ]T. To control the under-provision risk, we require the
load imposed on server s to be no more than the reserved bandwidthAs with high probability, that
is,

Pr(Ls > As ) ≤ ϵ, ∀s, (2)

where ϵ > 0 is a small constant, referred to as the under-provision probability.

3.1 Load Direction Under Full Replication

Supposeϕsi = 1 for all s , i , that is, each video is replicated on every server. Then, everywsi may take
non-zero values. Specifically, given demand expectations μμμ and covariances ΣΣΣ, and the available
capacitiesC1, . . . ,CS , the load optimizer can decide the optimal bandwidth reservation A

∗ and load
direction W

∗ by solving the following optimization problem:

minimize
W,A

∑
s As (3)

subject to As ≤ Cs , ∀s, (4)

Pr(Ls > As ) ≤ ϵ, ∀s, (5)

1A rigorous condition for supply exceeding demand is given in Theorem 3.1.
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∑
s

wsi = 1, ∀i . (6)

Through reasonable aggregation, we believe that Ls follows a Gaussian distribution. We will
empirically justify this assumption in Section 6 using real-world traces. When Ls is Gaussian,
constraint (2) is equivalent to

As ≥ E[Ls ] + θ
√

Var[Ls ], (7)

with θ := F−1 (1 − ϵ ), where F (·) is the CDF of normal distribution N (0, 1). For example, when
ϵ = 2%, we have θ = 2.05. Since{

E[Ls ] = μ1ws1 + · · · + μNwsN = μμμT
ws ,

Var[Ls ] =
∑

i, j ρi jσiσjwsiws j = w
T
s ΣΣΣws ,

it follows that Equation (2) is equivalent to

As ≥ μμμT
ws + θ

√
w

T
s ΣΣΣws . (8)

Therefore, the bandwidth minimization problem (3) under full replication is equivalent to

minimize
W

∑
s

As (9)

subject to As = μμμT
ws + θ

√
w

T
s ΣΣΣws , (10)

μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ Cs , ∀s, (11)

∑
s

ws = 1, (12)

0 � ws � 1, ∀s, (13)

where 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T are N -dimensional column vectors.
Under full replication, we can derive nearly closed-form solutions to problem (9) in the following

theorem:

Theorem 3.1. If Csum ≥ μμμT
1 + θ

√
1TΣΣΣ1, then an optimal load direction matrix [w∗si ] is given by

w∗si = αs , ∀i, s = 1, . . . , S, (14)

where α1, . . . ,αS can be any solution to

⎧⎪⎪⎨
⎪⎪
⎩

∑
s αs = 1,

0 ≤ αs ≤ min

{
1, Cs

μμμT1+θ
√

1TΣΣΣ1

}
, ∀s . (15)

If Csum < μμμT
1 + θ

√
1TΣΣΣ1, then there is no feasible solution that satisfies constraints (11) to (13).

Proof Sketch. First, f (ws ) =
√

w
T
s ΣΣΣws is a cone and thus a convex function. Hence, we have

f

(
w1 +w2

2

)
≤ f (w1) + f (w2)

2
,

or, equivalently, √
(w1 +w2)TΣΣΣ(w1 +w2) ≤

√
w

T
1ΣΣΣw1 +

√
w

T
2ΣΣΣw2.
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By induction, we can prove

∑
s

√
w

T
s ΣΣΣws ≥

√(∑
s

w
T
s

)
ΣΣΣ

(∑
s

ws

)
. (16)

If
∑

s ws = 1 is feasible, then by Equations (11) and (16) we have

∑
s

Cs ≥ μμμT
1 + θ

√(∑
s

w
T
s

)
ΣΣΣ

(∑
s

ws

)

= μμμT
1 + θ

√
1TΣΣΣ1.

If
∑

s Cs ≥ μμμT
1 + θ

√
1TΣΣΣ1, then it is easy to verify that Equation (15) is feasible. When w∗si = αs

given by Equation (14), we find that Equations (11), (12), and (13) are all satisfied. Hence,
Equation (14) is a feasible solution and

∑
s ws = 1 is feasible. By Equation (16), the objective (9)

satisfies ∑
s

(
μμμT

ws + θ

√
wT

s ΣΣΣws

)

≥ μμμT
∑

s

ws + θ

√(∑
s

w
T
s

)
ΣΣΣ

(∑
s

ws

)

= μμμT
1 + θ

√
1TΣΣΣ1.

(17)

We find that [w∗si ] given by Equation (14) achieves the above inequality with equality and thus is
also an optimal solution to Equation (9). �

Theorem 3.1 implies that in the optimal solution, each video channel should split and direct its
workload to all S servers following the same weights α1, . . . ,αS , which can be found by solving
the linear constraints of Equation (15). Moreover, the optimal workload portfolio of each server
s has a similar structure of ws = αs 1, where αs depends on its available capacity Cs through the
constraints of Equation (15).

Under the optimal load direction, the aggregate bandwidth reservation reaches its minimum
value: ∑

s

A∗s =
∑

s

(
μμμT

w
∗
s + θ

√
w∗Ts ΣΣΣw∗s

)

= μμμT
1 + θ

√
1TΣΣΣ1,

which does not depend on S , the number of servers. This means that having demand served by
multiple servers instead of one big server does not increase bandwidth reservation cost as long
as wsi = αs , ∀i given by Equation (14). Therefore, the load optimizer can first aggregate all the
demands and then split the aggregated demand into different servers subject to their capacities.

3.2 Load Direction Under Limited Replication

Although solution (14) is optimal in terms of bandwidth reservation, it encounters two major
obstacles in practice. First, as long as αs > 0, w∗si = αs > 0 for all i , which means that server s
has to store all N videos. In other words, a video has to be replicated onto every server s that
has αs > 0. This incurs significant additional storage cost. Second, each video channel i splits its
workload onto all S servers according to the weights α1, . . . ,αS . When S is large and Di is small,
such fine-grained splitting will not be feasible from an engineering perspective.
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Therefore, in practice, each video should only be replicated on a few servers to maintain a
reasonable storage overhead. Thus, for each video i , we should have ϕsi = 1 only for a subset of
all s . If the content placement matrix Φ is given, then the optimal load direction problem becomes

minimize
W

∑
s

As , (18)

subject to As = μμμT
ws + θ

√
w

T
s ΣΣΣws , (19)

μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ Cs , ∀s, (20)∑

s

ϕsiwsi = 1, ∀i, (21)

∑
s

(1 − ϕsi )wsi = 0, ∀i, (22)

0 � ws � 1, ∀s, (23)

As compared to the load direction optimization problem (9) under full replication, problem (18)
has the new constraints (21) and (22) due to limited replication, which are clearly equivalent to{∑

s wsi = 1, ∀i,
wsi = 0, if ϕsi = 0

.

Problem (18) is a convex problem and, in particular, a second-order cone program (SOCP) that can
be solved efficiently using standard convex optimization solvers such as interior-point algorithms
or active-set methods. Apparently, the minimum achievable total bandwidth reservation

∑
s A
∗
s is

lower bounded by the
∑

s A
∗
s under full replication, which is μμμT

1 + θ
√

1TΣΣΣ1.

4 SPARSE CONTENT PLACEMENT DESIGN

In this section, we consider the joint design of content placement matrix Φ and load direction
matrix W, given the workload statistics μ and Σ. As mentioned in Section 2, given a W, Φ can be
determined in the following way:

ϕsi (wsi ) =

{
1, if wsi > 0
0, if wsi = 0

, (24)

which means that video i needs to be replicated on to server s only if wsi > 0. Therefore, to deter-
mine load direction with a limited replication overhead, we can use W as a single decision variable
and constrain the number of non-zero entries in it when minimizing bandwidth reservation, lead-
ing to the following optimization problem:

minimize
W

∑
s

As , (25)

subject to As = μμμT
ws + θ

√
w

T
s ΣΣΣws , (26)

μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ Cs , ∀s, (27)∑

s

ws = 1, (28)

0 � ws � 1, ∀s, (29)
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‖ws ‖0 ≤ ks , ∀s, (30)

where ‖ws ‖0 is the l0 norm of ws , which represents the number of non-zero components in ws .
Constraint (30) essentially says that each server s should only store up to ks videos. Apparently,
problem (25) involves L0 norms and is non-convex.

4.1 Per-Server Heuristics

We propose a suboptimal solution to problem (25) that can handle the storage overhead constraint.
First, we present a heuristic outlined in Algorithm 1, which outputs w

∗∗
1 , . . . ,w

∗∗
S for each server

s one after another.

ALGORITHM 1: Per-Server Optimal.

b← 1

for s = 1, . . . , S do
Solve the following problem to obtain w

∗∗
s :

maximize
ws

μμμT
ws (31)

subject to μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ As ≤ Cs , (32)

0 ≤ ws ≤ b (33)

b← b −w
∗∗
s .

Exit if b ≤ 0.
end

Algorithm 1 packs the random demands into each server, one after another, by maximizing the
expected demand μμμT

ws each server s can accommodate subject to the probabilistic performance
guarantee in Equation (32). As a result, the total amount of resources needed to guard against
demand variability is reduced. Clearly, with Algorithm 1, the aggregate bandwidth reservation
from all servers is

∑
s

A∗∗s =
S∑

s=1

(μμμT
w
∗∗
s + θ

√
w∗∗Ts ΣΣΣw∗∗s ). (34)

Note that Algorithm 1 is also computationally efficient, since Equation (31) is a standard second-
order cone program.

Now we handle the constraint ‖ws ‖0 ≤ ks , which requires each server s to store at most ks

videos. We modify Algorithm 1 to cope with this constraint, leading to Algorithm 2, which outputs
w
′
1, . . . ,w

′
S for each server s one after another.

ALGORITHM 2: Per-Server Limited Channels.

b← 1

for s = 1, . . . , S do
Solve problem (31) to obtain w

∗∗
s

Choose the top ks channels with the largest weights and solve problem (31) again only for these ks

channels to obtain w
′
s

b← b −w
′
s .

Exit if b ≤ 0.
end
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With Algorithm 2, the aggregate bandwidth reserved is

∑
s

A′s =
S∑

s=1

(μμμT
w
′
s + θ

√
w′Ts ΣΣΣw′s ). (35)

In Section 6, we will show through trace-driven simulations that Algorithm 2, though subopti-
mal, effectively limits the content replication degree, thus balancing the savings on storage cost
and bandwidth reservation cost for VoD providers.

4.2 Relaxation Through Iteratively Weighted L1 Norms

We now propose to use another algorithm based on L1-norm relaxation to solve Equation (25)
iteratively. Our idea is to adapt a so-called Log-det heuristic in sparse recovery to our sparse design
problem. The Log-det heuristic has previously been applied to cardinality minimization (Fazel et al.
2003), that is, finding a vector x = (x1, . . . ,xn ) with the minimum cardinality in a convex set C or,
equivalently, minimizing ‖x ‖0 =

∑
i ϕ (xi ) subject to x ∈ C, where ϕ (xi ) = 0 if xi = 0 and ϕ (xi ) = 1

if xi > 0. The basic idea is to replace the 0-1 valued objective ϕ (xi ) for each xi by a smooth log
function log( |xi | + δ ) and to minimize a linearization of log( |xi | + δ ) iteratively, which leads to
iteratively reweighted L1-norm approximations to L0 norms. In sparse recovery, it is shown that
such iteratively reweighted L1 norms can yield more accurate recovery results than one-time L1

norm approximation (Candes et al. 2008).
To adapt the iteratively reweighted L1-norm approximation to our sparse design problem, in

each iteration, we use a carefully designed convex constraint to replace the L0-norm constraint
(30) and solve the modified problem (25). As iterations proceed, the designed convex constraint
is expected to approach the L0-norm constraint (30) eventually. The algorithm is described in
Algorithm 3.

Let us explain the rationale behind Algorithm 3. Initially, we replace the constraint ‖ws ‖0 ≤ ks

with
∑

i wsi ≤ ks , which is a standard L1-norm relaxation, since ‖ws ‖1 =
∑

i |wsi | =
∑

i wsi . It is
not hard to see that the bandwidth reservation achieved by W

0 is a lower bound on the optimal
value of the original problem (25). The reason is that we have

ϕsi (wsi ) ≥ wsi , if 0 ≤ wsi ≤ 1,

and thus

‖ws ‖0 =
∑

i

ϕsi (wsi ) ≥
∑

i

wsi .

Therefore,
∑

i wsi ≤ ks forms a larger region than ‖ws ‖0 ≤ ks , and the optimal value achieved by
W

0 in the relaxed (convex) problem is a lower bound of the original optimal value.
Subsequently, in each iteration, the constraint ‖ws ‖0 ≤ ks is replaced by an inequality involving

a weighted sum, that is, ∑
i

wsi

wt−1
si + δ

≤ ks ,

which is a generalized version of L1-norm relaxation with a different weight for each variable.
Note that for a sufficiently small δ , on convergence, that is, when wt−1

si = w
t
si = w

∗
si , we have

ϕ̂si (w∗si ) =
w∗si

w∗si + δ
≈

{
0 if w∗si = 0
1 if w∗si > 0

,

which is approximately ϕsi (w∗si ). Thus, the modified constraint
∑

i ϕ̂
t
si (wsi ) ≤ ks eventually ap-

proaches the L0-norm constraint ‖ws ‖0 ≤ ks in the original problem, and the generated W
t will

almost be feasible for the original problem (25).
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ALGORITHM 3: Iterative L1-Constrained.

Initially, replace (30) by
∑

i wsi ≤ ks , for all s , and solve the modified problem (25) under the new

constraints to obtain W
0.

for t = 1, . . . ,maximum iteration do

Given the solution W
t−1 in the previous iteration, define ϕ̂t

si as

ϕ̂t
si (wsi ) =

wsi

wt−1
si + δ

, ∀ s, i (36)

Solve the following modified problem to obtain W
t :

minimize
W

∑
s

As (37)

subject to As = μμμT
ws + θ

√
w

T
s ΣΣΣws , (38)

μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ Cs , ∀s, (39)∑

s

ws = 1, (40)

0 � ws � 1, ∀s, (41)∑
i

ϕ̂t
si (wsi ) ≤ ks , ∀s . (42)

Break if W
t and W

t−1 are approximately equal.
end

Return W
∗ ←W

t .

4.3 Reducing Migration Overhead and Iterative L1-Penalized Optimization

A common issue faced by the above schemes is the content migration overhead. As sparse content
placement optimization is performed every Δt minutes under varying (predicted) demands, the
placement solutions may change from time to time, leading to the overhead of transferring video
copies. To mitigate migration overhead, we further propose the following Iterative L1-Penalized
Optimization, which not only yields a sparse placement solution but also limits the transfer or
creation of video copies in each time period by attempting to generate a placement solution that
is similar to that of the preceding time period.

First, we add a regularizing term to the original content placement problem (25) to yield

minimize
W

∑
s

As + λ
∑

(s,i ):w
pre
si
=0

ϕsi (wsi ), (43)

subject to As = μμμT
ws + θ

√
w

T
s ΣΣΣws , (44)

μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ Cs , ∀s, (45)

∑
s

ws = 1, (46)

0 � ws � 1, ∀s, (47)

‖ws ‖0 ≤ ks , ∀s, (48)
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where λ > 0, and w
pre
si denotes the sparse solution for the previous time period. The regularizer∑

(s,i ):w
pre
si
=0 ϕsi (wsi ) represents the number of video copies that need to be copied or transferred

in this time period; a copy of video i needs to be transferred to server s only if server s does not
store video i previously, that is,w

pre
si = 0, andwsi > 0 (ϕsi (wsi ) = 1) as a result of the current opti-

mization. Note that, in this case, we may remove the constraint ‖ws ‖0 ≤ ks , since the regularizer
itself can already generate sparse solutions, as will be explained subsequently.

To solve problem (43), we apply Algorithm 1 to Equation (43) with iteratively reweighted L1-
norm relaxation for the regularizer, leading to the following Iterative L1-Penalized algorithm.

ALGORITHM 4: Iterative L1-Penalized.

b← 1

for s = 1, . . . , S do
Solve the following subproblem using Algorithm 5 to obtain w

∗∗
s :

maximize
ws

μμμT
ws − λ

∑
i :w

pre
si
=0

ϕsi (wsi ) (49)

subject to μμμT
ws + θ

√
w

T
s ΣΣΣws ≤ As ≤ Cs , (50)

0 ≤ ws ≤ b (51)

b← b −w
∗∗
s .

Exit if b ≤ 0.
end

Now we explain the rationale behind Algorithm 4. Initially, for the first Δt-minute time period,
we set w

pre
si = 0 for all s and i . By doing so, the regularizer in problem (43) will drive the solu-

tions W to be sparse, such that the placement is sparse. Therefore, by properly setting λ in the
regularizer, we do not need to include the constraint ‖ws ‖0 ≤ ks . For each Δt-minute time period
afterwards, the optimization problem (43) is approximately solved by Algorithm 4 with penalty
on the new 1’s introduced in matrix W. In other words, if w

pre
si = 0 in the content placement deci-

sion for the previous time period, Algorithm 4 will penalize w
pre
si = 1 for the current time period,

thus preventing new video copies from being created or transferred. Since the content placement
for the first time period is sparse and each subsequent period penalizes the difference from the
previous period, the content placements for subsequent periods also tend to be sparse. This fact
will be demonstrated in Section 6 through trace-driven simulations.

ALGORITHM 5: Subroutine to Solve the Penalized Problem (49) in Algorithm 4 for a Particular Server s .

Initially, w0
si = 1 − δ , for all i .

for t = 1, . . . ,maximum iteration do

Given the solution w
t−1
s in the previous iteration t − 1, define ϕ̂t

si as

ϕ̂t
si (wsi ) =

wsi

wt−1
si + δ

, ∀ i . (52)

Solve the following modified problem to obtain w
t
s :

maximize
ws

μμμT
ws − λ

∑
i :w

pre
si
=0

ϕ̂t
si (wsi ) (53)

subject to μμμT
ws + θ

√
wT

s ΣΣΣws ≤ Cs , (54)

0 ≤ ws ≤ b (55)

Break if w
t
s and w

t−1
s are approximately equal.

end

Return w
∗
s ← w

t
s .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.



19:14 D. Niu et al.

5 DEMAND PREDICTION

The derivation of load direction decisions critically depends on parameters uuu and ΣΣΣ, which are
estimates of the expected demands and demand covariances for the short-term future [t , t + Δt ).
In this section, we present efficient time-series forecasting methods to make such predictions based
on past observations.

We assume that the bandwidth demand of channel i at any point in the period [t , t + Δt ) can
be represented by the same random variable Dit . This is a reasonable assumption when Δt is
small. Similarly, let μμμt = [μ1t , . . . , μN t ] and ΣΣΣt = [σi jt ] represent the demand expectation vector
and demand covariance matrix for all N channels in [t , t + Δt ). We assume that before time t ,
the system has already collected enough demand history from cloud monitoring services with
a sampling interval of Δt . The question is how to use the available sampled bandwidth demand
history {Diτ : τ = 0, . . . , t − 1, i = 1, . . . ,N } to estimate μμμt and ΣΣΣt ?

In this article, we combine our previously proposed seasonal ARIMA model (Niu et al. 2011b) for
conditional mean (expectation conditioned on the history) prediction with the GARCH model (Niu
et al. 2011a) for conditional variance prediction to obtain a multivariate GARCH model that can
forecast the demand covariance matrix. The model extracts the periodic evolution pattern from
each channel’s demand time series and characterizes the remaining innovation series as autocor-
related GARCH processes. We briefly describe these statistical models here.

The difficulty in modeling the bandwidth demand of a channel i is that it exhibits diurnal pe-
riodicity, a downward trend as the video becomes less popular over time, and changing levels
of fluctuation as population goes up and down. Such non-stationarity in traffic renders unbiased
linear predictors useless. We tackle this problem by applying one-day-lagged differences (the lag
is 144 if Δt = 10 minutes) onto {Diτ } to remove daily periodicity to obtain the transformed se-
ries {D ′iτ := Diτ − Diτ−144}, which can be modeled as a low-order autoregressive moving-average
(ARMA) process: {

D ′iτ − ϕiD
′
iτ−1 = Niτ + γiNiτ−1,

D ′iτ = Diτ − Di,τ−144,
(56)

where {Niτ } ∼WN(0,σ 2) denotes the uncorrelated white noise with zero mean. Equation (56) falls
in the category of seasonal ARIMA models (Niu et al. 2011b; Box et al. 2008).

Model parameters ϕi andγi in Equation (56) can be trained based on historical data using a max-
imum likelihood estimator (Box et al. 2008). To predict the expected demand μit of channel i , we
first predict μ ′it := E[D ′it |D ′it−1,D

′
it−2, . . .] for the transformed series {D ′iτ } to obtain the estimate

μ̂ ′it , using an unbiased minimum mean square error (MMSE) predictor. We then retransform μ̂ ′it

into an estimate μ̂it of the conditional mean μit , with the inverse of one-day-lagged differencing.
Given the conditional means {μ̂iτ } of channel i over all time τ , we denote the innovations in

{Diτ } by {Ziτ }, where

Ziτ := Diτ − μ̂iτ . (57)

Since the innovation termZiτ represents the fluctuation ofDiτ relative to its projected expectation
μ̂iτ , and such fluctuation may be changing over time, we model the innovations {Ziτ } using a
GARCH process: {

Ziτ =
√
hiτ eτ , {eτ } ∼ I IDN (0, 1),

hiτ = αi0 + αi1Z
2
iτ−1 + βihiτ−1,

(58)

where {Ziτ } is modeled as a zero-mean Gaussian process yet with a time-varying condi-
tional variance hiτ . Instead of assuming a constant variance for {Ziτ }, Equation (58) introduces
autocorrelation into volatility evolution and forecasts the conditional variance hit of Zit as a re-
gression of pasthiτ andZ 2

iτ . The model parameters in Equation (58) can be learned using maximum
likelihood estimation (p. 417, Box et al. (2008)) based on training data.
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Furthermore, the instantaneous shocks to demands for different videos can be correlated in a
large-scale system. An increase in one video’s demand may or may not affect the demand for
other videos depending on factors like video genres, release time, and so on. To incorporate de-
mand correlation, instead of estimating volatility for each video separately, we can estimate the
time-varying conditional covariance matrix ΣΣΣt using multivariate GARCH (Enders 2010). How-
ever, multivariate GARCH models are very difficult to estimate for large-scale problems. For the
two-video case, the number of model parameters to estimate in GARCH(1, 1) is 21, and for the
three-video case, such a number escalates to 78.

To efficiently predict the covariance matrix ΣΣΣt , we introduce a constant conditional correlation
(CCC) model (Enders 2010), which is a popular multivariate GARCH specification that restricts
the correlation coefficients ρi j to be constant. ρi j can be estimated as the correlation coefficient
between series {Ziτ } and {Z jτ } in recent time periods, and ρi j = 1 if i = j. The covariance σi jt

between video i and j at time t is thus predicted as

σ̂i jt = hi jt = ρi j

√
hithjt , (59)

with hit and hjt predicted using Equation (58) for channels i and j individually.
The full statistical model is a seasonal ARIMA conditional mean model of Equation (56) with a

CCC multivariate GARCH innovation model given by Equations (58) and (59). The above seem-
ingly complex model is extremely efficient to train, as the five parameters ϕi , γi , αi0, αi1, and βi are
learned for each video i separately following the procedures mentioned above, and ρi j is calculated
straightforwardly from recent history.

5.1 Model Validation via Real Traces

We verify the effectiveness of the proposed workload prediction models based on the workload
traces of UUSee video-on-demand system over a 21-day period during the 2008 Summer Olympics
(Liu et al. 2010). As a commercial VoD company, UUSee streams on-demand videos to millions
of Internet users across over 40 countries through a downloadable client software. The dataset
collected contains performance snapshots taken at a 10-minute frequency of 1,693 video channels,
including sports events, movies, TV episodes, and other genres. The statistics we use in this article
are the time-averaged total bandwidth demand in each video channel in each 10-minute period.
There are 144 time periods in a day.

As an example, we make a 10-minute-ahead (one-step) prediction of the bandwidth demand of a
popular video channel i = 121 released at time period t0 = 264 (2008-08-10 10:47:39). The channel
has a maximum online population of 2,664. The bandwidth consumption series of the first 1.25 days
is used as the training data starting from time period 81. The initial 80 time periods are excluded,
which may not conform to later evolution patterns. The prediction is tested on the data of 3 days
following the training period. We fit the low-order models of Equations (56) and (58) to the training
data and obtain model parameters through a maximum likelihood estimator (Box et al. 2008). As
shown in Figure 4, such a low-order model merely trained based on the data of 1.25 days can yield
conditional mean predictions that are close to the actual demand. The resulted prediction errors
plotted in Figure 4(b), with a mean of zero, have a varying conditional standard deviation predicted
by the GARCH model in Figure 4(c).

Then, we verify that Dit approximately follows a Gaussian distribution in each 10-minute pe-
riod. Recall that for each channel i , given conditional mean prediction μ̂it at time t , the innovation
is Zit := Dit − μ̂it . Figure 5(a) shows the QQ plot of Zit for a typical channel i = 121, which indi-
cates {Zit } sampled at 10-minute intervals is a Gaussian process. Thus, it is reasonable to assume
Dit follows a Gaussian distribution within the 10 minutes following t , with mean μ̂it . Figure 5(b)
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Fig. 4. The 10-minute-ahead (one-step) prediction for the bandwidth demand of a popular video channel

i = 121.

shows the QQ plot of
∑

i Zit , which indicates that the aggregated demand
∑

i Dit tends to Gaussian
even if D jt is not for some channel j. Since the load Ls of each server is aggregated from many
videos, it is reasonable to assume Ls is Gaussian.

5.2 A Channel Interleaving Scheme

Although we have presented a complete framework for efficient forecasts of expected future de-
mand μμμt and demand covariance matrix ΣΣΣt , the parameter learning for the seasonal ARIMA model
of Equation (56) requires a training data of more than 1 day (specifically 1.25 days in our predic-
tor) to incorporate daily periodicity into the model. As new videos do not have enough historical
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Fig. 5. QQ plot of innovations for t = 1,562–1,640 vs. normal distribution.

Fig. 6. Videos released on different days but at the same time of day exhibit similar initial demand patterns.

observations for model training, their demands can hardly be forecasted from history. In this sec-
tion, we propose methods to predict demands for newly released videos that lack historical ob-
servations and unpopular small video channels. We tackle this issue by intelligently interleaving
traffic of new videos to form “virtualized video channels” for demand prediction. We also use a
similar technique to combine small channels to improve prediction accuracy.

Let us consider new videos that have been in the system for less than 1.25 days. Although these
videos do not have sufficient historical observations for model training, we observe that their initial
demand patterns are quite similar to videos that were released earlier around the same time of day.
For example, the left half of Figure 6 shows the initial demands of two video channels, 959F2 and
4E0B2, released at 2008-08-19 21:31:56 and 2008-08-17 21:23:20, respectively. As both videos are
released around the same time of day, though on different days, they are aligned in Figure 6 for
comparison, with double lines of x-labels showing the first 3 days of each video. (2008-08-08 is
deemed as Day 1 and the first time period of each day is 14:50.) We can see that the two videos
exhibit a similar initial demand evolution pattern, though with different popularity. The major
reason for such similarity is that most users watch VoD channels around several peak times in a
day: Both videos are released between 21:00 and 22:00 and will expect the first peak demand at
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Fig. 7. The conditional mean prediction for St in virtual new channel 11, with a test period of 1.5 days from

time 1585 to 1800. Only a part of the entire training data is plotted.

midnight, followed by a second peak at noon on the next day. Similarly, the right half of Figure 6
compares the initial demands of video 9AB4A released at 2008-08-23 17:11:54 and video 4E50A
released at 2008-08-17 17:02:38. They also exhibit similar initial demand patterns, with the first
peak around 18:00, which is the start of off-work hours, before the second peak around midnight.
Different videos, however, may attract different sizes of population depending on their popularity.

From the above analysis, we can predict the demand for a new video based on other videos
released on an earlier date but at the same time of day. To implement this idea, we define virtual
new channel k as a combination of all video channels with an age less than 1.25 days and released
in hour k ∈ {1, . . . , 24} on any date. On release, a new video joins virtual new channel k based on
its release hour k and quits this virtual new channel when it has been in the system for 1.25 days
and accumulated enough observations for separate model training. As a result, each virtual new
channel k contains a dynamic set of video channels released in hour k yet possibly on different
days. For example, Figure 7 shows the aggregate bandwidth demand of virtual new channel 11
from time 433 to 1800, and Figure 9 shows the number of videos contained in virtual new channel
11 from time 1 to 1800. We can see that although virtual new channel 11 represents a dynamic
group of videos, its aggregate bandwidth demand exhibits repetition of a similar pattern, because
the videos in this virtual channel are all released in hour 11, possibly on different dates.

Similarly, we aggregate small video channels and set up 24 virtual small channels. When a video
reaches the age of 1.25 days, it quits its virtual new channel. If its demand never exceeded a thresh-
old (e.g., 40Mbps) in the first 1.25 days, then it will join one of the virtual small channels in a
round-robin fashion. Otherwise, it becomes a mature channel.

Each mature or virtual channel is deemed as an entity to which predictions and optimizations
are applied. For example, we make 10-minutes-ahead prediction of bandwidth demand for virtual
new channel 11 and plot the conditional mean prediction in Figure 7 and the conditional standard
deviation prediction in Figure 8 for a test period of 1.5 days. Satisfactory prediction performance
is observed. Although conditional mean prediction is subject to errors, the GARCH model can
predict the conditional error standard deviation, as shown in Figure 8, which contributes to the risk
factor of Equation (11) in the bandwidth reservation minimization. Furthermore, the combination
of several real video channels into a virtual channel suppresses random shocks, making prediction
more accurate.

6 PERFORMANCE EVALUATION

We conduct a series of simulations to evaluate the performance of our auto-scaling reservation
schemes for video storage systems. The simulations are driven by the replay of the workload traces
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Fig. 8. The prediction error and predicted error

standard deviation for St in virtual new channel

11.

Fig. 9. The number of videos in virtual new

channel 11 during the entire training and test

periods.

of UUSee video-on-demand system over a 21-day period during 2008 Summer Olympics (Liu et al.
2010). We ask the question regarding what the performance would have been if UUSee had all its
workload in this period served by cloud services through our auto-scaled bandwidth reservation
system.

We conduct performance evaluation for four typical time spans that are near the beginning,
middle, and end of the 21-day duration. We implement statistical learning and demand prediction
techniques presented in Section 5 to forecast the expected demands μμμt and demand covariance
matrix ΣΣΣt every 10 minutes. The model parameters are retrained daily, with training data being
the bandwidth demand series {Diτ } in the recent 1.25 days of each channel i . Once trained, the
models will be used for the next 24 hours. Although video users may join or quit a channel unex-
pectedly, our prediction is still effective, since it deals with the aggregate demand in the channel
that features diurnal patterns. We assume that there is a pool of servers from which UUSee can
reserve bandwidth. To spread the load across servers, we set Cs = 300Mbps for each s . The QoS
parameter θ := F−1 (1 − ϵ ) is set to θ = 2.05 to confine the under-provision probability to ϵ = 2%.

6.1 Algorithms for Comparison

We compare our optimal load direction (14) under full replication and Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4 with sparse content placement against the following baseline
algorithms:

Reactive without Prediction. Initially, replicate each video to K randomly chosen servers,
which limits the initial content replication degree to K . Each client requesting channel i is ran-
domly directed to a server that has video i and idle bandwidth capacity. A request is dropped if
there is no such server. In this case, the algorithm reacts by replicating video i to an additional
server chosen randomly that has idle capacity. Replicating content is not instant: We assume that
the replication involves a delay of one period of time.

Random with Prediction. Initially, let s = 1 and b = 1. Second, randomly generate ws in (0, b)
and rescale it so the QoS constraint (11) is achieved with equality for s . Update b to b −ws and
update s to s + 1. Go to the second step unless b = 0 or s = S + 1, in which case the program
terminates.

The reactive scheme represents provisioning for peak demand in Figure 1 in some way, with lim-
ited replication. It does not leverage prediction or bandwidth reservation. We assume in Reactive
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that the total cloud capacity allocated is always the minimum capacity needed to meet the peak
demand in the system. The random scheme leverages prediction and makes bandwidth reservation
but randomly directs workloads instead of using anti-correlation and optimization techniques to
minimize bandwidth reservation.

We implement all of the six schemes discussed above and summarize their performance com-
parison in Table 1 for each of the four time spans. Iterative L1-Constrained is only evaluated for
time periods 702–780, as it cannot converge within 10 minutes for more than 91 channels. Note
that the channels in the table include mature channels, virtual new channels, and virtual small
channels. The number of videos in each virtual channel can vary over time. As new videos are in-
troduced, more channels are present in later test periods. We evaluate the algorithm performance
with regard to QoS, bandwidth resource occupied, and replication cost.

6.2 The Benefit of Predictive Provisioning over Reactive Provisioning

Table 1 shows that Reactive generally has a more salient QoS problem than all five predictive
schemes in terms of both the number of unsatisfied channels and request drop rate (percentage of
unsatisfied requests), demonstrating the benefit of demand prediction. Figure 10 presents a more
detailed comparison for a typical peak period from time 702 to 780. Without surprise, Reactive
has many unfulfilled requests at the beginning. Since the videos are randomly replicated to K = 2
servers (shown in Figure 10(d) at t = 702) and requests are randomly directed, it is likely that a
channel does not acquire enough capacity to meet its demand. As Reactive detects the QoS prob-
lem, videos are replicated to more servers to acquire more capacity, with a gradually increased
replication degree over time, as in Figure 10(d). We can see that after 140 minutes, when the repli-
cation degree exceeds 4, the QoS of Reactive becomes relatively stable in Figure 10(a). However,
around time 763, Reactive suffers from salient QoS problems again, due to a sudden ramp-up of de-
mand. In contrast, the predictive schemes foresee and get prepared for demand changes, resulting
in much better QoS, even in the event of drastic demand increase.

The predictive schemes also achieve higher resource utilization. Utilization of a predictive
scheme is the ratio between the actual bandwidth usage and the total booked bandwidth in all
servers. For Reactive, the utilization is the actual bandwidth demand divided by the peak demand.
Although Figure 10(c) shows that Reactive achieves a high utilization for the peak demand around
time 763, its average utilization is merely 77.19% in the test period from 702 to 780. Predictive
auto-scaling enhances utilization to 85.7% with Per-Server Limited Channels, to 90.0% with Per-
Server Optimal, to 88.2% with Iterative L1-Constrained and to 92.9% with the theoretical optimal
solution under full replication.

6.3 Resource Autoscaling: A Comparison Among Predictive Schemes

We now compare the six predictive schemes. Among them, as shown in Table 1, Optimal books
the minimum necessary bandwidth and achieves the highest bandwidth utilization yet with the
highest replication overhead. In fact, with full replication, each video is replicated to every server,
and thus the optimal solution can best exploit the anti-correlations among all the channels to
minimize reserved bandwidth. However, the VoD provider needs to pay a high storage cost to the
cloud service provider.

Among all the five predictive schemes that replicate content sparsely, Random achieves the
lowest utilization, since it is completely blind to the correlation information in workload selection
and direction. Per-Server Optimal can reduce the replication degree while maintaining other per-
formance metrics. By further imposing a channel number constraint on each server, Per-Server
Limited Channels strikes a balance between replication overhead and bandwidth utilization. It ag-
gressively reduces the replication degree to a very small value of 2.4–2.6 copies per video. Iterative

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.



Bandwidth Auto-Scaling and Content Placement for Video-on-Demand in the Cloud 19:21

T
a
b

le
1.

T
h

e
P

er
fo

rm
a
n

ce
o
f

D
iff

er
en

t
S

ch
em

es
A

ve
ra

g
ed

o
ve

r
E

a
ch

T
es

t
P

er
io

d
,i

n
T
er

m
s

o
f

Q
o
S

,R
es

o
u

rc
e

U
ti

li
za

ti
o
n

,a
n

d
R

ep
li

ca
ti

o
n

T
im

e
p

e
ri

o
d

s
7

0
2

–
7

8
0

(9
1

m
at

u
re

an
d

v
ir

tu
al

ch
an

n
el

s)
T

im
e

p
e
ri

o
d

s
1

4
2

2
–

1
4

8
0

(1
61

m
at

u
re

an
d

v
ir

tu
al

ch
an

n
el

s)

P
er

io
d

s
P

ea
k

d
em

an
d

6.
56

G
b
p

s,
m

ea
n

d
em

an
d

5.
19

G
b
p

s
P

ea
k

d
em

an
d

6.
81

G
b
p

s,
m

ea
n

d
em

an
d

4.
91

G
b
p

s

Sh
o

rt
D

ro
p

U
ti

l
R

ep
B

o
o

k
ed

O
v
er

-p
ro

v
Sh

o
rt

D
ro

p
U

ti
l

R
ep

B
o

o
k

ed
O

v
er

-p
ro

v

O
p

ti
m

al
0

C
h

s
0.

66
%

92
.9

%
91

.0
6.

57
G

b
p

s
10

8.
5%

0
C

h
s

0.
25

%
91

.1
%

16
1.

0
6.

38
G

b
p

s
11

0.
3%

P
er

-S
er

v
er

O
p

t
1.

0
C

h
s

0.
37

%
90

.0
%

8.
5

6.
79

G
b
p

s
11

2.
2%

1.
2

C
h

s
0.

13
%

88
.6

%
6.

9
6.

56
G

b
p

s
11

3.
4%

P
er

-S
er

v
er

L
im

0.
3

C
h

s
0.

06
%

85
.7

%
2.

6
7.

13
G

b
p

s
11

7.
8%

0.
2

C
h

s
0.

03
%

84
.6

%
2.

4
6.

86
G

b
p

s
11

8.
8%

R
an

d
o

m
5.

9
C

h
s

0.
02

%
83

.3
%

3.
8

7.
33

G
b
p

s
12

1.
2%

7.
6

C
h

s
0.

00
%

82
.2

%
3.

0
7.

08
G

b
p

s
12

2.
4%

R
ea

ct
iv

e
7.

9
C

h
s

0.
47

%
77

.2
%

4.
3

7.
91

G
b
p

s
13

2.
4%

7.
2

C
h

s
0.

34
%

70
.4

%
3.

6
8.

20
G

b
p

s
14

6.
0%

It
r

L
1
-C

o
n

st
r

0
C

h
s

0.
18

%
88

.2
%

4.
8

6.
92

G
b
p

s
11

4.
3%

-
-

-
-

-
-

It
r

L
1
-P

en
al

0.
1

C
h

s
0.

06
%

85
.1

%
2.

3
7.

18
G

b
p

s
11

8.
7%

0.
1

C
h

s
0%

84
.7

%
2.

3
6.

88
G

b
p

s
11

8.
8%

T
im

e
p

e
ri

o
d

s
1

5
6

2
–

1
6

4
0

(1
76

m
at

u
re

an
d

v
ir

tu
al

ch
an

n
el

s)
T

im
e

p
e
ri

o
d

s
2

4
0

2
–

2
5

0
0

(1
99

m
at

u
re

an
d

v
ir

tu
al

ch
an

n
el

s)

P
er

io
d

s
P

ea
k

d
em

an
d

7.
55

G
b
p

s,
m

ea
n

d
em

an
d

5.
62

G
b
p

s
P

ea
k

d
em

an
d

9.
19

G
b
p

s,
m

ea
n

d
em

an
d

7.
62

G
b
p

s

Sh
o

rt
D

ro
p

U
ti

l
R

ep
B

o
o

k
ed

O
v
er

-p
ro

v
Sh

o
rt

D
ro

p
U

ti
l

R
ep

B
o

o
k

ed
O

v
er

-p
ro

v

O
p

ti
m

al
0

C
h

s
0.

31
%

91
.1

%
17

6.
0

7.
27

G
b
p

s
11

0.
4%

0
C

h
s

0.
11

%
85

.4
%

19
9.

0
10

.5
4

G
b
p

s
11

8.
1%

P
er

-S
er

v
er

O
p

t
0.

7
C

h
s

0.
16

%
88

.3
%

7.
3

7.
51

G
b
p

s
11

4.
0%

1.
0

C
h

s
0.

09
%

82
.7

%
6.

3
10

.8
7

G
b
p

s
12

1.
8%

P
er

-S
er

v
er

L
im

1.
4

C
h

s
0.

00
%

83
.9

%
2.

4
7.

89
G

b
p

s
11

9.
9%

20
.7

C
h

s
0.

17
%

82
.3

%
2.

5
10

.9
5

G
b
p

s
12

2.
6%

R
an

d
o

m
6.

2
C

h
s

0.
00

%
80

.4
%

3.
3

8.
28

G
b
p

s
12

5.
4%

33
.4

C
h

s
0.

02
%

77
.9

%
4.

5
11

.5
4

G
b
p

s
12

9.
3%

R
ea

ct
iv

e
5.

9
C

h
s

0.
27

%
72

.7
%

3.
5

9.
08

G
b
p

s
14

0.
4%

15
.8

C
h

s
0.

43
%

74
.6

%
3.

6
12

.0
1

G
b
p

s
14

0.
3%

It
r

L
1
-P

en
al

1.
1

C
h

s
0.

03
%

84
.5

%
2.

0
7.

85
G

b
p

s
11

9.
1%

1.
0

C
h

s
0.

01
%

81
.1

%
2.

1
11

.9
2

G
b
p

s
12

4.
5%

S
h

o
rt

:A
v
er

ag
e

#
ch

an
n

el
s

w
it

h
d

ro
p

p
ed

re
q

u
es

ts
;D

ro
p

:a
v
er

ag
e

re
q

u
es

t
d

ro
p

ra
te

;U
ti

l:
av

er
ag

e
u

ti
li

za
ti

o
n

o
fa

ll
o

ca
te

d
re

so
u

rc
es

;R
e
p

:a
v
er

ag
e

re
p

li
ca

ti
o

n

d
eg

re
e;

B
o

o
k

e
d

:a
v
er

ag
e

b
o

o
k

ed
b
an

d
w

id
th

;O
v

e
r-

p
ro

v
:a

v
er

ag
e

o
v
er

-p
ro

v
is

io
n

in
g

ra
ti

o
.

N
ot

e:
It

er
at

iv
e

L
1
-C

o
n

st
ra

in
ed

is
o

n
ly

ev
al

u
at

ed
fo

r
ti

m
e

p
er

io
d

s
70

2–
78

0,
si

n
ce

it
ca

n
n

o
t

effi
ci

en
tl

y
co

m
p

le
te

w
it

h
in

10
m

in
u

te
s

fo
r

m
o

re
th

an
91

ch
an

n
el

s,

w
h

ic
h

is
th

e
ca

se
fo

r
o

th
er

ti
m

e
sp

an
s.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 19. Publication date: October 2017.



19:22 D. Niu et al.

Fig. 10. Predictive vs. reactive bandwidth provisioning for a typical peak period 702–780. There are 35 servers

available, each with capacity 300Mbps, and 91 channels, including 52 popular channels, 24 small channels,

and 15 non-zero new channels. For Reactive, K = 2. For Iterative L1-Constrained, the number of videos per

server is ks = 5 for all s . For all other schemes, ks = 10 for all s .

L1-penalized turns out to be a numerically stable method that yields the smallest replication
degree among all the predictive schemes, with an extremely low drop rate and an over-provisioning
ratio that is only slightly higher than Optimal and comparable to Per-Server Limited Channels.

Nonetheless, Iterative L1-Constrained, as shown in Figure 10(c) and Figure 10(d), achieves a
slightly higher utilization of booked bandwidth than Per-Server Limited Channels at the cost of
a higher replication degree. The request drop rates and numbers of unsatisfied channels in both
schemes are similar to each other, as shown in Figure 10(a) and Figure 10(b). Note that for Itera-
tive L1-Constrained, we have set the number of videos per server to be ks = 5, which is one half
of that in other schemes. The reason is that in Iterative L1-Constrained, the modified constraint∑

i ϕ̂
t
si (wsi ) ≤ ks does not always converge to the video number (L0-norm) constraint per server

‖ws ‖0 ≤ ks . In Figure 10(d), the spikes in the replication degree corresponds to the time periods
where the iterative program aborts in an iteration when there is no feasible solution to constraints

(39)–(42). In such cases, the modified constraint (42), that is,
∑

i ϕ̂
t
si (wsi ) ≤ ks , never converges to

‖ws ‖0 ≤ ks . Thus, there exist much higher replication degrees in such time periods, although ks is
set to a low value. In fact, it is challenging to tune the parameter δ so Iterative L1-Constrained can
always converge for all time periods with different input demands. Furthermore, for 91 channels,
Iterative L1-Constrained takes on average 600s2 to finish the iterative optimization procedure for

2Running times are measured on a 2.6GHz Intel Core i7 processor.
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Fig. 11. Workload portfolio selection vs. random load direction for different time periods. For all the schemes,

the number of videos per server is ks = 10 for all s .

each time period, which exceeds 10 minutes, the length of each time period. Therefore, Iterative
L1-Constrained is not efficient and stable enough for the purpose of content placement.

In contrast, both Per-Server Limited Channels and IterativeL1-Penalized are much more efficient
and numerically stable: It takes up to only 2 minutes for prediction plus either of the two schemes
to finish for each time period, well before the deadline of 10 minutes. Therefore, considering repli-
cation degree, QoS, utilization, and computational efficiency, Per-Server Limited Channels and
Iterative L1-Penalized are the best, although it will be demonstrated subsequently that Iterative L1-
penalized has the additional benefit of mitigating content migration overhead across time periods.

We further show a detailed comparison between Per-Server Optimal, PerServer limited chan-
nels, Iterative L1-Penalized, and Random for all four time spans in Figure 11. The efficiency of
predictive bandwidth booking can be evaluated by the cushion bandwidth needed, which is the
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Fig. 12. Server auto-scaling: The number of servers used by each predictive provisioning scheme in each time

period for four different time spans.

gap between the booked bandwidth and actual required bandwidth. Figures 11(c), (e), and (g) plot
the cushion bandwidth. For example, during time periods 1562–1640, while being on the same
QoS level, random load direction results into a cushion bandwidth up to 3Gbps compared to a
mean demand of 5.62Gbps, representing significant over-provisioning. Using Per-Server Optimal,
the cushion bandwidth can be saved by 50% on average, as shown in Figure 11(f). Per-Server Lim-
ited Channels and Iterative L1-Penalized, even with a replication degree of about twp copies per
video, can save cushion bandwidth by around 30% as compared to Random, which has a higher
replication degree of 3.3 copies per video.

QoS problems occur if bandwidth is under-provisioned, leading to a cushion bandwidth below
0. For example, from Figure 11(e), we observe that QoS problems occur occasionally for Per-Server
Optimal but seldom for Per-Server Limited Channels and Iterative L1-Penalized from time 1562 to
time 1640, because the latter schemes conservatively book more cushion bandwidth.

An important advantage of our schemes is that they can auto-scale the number servers (in-
stances in terms of cloud computing) used. The actual numbers of servers used by different pre-
dictive schemes in different time periods are shown in Figure 12. Since our algorithms adopt a
per-server heuristic, they can push most loads only onto necessary servers instead of letting the
load spread across the available server pool. This enables the idle servers to be used for other
purposes.

6.4 Replication and Migration Overhead

We now evaluate the replication and migration overhead in the simulated video storage system. We
compare the replication degree, migration overhead, QoS, and utilization achieved by Per-Server
Optimal, Per-Server Limited Channels, Iterative L1-Penalized, and Reactive in all four different
time spans and show the results in Figures 13, 14, 15, and 16, respectively.

From these figures, we can see that, as compared to all other schemes, Iterative L1-Penalized can
effectively reduce the number of video copies transferred in each time period by using a regularizer
to limit the difference from the previous placement decision, avoiding the global shuffling. In the
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Fig. 13. Performance of different schemes for a typical peak period 702–780. There are 35 servers available,

each with a capacity of 300Mbps, and 91 mature and virtual channels. For Reactive, K = 2. For Per-Server

Limited Channels, ks = 10 for all s .

meantime, Iterative L1-Penalized achieves a slightly lower replication degree as Per-Server Limited
Channels and a similar level of high resource utilization as Per-Server Limited Channels.

Furthermore, the execution of Iterative L1-Penalized is quite lightweight in our simulation. In
the subroutine, Algorithm 5, we setmaxiteration = 5, and set λ(1) = 0 and

λ(t ) =
1

5
·

μμμT
w

t−1
s∑

i :w
pre
si
=0 ϕ̂

t
si (wt−1

si )
, t = 2, 3, 4, 5.

With the above setting, it takes less than 1 minute to execute Iterative L1-Penalized, and the solu-
tion is already sparse enough.

7 RELATED WORK

Researches on exploiting virtualization techniques for delivering cloud-based IPTV services have
been conducted by major VoD providers like AT&T (Aggarwal et al. 2011). The importance of
VoD bandwidth demand prediction to capacity planning has also been recognized. It is shown that
demand estimates can help with optimal content placement in AT&T’s IPTV network (Applegate
et al. 2010).

The traffic characteristics of the two popular video streaming services, Netflix and YouTube,
are studied in Rao et al. (2011), where it is observed that the bandwidth of links carrying video

streaming traffic should be provisioned to E[R (t )] + α
√

Var[R (t )], where R (t ) is the aggregate data
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Fig. 14. Performance of different schemes for a typical peak period 1422–1480. There are 36 servers available,

each with a capacity of 300Mbps, and 161 mature and virtual channels. For Reactive, K = 2. For Per-Server

Limited Channels, ks = 10 for all s .

rate of the video streaming traffic at time t . α ≥ 1 is a constraint on the tolerable bandwidth vi-
olations. Furthermore, it is pointed out in Rao et al. (2011) that the mean and variance of the ag-
gregate data rate of video streaming traffic are independent of the underlying streaming strategies
used, which may range from non-ack clocked ON-OFF cycles to bulk TCP transfer, depending on
the type of the application (Web browser or native mobile application) and the type of container
(Silverlight, Flash, or HTML5) used. Hence, the required bandwidth is also independent of these
diverse factors. This implies that video services can safely select a streaming strategy that can be
optimized for other goals such as server load without overwhelming the network.

Due to the predictability of aggregate video traffic, several time-series and statistical learning
methods have been applied to video traffic prediction, including non-stationary time series models
(Niu et al. 2011a, 2011b) and video access pattern extraction via principal component analysis
(Gürsun et al. 2011).

Predictive and dynamic resource provisioning has been proposed mostly for virtual machines
(VM) and web applications with respect to CPU utilization (Bobroff et al. 2007; Gong et al. 2010;
Tang et al. 2007; Gmach et al. 2007) and power consumption (Kusic et al. 2009; Lin et al. 2011). VM
consolidation with dynamic bandwidth demand has also been considered in Wang et al. (2011). Our
work exploits the unique characteristics of VoD bandwidth demands and distinguishes from the
above work in three aspects. First, our bandwidth workload consolidation is as simple as solving
convex optimization for a load direction matrix. We leverage the fact that, unlike VM, demand of
a VoD channel can be fractionally split into video requests. Second, our system forecasts not only
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Fig. 15. Performance of different schemes for a typical peak period 1562–1640. There are 40 servers available,

each with a capacity of 300Mbps, and 176 mature and virtual channels. For Reactive, K = 2. For Per-Server

Limited Channels, ks = 10 for all s .

the expected demand but also the demand volatility and thus can control the risk factors more
accurately. In contrast, most previous works (Gong et al. 2010; Gmach et al. 2007) assume a con-
stant demand variance. Third, we exploit the statistical correlation between bandwidth demands
of different video channels to save resource reservation while previous works such as Wang et al.
(2011) consider independent workloads.

The idea of statistical multiplexing and resource overbooking has been empirically evaluated
for a shared hosting platform in Urgaonkar et al. (2002). Our novelty is that we formulate the
quality-assured resource minimization problem using Value at Risk (VaR), a useful risk measure
in financial asset management (McNeil et al. 2005), with the aid of accurate demand correlation
forecasts. We believe that our theoretically grounded approach bears stronger robustness against
intractable demand volatility in practice.

There are extensive studies around the content placement problem in replication-based cloud
storage systems. Rochman et al. (2013) propose the strategies of placing the resources to distributed
datacenters to serve more requests locally. Xu and Li (2013) propose a request mapping and re-
sponse routing scheme to maximize the total utility of serving requests minus the cost. Bonvin
et al. (2010) propose a distributed scheme to dynamically allocate the resources of a data stor-
age cloud based on net benefit maximization, considering the utility offered by the partition and
its storage and maintenance cost. In Agarwal et al. (2010), automatic data placement across geo-
distributed datacenters is presented, which iteratively moves a data item closer to both clients
and other data items that it communicates with. Yu and Pan (2015) study the content placement
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Fig. 16. Performance of different schemes for a typical peak period 2402–2480. There are 48 servers available,

each with a capacity of 300Mbps, and 199 mature and virtual channels. For Reactive, K = 2. For Per-Server

Limited Channels, ks = 10 for all s .

problem for systems when multiple items are needed in each request and the item size is small.
They try to maximize the correlation of the items collocated on the same server to reduce the
I/O and CPU overhead to satisfy each request. In this article, we consider video storage and access
systems, where the most important performance metrics are bandwidth and storage. And we focus
on geographically collocated server clusters in the same datacenter.

Our prior work (Niu et al. 2012) has studied the optimal load direction and cloud bandwidth
reservation under full content replication, and this article provides a deeper study on this problem
in a wider scope. Specifically, in this article, we further discuss load direction under a given sparse
replication scheme and study the joint optimization of load direction and sparse content place-
ment in Section 4. We introduce a new algorithm to solve this joint load direction and placement
problem involving L0 norms through iteratively reweighed L1-norm relaxations and compare its
performance with other proposed algorithms. Furthermore, we elaborate our demand prediction
schemes in Section 5, with detailed performance evaluations and add detailed discussions on han-
dling new channels and forming virtual channels for improved demand prediction.

To the best of our knowledge, this is the first work that jointly models the load direction and
sparse content placement as a sparsity-penalized or sparsity-constrained optimization problem.
And we have novelly adapted the iterative reweighted L1-norm approximation techniques from
the sparse recovery theory to solve our sparse design problem, yielding satisfactory performance
and low computational complexity.
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8 CONCLUDING REMARKS

In this article, we propose an unobtrusive, predictive, and elastic cloud resource auto-scaling frame-
work for video storage systems. Operated at a 10-minute frequency, the system automatically pre-
dicts the expected future demand as well as demand volatility for each video through ARIMA and
GARCH time-series forecasting techniques based on history. Leveraging demand prediction, the
system jointly makes load direction to multiple cloud servers and then bandwidth reservations
from them to satisfy the projected demands with high probability. The system can save resource
reservation cost for VoD providers in terms of both bandwidth and storage.

We exploit the predictable anti-correlation between video requests to enhance resource
utilization and derive the optimal load direction that minimizes bandwidth resource reservation
while confining under-provision risks. We formulate the joint load direction and sparse content
placement problem as an L0-norm regularized optimization that turns out to be nonconvex. To
approximately solve this problem, we propose, among several heuristics, an iteratively reweighted
L1-norm penalized optimization process that can yield sparse placement and reduce content
migration.

Based on extensive simulations driven by the demand traces of a large-scale production VoD
system, we observe that the proposed Iterative L1-Penalized optimization has the best practi-
cal appeals due to its capability of efficiently computing solutions that can balance the costs of
bandwidth and storage with limited migration overhead, while achieving satisfying quality of
service.
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