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ABSTRACT
Bandwidth usage in large-scale Video on Demand (VoD) systems
varies rapidly over time, due to unpredictable dynamics in user de-
mand and network conditions. Such bandwidth volatility makes it
hard to provision the exact amount of server resources that matches
the demand in each video channel, posing signi�cant challenges to
achieving quality assurance and e�cient resource allocation at the
same time. In this paper, we seek to statistically model time-varying
tra�c volatility in VoD servers, leveraging heteroscedastic models
�rst used to interpret economic time series, with the goal of forecast-
ing not only tra�c patterns but also tra�c volatility. We present the
application of volatility forecast to e�cient resource allocation that
provides probabilistic service level guarantees to user groups. We
also discuss volatility reduction from diversi�cation, and its impli-
cations to new strategies for cost-e�ective server management. Our
study is based onmonitoring the workload of a large-scale commer-
cial VoD system widely deployed on the Internet.

Categories and Subject Descriptors
C.4 [Performanceof Systems]: ModelingTechniques; C.2.3 [Network
Operations]: Network Monitoring; Network Management

General Terms
Measurement, Performance, Reliability

Keywords
Video-on-Demand, Volatility, Tra�c Forecast, Demand Prediction,
GARCH, Measurement, Resource Allocation, Diversi�cation

1. INTRODUCTION
A large-scale video on demand (VoD) system on the Internet in-

volves millions of users streaming movies, TV episodes, and other
on-demand media from a huge library of video channels. However,
Internet VoD largely remains a best-e�ort service, where either a
large amount of extra unused server capacity is provisioned with
low utilization, or the user experience is at risk. To enjoy smooth
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playback, a user needs to download at an average rate greater than
the video playback rate. It is therefore necessary to ensure the right
amount of outgoing bandwidth is available at the servers tomeet the
instantaneous demand.

To avoid the complication and vast cost in hardwaremaintenance,
more content providers choose to rent public server resources, such
as content delivery networks (CDNs), for video streaming. When a
VoD application shares the underlying infrastructure with other ap-
plications in a “multi-tenant” environment, it is inevitably exposed
to random congestion and variance in bandwidth availability. Pro-
viding quality assurance to bandwidth-intensive VoD services while
not over-provisioning the resources becomes one of the most chal-
lenging issues for CDN servers.

As video access patterns exhibit clear trends and periodicity with
time-of-day e�ects [2, 6, 8, 9], the expected bandwidth demand for
each video is highly predictable by monitoring the usage history
[5,6]. Demand forecast enables the elastic adjustment of bandwidth
allocation to match instantaneous user demand. We envision that a
proactive “match strategy” for elastic bandwidth reservation in the
presence of time-varying demand is a critical enabling technology
to o�er service-level assurance to VoD users, while making e�cient
utilization of resources. Nevertheless, since demand forecast is sub-
ject to errors due to unpredictable user dynamics, fast-changing net-
work conditions and inherently noisy tra�c, a “risk premium”must
be accommodated on top of the expected future demand to tolerate
�uctuations, or volatility.

In this paper, we argue that in order to elastically book resources
for a VoD service, forecasting demand volatility is as important as
predicting the expected demand. We seek to statistically model traf-
�c volatility in large-scale VoD systems by analyzing the operational
traces of 173 popular video channels collected from UUSee Inc. [1],
one of the leading commercial Internet video solutions based inChina.
Inspection of real-world traces suggests that server bandwidth usage
in each video channel exhibits alternating phases of relative tran-
quility and high variation around its expected value. We thus intro-
duce GARCH [3], a heteroscedastic model originally used to char-
acterize economic time series, to quantify the changing variance in
large-scale VoD tra�c, with the goal of forecasting volatility. We ap-
ply GARCH-based volatility forecasts to bandwidth allocation that
economically books resources for each video channel with proba-
bilistic bandwidth guarantees.

As real-world systems typically host very large video libraries,
we proceed to study the volatility of the aggregate or mixed traf-
�c of multiple video channels, and observe the volatility reduction
phenomenon attributed to diversi�cation. We discuss the implica-
tions of such an observation to cost-e�ective server management
and load direction based on �nancial management tools such as
hedging and diversi�cation in real-world VoD systems, which may



run a large collection of streaming channels over geographically dis-
tributed servers.

1.1 Relation to Prior Work
�e importance of bandwidth demand estimation to capacity plan-

ning in Internet VoD systems has been recognized recently. It is
shown that estimating time-varying demands in a large-scale IPTV
network can help the system optimally place content on its geo-
graphically distributed servers [2]. Toward this goal, the recent de-
mand history is used as an estimate of future demand in each video
channel [2]. Apparently, this simple method does not yield accu-
rate forecasts. [6] introduces linear stochastic time series models to
capture the periodicity, trends and autocorrelations that exist in the
demand history, achieving a high accuracy in demand forecast.

However, traditional forecastmethods assume a constant forecast
error variance and fail to capture the changing volatility in data. In
fact, measurements show that bandwidth demand is subject to rapid
changes in some periods, while remaining tranquil and highly pre-
dictable in other periods. We therefore introduce GARCH mod-
els [3] originated from econometrics to model the volatility persis-
tence phenomenon — the bandwidth demand at a certain time pe-
riod tends to exhibit similar volatility as in recent time periods.

Volatility reduction in the mixed tra�c of multiple channels is
similar to the idea of statisticalmultiplexing and resource overbook-
ing [7] in shared hosting platforms, where the resources are booked
to satisfy a certain percentile of demand in each application instead
of itsworst-case demand, so as to enhance resource utilization. How-
ever, the volatility reduction discussed here is novel in three aspects.
First, we are concerned with forward-looking resource allocation
and volatility forecasts for future demand, while in [7] the resource
usage of each application is pro�led in an o�ine and �xed man-
ner, ignoring the change of demand patterns over time. Second,
our study focuses on large-scaleVoD systems, where the concurrent
number of users can ramp up by several hundreds or thousands in
tens of minutes. In this scenario, any �xed resource usage pro�l-
ing for small video channels (e.g., those with a user population of 20
in [7]) will be insu�cient. Last but not least, we do not assume inde-
pendence between the demands of channels. Instead, we accurately
quantify the conditional demand variance in each channel, which
enables the use of �nancial instruments such as hedging and diver-
si�cation to achieve cost-e�ective server management with service
level guarantees.

2. TRADITIONAL DEMAND FORECAST:
APPLICATIONS AND LIMITATIONS

�is research is based on our extensive experiences with UUSee,
a real-world on-demand media streaming system widely deployed
on the Internet. As one of the leading commercial P2P multime-
dia solution providers in China, UUSee simultaneously broadcasts
tens of thousands of video channels to millions of users distributed
across over 40 countries. It implements an optimized peer-assisted
delivery structure where users can upload media data to each other,
alleviating the server burden. However, servers are still responsible
for a large part of the upload and play a critical role in compensat-
ing bandwidth shortage and controlling the quality provided [8]. It
is worth noting that the observations and mechanisms presented in
this paper also apply to any general streaming systems that do not
involve peer assistance.

�e data for validation in this paper feature the traces collected
from 173 popular video channels over 21 days during the 2008 Sum-
mer Olympics. �e maximum online population in each channel
varies from 200 to 8000. �e dataset contains server bandwidth

consumption in each video channel sampled at a 10-minute frequency,
so that there are 144 samples in a day.

From the traces, we note that UUSee users demonstrate diur-
nal access patterns with time-of-day e�ects [6, 8], and the popular-
ity of most videos exhibits gradual downward trends a�er they are
released. We can therefore use the so-called Box-Jenkins method
[4] to predict the future evolution of server bandwidth demand by
learning the trend, periodicity and autocorrelation exhibited in us-
age history. An accurate prediction of bandwidth requirement can
helpwith server capacity planning and resource provisioning tomeet
user demands. We now brie�y review and generalize a time-series
modeling technique speci�cally tailored for VoD systems �rst de-
scribed in [6], and point out its de�ciency in handling volatility.

2.1 Forecasting the Expected Demand
Given a time series of interest {Yt}, de�ne the backward shi� op-

erator B(⋅) by BYt = Yt−1 and the lag-1 di�erence operator ∇(⋅) by
∇Yt = Yt − Yt−1 = (1 − B)Yt . Powers of B and ∇ are de�ned in the
obvious way, i.e.,

{ B jYt = Yt− j ,
∇

jYt = ∇(∇ j−1Yt), for j ≥ 1, with∇0Yt = Yt .

We further introduce the lag-d di�erence operator∇d de�ned by

∇dYt = Yt − Yt−d = (1 − Bd)Yt .

�e gist of the Box-Jenkins modeling of non-stationary series is to
remove periodicity and trends in {Yt}, using various di�erencing
transformations, to obtain a stationary series {Ỹt} that can be mod-
eled by an autoregressive moving-average (ARMA) process [4].

For a particular series {Yt} in VoD systems, e.g., the server band-
width usage in a video channel, we �rst apply transformation log(⋅)
to {Yt} to equalize the �uctuation, and apply∇144 to {logYt} to re-
move daily periodicity. We then di�erence∇144 logYt for d times to
remove the trend, obtaining a stationary series Ỹ(t) = ∇d

∇144 logYt ,
which iswell explained by anARMA(p, q)process.�e correspond-
ing seasonal ARIMA model [4] for the original series {Yt} is thus

ϕ(B)∇d
∇144 logYt = θ(B)Zt , d ∈ {0, 1}, (1)

where {Zt} ∼WN(0, σ 2)denotes the uncorrelatedwhite noisewith
zero mean, and ϕ(B) = 1 − ϕ1B − . . . − ϕpBp and θ(B) = 1 + θ1B +
. . . + θqBq are polynomial operators in B of degrees p and q. �e
di�erence order d is chosen from {0, 1}, depending on whether a
trend exists in the daily population variation.

Given {Y1 , . . . ,Yt}, let PtYt+h (h > 0) denote the h-step-ahead
conditional mean prediction for Yt+h , i.e., the expected value of Yt+h
given observations up to time t. Once the parameters of (1) are
learned from the training data, PtYt+h is derived as follows. First, we
obtain Pt Ỹt+h , the minimum mean square error (MMSE) predictor
for Ỹt+h . PtYt+h is then calculated by retransforming Pt Ỹt+h using
the inverse of the corresponding operators∇d ,∇144 and log(⋅), i.e.,

PtYt+h = (∇d)−1∇−1144 exp(Pt Ỹt+h). (2)

As an example, we make 10-minutes-ahead (one-step) prediction
of the server bandwidth {St} consumed by a popular video channel
released at time period t0 = 264 (2008-08-10 10:47:39). �e channel
has amaximumonline population of 2664.�e server consumption
series of the �rst 3 days is used as the training data, excluding the
initial 80 time periods a�er the release of the video which may not
conform to later evolution patterns. �e prediction is tested on the
data of 3 days following the training period. We �t model (1) to the
training data and obtain parameter estimates through a maximum
likelihood estimator [4]. As shown in Fig. 1a, with d = 0, p = 20,
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Figure 1: 10-minutes-ahead prediction for the server bandwidth
consumption St of a popular video channel A55FF released at
time period 264, compared against the trace data.

q = 20, model (1) can yield prediction results that are close to the
real server bandwidth required by the channel.

2.2 Applications and Limitations
Demand forecast based on past observations enables the system

to allocate a right amount of bandwidth to match the demand. A
lightweight online bandwidth monitoring and reservation frame-
work, as shown in Fig. 2, can be unobtrusively implemented in cur-
rent operational systems. It monitors the server bandwidth con-
sumed by a particular video channel periodically, e.g., every 10 min-
utes, learns models to forecast future demand, and judiciously de-
cides the amount bandwidth to be provisioned in the next time pe-
riod. As server bandwidth usage of each channel is readily available
in server logs, there is no need to collect statistics from users.

However, as the MMSE predictor in Sec. 2.1 only forecasts the
conditional mean demand, or the expected demand, the real de-
mand may vary around this predicted conditional mean. �e re-
sulted prediction errors have ameanof zero and are plotted in Fig. 1b.
Due to the existence of prediction errors, we need to provision an
additional “risk premium” to tolerate demand�uctuation, which ap-
parently depends on the variance of prediction errors. A further
look into Fig. 1b suggests that forecast errors of server bandwidth
consumption do not have a constant variance: there are periods
where the prediction is relatively accurate alongside periods with
less trustworthy forecasts. In other words, the server usage evolves
smoothly and is highly predictable in some periods, but also be-
comes highly variable and unpredictable in other periods.

�e changing volatility in resource consumption poses great chal-
lenges to e�cient server provisioning. As traditional time-series
techniques assume a constant variance for the disturbance Zt , the
risk premium provisioned will be a function of the �xed forecast er-
ror variance averaged over the long run. However, such an approach
will necessarily result in over-provisioning when the demand is less
volatile, but lead to insu�ciencywhen the demand is liable to unpre-
dictable changes. To achieve e�cient resource allocation, we need a
conditional variance forecastmechanism to estimate the time-changing
variance of demand around its expected value (conditional mean),
and adjust the amount of risk premium provisioned accordingly.

Demand 
Forecast

Expected 
Demand

Server Usage
Monitoring

Risk 
Premium

Volatility 
PredictionModel 

Learning

Bandwidth 
Reservation

Figure 2: Online server bandwidth monitoring and reservation.
�e reserved bandwidth should match the sum of the expected
demand and a risk premium that tolerates volatility.
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Figure 3: �e ACFs of the disturbance Zt and Z2
t obtained from

�tting the seasonal ARIMA model (1) with d = 0 and p = q = 20
to server bandwidth consumption {St} in video channel A55FF.

3. MODELING DEMAND VOLATILITY
As a systemoperator, onemay be interested in estimating the con-

ditional variance in server bandwidth demand based on past ob-
servations, which is critical to deciding the “risk premium” provi-
sioned to accommodate demand �uctuation. Such a “risk premium”
should increase when we are less certain about the accuracy of the
conditional mean demand forecast, and decrease otherwise, when
the conditional variance of future demand is low. In contrast, the
unconditional variance, i.e., the long-run estimate of forecast er-
ror variance averaged over time, would not be important if we care
about the instantaneous “risk premium” needed.

Although the seasonal ARIMA model (1) is a good conditional
mean model that predicts the expectation of server bandwidth con-
sumption St+h conditioned on {St , St−1 , . . .}, it fails to capture the
serial dependency within the disturbance series {Zt} obtained from
�tting (1) to {St}. To check such dependency, we plot the autocor-
relation functions (ACFs) of Zt and Z2

t in Fig. 3. We can see that
although {Zt} is an uncorrelated white noise, it is not IID — the
variance term Z2

t clearly depends on Z2
t−1 , Z2

t−2 , . . .. In fact, we can
observe a persistence of volatility for Zt from Fig. 1b: Zt tends to
exhibit a similar conditional variance as in recent periods.

To include past variances in the explanation of future variances,
we model Zt using the GARCH (generalized autoregressive condi-
tional heteroscedasticity) process [3], which has been successfully
applied to modeling the volatility of stock data for the past decade.
Speci�cally, wemodel the disturbance Zt obtained from�ttingmodel
(1) to {St} as a GARCH(P,Q) process:

⎧⎪⎪⎨⎪⎪⎩
Zt =

√
htet , {et} ∼ IIDN (0, 1),

ht = α0 +∑P
i=1 α iZ2

t−i +∑Q
j=1 β jht− j ,

(3)

where α0 > 0 and α j , β j ≥ 0, j = 1, 2, . . ., and ht is the conditional
variance of Zt given its history {Zs ; s < t}. �e GARCH model
re�ects the evolution of the variance in data by incorporating cor-
relation in the sequence {ht} of conditional variances.

Taking channelA55FF as an example, we �t aGARCH(1, 1)model
to the one-step-ahead prediction errors for server bandwidth usage
{St} shown in Fig. 1b. �e model parameters are obtained using
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Figure 4: One-step-ahead forecast errors for server bandwidth
consumption St in the video channel A55FF, and predicted con-
ditional standard deviations for the forecast errors.

maximum likelihood estimation (pp. 417, [4]) based on the predic-
tion errors of model (1) during the training period. We predict the
conditional standard deviations {√ht} of the prediction errors for
the test period using the trainedmodel, and plot the results in Fig. 4.
We can see that the predicted error standard deviation is largerwhen
the demand prediction errors are highly variable.

With the GARCH model, we are able to forecast how much real
data will deviate from the predicted conditional mean produced by
model (1). It allows us to quantify our certainty about bandwidth
consumption forecast so that server provisioning can leverage this
fact to enhance resource utilization. When we are certain about
the St in the next time period, the server bandwidth reserved for
the channel should be close to the predicted conditional mean con-
sumption. On the other hand, during periods where St is subject
to rapid changes and less predictable, we need to provision a higher
risk premium to tolerate the demand volatility in the channel.

4. VOLATILITY AND
RESOURCE ALLOCATION

In this section, we present the application of volatility forecasts
to resource allocation. To achieve service level guarantees to users
without over-provisioning, the resource allocated should match the
future demand with a conditional mean forecast plus a “risk pre-
mium” that tolerates tra�c volatility.

In general, the e�ectiveness of a resource allocation scheme can
be evaluated by two performance metrics: 1) insu�ciency ratio e,
which is the ratio of time periodswhere the booked resource is lower
than the actual demandover all the test periods; and 2) time-averaged
utilization U , which is the average utilization of the allocated re-
source over all the test periods.

To provide quality assurance to users, it is expected to maintain
the insu�ciency ratio e to a low level. On the other hand, for the
cost-e�ectiveness of servers, the cloud service providers expect to
keep the average utilization U at a high level by booking resources
sparingly. Striking a balance between the two con�icting objectives,
the key to successful resource booking is to decide the minimum
necessary “risk premium”Rt+1 at time period t+1 given observations
up to time t that achieves a target insu�ciency ratio, e.g., e ≤ 2%,
under an appropriate volatility model.

4.1 Comparing Five Volatility Models
We propose �ve proactive server bandwidth reservation schemes

for VoD systems, each based on a di�erent volatility model includ-
ing GARCH and other heuristics. To reserve bandwidth for a video
channel at time t + 1, all these schemes periodically monitor the
server bandwidth usage {S1 , . . . , St} of this channel by checking
server logs (e.g., at a 10-minute frequency), and predict the con-

ditional mean demand PtSt+1 using the same method described in
Sec. 2. However, they incorporate di�erent volatility models to de-
termine the “risk premium” provisioned. Speci�cally, assuming e =
2%, these schemes are described as follows:

Constant variance (baseline method) assumes a constant vari-
ance σ 2 in demand forecast errors, which can be learned from train-
ing data. As demand forecast errors exhibit Gaussian distribution in
the traces, the risk premium is the 98th percentile of the normal dis-
tributionN (0, σ 2), i.e., the value belowwhich 98% of samples from
the distributionN (0, σ 2) fall.

Probabilistic GARCH predicts the conditional variance ht+1 for
the demand forecast error using the GARCH model. �e risk pre-
mium is the 98th percentile of the normal distributionN (0, ht+1).

Deterministic GARCH predicts the conditional variance ht+1 for
the forecast error using the GARCH model. �e risk premium is
η
√
ht+1 , where η is a positive constant determined as the η that

achieves an insu�ciency ratio e = 2% in the training data.
Recent variance is a heuristic method that calculates the sample

variance σ 2
τ of demand forecast errors in the recent τ time periods.

�e risk premium is the 98th percentile of the normal distribution
N (0, σ 2

τ ).
Maximum absolute error is a heuristic method that decides the

risk premium as the maximum absolute error of demand forecasts
in recent τ time periods.

We test the performance of the above schemes in terms of re-
source utilization and insu�ciency ratio through simulations driven
by the real-world traces of 169 popular video channels. For each
channel, we train the conditional mean model (1) and conditional
variance model (3) based on the data of 1.5 days from the 50th to the
266th time period a�er the channel is released.�e �rst 500minutes
(50 time periods) are excluded from training as the initial demands
may not conform to the later evolution patterns. To test the gener-
alizability of our proposed methods to any VoD demands, we only
assume a simple seasonal ARIMA model (1) with d = 0, p = q = 1
for demand forecast. For the two GARCH-based methods, we train
a GARCH(1, 1) model for demand forecast errors in the training
data. We then use the above 5 methods with the trained parameters
to perform one-step-ahead bandwidth reservation in each channel
for a test period of 2 days following the training period.

We calculate the average resource utilization U and insu�ciency
ratio e in each of the 169 channels over its corresponding test period,
and plot the empirical cumulative distribution functions (CDFs) of
these U ’s and e’s in Fig. 5a and Fig. 5b, respectively. We can see
that “constant variance,” as the baseline method, achieves the lowest
resource utilization as well as the lowest e, because it aggressively
books a high risk premium assuming a large constant variance for
demand forecast errors. In contrast, “probabilistic GARCH” can
adjust the risk premium dynamically based on the changing fore-
cast error variance. From Fig. 5b, we see that it achieves an insuf-
�ciency ratio e ≤ 2% in 80% of the 169 channels, which is close to
“constant variance,” and an insu�ciency ratio e ≤ 4% in more than
90% of the channels, which is even better than “constant variance.”
In the meantime, “probabilistic GARCH” achieves a markable en-
hancement in resource utilization, shown in Fig. 5a as it only books
the necessary risk premium to tolerate the instantaneous demand
volatility instead of the long-run variance.

Although “deterministic GARCH” further enhances utilization
by booking the risk premium more conservatively, its average e ex-
ceeds the target of 2%. Furthermore, the “recent variance” and “max-
imum absolute error” heuristics, when comparedwith the �rst three
methods, enjoy an advantageous position, as they are fully adaptive
during the test period, while the �rst three use �xed model param-
eters estimated from the training data for prediction. Even in such
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Figure 5:�e empirical CDF of the utilization of booked bandwidth and the ratio of time periods where the booked bandwidth is insuf-
�cient. Bandwidth reservation is performed in 169 popular video channels independently, each with a test period of 2 days.

697 769 841 913 985 10570

1

2

3

4 x 104

Time (unit: 10 minutes)

KB
/s

 

 

Test workload
Resource provisioned

(a)�e bandwidth reserved by “probabilistic GARCH.”

697 769 841 913 985 1057
25

50

75

100

Time (unit: 10 minutes)

Pe
rc

en
ta

ge
 (%

)

 

 

Utilization
Mean Utilization

(b) Utilization of the reserved bandwidth.

Figure 6: Bandwidth reservation with “probabilistic GARCH” in
channel A55FF, tested on a period of 3 days.

an unfair comparison, both heuristics performworse thanGARCH-
based methods, resulting in an e way beyond the target of 2%. As
they inherently lack a mechanism to quantitatively tune the trade-
o� between U and e, they are not appealing for the sake of quality
assurance. We conjecture that a fully online version of ARIMA and
GARCH, which adaptively relearns model parameters as the simu-
lation proceeds in the entire test period, can yield even better uti-
lization while being able to constrain e within the target range.

4.2 Utilization as a Volatility Indicator
From the above comparison, we �nd that the best bandwidth reser-

vation scheme that strikes a balance in the U-e tradeo� is “proba-
bilistic GARCH,” thanks to its superior ability to adjust the risk pre-
miumprovisioned as the volatility changes. As an example, we apply
“probabilistic GARCH” to a popular channel A55FF over a test pe-
riod of 3 days, which represents the same test workload as in Fig. 1 in
Sec. 2 and Fig. 4 in Sec. 3, with models learned from the preceding
3 days. �e bandwidth demand is forecasted as a seasonal ARIMA
process with d = 0, p = q = 20 driven by GARCH(1, 1) forecast er-
rors. We plot the bandwidth provisioned by “probabilistic GARCH”
in Fig. 6a and the achieved utilization in Fig. 6b under a target in-
su�ciency ratio of e = 5%. �e achieved e is 3.71% and U = 75.04%
on the test data.

Just as tra�c volatility limits the resource utilization e�ciency,
the best achievable utilization U produced by one-step-ahead re-
source booking, given a target insu�ciency ratio e (e.g., e = 2%),
is essentially a quantitative indicator of tra�c volatility in the long

term. A high U means that less “risk premium” is needed and the
tra�c is likely to evolve smoothly with tractable variation. In con-
trast, a lowU implies that the tra�c is inherently liable to rapid and
unpredictable variations, and thus more “risk premium” must be
booked to tolerate demand �uctuation. In other words, U evaluates
volatility by the ratio of the actual bandwidth usage over the sum of
expected usage and the volatile part of usage. �erefore, in the fol-
lowing analysis, we use the time-average utilization U achieved by
resource booking based on “probabilistic GARCH” to evaluate the
demand volatility in the long run.

5. VOLATILITY REDUCTION
THROUGH DIVERSIFICATION

In this section, we consider the combined ormixed tra�c ofmul-
tiple video channels. We observe that the aggregate tra�c volatility
decreases as the number of channels to be combined increases. Fur-
thermore, such volatility reduction is not merely a consequence of a
higher volume of tra�c, but more importantly is due to tra�c mix-
ing between channels that may exhibit diverse variations. From the
previous section, we see thatU evaluates volatility by computing the
ratio of the actual bandwidth usage over the sum of the expected
usage and usage uncertainty. �erefore, in this section, we evalu-
ate the demand volatility of mixed channels by the achievable U in
one-step-ahead resource booking, given a target of e = 2%.

To study how the number of combined channels a�ects tra�c
volatility, we conduct a series of bandwidth reservation simulations
driven by the traces of 173 video channels in UUSee over 21 days.
We divide the entire 21 days into 7 periods, each of 3 days, and study
the tra�c volatility of random combinations of video channels in
each 3-day test period (except the �rst 3 days, which are only used
for model training).

Now we illustrate the test with the second 3-day period (days 4-
6). Suppose that the number of channels to be combined is n. We
randomly choose n channels that exist in this test period and its pre-
vious 3-day training period, and consider their aggregate tra�c. We
perform bandwidth reservation based on “probabilistic GARCH” in
this test period (days 4-6), using the models trained from the previ-
ous 3 days (days 1-3). We assume a simple conditional mean model
(1) with d = 0, p = q = 1 and a conditional variance model (3) of
GARCH(1, 1). We calculate U and e in this test period of days 4-6.
For this particular value of n, the above experiment is repeated for
60 times to allow for di�erent combinations of channels. �e mean
and standard deviation of the achieved 60U ’s and e’s are calculated.
�e above procedure applies to the other 3-day test periods, each
with its preceding 3 days as the training period.

FromFig. 7, we see that as bandwidth is reserved for an increasing
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Figure 7: �e mean and standard deviation of U when di�erent
numbers of video channels are randomly combined for band-
width reservation. �e achieved average e is less than 4% in all
cases.

number of combined video channels, the mean of the achieved U ’s
increases signi�cantly up to close to 90%, and the standard deviation
of U ’s decreases in all of the test days 4-21. As the resource utiliza-
tion in one-step-ahead bandwidth reservation essentially evaluates
the degree of volatility in data, the above phenomenon implies that
the aggregate tra�c of multiple channels demonstrates less volatile.
Bandwidth provisioned tomultiple channels can thus match the de-
mand more closely. A further check into Fig. 7b shows that when
the number of channels is small, the U ’s have a high standard de-
viation. �is means that although all channels follow diurnal evo-
lution in trend, there exist di�erent degrees of correlation between
the demand forecast errors of di�erent channels: the volatility of the
combined tra�c is ampli�edwhen they are positively correlated and
suppressed when they are negatively correlated.

To verify that volatility reduction is not a consequence of an in-
creased amount of total tra�c, but because ofmixing di�erent chan-
nels, we perform bandwidth reservation for all the 93 channels in a
test period from time 697 to 1127, which is the same test period as
in Fig. 1, Fig. 4, and Fig. 6a, where bandwidth reservation is per-
formed for a single channel A55FF. However, instead of consider-
ing the aggregate tra�c all 93 channels (including channel A55FF),
we consider a mixture of them by taking 1/10 of user requests from
each channel and adding them up. Comparing Fig. 8a with Fig. 6a,
we see that the resulted mixed tra�c is roughly the same in size as
that of the single channel A55FF. But the mixed tra�c evolves more
smoothly, and its forecast errors shown in Fig. 8b not only have a
smaller variance than that of channel A55FF shown in Fig. 4, but
also exhibits less heteroscedastic property, i.e., less time variation in
terms of variance.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we focus on demand volatility forecasts in large-

scale operational VoD systems, with the objective of dynamically
and e�ciently provisioning bandwidth resources in VoD servers.
We introduceGARCHmodels originated fromeconometrics to pre-
dict demand volatility based on server usage monitoring. We pro-
pose and compare �ve volatility-aware resource provisioning schemes,
based on GARCH modeling and other volatility heuristics. It is
shown that GARCH models yield the best tradeo� in terms of re-
source utilization and the service level provided to users. We further
study the volatility reduction due to diversi�cation when tra�c of
multiple video channels is mixed. As a result, allocating resources
for a well diversi�ed collection of video channels can improve re-
source utilization by up to 3 times as opposed to single-channel al-
location.

�e volatility reduction phenomenon observed in UUSee traces
has laid a foundation for using modern portfolio theory such as
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Figure 8: Bandwidth reservation with “probabilistic GARCH”
for the mixed tra�c of all the 93 channels in the 6-day period
from time 264 to 1127. �e �rst 3 days are the training period,
and the other 3 days (time 697-1127) are the test period.

hedging and diversi�cation to achieve cost-e�ective server manage-
ment, as the server cost directly linkswith both themean and volatil-
ity of its usage. In our on-going work, we consider geographically
distributed video servers, such as CDN nodes, and explore the use
of hedging to enhance resource e�ciency and to reduce usage �uc-
tuation by mixing the video channels with negatively correlated de-
mands.
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