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ABSTRACT jor risk to these tenants using cloud services is that unlike

In a public cloud, bandwidth is traditionally priced in a pay CPU an_d memory, bandwidth is not guaranteed in cu_rrent-
as-you-go model. Reflecting the recent trend of augmenting 9&neration cloud platforms (e.g., Amazon EC2), leading to
cloud computing with bandwidth guarantees, we consider UnPredictable network performance [6, 19]. A lack of band-
a novel model of cloud bandwidth allocation and pricing Width guarantee impedes cloud adoption by applicatiorts tha
when explicit bandwidth reservation is enabled. We argue '€duire such guarantees, such as transaction processing we
that a tenant’s utility depends not only on its bandwidth us- &Pplications [14] and video-on-demand (VoD) applications
age, but more importantly on the portion of its demand that [4]- The utility of tenants running these applications degz

is satisfied with a performance guarantee. Our objective is "0t Only on the bandwidth usage, but more importantly on
to determine the optimal policy for pricing cloud bandwidth oW many of their end-user requests are served with guaran-
reservations, in order to maximize social welfare, i.eg th €€d performance. L
sum of the expected profits that can be made by all tenants Withan everincreasing d(_amand for pefformance predistabi
and the cloud provider, even with the presence of demand'®: & recenttrend in networking research is to augmenttlou
uncertainty. The problem turns out to be a large-scale net-COMPUting to explicitly account for network resources. In
work optimization problem with a coupled objective func- fact, datacenter engineering techniques have been_de«blop
tion. We propose two new distributed solutions — based on t© €xpand the tenant-cloud interface to allow bandwidtbrres
chaotic equation updates and cutting-plane methods — thatvation for traffic flowing from awrtual _machm_e (VM) in the
prove to be more efficient than existing solutions based on cloud to the Internet [7,12]. We envision that in future cou

consistency pricing and subgradient methods. platforms, bandwidth reservation will be a value-added fea
In addition, we address the practical challenge of fore- ture that attracts tenants who seek bandwidth guarantees.
casting demand statistics, required by our optimizatiapr Unfortunately, even with cloud bandwidth reservation en-

lem as input. We propose a factor model for near-future de- abled, due to demand uncertainty, it is still difficult for a
mand prediction, and test it on a real-world video workload tenant to predict how much bandwidth it needs at a partic-
dataset. All included, we have designed a fully computer- Ular time. The usual approach of over-provisioning incurs
ized trading environment for cloud bandwidth reservations Nigh Costs to tenants and does not really provide quanetati

which operates effectively at a fine granularity of as smmlla SETVice guarantees. To promote guaranteed services, we be-
ten minutes in our trace-driven simulations lieve that a new cloud service model should be introduced,

in which a tenant simply needs to specify a percentage of
its (bandwidth) demand to be served with guaranteed per-

Keywords formance, which we call thguaranteed portionwhile the
Cloud Computing, Bandwidth Pricing, Distributed Optimiza  rest of its demand will be served with best effort. It is then
tion, Prediction, Time Series the cloud provider’s responsibility to satisfy the guaeset
portion of the tenant with a high probability. Since the cou
1. INTRODUCTION provider has vast historical workload data, it can leverage

statistical learning to predict tenant demands and make ac-
tual bandwidth reservations for the tenants.

In this paper, we study how to price the above guaranteed
service. It is worth noting that usage-based pricing (pay-
as-you-go) is not suitable for pricing bandwidth guarasitee

Cloud computing delivermfrastructure as a ServicgaaS)
that integrates computation, storage and network ressurce
in a virtualized environment. It represents a new business
model where applications asnantsof the cloud can dy-
namically reservenstanceson demand. However, a ma-



For example, it is more costly to guarantee the performance The remainder of the paper is organized as follows. We
of a tenant with bursty demand than a tenant with constantreview related work in Sec. 2, and present our system model
demand, even if they have incurred the same usage (num-n Sec. 3. We formulate the problem of social welfare max-
ber of bytes transferred). As a result, on top of tisage imization in Sec. 4, where we outline the condition for opti-
fee the cloud should charge each tenant an extsarvation mal pricing and discuss its economic implications. To solve
fee depending on its unique demand statistics. Our objec- the optimal pricing problem distributively, in Sec. 5, wepr
tive is to fairly set such reservation fees, with the follogi pose two algorithmschaotic price updatand thedistributed
challenges. First of all, the cloud provider usually multi-  cutting-plane methgdand study their convergence perfor-
plexes tenant demands to save the service cost. Due to remance. In Sec. 6, we present our statistical methods for
source sharing, the absolute amount of bandwidth reserveddemand forecast. We conduct trace-driven simulations in
for each tenant is unknown. It is a challenging question to Sec. 7, and conclude the paper in Sec. 8.

find out each tenant’s fair share in the aggregate servide cos

Seconga pricing policy, when imposed to the market, may 2 BACKGROUND AND RELATED WORK

affect tenants demand; such demand change in turn affects
pricing decisions, leading to potentially unstable itienas.

To overcome these difficulties, we define the reservation
fee of each tenant as a function of its specifirédranteed
portioninstead of the absolute amount of bandwidth reserve
We also express each tenant’s utility as a function afuisr-
anteed portion which essentially measures the Quality o
Service (QoS) at the tenant. Under this new model of pric-
ing and utility, each tenant will choose a guaranteed por-
tion to maximize itssurplus which is its utility minus price.
Note that in reality, a tenant may choose a guaranteed por-

tion close tol instead of being 1 out of cost concerns, while s i _ ; i
having the remaining demand served with best effort. datacenter traffic engineering to offer elastic bandwidtrg

We study a cloud provider whose objective is to maxi- antegs for egress traffic from virtual machines (VMs) [12].
mize thesocial welfareof the system, i.e., the total expected 1€ idea of virtual networks has also been proposed to con-

tenant utility under demand uncertainty minus the aggeegat Nect the VMs of the same tenant in a virtual network with

service cost. Although the cloud cannot know the exact form bandwidth guarantees [7, 12]' Further,_ explicit rate agintr
of utility at each tenant, it can affect each tenant's choice NS been proposed to apportion bandwidth according to flow

of guaranteed portion through pricing, and thus control the deadlines [Z_l]' Such res_earc_h progress ha_s m_ade the cloud
social welfare achieved. To handle the coupled cost func- MOre attractive to bandwidth-intensive applications sash
tion (due to multiplexing), we propose a novel algorithm video-on-demand and MapReduce computations thgt rely on
based orchaotic equation update$or which we provide a the netwo_r k'to transf_e rlarge amc_>unts of data_1 at high rates
sufficient convergence condition. We further propose a dis- [24]- Netflix, as a major VoD provider, moved its data store
tributed version of theutting-plane methodith guaranteed a”O_' video encoding and streaming servers to Amazon AWS
convergence. These methods atep-size-fre@nd proved [2]in 2010 [4].

to be more efficient than traditional subgradient methods in . To SUPF’O” guarar;tee;]d ctl)ou?lj s:_adrvrllces, we Q eedl nevl;/ poél-
simulations. In addition, we give explicit solutions to op- C€S to price not only the bandwidth usage but also band-

timal pricing under certain special cases and point out the Width reservations. Our pricing model is partially inspire

dependence of reservation pricing on demand statistids suc by pricing electric power con_sumptlon and capacity reser-
as burstiness and covariances. vation under demand uncertainty [18]. However, due to the

Since a main duty of the cloud provider is to reserve band- computing capability and abundant workload data in thed;lou

width for the tenants, demand forecast constitutes an impor our bandwi(_jth_ res_ervation pricing theory is e_ssgntially'sa_d
tant part in the reservation-based service. Toward this end touted op|t|m|zat|on problem bliased on statistical leagni

we propose a factor model to predict the expectations as We”A_mazon c uster_Compute [1] allows tenant_s to reserve, ata
as covariances of tenant demands in the near future, base@'gh cost, a dedlcatgq 19 Gbp; hetwork with na mulpplex—
on principal component analysis (PCA). Finally, we eval- Ing. Instead of provisioning a fixed amount of qapamty, we
uate the proposed algorithms on the workload traces of abelleve that tenants should be allowed to specify a guaran-
real-world VoD system calledUSeg[3]. We conduct trace-  t€€d portion of demand, as a way to control QoS level, while
driven simulations of bandwidth reservation and algorithm C'O!Jd providers should dynaml_ca_lly vary bandwidth reser-
pricing based on demand prediction. The system is shown vations based on demand predictions. Our approach has the

to operate effectively at a fine granularity (of as small as 10 Unique advantage that tenants are exempted from demand es-
minutes). timation, for which they do not have expertise. In contrast,

the cloud can easily access tenant demand history from on-

Cloud computing, e.g., Amazon EC2, is usually offered
with usage-based pricing (pay-as-you-go) [6, 11]. Differ-
ent from pay-as-you-go, resource reservation involves pay
d_ing a negotiated cost to have the resource over a time period,
whether or not the resource is used. Although suitable for
f delay-insensitive applications, pay-as-you-go is insigfit
as a business model for bandwidth-intensive and quality-
stringent applications like VoD, since no performance guar
antees are provided in general.
The good news is that cloud bandwidth reservation is be-
coming technically feasible. There have been proposals on



line monitoring, and is computationally capable of accairat We consider one such short period, whéfdandwidth-
demand forecast. sensitive tenants are present. Suppose that in this pégiod,
Since pricing guaranteed portions critically depends on anti’s bandwidth demand is a random varialide (Mbps)
accurate estimates of demand statistics, we target applicawith meany; = E[D;] and variancer? = Var[D,]. We
tions with predictable demands, such as video access. Asassume the cloud can predjet and o; based on demand
measurements show that video workload demonstrates reguhistory and share them to tenariefore the period starts. In
lar diurnal periodicity [5,16,22,23], various techniquneve our proposed market, the key commodity traded is a notion
recently been proposed to forecast large-scale VoD traffic. called theguaranteed portiolinstead of the absolute amount
Seasonal ARIMA models have been introduced in [15, 16] of bandwidth. Specifically, the tenants and cloud will com-
to predict non-stationary demand evolution at a fine granu- ply to the following service agreeme&t(w;, €, R;):
larity. Principal component analysis (PCA) has been pro-
posed in [13] to extract video demand evolution patterns
over longer periods (of weeks or months) and forecast coarse

grained daily populations. We combine the strengths of both e The cloud guarantees; fraction of demandD; with

o Before the period starts, each tenaapecifies guar-
anteed portionw; € [0, 1];

approaches by finding the common factors driving the de- a high probabilityl — ¢; outage is allowed to happen
mand evolution of all tenants using PCA at a fine granularity. with a small probability, during which the bandwidth
We then make predictions for individual tenants as regres- allocated to tenantis limited to R;.

sions from factor forecasts obtained from seasonal ARIMA )

models. Unlike [13], our approach makes short-term predic- 1€ parametersandz; are a part of a service level agree-
tions with a lead time of 10 minutes, enabling autoscaling of MeNt (SLA) advertised by the cloud provider. We introduce
resource allocation. therisk factor e because for random demand, regardless of

Our optimal pricing algorithms are related to network util- how much bandwidth is allocated, there exists a small risk

ity maximization (NUM), which has been extensively stud- ©f resource shortage. _ _

ied in the past, with various distributed algorithms pragzbs Let ¢; denote the actual bandwidth usage (realized data
See [10, 17] for thorough surveys. Most of these algorithms rate) in this period. Under a guaranteed portian service
assume no coupling in the objective function, and thus can- Si(wi; €, I%;) is supposed to lead to the following actual us-
not be applied to our problem with a coupled cost term. One 29€ of tenant:

existing approach to handle coupled objectives is calted w; D;, w.p. 1—e,
sistency pricind10, 20], which is based on dual decomposi- qi(wi) = { min{w; D;, R;}, W.p. €, @
tion and subgradient methods. However, subgradient meth-, , . . L
ods suffer from the curse of step sizes, in that small steps in L.e., with p_robab_llltyl —cthe actua_ll usagg Is a real|zat|(_)n
cur big delays (many rounds of message exchanges betweefl! Wi fracthn of its demand);, \,’\_’h'le during outage (Wh.'Ch
the cloud and tenants), while big steps yield big optimality "2PPens with a small probabilig), the actual usage; is
gaps. Varying step sizes strategically is difficult in rgali  'ationed byri. .
In this paper, we propose twaiep-size-fre@lgorithms: 1) Clearly, tenfint will choose% basedlon bo'Fh the utility
chaotic price update, 2) the cutting-plane method. The first Ui @nd the price of guaranteeing; portion of its demand

one is based on iterative equation updates instead of decomPi- Unlike most prior work on network utility maximiza-

position and achieves rapid convergence under certain con.ion [10] thatassumes the utility; depends on a single vari-

ditions. The second is a search algorithm with a guaranteedP!€ such as rate, we model utility;(¢;, ;) of tenanti as
convergence speed a function of both actual usagg and the demand;. For

example, a video content provider (or a VoD company) may
have a linear utility gain (or revenue)q; from usagey; and
3. ANEWTENANT-CLOUD AGREEMENT a convexly increasing utility loss®:(P:~4) for the denied
Our system model is a generalization of the operation modeequestsD; — ¢;, with «;, A; being tenant-specific parame-
of the current cloud. Current cloud providers charge tenant ters:
ausage fedased on the number of bytes transferred in the Ay (Di—qs (w
past hour, and do not provide bandwidth guarantees. We Ui(as(wi)s Di) = cigi(wy) — P, (2)
extend this model to allow tenants to make reservations for where the utility loss term can model the reputation degrada
bandwidth guarantees explicitly. The system operates on ation and potential revenue loss due to unfulfilled dentand
short-term basis, e.g., based on hours or tens of minutes. AtWe assumd/; is concaveand monotonically increasingn
the beginning of each short period, each tenant specifies ag;.
guaranteed portiorio guard against performance risks. The  The price for tenant to use serviceS; (w;, €, R;) is di-
cloud decides the actual bandwidth reservation for tenantsvided into two parts: aisage feeand areservation fee As
through demand estimation based on workload analysis, a_nollEven though the cloud provider may still be able to fulfll — g;
charges both a usage and reservation fee. We now describ, a pest-effort fashion, the tenant will have no knowledge if this is
our system model in detail. the case, and will not be able to factor it into its expected utility.




most current cloud providers do, we assume uniform pric- reservation cost of& K'). Due to multiplexing gain, to guar-
ing for usage: each tenant paysfr every unit bandwidth antee a similar service level, multiplexing will incur a lew
consumed. As a key departure from current clouds, we intro- K and thus a lower reservation ce$¥’) than without mul-
duce a reservation fee, which is a function of the guaranteedtiplexing.

portion instead of the absolute amount of bandwidth reserva  We define thecloud profitll as the difference between its
tion: each tenantis charged a price ofiw; for havingw; total revenue and total cost, i.e.,

portion of its demand guaranteed. We price the guaranteed

portionw; rather than the absolute bandwidth, because ten-11(w) := > (pas(wi) + kiw;) — (K (w)) = > bas (w;).
ants usually have no idea about how much bandwidth they i i ©6)
need. Instead, they can intuitively know how much per-

centage of guarantee is desired. This new business model

frees each tenant from the computational burden of demand4. PRICING TOWARDS SOCIAL
prediction: it simply submits its desired guaranteed porti WELFARE MAXIMIZATION
Wy, whilg the cloud provider computes the aqtual bandwidth  \ye study a cloud provider as a social planner whose ob-
reservation as well as decides the reservationkfeg for jective is to maximizesocial welfarel (w), which is de-

each tenant. o fined as the total tenant utility minus the total service cost
We define thesurplusof tenanti as its utility minus its

price: W(w) =Y U —c(K(w)) = > bg;(w;)
Si(wq, p, ki) := Ui (qi(w;), Di) — pgi — kjw;. — (3) ‘ '

Given pricesp andk;, a rational tenant will choosew®; to = i(w) + Z Si(wi, p, ki) ™
maximize its surplusS;. Tenanti will not always choose ’

w; = 1 because when its demand is bursty, the price to guar- Underrandom demandghe cloud aims to decide a set of
antee 100% ofD; may be high. In this case, tenanwill optimal guaranteed portions* = [wj,...,w%]" for the
choose av; close to 1 instead of being exactly 1, while the tenants to maximize thexpected social welfatgy solving
rest of its demandl —w; ) D; will be served with best efforts.

Based on tenant-specified guaranteed portions. . , wy, maXV(‘; € [W(:V)l] (8)
the cloud should guarantee the demang®, ..., wyDy st =w=4
for service. Denotev := [wi,...,wy]". To realize the To solve (8), we first derive the expected social welfare in

above service guarantees, the cloud provider needs toveeser 3 simpleapproximatedorm. Note thate [U;] is bounded as
a totalbandwidth capacitpf K (w). Depending onthe tech-  fo|lows:

nology used, the value ak could vary significantly from
one case to another. For example, a simple non-multiplexing E[Ui] = (1 — e)E[U;(w; Di, Di)] + €E[U;(0, D)),

technology is to reserv®&; capacity for each tenantindi- E[Ui] <(1 = )E[Ui(w; Dy, Di)] + eE[Ui(R;, D;)].
vidually such that demand; D; is satisfied with high prob- When the risk factoe is small. we have
ability, i.e., ’

Pr(w;D; > Ry) < e, 4) E[Ui(gi, Di)] = (1 - E[Ui(w; Di, )] (9)
and correspondingly, reserve capadify= >, R; in total. To simplify notations, we define
In contrast, a multiplexing technology will reserve capaci — -
K for the tenants altogether such that the aggregate demand Ui(w;) := B[U; (wiDs, Di)] (10)
is satisfied with high probability, i.e., which turns out to benonotonically increasingndconcave

Pr(z wiD; > K) < e, ) in w; under very mild tg_chnical conditions. Similarly, the
; expected usage of tenains

and during outage (whel, w;D; > K), the usagey; of E[gi(w;)] = (1 — e E[w;D;] = (1 — e)wip;.  (11)
tenant; is rationed toR; with > . R; = K. In both cases, N
K is an implicit function ofw defined by the probabilistic Therefore, the expected surplus of tenaist
constraints (4) and (5), respectively. To determiiéw), EIS (w.p. k) =E[U.] — pEla] — kw,
the cloud provider must estimate the future demand stisti [SiCws, p. k)] = E|U] P lai] = ki
of all the tenants, and convert tenant-specified guaranteed = (1 =) (Us(wi) — pwip;) — kywf12)

portionsw into the actual total bandwidth reservatifin
Similarly, the cloud provider has two kinds of service costs
usage and reservation costs. We assume tier-1 ISPs chargg ry(w)) = (p—b)(1—¢ wipi S kw; — c(K(w)).
the cloud provider &for every unit bandwidth actually used. HI(w)] = ( ) ) XZ: : ZL: ( ( ))
Furthermore, reserving bandwidth capaditywill incur a (13)

and the expected profit of the cloud provider is



Substituting the above into (7) gives teepected social wel- wi(p, ki) = arg max E [Si(wi, p, k:)]
fareas

EW(w)]=(1—c¢) Z (Ui(w;) — bwip;) — c(K(w)).
’ (14)

| Tenant 1 | | Tenant i | | TenantN|

Cloud Provider

4.1 An Equivalent Pricing Problem

In reality, although the cloud provider has full knowledge
about its service cost(K(w)), it does not know the util-  Figure 1: Iterative updates of prices and guaranteed por-
ity function of each tenant. In other words, maximizing tions.
E[W(w)] in terms ofw requires the cloud to know the util-  welfare maximization (8), which was originally impossible
ity U; of each tenant and is infeasible. We now convert prob- g sglve.
lem (8) into an equivalent pricing problem. Nonetheless, the optimal pricing problem (18) is not easy
Note that the expected social welfare is also the sum of theg solve either. At a first glance, (18) can be understood as a
fexpected cloud profit and the total expected tenant surplus,network utility maximization (NUM) problem [10] that may
1€, be solved via decomposition among the tenants. A closer
look at (18) suggests that the terif¥ (w)) in the objective
EW(w)] = I+ ZE (wi; p, k)] (15) function may be coupled among all;’s, so that (18) can-
) not be decomposed into a set of subproblems, each solved
Furthermore, when charged with pricgsk; and facing a 4t a tenant distributively. Coupling happens in the coshter
random demand);, a rational tenant will choose a guaran- \yhen the cloud multiplexes tenant demands and books a ca-

Update p, k; to increase social welfare

teed portiono; to maximize its expected surplus, i.e., pacity K (w) for the aggregated demand. As shown in Fig. 1,
@i = arg maXE[Sl(wi,p,k*)} (16) the key to the solution is that the glouq provide_r must be
w; able to update andk; towards the direction that increases
which defines an implicit function; (p, k;) of the prices. ~ E[W(W)]. And a good price update algorithm should re-
The cloud can affect guaranteed portion choiges [, . . . , @y fUire fewer rounds of message-passing between the cloud
via appropriate choices of pricesk, . .., ky, and control  and tenants before reaching optimality. - _
the corresponding expected social welfBi@V (w)]. Befqre presgntlng the dlstrlb_ute_d solutions to (18) in Seg.
Therefore, the social welfare maximization problem (8) is '€t us first provide a number of insights on how to make pric-
converted into an equivalenptimal pricing problem: ing policies, by checking the KKT conditions [8] that the
optimal pricesp*, k7, .. ., k3 must satisfy.
max E[W (W) = +ZE (i, p, ki), » : .
pik1okN Proposition 1. The optimal price®*, ki, ..., ki must
17 satisfy
which, by combining (14) and (17), can be rewritten as oK
* * / ~ -
max (1 . E) Z (Uz(w'L) . bwzﬂz) . C(K(“;V)), (18) (1 6)(p b)/.tl + ]fz & (K(W)) awZ o O7 \V/Za
k1, kN p (20)
wherew; = w;(p, k;) is determined distributively by each V\féerew = [d,.., @n]" With &; = di(p", k) given by
tenant; via surplus maximization (16). Such a distributed (16).
optimization is illustrated in Fig. 1. Now the cloud provide Proof: Please refer to Appendix A for the proof. O
does not need to know;: it simply charges tenant the An inspection of (20) reveals that one set of optimal prices
usage price and reservation prick;, and expect @ (p, k;) is
chosen by tenanit .
We denote th@ptimal prices that solve problem (18) as { p* =b, . (21)
p*, ki, ..., k%. The optimal pricing problem (18) is equiva- by = 0c(K(w))/owi|,_g, Vi
lent to the original problem (8), because by adjustinand Although (21) is not the only set of optimal prices, our
ki, w;(p, k;) can take any value ift), 1]. In other words, the  finding complies with the economic intuition that a welfare-
guaranteed portiom; (p*, k; ) chosen by tenaritunder opti- ~ maximizing cloud provider should charge marginal cost for
mal pricingp*, k¥ is exactly the guaranteed portiarj that both traffic usage and guaranteed reservation. In (21), we
maximizes the expected social welfare, i.e., we have can also observe that" depends on¥, which in turn de-
W = @ (p*, k). (19) pends orp, k7, ..., k5. Due to such coupling, (21) is not

yet a closed-form solution for the reservation prige
Therefore, once a set of optimal prices is obtained, we essen
tially have found alecentralized solutioto expected social

4.2 No Multiplexing vs. Multiplexing All



To draw insights, we take a look at two special service

increase their choices of the guaranteed portion. The proof

technologies that may be adopted by the cloud: non-mukiipde of this connection involves the use of Cauchy-Schwarz in-

and multiplexing acrosall the tenants. For simplicity, we
assume a linear reservation cost (which will be relaxed)tate
c(K) = pK.

When multiplexing is not used, we can derive the optimal
prices in a closed form from (21). Without multiplexing,
recall that the capacit; is reserved for each tenanindi-
vidually, such thar(w;D; > R;) < eandK = ) . R;.
When D; is a Gaussian random variable (this assumption
will be verified in Sec. 6), it is easy to check that

Ri(w;) = (pi + 0(e)os)w;, (22)

wheref(¢) = F~1(1 — €) is a constant, with(-) being the
CDF of normal distributionV'(0, 1). Since the cost function
is naturally decoupled among tenants, according to (2&), th
optimal prices are immediately given in a closed form by
p* =band

ki = B(pui +6(e)oy), Vi (23)

When multiplexing is used, however, optimal prices have
no explicit solutions. Recall that with multiplexing, a eap

ity K is reserved to accommodate all the tenants together

such that the aggregate (instead of individual) demand-s sa
isfied with high probabilityPr (>, w; D; > K) < e.

Since the random demands, . . ., Dy of different ten-
ants may be correlated, we denpte the correlation coeffi-
cient of D; and D;, with p;; = 1. For convenience, lgi =
(11, -, un]T @andX = [o;] be theN x N symmetric de-
mandcovariance matrixwith o;; = o2 ando;; = p;;0:0;
fori #£ j.

Under Gaussian demands,can be written as

K(w)=E[Y,w;D;] + 0(e)y/Var[ >, w; D;]
=pu'w+0(e)VwTEw. (24)
Substituting the abov& (w) into (21) givesp* = b and

™
ki = 5+ 000 a‘w‘”] ) v @)
awi w=w*

wherew; = w;(p*, k). Clearly, with multiplexing,k} is
not given in a closed form yet, due to the coupled cost func-
tion.

We note that whether with or without multiplexing,(w)
is a convex function and so i§K(w)). In fact, we can
relax the linear cost assumptieik) = SK, as long as
¢(K (w)) is strictly convex and monotonically increasifuy

eachw; € [0, 1].

equality and is omitted due to space limits. We will use this
connection in our distributed algorithms.

4.3 Economic Implications

Condition (20) has several economic implications, which
apply to a general cost function, although we may use the
non-multiplexing case for explanation due to its simpyicit

First, merely adopting a usage pripecannot maximize
social welfare: wherk; = 0 for all 4, there is nop that
can satisfy (20). In other words, a positive reservation fee
k; > 0 is necessary to achieve welfare optimality, since in
the presence of demand uncertainty, atjlgan incorporate
a risk factor (e.g.g; in (23)) into pricing. This reveals that
current cloud bandwidth pricing schemes are inefficient in
terms of providing service guarantee against demand fluctu-
ation. On the other hand, a usage pricis not necessary:
even ifp = 0, the expected welfare is maximized as long
ask; satisfies (20). In this case, the reservation fee can be
raised to compensate the loss from no usage fee.

Furthermoreheterogeneousservation prices, , ..., ky

'are necessary to achieve optimality, eactepending on the

statistical characteristics of tenafst demandD;. This con-
forms to the intuition that tenants have different degrefes o
demand volatility, incurring different costs for serviceag-
antees. For example, without multiplexing, depends on

o, in (23): the more bursty a tenant’'s demahg, the more
capacity that must be reserved to guard against fluctuation,
and thus the higher the price. In contrast, in terms of usage
pricing, it is efficient enough to charge a homogeneous price
p for every unit bandwidth consumed.

5. DISTRIBUTED SOLUTIONS

As has been noted, the main challenge to solving the opti-
mal pricing problem (18) is that the reservation agdt (w))
is coupled among all the tenants and is not decomposable
in general. One existing approach to handle coupled ob-
jective functions is to find the dual problem of (18) and to
decompose the dual among all the tenants and the cloud
provider by introducing auxiliary variables. Such an ap-
proach is callecconsistency pricing10, 20]. Subgradient
methods are among the most popular techniques to update
the prices towards the optimality of dual problems. How-
ever, they suffer from the curse of step sizes. For the final
output to be close to the optimality, subgradient methods
choose small step sizes to update leading to slow con-

There is an interesting connection between the non-mekipvergence and many iterations of message-passing between

and multiplexing cases: the optimal solution for non-npldtxing
can be used to bound the optimal solution for the multi-
plexing case. Specifically, the optimal pricgls'} of non-

the cloud and tenants.
In this paper, we propose two novetlep-size-frealgo-
rithms for price updates that can quickly converge to the op-

multiplexing upper-boundk; } of the multiplexing case, wheredsnality of (18). The first algorithm, calle@€haotic Price

the optimal portiongw; } of non-multiplexing lower-bound
{w;} of the multiplexing case. This is intuitive because mul-
tiplexing leads to a reduced cagt<), stimulating tenants to

Update does not rely on decomposition at all: instead, it
resorts to iterative equation updates based on the KKT con-
ditions (20). The second algorithm, called thetting-Plane
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Figure 2: Behavior of price update based on chaotic equatiahin a one dimensional case. “0” represents the starting
; (0) 1.(0)
point (w; ’, k;).

Method relies on dual decomposition but does not update  collecting the nextv(t*1) from tenants who maximize their
using step sizes: it is essentially a search algorithm that | surpluses given the current prices. Applying the KKT con-
cates{k}} until it is confined in a small region. We give ditions to (16), step (1) can also be viewed as solving an
a sufficient condition under which chaotic price update can equation

achieve rapid convergence. The cutting-plane method twhic

—

is guaranteed to converge, is used to compensate chaotic (1= Ui (w™) = p(1 — O + £, (28)
price update when the latter is not converging. Note that our (1) o o
algorithms apply to a general convex cost funcéon (w)) forw; " *. Since each tenant maximizes its expected surplus
(in terms ofw) under any service technology (e.g., multi- locally, the cloud provider does not have to know the utility
plexing tenant demands in groups). function of each tenant, leading to an iterative distridute

solution.
5.1 Chaotic Price Update Compared with Lagrangian dual decomposition based on

Chaotic price update is based on alternated phases of pric€onsistency pricing [10, 20], chaotic price update represse
updates via the cost-price relationship (20) and the tenant@ new way of handling coupled objectives. Since price up-

surplus maximization equation (16). dates are based on equation (27) rather than on updating La-
grangian multipliers, the algorithm is not concerned wiité t
Chaotic Price Update.Denotew ") := [w{", ..., w{]T. choice of step sizes that are required by subgradient meth-
Setp = b. Setkgo) := B(ui+0(e)o;) for alli andw(® = 1. ods.
Fort =0,1,..., repeat We observe that the sequen{kg”} produced by equa-
o o ® tions (27) and (28) could demonstrate significantly differ-
(1) Distributed Surplus Maximization. Passp andk; ent behavior under different initial values” and different
to each tenant, which returns: forms of utility and cost functions. In other words, our al-
w™V = arg max E[S;(w;,p, k)], Vi. (26) gorithm demonstrateshaoticbehavior, whose eventual out-
Oswi<1 come is sensitive to initial conditions and the structure of
(2) Price Update. Set updating equations. , ,
Our objective going forward is to analyze the behavior of
kz(tﬂ) — (K(W(t+1))) OK(w) , Vi {kl(”} and{w®} and find out the conditions under which
QWi |yt the algorithm can achieve fast convergence. To simplify no-
27) tations, we define
(t+1) _ w(®) = wttl) px — —
(3) ]':(t["f) Wil = € rewrnw® = wit Y, & hi(wi) = (1 — o) (T (wi) — bus), (29)
v _ Oc(K(w))
The above algorithm starts by settind” to be thek; vi(w) = ow; (30)
in the cost function without multiplexing. It then updates
k; andw; alternately by setting the current pric]efé) to be Recall thatw* := [w?, ..., w]T, wherew} = w;(p*, k})
the marginal reservation cost with the currevit), and by is the guaranteed portion chosen by tenanhder optimal



pricing. By the definition ofw™, the optimality condition is by a substantial margin, the step-size-oblivious chaatoep
hi(w?) = b = vy(w*), Vi 31) update can achieve extremely fast convergence.

K2

Since we have set= b, (28) can be written as 5.2 The Cutting-Plane Method
( Et“)) — bui) = kz(t). (32) Chaotic price update achieves fast convergence when con-

hi(w{"™) = (1= &)(T;(w
dition (35) is met. A natural question arisg€3an we design

an algorithm that is step-size-free while converging under

a wider range of conditiors Now we present such an al-
hi(w!™™) = kP =y (w®), Vi (33) gorithm that converges for arbitrary concave utility fuont

U;(w;) and arbitrary convex cost functierf K (w)), with a

guaranteedconvergence speed. Our basic idea is to apply
the cutting-plane method8] to the dual problem of social
welfare maximization, leading to an alternative formwati
of the optimal pricing problem.

Thus, theupdating rules (27) and (28) in chaotic price up-
date can be rewritten as

Let us illustrate the algorithm behavior using the special
case of asingletenant. There are three scenarios where
the algorithm can produce dramatically different resuss,
shown in Fig. 2. Since utilityu;(w;) is strictly concave
and monotonically increasing if, 1], and costc(K (w))

is strictly convex and monotonically increasing(in 1], we 5.2.1 Dual Problem of Social Welfare Maximization

have for alli: We introd the dual bl f ial welf .
‘ ‘ e introduce the dual problem of social welfare maxi-
{ hi(wi) > béﬁ’(vz i(wi) <0, Vi € [0,1] mization, following the framework of consistency pricing
vi(w) >0, >0, Yw:0=2w=1 [10, 20]. Note that the social welfare maximization problem
(?4) (8) can be rewritten as
All three cases in Fig. 2 satisfy (34). In Fig. 2(a[)y§ )} B
always converges te; for any initial valuew'” € [0,1], maxy vy (1 —€) >, (Ui(wi) = bwipi) — ¢(K(v))

whereas in Fig. 2(b){w§t)} always diverges regardless of st. w=v,

L . . . (36)
s |n|t(|t:;1l sta_lr_tmg point. In Fig. .2(C.)’. however,(gle bei(tgv where the auxiliary vectov is introduced to facilitatelual
of {w;"} critically depends on its initial value; . If w;

= (t) decomposition To derive the dual problem of (36), we de-
takes “initial value 1”w; " will eventually hop betweentwo  fine theLagrangian

values alternately, W|thout being able to approagh On

the other hand, if»\* takes “initial value 2” " will con- Lw,v.k)=(1— €)Y (Ti(w) — bwi;) — c(K(v))
verge tows. i
We now give a sufficient condition for the convergence of +k'(v —w)
chaotic price update in Theorem 1. (- Z (T (ws) — buwipss) Z s,
Theorem 1. If foreachi =1,..., N, we have
— 0%c(K kiv; — 37
(1-o)|T;( -y>7°( gw))7 (35) +Z o= e(KV)). 57
ow;
for all w betweenw(©® = 1 andw(, then using chaotic Herek; is theLagrange multiplierassociated with théth
price updatekf converges td:* andw converges tav?. equality constraintv; = v;; k; can be interpreted asc@n-

sistency priceas it will eventually steep; towardsw;, as
Proof: Please refer to Appendix B for the proof. 0O explained in [10, 20].

The economic implication behind Theorem 1 is that the TheLagrange dual functiois
algorithm will converge whetthe marginal utility gain de-
creases faster than the marginal cost increasasw; in- q(k) = sup L(w, v, k), (38)
creases. This technical assumption can be easily justified, W,V

since the marginal cosf (k) = § for adding network ca- and thedual problemof social welfare maximization (36) is
pacity (routers and switches) is decreasing at a fast pace in

our economy. min q(k). (39)
From the Proof of Theorem 1 in Appendix B, the conver- k
gence speed ofk."} in chaotic price update is dictated by Note that there is no duality gap between the dual problem
Pi(w;) and Q;(w;), which depend orh;(w;) andv;(w), (39) and primal problem (36) by thetrong duality theorem
the marginal utility gain and marginal cost in termsuof [8], since the primal problem is convex optimization for any
Intuitively speaking, the larger the gap between the rattes a concavel; (w;) and convex:(K (v)). As aresult, it suffices
which the marginal utility gain decreases and the marginal to solve the dual problem instead of the primal problem.
cost increases, the faster the convergence speed. As a re- |n fact, the dual problem (39) is preferable because it en-
sult, in systems WherFU w; | )| exceed$)?c(K (w))/ow? ables distributed algorithms due to a natural decompawsitio
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Figure 3: Bandwidth consumption time series of 5 representiée channels over a 2.5-day period.

of q(k): is difficult to implement in reality. In contrast, the cutyin
- plane method is step-size-free: it is essentialgearch al-
qk) = Z sup <(1 — ) (U;(w;) — bwip;) — klw1) gorithmbased on the following fact (see [8] for a proof):

Lemma 2. Let vectorgy € RN be a subgradient of the
+sup <Z kivi — C(K(V))>- objective functiom (k) at pointk € RY, i.e.,g; must satisfy

T N
This dual decomposition “decouples” the objective funttio q(x) > q(k) + g (x — k), VxeR. (44)

q(k) so that the value ofi(k) can be found by solving a | etk* be the optimal solution of the dual problem (39). Then
surplus maximization problem at each tenant k* satisfies] (k* — k) < 0.

Hax (1= &) (Uilwi) = bwipsi) = kiwi, - foralli, (40) Lemma 2 implies that if we know a poitkt with its sub-

gradientgy, we can confine our search fa&r* within the

half-space{x : g (x — k) < 0}, since the other half-space
max Zki“i —c(K(v)). (41) does not contaik*. Hence, we can locafk* up to a cer-

Vo tain accuracy by iteratively ruling out a sufficient numbér o

As these subproblems are independent of each other, the dudtalf-spaces, as described below.

problem enables distributed solutions by charging eachten 41,4 Cutting-Plane Method. Setk(®) = k**, wherek**

ant areservation price; and usage pricg = b (the revenue s o gptimal solution for the non-multiplexing case. Set th

and cost related tosagecancel each other in (41)). Incon- ;i) polyhedron to beP, = {k|0 < k < k1. Itis clear

trast, the primal problem (36) is not decomposable becausethatp0 contains an optimal solutiok*. Fort — 1.2

of the coupled terma (K (v)). repeat: o

and a profit maximization problem at the cloud provider:

5.2.2 Distributed Solutions via Cutting Planes (1) Choose a poirk® which is the center of gravity of

A traditional subgradient method will find a subgradient P,_1, denoteck® = CG(P,_,);
gi of ¢(k) at pointk, and update the pricds using this
subgradient times a small step size. For example, one of (2) Finding a subgradiem, ., of ¢(k) atk(";
such subgradients is given as below:

Lemma 1. For any pointk € RY, let the vectorw = @) If lgwcolloo < &, retumk(®; else, continue;

[ux] be the optimal solutions to proble.m (40) aficbe the (4) Add a new cutting plang], (k — k®) < 0 to form
optimal solution to problem (41). That is, the new polyhedron

’lI}i = arg H}Ual‘x (1 - 6) (Ul(wl) - bwl:u/l) - kiwia v(742) Pt — Ptfl N {k|g;|{—(t) (k . k(t)) < 0} (45)

VvV = arg max kiv; —c(K(v)). 43
5 2; (E) 43) Intuitively speaking, the above algorithm attempts torshri

the volume of polyhedrof®, that contains the optimal solu-
tion k* one iteration after another, unkl* is contained in a
trivially small ball. In Step (2), the subgradient can berfdu
Proof: Please refer to Appendix C for the proof. O using Lemma 2.
However, to ensure the convergence speed, the subgradi- Now we can quantify the communication cost of the above
ent method requires tuning the step sizes strategicalighwh  algorithm — a crucial factor in a cloud environment. Since

Then a subgradient af(k) at pointk is given bygy, =
vV —W.



k(® is the center of gravity oP,_;, about half of the uncer-
tainty is ruled out in each iteration. It can be proved that

vol(P;) < (1 - i) vol(P;_1) ~ 0.63-vol(P,_1). (46)

Therefore, the above algorithm convergeponentiallyfast.
Furthermore, Lemma 2 shows that, in order to obtain a sub-
gradientg, » atk®, the cloud provider can simply charge
each tenant a usage fee- b and a reservation fdg = kl@,

and expect a retur; from each tenant; it obtainsv lo-
cally. Such price notification and response are performed in
each iteration for all the tenants in parallel. In other vgprd
each execution of Step (2) introduces only amendof mes-

0.15
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Figure 4: The first 3 principal components C;—C3 in

sage passing between the cloud and tenants. Since cloudPandwidth consumption series of 468 channels during 2

tenant communication happens only in Step (2), the total
rounds of message-passing can be bounded as follows:

days via principal component analysis.

Proposition 2. If the cutting-plane method terminates wherl€ obtained from cloud monitoring services such as Amazon

the diameter of the smallest Euclidean ball that contdhs
is no greater thanl, then in the worst case, the cutting-plane
method requires

rounds of message passing between the cloud and tenants.

max; kgo)

. (47)

R = 1.51N log, (

The above proposition is a well-known property of the
cutting-plane method [8]. In contrast, the worst-case com-
munication cost of subgradient methods are of the fOXEV x
1/«), wherea is the step size. Clearly, ifis comparable to
«, the cutting-plane method may lead to much faster conver-
gence due to thivg, (-) operation.

Itis worth noting that finding the center of gravity C&_1)

requires heavy computation. However, computation cost doe
not pose a challenge for data centers that have superior com-
puting power, whereas communication cost (convergencmﬁpéJ

is the major bottleneck. The cutting-plane method conwerge
faster, reducing the rounds of message passing between te

CloudWatch [2] at a fine granularity (e.g., at a frequency of
5 minutes in CloudWatch). As has been mentioned, in this
paper, we target applications whose bandwidth demand pat-
terns are tractable and predictable to some extent. Video
access is one example of such applications, with clear diur-
nal patterns and the time-of-the-day effect [16], in thesgen
that a popular video almost always sees its peak (or trough)
demand around the same time of day.

Our study is based on a large dataset collected from thou-
sands of on-demand video channels in a commercial VoD
system [3] during the 2008 Summer Olympics. The video
genres are not limited to Olympics, but range from TV episode
to sports and from movies to news. Fig. 3 shows the aggre-
gate bandwidth demand in each channel for 5 representative
channels over a 2.5-day period.

We have four observations about the datadétst, the
workload dataset consists of a large number of small unpop-
lar channels, such as those in Fig. 3(b), dominated by a
small number of large popular channels, such as those in

rll_:ig. 3(a).Secondthere is a diurnal periodicity in the access

ants and the cloud, yet at the expense of computational costPattem of each video channdlhird, a channel’'s popularity

Such a property is in fact desirable in the cloud. To summa-
rize, the cutting-plane method converges for arbitrary-con
cave utility U; (w;) and convex cost(K(w)), and can be
used to compensate chaotic price update when the latter i
not converging.

6. DEMAND STATISTICS ESTIMATION
WITH A FACTOR MODEL

Recall that both algorithms for finding the optimal pricing
policy needu, o and X as inputs: u; ando; are used for
the surplus maximization at each tenann (26) and (42),
while the demand covariance matiis used to calculate
the service cost(K (w)) in the presence of multiplexing in
(27) and (43).

In this section, we address the practical issue of predict-

evolution may follow some trends over days. For example,
bandwidth consumption in channels 241 and 317 exhibits a
downward trend over the 2.5 days in Fig. 3(a), with 144 time

Speriods representing one day. Finally, both the diurnal pe-

riodicity and daily trends become vague in small channels,
such as in channel 22 in Fig. 3(b).

Our prior work has proposed to use seasonal ARIMA pro-
cesses to predict bandwidth series in each individual chan-
nel [16] at a fine granularity of 10 minutes. The prediction
is based on a regression of historical demand in the most re-
cent time periods, as well as demand around the same time
in previous days. However, this method has a shortcoming
that a separate statistical model needs to be trained foy eve
channel and thus does not scale to a large number of chan-
nels. Also, this approach performs poorly for small chan-
nels, e.g., channel 22, or ill-behaved channels, e.g.,reHan

ing demand statistics based on demand history, which can317. In both types of channels, the daily repetition patiern

10
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Figure 7: Root mean squared errors (RMSEs) of the
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obscured by various random factors.

To tackle these problems, we usdaator modelto ac-
count for demand evolutions, i.e., the demand ser2st) }
of each channelcan be viewed as driven iy uncorrelated
underlying factors™; (¢), ..., Cas(t) with a zero-mean ran-
dom shocke(t):

Dl(t) = ailCl(t) + ...+ Ozi]ijM(t) + €(t),

If the coefficientsn;1, ..., a;ps can be learned statistically,
we will be able to forecastD; (¢) } by predicting factor move-

Vi. (48)

variance as possible (that is, accounts for as much of the
variability in data as possible), and each succeeding cempo
nent in turn has the highest variance possible.

We perform PCA for all the 468 channels that are online
in a 2-day period (time 1500-1787). Fig. 4 plots the first
3 principal component series in the data. We can see the
first componentC; explains the diurnal periodicity shared
by all the channels. The second componégtaccounts
for the downward daily trend, which is salient in channel
317 as popularity diminishes and less salient in channel 295
A further check of Fig. 5 reveals that the first 10 principal
component series explai®% of the data variability, which
are sufficient to model the factors underlying all the demand
evolution.

However, different channels have different dependencies
on each factor. Fig. 6 shows the 468 demand series pro-
jected onto the first 2 components, i.e., the pdnt, «;)
for all . Without surprise, the dependence on the first com-
ponent,x;;, indicates how large the channel is. In contrast,
the dependence on the second componept,accounts for
how fast end-users may lose interest in charné&hannel
295 has a lowy;», indicating almost no decrease in popular-
ity over days. Channel 241 has a moderatg showing a
slightly downward trend. Channel 317 has a large, ex-
hibiting a dramatic decrease of popularity just on the sdcon
day.

To predict the demand meaps$t) and covarianceX(t)
for {D;(t) : i = 1,...,N} at timet, we first predict the
principal componenté’; (t), ..., Cy(t) for M = 10 based
on the history and obtain forecasts about their m&at$ =
[C1(t),...,Cu(t)]T and their covarianceE o (t). We fur-
ther predict the error serie$t) to obtain its forecast(¢) and
error variancer2(t). Note thatS(t) is a diagonal matrix
because the principal components are uncorrelated. Denote
the coefficient matrix aAyxn = [aim], ¢ = 1,..., N,

m=1,..., M. We can therefore forecag{t) andX(¢) as
a(t) = AC(t) +é(t) - 1, (49)
B(t)=ABc()AT +62(t)-[1,...,1],  (50)

wherel is an all-one column vector of lengffiand[1, . . . , 1]

is an all-one matrix of siz&/ x N.
We model each principal component series using a low-
order seasonal AIRMA model [9]. Sincg’(t)} clearly

ments first. As noted from Fig. 3, channel demands exhibit shows daily periodicity, we mod€ICy (t) — C1(t — 144)}

co-movements. This inspires us to mine the factors while as an ARMA(1, 1) process, so that the forecast(¢) is re-

learning their coefficients from the collective demand his-
tory of all the channels.

gressed from both the previous valGg(t — 1), the val-
ues one day befor€', (t — 144), C;(t — 145), and random

We use principal component analysis (PCA) to find such noise terms. All other componen{€;(¢)} for ¢ > 2 do
underlying factors. GivelV demand serie§D; (t)}, ..., { Dy (t) ot exhibit periodicity. We thus use ARMA, 1) processes

PCA applies an orthogonal transformation to th@&ele-

to model these principal components. The conditional vari-

mand series to obtain a small number of uncorrelated time ances of all the component series are forecasted using GARCH

series{C1(t)}, ..., {Cn(t)} called theprincipal compo-

models [9, 15]. Since the components are orthogonal, we

nents This transformation is defined in such a way that data do not need to forecast their covariances. For details of us-
projected onto the first principal component has as high aing seasonal AIRMA models and GARCH models for video

11
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Figure 8: 10-minute-ahead conditional mean prediction in bannel 172 over a test period of 1.25 days.

To zoom in, we take channel 172 as an example. Fig. 8
compares the conditional mean predictions produced by the
PCA-based approach with those produced by individual pre-
diction. We observe that individual prediction tends to os-
cillate drastically, while the PCA-based approach can bet-
ter identify both periodicity and downward trends. One rea-
son is that the driving factors found by PCA are weighted
averages over all the channels, with channel-specificierrat
noises smoothed out, exhibiting co-movements of all the€ha
nels.

The standard deviation forecast of channel 172 is plotted
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Figure 9: The departure of actual bandwidth consump-
tion from its conditional mean forecast and the predicted
standard deviation of bandwidth consumption in chan-
nel 172.

in Fig. 9. Even though there is a big gap between real de-
mand and its conditional mean forecast around time 1700,
the GARCH1, 1) model is able to forecast a larger demand
variance at this time, which will be leveraged by the cloud to

Quantiles

allocate more capacity to guard against performance risks,
using the technologies in Sec. 4.2. It is worth noting that
we do not assume that demand can always be perfectly fore-
casted: the entire point of variance or volatility forecast
GARCH is to estimate the deviation of actual demand from
the conditional mean prediction and enable risk management
in a probabilistic sense. Fig. 10 shows the Q-Q plot of fore-
cast errors. We observe that with PCA, the actual demand
will oscillate around its conditional mean forecast moke i

a Gaussian process. This also substantiates the belief that
eachD; behaves like a Gaussian random variable.

Last but not least, the PCA-based approach has a lower
complexity: it involves training a seasonal ARIMA model
for each of thel0 principal components, together with find-
ing these components from the 468 channels using PCA.
Once the models are trained, forecasting is simply a linear
regression with negligible running time. In contrast, indi
traffic forecast, please refer to [15, 16]. vidual prediction has to train a seasonal ARIMA model for

We compare PCA-based prediction with individual chan- €ach of the 468 channels separately, leading to a much higher
nel prediction over a test period of 1.25 days. Each predic- complexity.
tion is made based on the training data of only the previous
1.25 days, which are a little more than one day to incor-
porate periodicity. The root mean squared errors (RMSES) 7. TRADING SIMULATIONS
of both approaches for all the 468 channels are summarized In this section, we simulate a computerized bandwidth
in Fig. 7. The channel indices are sorted in descending or-reservation and trading environment based on our proposed
der of the channel size. We can see that the PCA-basedalgorithms. The simulation operates in rounds of 10 min-
approach outperforms individual predictions regardlelss o utes. Before the start of each 10-minute period, the cloud
channel sizes. For large channels, the ratio of RMSE over provider has predicted the demand mean and covariances in
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Figure 10: Q-Q plot of conditional mean forecast errors
in channel 172 over the test period 1680-1860 (1.25 days),
in reference to Gaussian quantiles.

mean bandwidth consumption is less thafi in most cases
using the PCA-based approach.

this period and informed each tenarabout its specifiq;
ando;. When the period starts, the distributed price negoti-
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ation process immediately starts until convergence. Simce 1
our particular problem, the cloud provider has superior-cor
putation power (even for finding polyhedra centroid), the di
lay is mainly due to the iterative message passing of pric 0-6f
and guaranteed portions between tenants and the cloud. £ g4t
compare three algorithms: chaotic price update, the guttir

—Chaotic Price Update
w 0.8r — Subgradient Method |

[T
) . 0.2
plane method and subgradient method, in terms of the cc
vergence speed and optimization accuracy. % %0 160 150 200
We consider 100 video channels of different sizes ar Convergence lteration of the Last Tenant

statistics in the UUSee demand traces over a test period of

810 minutes. We assume each channeltenantthat relies Figure 13: The CDF of the maximum convergence itera-
on the cloud for servicing the video requests from its end- tjon of all tenants in each test period.

users. We input such demand traces to our pricing frame-

work and check the algorithm efficiency in the challenging yer o pe generous to the benchmark algorithm, we set the
case that prediction and optimization are to be carried out j4ximum number of iterations for the subgradient method

every 10 minutes. If the algorithms work for a 10-minute 5 200, Note that in the subgradient method, the step size of
frequency, they will be competent for lower operating fre- yjce ypdates cannot be too small, which incurs slow con-

quencies, such as on an hourly basis. We consider utility ygrgence: it cannot be too big either, in which case the final
functions of the form_ (2). Under a Gaussm_n_ approximation output will be far away from the real optimal value. We op-
of D;, each tenant will have an expected utility timize such a step size and set it to 0.1 for price updates. The
E[Ui(w;)] = cwipsi — eAil—wpit 3 AT (1-w)?of (51 other two algorithms are step-size-free. o
_ _ _ We first compare the algorithm outputs upon termination.
The first term on the righthand side corresponds to the ex- Note that with multiplexing, the final optimal pride* for
pected revenue of each tenant made from serving the demand,, .1, tenant should be lower than its initial value® —

w; Dy, while the second term models a reputation loss which 5(/1_ +9(6)0,) which is also the optimal price without mul-
is convex and increasing in terms of the unfulfilled demand. V" A . (0) ; )
In our simulation, we set; = 1 andA; = 0.5. Since tiplexing. We definel — k¥ /k;” as the price discount that
different tenants have differept; ando,, their utilities are ~ tenanti enjoys from multiplexing. Fig. 11 plots the mean
heterogeneous. We set the marginal cost of allocating band-Price discount averaged over all the tenants in each test pe-
width capacity to bed := ¢/(K) = 0.5, and assume that the riod. We observe that both chaotic price update and the

cloud provider has an outage probabilityeof: 0.01. cutting-plane method bring more discounts to tenants than
We set the algorithm termination conditions as follows. In 1€ subgradient method. We further check the mean guar-
each iteration, if the change in either, k; or g; gy = anteed portion chosen by each tenant averaged over all test

periods in Fig. 12, which shows that most tenants choose a
guaranteed portion close to 1 and the three algorithms are
close to each other. This means although the three algo-
rithms may reach a similar level of social welfare, the sub-

[g%t), . ,gg\t,)]) is below some threshold, its; is not up-

dated (using message-passing). Chaotic price update will
stop if \wz(t) —w!™'| < 0.01 or it has run for 100 iterations.

The cutting-plane method will stop (" — k!~*| < 0.05 gradient algorithm is not so good at fine-tuning the optimal
or it has run for 100 iterations. The subgradient method, as prices for tenants with a guaranteed portion close to 1.
the benchmark, will stop ifgft) - gz(t_l)\ < 0.05. In or- Finally, we check the communication overhead of all three

13



algorithms. We define an iteration of message passing as acomputing power and workload data in the cloud, our band-

round-trip communication in which the cloud provider passe width reservation and algorithmic pricing system operates

the prices to a tenant, which returns a chosen guaranteedeffectively at a fine granularity of as small as 10 minutes.

portion. We observe that for chaotic price update, the con-

vergence iteration of the last tenant (worst-case conmegje 9. REFERENCES
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APPENDIX

A. PROOF OF PROPOSITION 1

First, applying the first order conditiod[S;]/Ow; = 0
to (16) and using the approximation (12), we obtain

(1 — T (@;) = p(1 — )pai + ks, (52)

which defines an implicit functiot; (p, k
tives given by
Hi

o0w;
= = _ < 0,
o T, (w)

1), with partial deriva-

ow; 1 <0

Oki  (1-oU; (@)
(53)

The partial derivatives are negative becaﬁé&(@i) <0

by the concavity olU;(-). This means when the usage and

reservation prices are higher, the tenant will choose arowe

guaranteed portion.

Furthermore, applying KKT conditions [SIE[W]/0k; =

15

0 andoE[W]/dp = 0 to (18), we obtain
(- 0@ - ) - SELE| YT 0w
;(uewmwwoém\ 5o
Sinceg < 0 and4i < 0, we have

(1= 0T~ ) - T (e

Combining with (52), we have derived the proposition.
O

B. PROOF OF THEOREM 1
To prove the convergence 6\"} and{w."}, it suffices

to show thatlim_,. [w” — w?| = 0 for all i. Our first
quick observation is the following lemma:

Lemma 3. If w(®) = w*, thenw(+D < w*; if w®) <

w*, thenw(®+1) » w*,

Proof: If w(®) = w*, theny;(w®)) > v;(w*) for all 4,
because; (w) is monotonically increasing in eaeh for all
1. Using update rules (33) and the optimality condition (31),
we have

hi(w{™) = v (w®) > vi(wW*) = hy(w

Sinceh; (w;) is monotonically decreasing, we havé ™) <
wy for all 7. Similarly, the second argument holds. O

5, Vi. (55)

(2t+1)

By Lemma 3, we findo{*" > w? andw < w} for

allt =0,1,.... Hence, it is sufficient to show that
lim (w® —w})=0, Vi (56)
t—o00
Jlim (0" —wr) =0, Vi (57)

To prove (56), we checkw!* ) — w?)/(w!*) — w?).

Without loss of generality, we let= 0 and check the value

of (w(? — wp)/(w” — w}).
From (35), we have

Ov;(w)

Settingt = 0 andt = 1 in update rules (33), we obtain
My _ .00 _ o (0)
h (w22 ) kll (W )’ (59)
hi(w®) = k) = vi(w®).
Sincew®” > w forallt = 0,1,. .., we have

hit (vi(w)) —w
w® —

w;




Thus,gx = v —w is a subgradient at poikt, completing
The last two equalities are due to (59). In the following, the proof. O
we show that both multipliers on the right-hand side of the
last equality are upper bounded by a value less than

Using (34) and (58), we have for au§0> > w

hi(wy) — hy(w!”) = /un (= h'(w;))dw;

U'iO) .

Further applying the optimality condition (31), we obtain
2h;(w]) > hi(wgo)) + v (W), Vw(o) > wy Vw(o)
wherew_; represents the set of all; for j # i. Since
h;(w;) is monotonically decreasing, we have
hi *(2hi(w;) — vi(w(?)) —wy
0

<1, ngo) > wy, ng).
— w}

The above inequality is equivalent to
bt (2hi(wy) — vilw”, w')) — wy

Pi(w}) := sup
(0) (0) (0) —
w; " S>ww w; wi

—i

In a similar way, we can show that
2h;(w}) < hi(wl(l)) + vy (w), ngl) < wy, Vw&li),

which is equivalent to

, bt (va(w(”, w))) — wy
Ql(wL) = sup ( ()1) <1
w® <wrw® Ry (Qh’b(wz) — hi(w; )) —w;

Thus, we havéw” —w?) /(w!” —w}) < P(w])Qi(w]) <

1. Similarly, we can show that

2442
wf D

oy < Pw))@Qi(w)) <1, Vt=01,...
w; 711):‘

Therefore, we have proved (56), since

(2t42) _ w)) < hm( (0) wj).(Pi(w*)Qi(wf))tH — 0.

hm ( :

We can show (57) in a similar way, proving Theorem 10

C. PROOF OF LEMMA 2
By definition, we shall show that

q(x) > q(k) + gg(x — k), vx € RV,

wheregy, = v — w.

Note that
400 = supL(w,v,x)
> L&va, v, X)
= L(w,v,k)+(x—k)T (V- W)
= qk)+ (¥ -w)"(x—k)
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