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Abstract—Most current-generation P2P content distribution
protocols use fine-granularity blocks to distribute content to all
the peers in a decentralized fashion. Such protocols often suffer
from a significant degree of imbalance in block distributions, such
that certain blocks become rare or even unavailable, adversely
affecting content availability. It has been pointed out that
randomized network coding may improve block availability in
P2P networks, as coded blocks are equally innovative and useful
to peers. However, the computational complexity of network
coding mandates that, in reality, network coding needs to be
performed within segments, each containing a subset of blocks.
In this paper, using both theoretical analysis and simulations,
we quantitatively evaluate how segment-based network coding
may improve resilience to peer dynamics and content availability.
The objective of this paper is to explore the fundamental
tradeoff between the resilience gain of network coding and its
inherent coding complexity. We introduce a differential equations
approach to quantify the resilience gain of network coding as a
function of the number of blocks in a segment, as well as various
other tunable parameters. We conclude that a small number of
blocks in each segment is sufficient to realize the major benefits
of network coding, with acceptable coding complexity.

I. I NTRODUCTION

Peer-to-peer (P2P) content distribution has become the
de facto standard in current-generation content distribution
protocols. The basic idea in P2P content distribution protocols
is to segment large volumes of data (usually hundreds of
megabytes or even gigabytes) into fine-granularityblocks, and
then distribute these blocks in an efficient manner by letting
peers exchange them with one another.

In reality, however, P2P protocols often suffer from severe
peer dynamics (i.e., arrivals and departures), as peers are
inherently unreliable. As the fundamental philosophy of peer-
to-peer protocols is to use resources on the peers to store
blocks of content, content distribution sessions may continue
to proceed even when the original peers (sometimes referred
to asseeds) are no longer available. However, in these cases,
blocks may become rare or even unavailable when peers arrive
and depart frequently with short lifetimes. Such significant
degrees of imbalance with respect to block availability —
henceforth referred to asblock variation — will adversely af-
fect the availability of content, leading to longer downloading
times at each peer.

As end hosts at the edge of the Internet possess abundant
computational resources with modern processors, it is natural
to take advantage of the power ofnetwork coding in P2P
applications, by allowing end hosts to not only forward and
replicate, but to code as well.Network coding has been
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originally proposed in information theory [1], [2], [3], and
has been more recently used to improve the resilience to peer
dynamics in P2P content distribution protocols [4], leading
to shorter downloading times. Intuitively, one may observe
that, since network coding distributes coded blocks ratherthan
original blocks, and all coded blocks are equally innovative
and useful to any peer, the challenge of locating rare original
blocks may indeed be addressed.

However, network coding may not realize its benefits
without introducing significant computational complexities at
peers. It has been shown in recent work [5] that, network
coding may not be computationally feasible if one is to
code more than a few hundred blocks, even with modern
processors! In order to reduce coding complexity, Chouet
al. [6] has proposed the concept ofgroup network coding,
which performs coding on the blocks within the samegroup
or segment, while each segment contains a prescribed (and
arguably small) number of blocks. Though group network
coding helps to reduce coding complexity, its negative effects
on the resilience to peer dynamics — the main advantage of
using network coding in the first place in P2P networks — are
not fully understood.

Let us consider two extremes of P2P protocol design. The
first one does not use network coding at all, and the second
uses network coding across all existing blocks. If we consider
the number of blocks in each segment (referred to as the
segment size) in group network coding, we may observe that
the first extreme corresponds to a segment size of one, with as
many segments as blocks, while the other extreme corresponds
to the case of grouping all blocks into the same segment.
Intuitively, the degree of resilience to peer dynamics that
network coding has to offer improves as we increase the
segment size; but the coding complexity increases as well.
If we vary the segment size when network coding is used, we
are fundamentally moving from one extreme to another, and
making our choice in the challenge ofresilience-complexity
tradeoff of network coding in P2P networks. It would be best
if we may operate with an appropriate segment size to enjoy
most of the resilience advantage of using network coding, but
with acceptable coding complexity.

Motivated by our curiosity on choosing the “sweet spot” in
the resilience-complexity tradeoff, we quantitatively evaluate
the content availability with different segment sizes, using both
theoretical analysis and simulations. In our theoretical analy-
sis, we consider large-scale dynamic P2P systems, where each
peer is to have a random lifetime following an arbitrary yet
general distribution. We operate a linear system of differential
equations, and derived closed-form results with respect tothe



variations of block availability. We use simulations to notonly
substantiate our theoretical conclusions, but also shed further
insights into the problem in a wide range of scenarios. To the
best of our knowledge, such a resilience-complexity tradeoff
introduced by network coding in P2P content distribution has
never been studied with theoretical rigor in previous work.

The remainder of this paper is organized as follows. In
Sec. II, we present related work. In Sec. III, we present our
system model, formulate the problem and outline the main
theoretical results. In Sec. IV, we derive the differentialequa-
tions on which we obtain results regarding content availability
and block variations. In Sec. V, we present theoretical results
regarding steady state block variation when data sources
are available and content availability in the absence of data
sources. In Sec. VI, we carry out simulations to corroborate
our theoretical results. We conclude the paper in Sec. VII.

II. RELATED WORK

The landmark papers on randomized network coding by Ho
et al. [7] and Chouet al. [6] have claimed that randomized
network coding can be designed to be robust to random
packet loss, delay, as well as any changes in network topology
and capacity. Avalanche [4], [8] has further proposed that
randomized network coding can be used for elastic content
distribution. However, it has also been shown [5] that the
coding complexity escalates when an increasing number of
blocks are used in network coding, and that even with modern
processors, coding more than a few hundred blocks may not
be computationally feasible.

In Wu [9], it has been argued that a key advantage of
network coding is its inherent ability to adapt to network
dynamics, both to ergodic changes such as random packet
loss and to non-ergodic changes such as link failures. Koetter
et al. [3] also discussed robust networking and analyzed the
resilience of network coding to non-ergodic link failures.Lun
et al. [10] theoretically analyzed the benefit of network coding
on a directed acyclic hypergraph with lossy links. Acedanski
et al. [11] showed through analysis that with network coding,
a peer downloading a file may randomly connect to fewer
other peers to retrieve the entire file. The relationship between
block selection policies and the imbalance among different
blocks has been discussed for P2P content distribution without
network coding in Fanet al. [12]. In this paper, we focus on
the resilience-complexity tradeoff of network coding, when the
number of blocks in a segment varies from one extreme to an-
other. To our knowledge, this is a first attempt to quantitatively
evaluate the resilience of network coding to block variations
due to peer dynamics.

III. B ACKGROUND, MODEL AND MAIN RESULTS

Modern P2P bulk content distribution systems (e.g., Bit-
Torrent [13]) are organized as an application-layer overlay of
peers, each with a number of neighbors. A peer is referred
to as a server if it owns a complete copy of the content
of interest, otherwise it remains as auser. Data exchanges
may only occur between a peer and its neighbors. Normally,
a peer only uploads to a small number (e.g., less than 5) of its
neighbors at a time which are called its downstream peers,

since excessive concurrent uploading may negatively affect
throughput [14]. However, a peer may still frequently change
its downstream peers, either because it intentionally doesso
to take advantage of idle capacities, or due to peer dynamics.

We now present a framework that allows us to analyze
P2P content distribution with variable coding complexities. A
large file of sizeF bytes (usually on the order of hundreds of
Megabytes or several Gigabytes) is to be broadcast to every
online peer. The content is segmented intoG segments, each
of which are further broken intom blocks, referred to as the
segment size. Thus, there areM = G · m different original
blocks in the content, each of sizek = F/M bytes. In group
network coding [6], random linear coding (RLC) is applied
to each segment ofm blocks. Assume segmenti has original
blocks B(i) = [Bi

1, B
i
2, . . . , B

i
m], then a coded blockb from

segmenti is a linear combination of[Bi
1, B

i
2, . . . , B

i
m] in the

Galois field GF(28). Coding operation is not limited to the
source: if a peer (including the source) hasl (l ≤ m) coded
blocks of segmenti [bi

1, b
i
2, . . . , b

i
l], when serving another peer

p, it independently and randomly chooses a set of coding
coefficients[cp

1, c
p
2, . . . , c

p
l ] in the Galois field GF(28), and then

encodes all its blocks from segmenti, and produces one coded
block x of k bytes:x =

∑l
j=1 cp

j · bi
j .

A coded blockx is self-contained, in that the coding coeffi-
cients used to encodeoriginal blocks to x are embedded in the
header of the coded block. As soon as a peer has received a
total of m coded blocks from segmenti x = [xi

1, x
i
2, . . . , x

i
m],

which are linearly independent, it will be able to decode
segmenti with coding coefficients embedded in each of the
m coded blocks. To decode segmenti, we first need to
compute the inverse of them×m coefficient matrixAi using
Gaussian elimination, which requiresO(m3) operations (or
O(m2) operations per input block). To obtain the originalm
blocksB(i), it then needs to multiplyAi

−1 andx, which takes
m2 · k multiplications of two bytes in GF(28), which runs in
time O(m2) (or O(m) operations per input block). It turns out
the latter cost dominates the overall decoding time, although
the first phase has a higher computational complexity in terms
of m. This is because the cost of the latter phase also depends
on the block sizek, which is usually on the order of Kilobytes.
Naturally, the overall decoding complexity increases as the
segment sizem increases.

Assume there areN user peers andNs servers online, each
with an average upload capacityµ and a separate downlink of
sufficiently large capacity, then a peer will upload at a rateof
λ = µ/k blocks on average. With respect to reducing block
variation in P2P networks, network coding and block balanc-
ing schemes (e.g., the local rarest first policy in BitTorrent
[13]) interact in complicated ways. It is therefore impossible
to assess the resilience of network coding without reference
to block balancing schemes. However, in order to focus on
the effect of network coding, we will use a gossiping protocol
as the reference. Specifically, whenever a peer is to upload a
block, it randomly chooses a downstream peer from all other
peers. (This assumption can be relaxed to randomly choosing
a peer from its neighborhood, as long as the neighbors are
uniform samples of the entire network.) After that, block
uploading is performed in three steps: segment reconciliation,



encoding, and transmission. First, the peer will compare its
buffer with that of the downstream peerp to find out which
segments that it has are needed byp. As a result, a difference
set of segments is formed. It then randomly chooses a segment
in the difference set and encodes all the blocks from that
segment. Finally, it transmits the encoded block top.

To model peer dynamics, we fix the online peer number
while allowing peers to join and leave the network frequently.
Specifically, we assume that there are alwaysN users andNs

servers simultaneously online, even though user departures and
joins occur constantly. Servers are always online. Each user
has a random lifetimeL. A user will leave the network when
its lifetime has expired. In the meantime, a new user with a
random lifetimeL as well will join the network to replace the
departed user. No peer will return after it leaves. A similar
model for churn can be found in [15]. As will be shown, by
modeling peer dynamics this way, the total number of blocks
in the network will remain constant while the distribution of
blocks from each segment could be changing in time. This
enables us to focus on studying the block variation. In fact,the
assumption on a fixed number of online peers can be relaxed
to accommodate slow changes ofN andNs in time. As long
as such changes inN(t) and Ns(t) take place at a much
slower rate than the average upload rate of a peer, the analysis
will hold the same except thatN and Ns are considered as
functions of t in the results. At a given observation timeto,
we also define a peer’sage A as the time tillto since it joined.
In our analysis, the peer age will be an important parameter
(note its difference from the lifetimeL).
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Fig. 1. An illustration for the notationspi(t), si(t), ni(t) andri(t).

Our main goal is to derive the steady-state distribution
of the number of blocks in each segment whenN and M
approaches infinity. If we denote by a random variableI the
number of blocks each segment has in users with meanµI

and varianceσ2
I , we are interested in deriving the distribution

for I. The derivation of this block distribution will allow us to
evaluate important metrics such as block variation, download
time, content loss rate and content lifetime. To characterize
the distribution of I, we therefore introduce a system of
important notations that represent the system’s state. Since
servers always have complete copies of the content, we are
only interested in knowing the block statistics in users:

⊲ ni(t): the number of segments which havei blocks in all
the users.

∑∞

i=0 ni(t) = G for any t.
⊲ pi(t): the fraction of segments which havei blocks in all

the users.pi(t) = ni(t)/G.
⊲ ri(t): the number of segments which have at leasti blocks

in all the users.ni(t) = ri(t) − ri+1(t).
⊲ si(t): the fraction of segments which have at leasti

blocks in all the users. We havesi(t) = ri(t)/G and
pi(t) = si(t) − si+1(t).

These notations, illustrated in Fig. 1, will be the main
variables of interest in our analysis with differential equations.
Another helpful way to view Fig. 1 is that the vertical axisi
represents the number of blocks each segment has in all the
users, and the horizontal axis represents segments arranged
in the decreasing order ofi. It is not hard to see that as the
segment numberG → ∞, pi(t) = ni(t)/G will approach the
PMF of the variableI. These notations cover both non-coding
and coding cases as the segment sizem varies. For simplicity,
we may omit t in the following context. From Fig. 1, we
also get the following simple facts:1) the total number of
blocks in users at time t is Y (t) =

∑∞

i=1 ri(t), and 2) the
average number of blocks each segment has in users at time t
is

∑∞

i=1 si(t) = Y (t)/G, which equals to the area under the
line in Fig. 1(b).

The state of the system could be represented by the vector
S(t) = (s0(t), s1(t), . . .) or P (t) = (p0(t), p1(t), . . .). If we
useS(t) to denote the system’s states for instance, at any given
time t, the future state of the system is solely decided byS(t),
in that both block increase and block loss of each segment
depend merely on the current values ofs0(t), s1(t), . . ., given
the memoryless property of the gossiping protocol and of
the exponential block upload time. Therefore, vectorS(t)
represents a density dependent family of jump Markov pro-
cesses [16], with the number of segmentsG being the total
population size and(s0, s1, . . .) being densities. Apparently,
once we obtain the expressions forS(t), we can obtain all
the block statistics at any timet. However, since such Markov
processes are too complicated to handle technically, we will
introduce in the next section a system of differential equations
which asymptotically approximate the corresponding Markov
processes described above with an arbitrarily small error.

To evaluate degrees of imbalance with respect to block
availability of different segments, we define an important
parameter calledblock variation as:

γ2
I =

var(I)

E2{I}
=

∑∞

i=0 i2pi − (
∑∞

i=0 i · pi)
2

(
∑∞

i=0 i · pi)2
, (1)

which is essentially the variance of the number of blocks each
segment has in users divided by the square of its mean. var(I)
alone does not serve as a good indicator of block variation,
in that its effectiveness in assessing block imbalance may
be biased by the value of E{I}. Thus, we adopt the above
definition of block variation, which is inspired by the typical
fairness measure in resource allocation [17]. Block variation
γ2

I has the nice property that its value always lies between
0 and∞, and that it is0 for the balanced block distribution
when each segment has the same number of blocks in the
network. As we will show through simulations, download time
is directly related to block variation, which is a good indicator
of the availability of different segments. As a major theoretical
contribution of this paper, we have derived a surprisingly



concise yet powerful formula which sheds many insights into
network coding’s behaviour in face of churn:

Theorem: For largeN , M , in steady state network, the block
variation γ2

I is inversely proportional tom, the number of
blocks within a segment for coding:

γ2
I =

F

NsmµA
, (2)

whereA is the average age of a user in a steady state network
that will be determined by Lemma 1.

As the segment size increases, the block variation is sub-
dued. An intuition behind the benefit of network coding is
that without network coding (m = 1), departing peers may
take away important blocks that have already become rare in
the network, while with pure network coding (m = M ), all
the blocks are equally useful and thus there is no variation of
block availability at all. As segment sizem grows, the total
number of distinct segments is reduced. Hence, intuitively, one
may observe that different segments are distributed in a more
balanced way in face of churn.

IV. CHARACTERIZING SYSTEM STATES WITH

DIFFERENTIAL EQUATIONS

In this section, we formulate a set of differential equations
to characterize the network’s states by asymptotically approx-
imating the underlying Markov processes. The correctness of
this approach was proved by Kurtz [18]. As an application, it
was then successfully applied into the solution to a Markov
queuing model in load balancing problems by Mitzenmacher
[16], [19]. With proper simplifications at several points, we
are able to use this method to model the seemingly complex
system of P2P content distribution with node churn. The
main results regarding content availability drawn from the
differential equations are presented in the next section.

First, we will show the proposed network model has an
equilibrium, in which the total number of blocks in the
network stays constant. But before showing this in Lemma
2, let us first cite a useful lemma proposed by [15] and
demonstrated again in [20].

Lemma 1. Let L denote a peer’s lifetime with meanL and
varianceσ2. Given an observation timeto, let random variable
A denote a peer’sage at to, with expectationE[A] = A. If
N is fixed, then asto → ∞, the probability density function
of A is given byfA(x) = [1−FL(x)]/L. Moreover,E[A] =

A = (L
2

+ σ2)/2L.

It is easy to check that if the peer lifetimeL follows an
exponential distribution, the distribution of peer ageA will
be exactly the same as that ofL. In the following lemma, we
show that after the network has evolved for a sufficiently long
time, the total number of blocks in users will almost always
remain constant.

Lemma 2. Let Y (t) denote the total number of blocks in
users from all the segments at a given timet for t sufficiently

large, then Y (t)
(N+Ns) → λA in probability, i.e., for anyǫ > 0,

P{|
Y (t)

(N + Ns)
−λA| > ǫ} → 0,M → ∞, N = αM,Ns = αsM.

(3)

Proof. Please refer to our technical report [21]. ⊓⊔
From Lemma 2, we know that, for a large segment number

G, the average number of blocks each segment has in users is
∑∞

i=1 si(t) = Y (t)/G = (N + Ns)λA/G = (α + αs)mλA.
We now give the system of ODEs that characterize the block

distributions of different segments.Under the condition that
M → ∞, N → ∞, Ns → ∞, N/M → α, Ns/M → αs,
and m remains finite, thoughαs is often far less thanα and
can also be 0,the block distributions are characterized by
the following system of ODEs:

A ·
dsi

dt
= αsmλA · pi−1 +

α

α + αs

(i − 1)pi−1 − i · pi ∀i ≥ 1

s0 = 1 (4)

Let us explain the reasoning behind these ODEs. We con-
sider a small time interval∆t and decide the expected change
of ri in ∆t, denoted by∆ri. We denote byI(ri) the expected
increase inri due to the upload from users, byIs(ri) the
expected increase inri due to the upload from servers, and by
D(ri) the expected decrease inri due to block losses caused
by peer departures. We have∆ri = Is(ri) + I(ri) − D(ri).

We first determineIs(ri). Since the time to upload a block
is exponentially distributed, the expected number of blocks the
servers have uploaded isNsλ∆t. Now we wish to know how
many of theseNsλ∆t blocks contribute to the increase inri.
From Fig. 1, we see thatri increases by one if and only if
a segment withi − 1 blocks increases a block. We choose
Ns,M,∆t such that whenNs → ∞,M → ∞, Ns/M →
αs and ∆t → 0, the total number of blocks servers have
uploadedNsλ∆t will also approach to infinity, but is less than
the segment numberG = M

m
(e.g., letting∆t = Θ( 1√

Ns
) can

achieve this). With this requirement, each segment can either
increase1 block or not increase at all in∆t. Since all the
segments are perfectly balanced in servers, each segment has
an equal chance of being chosen, as all the blocks are largely
needed by most peers, which are highly dynamic. Thus, we
obtain

Is(ri) = Nsλ∆t · pi−1 (5)

Note that to simplify the analysis, we have implicitly assumed
that no linear dependency will occur when a peer is updating
another with network coding. This assumption is reasonable
because according to Lemma 2.1 in [22], a random linear
combination of all the blocks from the same segment at a peer
p is useful to another randomly chosen peer in the network
with probability at least1 − 1/q if network coding is done
in Fq. And this argument is true regardless of whether peerp
is a server or a user. In this paper, the field sizeq has been
assumed to be28.

We then consider the value ofI(ri). Similarly, the total
block increase of all the segments due to users’ upload is
Nλ∆t. However, the increase inri is no longerNλ∆t ·pi−1,
in that each segment does not enjoy an equal chance of being



chosen by the users. On the contrary, however, the more blocks
a segment has in all the users, the more frequently it will be
encoded and uploaded. Therefore,

I(ri) = Nλ∆t ·
(i − 1)ni−1

Y
→

α

α + αs

∆t(i − 1)ni−1

A
, (6)

where Y is the total number of blocks in users given by
Lemma 2. In fact, the experimental results in Sec. VI have
substantiated this observation.

Finally, we determineD(ri). First, we know that the total
loss of blocks in∆t is (Ns + N)λ∆t, because the total
number of blocks remains unchanged by Lemma 2. Similarly,
ri decreases by one if and only if a segment withi blocks
loses a block. And the more blocks a segment has in all the
users, the more blocks it loses due to peer departures. Hence,
we have

D(ri) = (Ns + N)λ∆t ·
i · ni

Y
→

∆ti · ni

A
(7)

SubstitutingIs(ri), I(ri),D(ri) into ∆ri = Is(ri) + I(ri) −
D(ri), we get

∆ri = Nsλ∆t·pi−1+
α

α + αs

∆t(i − 1)ni−1

A
−

i · ni

A
·∆t (8)

Dividing by G ·∆t on both sides, we get the system of linear
differential equations (4).

We have omitted the rigorous proof of the concentration of
(4) around their underlying Markov processes, since such a
proof deviates from the thesis of this paper and can be done
in a standardized way [18], [16]. According to Mitzenmacher
[16], [19], one necessary condition for these differentialequa-
tions to hold in theory is that the average number of blocks
each segment has in users

∑∞

i=1 si(t) remains finite at all
times, which implies cases with severe churn. This condition
is satisfied in our model, since

∑∞

i=1 si(t) → (α + αs)mλA
in probability, which we require to remain finite.

V. QUANTIFYING THE RESILIENCE OFNETWORK CODING

In this section, we operate on the system of ODEs (4) to
analyze the resilience of network coding in both the steady
state when servers are online, and the transient stage after
servers’ departure.

A. Steady State Block Variation and Block Distribution

Assuming the presence of servers, let us now determine
the block variation and block distribution in steady state
networks. Our main findings are that the steady-state block
variation is inversely proportional to the segment size for
network coding, and that the steady-state block distribution
follows a form of negative binomial distribution, which can
be well approximated by a Gaussian distribution. The block
variation is a good indicator of the download time, which we
will show in the simulations. And the block distribution in
steady state not only offers an intuitive concept with respect
to the imbalance of block availability, but also serves as a
starting point for analyzing content availability in the absence
of servers.

Let us denote the steady-state solutions to (4) by
p0, p1, . . . , pG. By settingdsi

dt
= 0 in the differential equations

(4), we getpi = [B + β(i− 1)] · pi−1/i, whereB = αsmλA,
β = α

α+αs
. Hence, the steady-state block distribution is given

by,

pi = p0 ·

i
∏

j=1

(β +
B − β

j
), for i ≥ 1. (9)

Under some relatively mild conditions onB andβ, we could
derivepi in a simple closed form in the following theorem.

Theorem 1. (Steady-State Block Distribution) Let B =
αsmλA and β = α

α+αs
. If β is a positive rational number,

and B
β

∈ Z
++ (Z++ = {1, 2, . . .}), then in the steady state,

the fraction of segments with a total number ofi blocks in
users is given by,

pi =

(

i + B
β
− 1

i

)

βi(1 − β)
B
β , i = 0, 1, 2, . . . . (10)

In particular, the fraction of empty segments (segments which
have no block among users) is given byp0 = (1 − β)

B
β .

Remarks. In practice, the requirement thatβ is a rational
number is naturally satisfied, since both the server number
and the user number in the network are integers. Moreover,B
is usually much larger thanβ and thus substitutingB/β with
the integer nearest to it will hardly affect the outcome ofpi.
Therefore, the value ofpi for nearly all validβ and B can
be approximated by using the nearestβ andB satisfying the
conditions set in Theorem 1. Recall that we useI to denote
the total number of blocks a segment has in users. Since the
total number of segmentsG is large, the PMF ofI will be
asymptotically approximated by the values ofpi, i.e., P{I =
i} = pi. ⊓⊔

Proof. Let C = B/β−1. We first provepi = βi
(

i+C
i

)

·p0, for
i ≥ 1, and then determinep0 from the fact that

∑∞

i=0 pi = 1.
Let β = l

n
< 1, wherel, n ∈ N. BecauseC is a non-negative

integer, we have

pi = p0

i
∏

j=1

(
l

n
+

B − β

j
)

By straightforward induction, we can finally get,

pi = p0(
l

n
)i ·

(i + C)!

i!C!
= βi

(

i + C

i

)

· p0

We now determinep0. Let ai = pi/p0 = βi

(

i+C
i

)

, i =
0, 1, 2, . . .. Then we have1/p0 =

∑∞

i=0 ai. Hence, what we
need to do is to determine

∑∞

i=0 ai. Because
(

i + C

i

)

=

(

C + i − 1

i

)

+

(

C + i − 1

i − 1

)

, i ≥ 1

we can get,
∞
∑

i=0

ai =

∞
∑

i=1

βi

(

(C − 1) + i

i

)

+β

∞
∑

i−1=0

βi−1

(

C + i − 1

i − 1

)

+a0

If we view ai as a function of C and let f(C) =
∑∞

i=1 ai(C) =
∑∞

i=1 βi
(

i+C
i

)

, we can get the following
iteration forf(C),

{

0 = (β − 1)f(C) + f(C − 1) + β, for C ≥ 1

f(0) =
∑∞

i=1 βi = β
1−β



By induction, it is not hard to get

f(C) = (1 − β)−(C+1) − 1, C = 0, 1, 2, . . . .

Hence,
∞
∑

i=0

ai = f(C) + a0 = (1 − β)−(C+1)

Because
∑∞

i=0 pi = p0

∑∞

i=0 ai = 1, we finally get p0 =

(1 − β)
B
β . ⊓⊔

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
Cumulative distribution function of I

I (The number of blocks each segment has among users)

m=1
m=2
m=4
m=8
m=16

Fig. 2. Block distribution in the steady state under different segment sizes
m (CDF of I).

We have plotted the Cumulative Distribution Function
(CDF) of I in Fig. 2 according to Theorem 1 under different
segment sizesm (number of usersN = 1000, number of
serversNs = 50, total number of blocks in the content
M = 1000, upload rateλ = µ/k = 4, average peer age
A = 4). The steady-state block distribution has a form of
negative binomial distribution. It is not hard to show that
such a distribution can be asymptotically approximated by
a Gaussian distribution (refer to our technical report [21]).
Apparently, as segment sizem increases, there will be fewer
rare blocks in the network, and thus the risk that the content
becomes incomplete after server departures will be reduced.
Another implication of Theorem 1 is that the block variation
will be subdued as the segment size increases. We now
quantitatively characterize the block variation in Theorem 2.

Theorem 2. (Steady-State Block Variation)Assume all the
parameters satisfy the conditions set in Theorem 1. Let random
variableI denote the total number of blocks a segment has in
all the users, with the meanµI and varianceσ2

I . If we define

block variation asγ2
I =

σ2

I

µ2

I

, then in the steady-state,

γ2
I =

1

αsmλA
=

F

NsmµA
. (11)

whereA is the average age of a user given by Lemma 1.

Proof. We can derive the mean and variance ofI from
Theorem 1 through straightforward manipulation [21]:

µI =
B

1 − β
, andσ2

I =
B

(1 − β)2
. (12)

whereB = αsmλA, β = α
α+αs

. Thus,γ2
I =

σ2

I

µ2

I

= 1
αsmλA

.
⊓⊔

We now discuss the important insights behind Theorem 2:
• The steady-state block variation is inversely proportional

to the segment sizem. Therefore, there can be a sweet

spot in the curve of resilience-complexity tradeoff, which
suffices to yield the major benefit of network coding.

• Network coding’s true benefit lies in its resilience to
block losses due to churn. When the average peer age
A is small, the system can combat peer churn simply by
increasing the segment sizem for network coding. On
the other hand, when peers all have long lifetimes, the
problem of rare blocks is not salient and the block distri-
bution could be balanced enough even without network
coding.

• It is quite counter-intuitive that the block sizek does not
affect block variation at all. One might believe as block
size k is increased, the total number of blocks in the
content is reduced, and thus the imbalance among block
distributions may be subdued. However, ask increases,
blocks will be disseminated at a slower rate given lim-
ited bandwidth. Both effects counteract with each other,
resulting in no change in block variation.

• The content sizeF and the number of online servers
Ns are also critical parameters that affect block avail-
ability. The lack of servers will adversely affect block
availability, not because servers hold more blocks than
users, but because the upload behaviour of servers are
fundamentally different from that of users, as we have
pointed out in Sec. IV.

B. Content Availability in the Absence of Servers

In real-world P2P systems, servers may all become absent
sometimes. In these cases, the content of interest suffers from a
high risk of becoming incomplete. Suppose that all the servers
leave the network at some point in steady state. In the absence
of servers, it can no longer be guaranteed that any segment
always remains decodable in the network. If the block number
of certain segment falls below the segment sizem, the content
will become incomplete henceforth. On the other hand, if
the content can be kept available for a sufficiently long time
merely by users, then it is possible for the system to evolve into
a new equilibrium again before the content turns incomplete,
as some users may become servers later. Therefore, we ask
the following questions: (1)How long can the content be
kept available, merely by the unreliable users? and (2)How
much fraction of the content may still remain decodable at a
given time after the servers have departed? These metrics are
important in that they represent the network’s tolerance tothe
absence of servers with different segment sizesm for network
coding.

First, it is worth noting that a necessary condition for the
system to be stable is thatαs 6= 0 (Ns 6= 0). An intuitive
explanation for this fact is that with servers available, even
if certain segments become unavailable among users, servers
could still replenish blocks of these segments to the network.
In contrast, without servers, i.e., whenαs = 0 (Ns = 0), a
segment becomes unavailable forever once its block number
reduces to less thanm, with no possibility to be replenished
again. Actually, we have solved forpi by letting dsi

dt
= 0 in

the case ofαs = 0, and foundpi = 0 for any finite i in
steady state. According to Fig. 1, this indicates an extreme
case that nearly all the segments will finally have zero blocks,



while only one segment will have an infinite number of blocks
in the network. Thus, the system can not hold stable in the
absence of servers.

We assume that the servers leave the network altogether in
the steady state and set timet = 0 on the servers’ departure.
We then solve the differential equations to derive parameters
of interest. Since servers leave in the steady state, we obtain
initial conditions at timet = 0:

pi(0) = pi =

(

i + B
β
− 1

i

)

βi(1 − β)
B
β , i = 0, 1, 2, . . . ,

(13)
whereB = αsmλA, β = α

α+αs
, β is a positive and rational

number andB
β

∈ Z
++. By letting Ns = 0, i.e., αs = 0,

we obtain the differential equations for the system after the
servers’ departure:

A ·
dsi(t)

dt
= (i − 1)pi−1(t) − ipi(t), for i ≥ 1

s0(t) = 1. (14)

Hence, the problem of determining the content loss at a given
time has been converted to the problem of solving the system
of ODEs (14) subject to the initial conditions (13).
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Fig. 3. The fraction of decodable content at timet after server departures
under different segment sizesm.
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When the segment size ism, it is not hard to figure out
that the percentage of content loss at timet is the fraction
of segments with fewer thanm blocks in the network, which
is 1 − sm(t). Hence, as we vary the segment sizem, two
factors will intertwine to affect the content loss fraction. The
first factor is the initial condition att = 0 which depends on
m; as the segment size increases, either less content will be
lost right upon server departures, or segments are distributed
in a more balanced way if the content is still complete. The

second factor is the objective function1 − sm(t) that stands
for the content loss percentage at timet. We have plotted
the fraction of decodable content as a function of timet
after server departures in Fig. 3 under different segment sizes
(number of usersN = 1000, number of serversNs = 50,
total number of blocks in the contentM = 1000, upload
rate λ = µ/k = 4, average peer ageA = 5). It is clearly
shown that, as the segment sizem increases, not only does
the system lose less content right upon the servers’ departure,
but the content loss rate after the servers’ departure is reduced
greatly as well. Besides, merely a small increment inm would
result in a salient decrease in the content loss rate.

Finally, we numerically determine content lifetime in a
similar way. The content lifetime is defined as the period from
server departures to the incompleteness of the first segment.
Assume that the segment size ism, and the total number of
segments isG = M/m. If all the segments are still decodable
upon server departures, then the content becomes incomplete
when there is at least one segment which has less thanm
blocks in the network. It is equivalent to saying that the content
becomes unavailable at the time when the fraction of segments
with less thanm blocks grows to greater than1

G
. Thus, the

content lifetime equals to the first hitting time of the function
1−sm(t) to 1

G
starting from the initial conditions set by (13).

The result has been plotted in Fig. 4, where the parameters are
set to the same value as in the previous figure. Similarly, an
increasing trend in content lifetime is observed as the segment
size increases.

VI. EXPERIMENTAL RESULTS

We have developed a simulating environment using C++
to experimentally evaluate the behaviour of dynamic P2P
networks. In most experiments, more than 2,000,000 peers are
involved in total, with 6,000 peers being simultaneously online
at any given time.

Let us first briefly describe the settings of our simulator
(please refer to our technical report [21] for a complete
description). There exists a tracking server in the system,
which helps maintain the neighborhood of a peer. However, all
other tasks, including downstream peer selection and data ex-
changes, are performed locally at peers. Each peer is connected
to at least 40 other peers (in accordance to BitTorrent), which
form its neighborhood. We fix the number of online peers
while allowing peer churn: a peer will leave the network when
its assigned lifetime has expired and a new peer will join at
the same time. To join the session, a new peer should contact
the tracking server, which in response gives it 40 randomly
chosen online peers to connect to.

The simulator is run in time slots (rounds). In each time
slot, a peer first randomly chooses 4 (as in BitTorrent) of
its neighbors to serve in this slot. This process is called
downstream peer selection. However, under such a scheme,
there may exist peers not chosen by any other peers in a
round, whereas in the meantime other peers may have a large
number of upstream peers. To avoid such a load imbalance,
we require each peer to have at most 6 upstream peers. With
this policy, most peers will have at least one upstream peer
in each round. Afterwards, each peer will transmit data to its



downstream peers using group network coding as mentioned
in Sec. III. The upload bandwidth of a peer is measured in
Kilobytes (KB) per round.
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Fig. 5. The convergence of the block variation.
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Fig. 6. Steady-state block variation as a function of segmentsizem. Average
lifetime of user peersL = 5 rounds.
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First, it is clearly shown in Fig. 5 that the system does
have a steady state in which block distribution stays roughly
constant. Parameters are set such that the number of online
user peersN = 6000, number of online serversNs = 100,
file sizeF = 768 MB, block sizek = 256 KB. Each user has
a lifetime exponentially distributed with a mean of5 rounds.
To accommodate heterogeneity, we assume an equal number
of peers with high upload bandwidth (2 MB/round), medium
upload bandwidth (512 KB/round), and low upload bandwidth
(256 KB/round) connectivity.

Fig. 6 shows the block variationγ2
I in steady state. The ex-

periment ran for 500 rounds. And after round 200, the system
stepped into the steady state. Parameters are set to the same

values as in the previous experiment. It clearly demonstrates
our main theoretical result:γ2

I is inversely proportional to the
segment sizem. However, we do not fully understand why
the simulation and the analysis are different from each other
by a constant coefficient. This is probably because we have
adopted a time-synchronized model in the simulation, whereas
in the analysis we have not. To acquire a sense of how the
blocks of each segment are distributed in steady state, the
block distribution in the same experiment is plotted in Fig.7,
which also substantiates the correctness of Theorem 1.
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Fig. 9. The fraction of decodable content after server departures as time
passes.

We now link the average download time experienced at a
long-lived user peer with the block variation and segment size
m. The results are plotted in Fig. 8. Parameters are set such
that the number of online user peersN = 2000, the number
of online server peersNs = 30, file size F = 256 MB.
Bandwidths and block size are the same as in the previous
experiments. 1% of all the user peers are long-lived ones
which will not leave until they finish downloading. The other
peers are short-lived ones which have lifetimes exponentially
distributed. It is clearly shown in Fig. 8 that as segment size
increases, the average download time required to obtain the
entire content is reduced. And the relation between down-
load time and segment size assumes a similar form (inverse
proportion) to that between block variation and segment size.
The underlying reason is that as block variation is subdued,
peers will not be hindered in obtaining those rare blocks.
Besides, there is a sweet spot of segment size, beyond which
the download time can hardly be further reduced. Thus, the
use of a small segment size, such as 10-20, suffices to optimize



the download efficiency in the system, while only incurring a
moderate computational complexity.
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Fig. 10. The relationship between content lifetime and segment sizem.

We have also plotted the fraction of decodable content as
a function of time after servers’ departure in Fig. 9. Servers
leave in the steady state (round 400), and we sett = 0 upon
servers’ departure. There are 6000 users and 100 servers being
simultaneously online, sharing a file of size 768 MB. The
average lifetime of user peers isL = 20 (rounds). Other
parameters are the same as those of the previous experiment.
We could see that the results agree with the analysis in trend.
Finally, under this setting, we show content lifetimes after
servers’ departure for different segment sizes and different
average peer lifetimes in Fig. 10. Two conclusions can be
drawn from Fig. 10. First, content lifetime increases in trend
as segment size increases. Second, when peers have longer
lifetimes, the effect of churn becomes less severe, and thus
content lifetime is significantly increased.

VII. C ONCLUDING REMARKS

In this paper, we study the fundamental resilience-
complexity tradeoff of applying network coding in P2P content
distribution sessions with severe peer dynamics. Our major
finding is that the true benefit of network coding in P2P net-
works lies in its resilience to peer churn, which is an important
issue not well understood in the existing literature. We have
theoretically proved that as peers abort frequently, blocks will
be taken away randomly and some blocks may become rare,
adversely affecting download efficiency. With network coding,
all the blocks within a segment are equally useful, and thus
the problem of significant degrees of imbalance with respect
to block availability, namely, block variation, is addressed. By
varying the segment size for network coding, we quantified
such metrics as block variation, download times, content loss
rate and content lifetime under different coding complexities.
We have discovered that the block variation is inversely pro-
portional to the segment size. A similar relation between the
download time and segment size is also observed. Therefore,
small segment sizes — less than 20 in our simulations even
with high peer volatility — suffice to realize the major benefit
of network coding in terms of reducing download times and
enhancing content availability.
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