
Circumventing Server Bottlenecks: Indirect Large-Scale P2P Data Collection

Di Niu, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{dniu, bli}@eecg.toronto.edu

Abstract

In most large-scale peer-to-peer (P2P) applications, it
is necessary to collect vital statistics data — sometimes re-
ferred to aslogs— from up to millions of peers. Traditional
solutions involve sending large volumes of such data to cen-
tralized logging servers, which are not scalable. In addi-
tion, they may not be able to retrieve statistics data from
departed peers in dynamic peer-to-peer systems. In this pa-
per, we solve this dilemma through an indirect collection
mechanism that distributes data using random network cod-
ing across the network, from which servers proactivelypull
such statistics. By buffering data in a decentralized fash-
ion with only a small portion of peer resources, we show
that our new mechanism provides a “buffering” zone and
a “smoothing” factor to collect large volumes of statistics,
with appropriate resilience to peer dynamics and scalability
to a large peer population.

1 Introduction

Collecting vital statistics data from peers has become
critical to monitor and diagnose large-scale peer-to-peer
(P2P) multimedia applications, especially when they are
in live operation as a commercial platform. Traditionally,
these commercial P2P live streaming systems uselogging
serversto collect vital statistics data from the participating
peers periodically. Such statistics data consist of measure-
ments of important performance metrics in the P2P appli-
cation at each peer, and are used by network administra-
tors and analysts to improve the protocol design or to trou-
bleshoot network outage.

It has recently become apparent that the use of central-
ized logging servers is notscalableto the large number of
participating peers. As has been observed in previous P2P
measurement studies such as measurements from UUSee
Inc. [14, 15] — a leading provider in mainland China for
P2P live streaming solutions — periodic statistics data col-
lection actually consumes a very substantial volume of traf-

fic, especially when the number of peers in the session in-
creases dramatically in a short period of time. Such peri-
odic reporting essentially morphs into ade factoDistributed
Denial of Service (DDoS) attack to the logging servers, as
the server bandwidth is not sufficient to handle an excessive
number of simultaneous uploading flows, with either TCP
or UDP as the transport layer.

Naively, these logging servers may be able to mitigate
this problem by periodically changing the peers that they
proactively pull data from. However, with limited band-
width, the servers can only download from a small subset
of all the peers at the same time, leaving most of the peers
waiting for service. Aggravated by the phenomenon of peer
dynamics, a large number of peers may have already left
the system before any of the servers actually become avail-
able to “pull” from them, losing such statistics permanently.
Ironically, since peers tend to leave soon after the quality
degrades, such statistics from departed peers may be the
most useful to diagnose system outages or protocol defi-
ciencies! Even if all peers may eventually be probed by
logging servers, the bandwidth available on the pair-wide
Internet path between a peer and a central logging server
may be too low to successfully report all vital statistics.

In a nutshell, with current solutions using centralized
logging servers, the amount of data that can be instanta-
neously collected from a large-scale P2P system is strictly
limited by the server bandwidth. While such bandwidth
may be more than sufficient to handle theaveragerate of
collecting such vital statistics, it may not be able to accom-
modate flash crowds of peer arrivals and large-scale peer de-
partures in a short period of time. In order to achieve better
scalability, one possible remedy is to increase the number or
bandwidth of such logging servers, trying to accommodate
the peakload of collecting statistics, rather than theaver-
age. This is extremely costly and fails to take advantage
of statistical multiplexing of resources. Since the task of
statistics collection is usually not time-sensitive, we are able
to trade-offtimelinessfor bandwidth, byallowing peers to
buffer such data in a decentralized fashion, much like a dis-
tributed storage for vital statistics.

In this paper, we design, analyze, and simulate an indi-
rect data collection mechanism that is specifically designed
for collecting vital statistics in large-scale peer-to-peer sys-
tems, such as P2P streaming. Our design has two simple
objectives:scalability, where the design must be scalable
to handle a large number of peers, with some trade-offs on
delay; andresilience,where losses of vital statistics from
peers that have recently departed should be kept to the min-
imum.

In particular, our new mechanism requires that peers first
exchange their statistics data blocks with their neighborsus-
ing random network coding and probabilistic gossip proto-
cols. By utilizing peer resources to form a “buffering” pool,
the transmission of statistics from peers to logging servers
is “cushioned,” such that server bandwidth is provisioned to
handle onlyaverageload, rather than thepeak. To some ex-
tent, our new mechanism is akin to delay tolerant networks:
by spreading data blocks across the network, the data that
the servers are unable to collect immediately are stored for
future delivery in a delayed fashion. Such “cushioning” also
plays an important role to prevent losing vital statistics of
departing peers.

The remainder of this paper is organized as follows. In
Sec. 2, we describe our algorithms for indirect data collec-
tion in P2P networks. In Sec. 3, we interpret network events
via a random bipartite graph process and formulate a sys-
tem of ordinary differential equations (ODEs) to character-
ize system states. Based on these ODEs, we evaluate the
performance of our new scheme in Sec. 4. Simulation re-
sults are presented along with the analytical results. Finally,
we discuss related work in Sec. 5, and conclude the paper
in Sec. 6.

2 Algorithm Description

We consider the problem of collecting vital statistics data
from a total number ofN peers in a P2P network. To ac-
commodate the fluctuating nature of the upload demand at
each peer, we assume original statistics data blocks are gen-
erated at each peer in a Poisson process with rateλ so that
the average upload demand of each peer isλ. Each peer has
an average upload bandwidth ofµ set aside for reporting
statistics.

Fig. 1(a) illustrates the traditional mechanism of us-
ing logging servers to “pull” directly from peers. Such a
scheme is not scalable, as the aggregate bandwidth of log-
ging servers may not be able to accommodate the peak load
of reporting vital statistics. Furthermore, if any peer quit the
session before it can be serviced by any of the servers, the
statistics in it will be lost permanently. In the case of col-
lecting vital statistics for postmortem analysis, we are most
likely able to trade-off the timeliness of retrieving such data,
and tolerate some degree of delay. Thus, in our approach,

we require peers exchange data blocks with each other peri-
odically by a gossiping protocol that will be described later.
Servers can retrieve the desired data by randomly probing
the online peers, shown in Fig. 1(b). This approach not
only eases the server bottleneck by buffering up data for
future delivery, but also achieves better data persistencein
the event of peer dynamics.

a b c

Peer 1 Peer 2 Peer 3

Server

(a)

b

a

b

a

Peer 1 Peer 2

c c

Peer 3

(b)

Server

Figure 1. (a) Traditional pull-based approach
(b) Indirect data collection.

In order to further increase data persistence, we leverage
the wisdom of random network coding [6], [1], [5] to spread
data blocks across the network in their coded form. As
coded blocks are all equally useful, network coding elim-
inates the risk suffered by the non-coding case, where cer-
tain data blocks could become rare and thus more vulner-
able to losses than other blocks upon peer departures [8].
However, the computational complexity of network coding
mandates that, in reality, network coding needs to be per-
formed withinsegments. The basic idea ofsegment based
network codingor group network coding[1] is to group the
original data blocks produced at each peer intosegments,
each with a prescribed number ofs blocks, a quantity we
refer to as thesegment size. A random linear code (RLC) is
applied to each segment in the following way:

Assume a certain segmenti generated at peerA has orig-
inal blocksB(i) = [Bi

1, B
i
2, . . . , B

i
s], then a coded blockb

from segmenti is a linear combination of[Bi
1, B

i
2, . . . , B

i
s]

in the Galois field GF(28). Coding operation is not limited
to the source: if a peer (including the source) has bufferedl
(l ≤ s) coded blocks of segmenti [bi

1, b
i
2, . . . , b

i
l], when

transferring to another peerp, it independently and ran-
domly chooses a set of coding coefficients[cp

1, c
p
2, . . . , c

p
l]

in GF(28), and encodes all the blocks it has from segmenti,
and then produces one coded blockx =

∑l
j=1 cp

j · bi
j . The

coding coefficients used to encodeoriginal blocksto x are
embedded in the header of the coded block. As soon as the
server has collected a total ofs coded blocks from segment
i x = [xi

1, x
i
2, . . . , x

i
s] that are linearly independent, it will

be able to decode segmenti. The decoding complexity turns
out to be approximatelyO(s) operations per input block [8].
Naturally, we can vary the coding complexity by changing
the segment size. When network coding is applied in seg-
ments of sizes, segments ofs blocks are injected at each
peer in a Poisson process with rateλ/s, resulting in a same
block rate ofλ. Note thats = 1 indicates the non-coding
case.

Coded blocks are spread across the network by the fol-
lowing gossiping protocol: 1) At rateµ, each peer, say peer
A, chooses a segmentr uniformly at random (u.a.r.) from
among all the segments of which it has at least one (coded)
block in its buffer to generate a coded blockq; 2) A then
transmitsq to peerB chosen u.a.r. from among its neigh-
bors which have not receiveds linearly-independent coded
blocks of segmentr. (The neighbors of a peer are the peers
that maintain data connections with it.)

To ensure smooth data collection in light of fluctuat-
ing traffic and peer dynamics, the servers adopt a coupon-
collector-like algorithm to collect data. Assume there are
Ns servers in collaboration, each with a capacity ofcs. For
the simplicity of notation in the analysis, we define thenor-
malized server capacityasc := csNs/N . At ratecs, each
server chooses a peerp u.a.r. from among all the peers with
non-null buffers and chooses a random segment in peerp,
which then transmits one coded block of this segment to the
server. Note that servers may collect redundant blocks of a
segment that is already decodable, as no buffer comparison
is made between a server and peers or among the servers.
However, we will show that even with such simplicity, the
collection efficiency, or the session throughput can be made
close to optimal probabilistically by adjusting the segment
size for coding and various other parameters.

To prevent redundant data from flooding the network, we
require each (coded) block to have a time to live (TTL)
at each peer exponentially distributed with mean1/γ. A
(coded) block is deleted once its TTL has expired to make
storage spaces for newly generated or obtained blocks.
Moreover, each peer’s buffer is set to have a cap of size
B. If a peer’s buffer is full, it will not accept blocks from its
neighbors.

3 A Differential Equation Characterization

In what follows, we map the proposed algorithms for
indirect data collection onto a random bipartite graph pro-
cess, which can be asymptotically characterized by a set of
ODEs as the number of peersN → ∞. As illustrated in
Fig. 2, segments and peers correspond to vertices on dif-
ferent sides of a bipartite graphG respectively. For every
(coded) block of segmentr in peerA, there is an edge in
G between peerA and segmentr. Multiple edges can be
allowed for a segment-peer pair, as each peer can buffer up
to s linearly independent (coded) blocks of a certain seg-
ment. For example, in Fig. 2, Peer 1 has three blocks from
Segment 1 and one block from Segment 3. Servers are not
shown inG.

Denote byXi(t) the number of segments of degreei at
time t and byYi(t) the number of peers of degreei. A
segment is of degreei if and only if there arei blocks of
this segment in the network. A peer is of degreei if and
only if it containsi blocks in its buffer. The total number

of blocks in the network equals to the total number of edges
in G, denoted byE(t). Let zi := 1

N Yi andwi := 1
N Xi

denote the rescaled degree sequences ande(t) := 1
N E(t)

be the average number of blocks in each peer. Actions of
the peers and servers can be interpreted by the following
graph operations:

• Segment Injection (Adding Edges and Vertices). At
rate λ/s, s new edges are added to each peer inG
whose degree is no more thanB − s, together with
a new segment incident to theses edges.

• Block Encoding and Transfer (Adding Edges). At rate
µ, each peers in G whose degree is non-null picks
u.a.r. a segmentp from all the segments adjacent to it
and picks u.a.r. from all the peers a peerd that needs
blocks of segmentp, and whose degree is less thanB.
Add a new edgepd to G.

• Block Deletion (Deleting Edges). At rateγ, each edge
in G is deleted. Particularly, if a segment inG has
degree zero after an edge is deleted, then the segment
is deleted fromG.

• Server Collection. Assume each segment is in one of
thes+1 states; a segment is in statei if and only if the
servers have collectedi linearly independent blocks of
this segment (i = 0, 1, . . . , s). At ratecs = c · N/Ns,
each server chooses a peerd u.a.r. from all the peers
with non-zero degrees. It then chooses a segmentp
u.a.r. from all the segments adjacent to peerd. Increase
the state value of segmentp by one if its state value is
less thans. Otherwise, do not increase its state value,
since a segment in states can already be decoded and
any further collection of blocks from this segment will
be redundant.

Segments

Peers

Peer 1 Peer 2

Segment 1 Segment 2

Peer N

Figure 2. A bipartite graph representation.

We now formulate a system of ODEs on the graph pro-
cessGt mentioned above to characterize its asymptotic be-
havior asN → ∞. We take the approach of considering the
expected changes ofXi andYi contributed by different op-
erations asGt evolves to establish the system behavior in its
limiting case. The proof of the correctness of this approach
and the asymptotic approximation of the derived ODEs to
the underlying processGt can be found in [12].

Let us first consider block encoding and transfer. Con-
sider the change ofYi in ∆t, during which only one action
of edge addition or deletion occurs. When a segmentp is

chosen for encoding, a peerd is chosen u.a.r. from all the
peers with degrees less thanB that still need blocks of seg-
mentp. Edgepd is then added. The probability of choosing
a degreei peer is(Yi(t) − Fpi(t))/(N − YB(t) − Fp(t)),
whereFpi(t) denotes the number of edges already present
between segmentp and peers of degreei, andFp(t) de-
notes the number of edges present betweenp and all the
peers, which equals to the degree ofp. As the maxi-
mum degree of any peer is bounded byB, it turns out that
Fpi(t) andFp(t) can only take finite values as well, that
is Fpi(t) ≤ Fp(t) = o(N) for all p. Thus, the expected
number of peers of degreei changing toi + 1 in ∆t is

1 ·
Yi(t) − o(N)

N − YB(t) − o(N))
· (N − Y0(t))µ∆t

= (
Yi(t)

N − YB(t)
+ o(1)) · (N − Y0(t))µ∆t,

where(N − Y0(t))µ∆t is the probability that one edge is
added in∆t. When a peer changes its degree fromi to i+1,
Yi decreases by one andYi+1 increases by one. Hence,

E{Yi(t + ∆t) − Yi(t)|Gt}

= (
(1 − δi0)Yi−1(t) − (1 − δiB)Yi(t)

N − YB(t)
+ o(1))

·(N − Y0(t))µ∆t,

whereδij = 1 if i = j andδij = 0 if i 6= j is the Kronecker
delta function. Recall thatzi(t) := 1

N Yi(t). Dividing by
N · ∆t on both sides, we get

z′i(t) =
(1 − δi0)zi−1(t) − (1 − δiB)zi(t)

1 − zB(t)
· (1 − z0(t))µ,

(1)
To determine the change ofXi due to segment encoding

and transfer, we assume the followings are equivalent: 1)
Choosing a peers u.a.r. from all the peers with non-zero
degrees and then choose a segmentp u.a.r. from all the seg-
ments adjacent to peers in Gt 2) Choosing a segmentp
from all the segments with probability deg(p)/E(t), where
deg(p) is the degree of segmentp andE(t) is the total num-
ber of edges inGt.

This essentially means that the more blocks a segment
has in the network, the higher the chance it is chosen by
the servers. Thus, when adding an edge due to segment en-
coding and transfer, the probability of a degreei segment
being chosen isiXi(t)/E(t). And the expected number
of segments of degreei changing to degreei + 1 in ∆t is
(iXi(t)/E(t)) · (N − Y0(t))µ∆t. Similarly,

E{Xi(t + ∆t) − Xi(t)|Gt}

=
(i − 1)Xi−1(t) − iXi(t)

E(t)
· (N − Y0(t))µ∆t,

Dividing by N∆t on both sides, we get

w′

i(t) =
(i − 1)wi−1(t) − iwi(t)

e(t)
· (1 − z0(t))µ. (2)

Let us now consider block deletion. In∆t, an edge is
deleted with probabilityE(t)γ∆t from Gt. Since the dele-
tion process is Poisson, this edge is uniformly distributed
among all edges. The probability that the deleted edge is
adjacent to a degreei peer isiYi(t)/E(t). By a similar ar-
gument, we get the evolution ofzi under block deletion:

z′i(t) = ((1 − δiB)(i + 1)zi+1(t) − izi(t)) · γ,

i = 0, 1, . . . , B. (3)

Similarly, the evolution ofwi is given by

w′

i(t) = ((i + 1)wi+1(t) − iwi(t)) · γ, i = 1, 2,(4)

Finally, we consider the contribution of segment injec-
tion. A segment is injected into the network in∆t with
probability (N − Y(f)(t)) · λ

s · ∆t, where Y(f)(t) =
∑B

k=B−s+1 Yk(t). This segment appears in a degree-i
peer with probabilityYi(t)/(N − Y(f)(t)). Thus, the ex-
pected number of degree-i peers changing to degreei + s
is simply [(N − Y(f)(t))λ∆t/s] · [Yi(t)/(N − Y(f)(t))] =
Yi(t)λ∆t/s. Hence, whenB is large enough, we have

E{Yi(t + ∆t) − Yi(t)|Gt}

=

{

−Yi(t)λ∆t/s i = 0, . . . , s − 1
(Yi−s(t) − Yi(t))λ∆t/s i = s, s + 1, . . .

Dividing by N · ∆t on both sides, we get

z′i(t) =

{

−zi(t) ·
λ
s i = 0, 1, . . . , s − 1

(zi−s(t) − zi(t)) ·
λ
s s, s + 1, . . .

(5)
As for the change ofXi, a new segment with degrees is
added whenever a segment is injected. Thus, the expected
block increase is(N−Y(f)(t))·

λ
s ·∆t for degree-s segments

and zero for other segments. WhenB is large, we have

w′

i(t) = δis ·
λ

s
·(1−z(f)(t)) = δis ·

λ

s
, i = 1, 2, (6)

Putting (1), (3), and (5) together, and (2), (4), and (6)
together, we finally arrive at the following ODE systems
(z−1(t) ≡ 0):

z′i =
zi−1 − zi

1 − zB
· (1 − z0)µ − zi ·

λ

s
+ ((i + 1)zi+1 − izi)γ,

i = 0, 1, . . . , s − 1,

z′i =
zi−1 − zi

1 − zB
· (1 − z0)µ + (zi−s − zi) ·

λ

s

+((i + 1)zi+1 − izi)γ, i = s, s + 1, . . . , (7)

w′

i =
(i − 1)wi−1 − iwi

e(t)
· (1 − z0)µ + ((i + 1)wi+1 − iwi)γ

+δis ·
λ

s
, i = 1, 2, 3, (8)

To characterize the server collection process, we intro-
duce thesegment collection matrixM = (M j

i (t)), i =

1, 2, . . ., j = 0, 1, . . . , s, whereM j
i (t) denotes the number

of degree-i segments that havej (coded) blocks collected
by the servers already. Letm = (mj

i (t)) := (1
N M j

i (t))
be therescaled segment collection matrix. If we only con-
sider the effects of segment encoding, transfer, and block
deletion, the behavior ofmj

i (t) is similar to that ofwi(t):

dmj
i

dt
=

(i − 1)mj
i−1 − imj

i

e(t)
·(1−z0)µ+((i+1)mj

i+1−imj
i)γ,

(9)
Consider server collection operation. By the linear ap-

proximation mentioned above, each block is collected by
the servers with a probability proportional to its degree in
Gt. SinceM j

i increases by one andM j−1
i decreases by one

whenever a server obtains a block from a degree-i segment
which already has(j − 1) blocks collected by the servers,
the expected change ofM j

i (t) is

E{Mi(t+∆t)−Mi(t)|Gt} =
i(M j−1

i (t) − M j
i (t))

E(t)
·cN∆t

(10)
Dividing by N · ∆t on both sides, including the cases for
j = 0, s, and also considering the effect of segment injec-
tion, we get fori = 1, 2, . . .

dmj
i (t)

dt
=







−c · im0
i (t)/e(t) + δisλ/s j = 0,

c · i(mj−1
i (t) − mj

i (t))/e(t) j = 1, . . . , s − 1,
c · ims−1

i (t)/e(t), j = s.
(11)

Combining all the effects in (9) and (11) together, we have
for i = 1, 2, . . .:

dm0
i (t)

dt
=

(i − 1)m0
i−1 − im0

i

e(t)
· (1 − z0(t))µ

+((i + 1)m0
i+1 − im0

i) · γ −
im0

i (t)

e(t)
· c + δis ·

λ

s
,

dmj
i (t)

dt
=

(i − 1)mj
i−1 − imj

i

e(t)
· (1 − z0(t))µ

+((i + 1)mj
i+1 − imj

i) · γ +
i(mj−1

i − mj
i (t))

e(t)
· c,

j = 1, 2, . . . , s − 1

dms
i (t)

dt
=

(i − 1)ms
i−1 − ims

i

e(t)
· (1 − z0(t))µ

+((i + 1)ms
i+1 − ims

i) · γ +
ims−1

i

e(t)
· c. (12)

Our analytical results will be drawn from (7), (8), (12),
which characterize system evolution.

4 Performance Evaluation

In this section, we evaluate the proposed protocol in
terms of storage overhead, session throughput, data deliv-
ery delay, and loss resilience. We derive analytical results
with respect to these metrics from the differential equations
and provide more insights with simulations. Based on the
analytical and simulation results in this section, we discuss
how to choose parameters for the proposed protocol in var-
ious settings.

Let us consider the steady-state network by setting the
derivatives in (7), (8), (12) to zero. Let̃zi(t), w̃i(t), m̃j

i (t)
and ẽ(t) denote the steady-state value forzi(t), wi(t),
mj

i (t) ande(t). First, we can show the storage overhead
of the indirect collection protocol is upper-bounded byµ/γ
in the following theorem.

Theorem 1 (Storage Overhead) Assume the buffer sizeB
is large enough, regardless of the value ofs, in steady-state
network, the average number of (coded) blocks in a peer’s
buffer is

ρ = (1 − z̃0)µ/γ + λ/γ, (13)

Moreover, the average storage overhead of a peer is

Overhead= (1 − z̃0)µ/γ < µ/γ. (14)

wherez̃0 is given byz̃0 = e−(1−z̃0)µ/γ−λ/γ for s = 1, and
is given by the steady-state solution to (7) fors ≥ 2.

Proof: Setting the derivatives in (7) to zeros, af-
ter tedious yet straightforward deduction, we can get
z̃i = z̃0ρ

i/i!, i = 0, 1, . . . , B, where ρ =
(1 − z̃0)µ/(1 − z̃B)γ + λ/γ. And z̃0 can be determined
through

∑B
i=0 z̃i = 1. If buffer sizeB is large enough, we

have1 =
∑B

i=0 z̃i = z̃0 ·
∑B

i=0 ρi/i! ≈ z̃0 · eρ. Thus,
z̃0 ≈ e−ρ. Since z̃B ≈ 0 when B is large, we have
ρ = (1 − z̃0)µ/γ + λ/γ.

Take the summation of all̃zi, we get the rescaled total
number of edges in the steady state asẽ(t) =

∑B
i=0 iz̃i =

ρ·
∑B−1

i−1=0 z̃0ρ
i−1/(i−1)! =

∑B−1
j=0 z̃j ·ρ = (1−z̃B)ρ ≈ ρ,

whenB is large. Since the number of edges inG equals to
the total number of block copies in the network, we have
the average number of block copies at each peer equals to
1
N ·

∑B
i=0 iỸi =

∑B
i=0 i · Ỹi

N =
∑B

i=0 i · z̃i = ẽ(t) = ρ. ⊓⊔
Theorem 1 shows the storage overhead of the proposed

protocol can be limited to a relatively small value by setting
the bandwidthµ and block deletion rateγ appropriately. In
our simulations,µ/γ is set to be less than 20.

We define the session throughput as the actual rate
(blocks/unit time) at which servers obtain original data. We
can show that if the fluctuating traffic is modeled as Poisson
processes at the peers, with the proposed indirect collection
mechanism, servers provisioned with bandwidth that only
handles an average traffic can achieve a throughput close to
the throughput capacity for the session.

Theorem 2 (Session Throughput) Assumec < µ. The
throughput capacity of the session is the aggregate server
capacity: C = cs · Ns = c · N . For the non-coding case
(s = 1), in steady-state network, the session throughput is
given by

Throughput(1) = Nλ · (1 −
1

θ+
), (15)

whereθ+ is the maximum root ofα2x
2 + α1x + α0 = 0,

α0 = −qγ, α1 = qγ +γ + c
ρ , α2 = −γ, andq = 1−λ/ργ.

Whereas for the coded case with a segment sizes (s ≥ 2),

Throughput(s) = Nc · (1 −
∞
∑

i=1

im̃s
i (t)/ρ), (16)

wherem̃s
i (t) is the steady-state solution to (12).

Proof: The collection efficiency of serversη in the long
run equals to the probability that a server collects a block
from a segment needed by the servers in each trial in the
steady state, which equals to the probability that a server
picks a segment whose blocks have been pulled for less than
s times. Thus, we haveη = 1 −

∑

∞

i=1 im̃s
i (t)/ẽ(t). Thus,

the session throughput is given byC · η = Ncη. When
s = 1, we can explicitly solve for̃ms

i (t) andẽ(t) to obtain
η(1) = λ

c (1 − 1
θ+

) and (15). ⊓⊔

!" #" $" %" &" '"
"(#

"($

"(%

"(&

"('

"()

"(*

"(+

!

,-./-012,34-25

6
-
738
-
9:
2;
<
13
=
2!

>?"@"(#&2<0<7:535

>?"@"(&2<0<7:535

>?"@"()&2<0<7:535

>?"@!2<0<7:535

>?"@"(#&253/A7<13=0

>?"@"(&253/A7<13=0

>?"@"()&253/A7<13=0

>?"@!253/A7<13=0

!
"
#$
%
&
"
'
%
()
*)
+
!

Figure 3. Session throughput as a function of
segment size s. λ = 20, µ = 10, γ = 1.

We plot the numerical results regarding throughput ac-
cording to Theorem 2 as well as the simulation results in
Fig. 3. In theY -axis, we normalize the session throughput
by dividing it by N · λ, that is the aggregate peer upload
demand. Each dashed horizontal line in the figure denotes
the throughput capacity for a certain value ofc.

It is clearly shown in Fig. 3 that by increasing segment
sizes, session throughput can be made close to the through-
put capacity under that value ofc. This is because when net-
work coding is used, all coded blocks from a segment are
equally useful, and the probability that servers collect re-
dundant blocks using the coupon-collector algorithm falls

down. This is the essential insight behind Theorem 2.
Moreover, the use of a small segment size (e.g. around
20∼30) is sufficient to achieve high throughput as shown
in the figure, with an acceptable computational complexity
incurred. It is also worth noting that it is harder for the
throughput to approach its capacity (dashed lines) as the
normalized server capacityc increases, since the benefit of
an indirect mechanism is more salient when server capacity
is insufficient.

! " #! #" $!
!

!%#

!%$

!%&

!%'

!%"

!%(

!%)

!%*

!

+
,
-./
,
01
23
4
5.
6
2!

7282$92:282$92;282$

7282$92:282$92;282"!

7282$92:282*92;282$

7282$92:282*92;282"!

7282*92:282$92;282$

7282*92:282$92;282"!

7282*92:282*92;282$

7282*92:282*92;282"!

!
"
#$
%
&
"
'
%
()
*)
+
!

,-.#/&.)'..#)0/12342(")"

2,

2,

8,

8,

Figure 4. Session throughput as a function of
µ under different scenarios. λ = 8, γ = 1.

We also simulate to study the session throughput in a dy-
namic network. Peer dynamics is simulated via a replace-
ment model [7], [8], where each peer is assigned a random
lifetime L and leaves the network upon the expiration of its
lifetime. A new peer will join at the same time to replace
the departed peer. The peer lifetime follows an exponential
distribution with meanL. Such a model allows us to decou-
ple the impact of the change in the number of online peers
and fully focus on the effect of theirdynamicnature.

The impact of churn on session throughput is plotted in
Fig. 4 under various parameter settings. When server ca-
pacity compares to user demands (c = 8), throughput is
degraded for the case of severe peer churn (dashed lines)
as a larger segment size is used, and as more buffering is
performed with a largerµ. This is because, buffering by
gossiping and network coding is actually not needed when
server capacity is high enough, whereas the use of a larger
segment size in this case could make segments become un-
decodable when peers abort too frequently. However, when
server capacity is insufficient, i.e.,c/λ is small, servers can-
not collect all the generated data immediately anyway. In-
troducing a higher data redundancy will aid the collection
of these data in a delayed fashion before they disappear.
Thus, when server capacity is insufficient, throughput ben-
efits from having a larger segment sizes and higher peer
bandwidthµ, even in the presence of peer churn, as shown
in Fig. 4.

We defineblock delayas the delivery delay of a segment

divided by the segment size, that is the average delivery de-
lay of each original block. We can derive block delay using
Little’s Theorem in queueing theory based on the session
throughput.

Theorem 3 (Block Delivery Delay) In steady-state net-
work, if an original block can eventually be reconstructed at
the server, the average time from the injection of this block
to its delivery is

T (s) =

∑

∞

i=1 w̃i

λ
−

∑

∞

i=1 m̃s
i

λσ(s)
, (17)

where w̃i is the steady-state solution to (8),σ(s) =
Throughput(s)/Nλ.

Proof: Let σ(s) = Throughput(s)/Nλ. Let TL de-
note the average time from the injection of a segment
to its extinction from the network. By Little’s Theorem,
TL =

∑

∞

i=1 X̃i/
Nλ
s = s

∑

∞

i=1 w̃i/λ, where
∑

∞

i=1 X̃i

is the number of distinct segments in the network and
Nλ/s is segment injection rate. We call a segment a
good segmentif the segment has been pulled by the servers
for s times and is still available in the network. Simi-
larly, the average time during which a segment is good is
TM =

∑

∞

i=1 M̃s
i /Nλσ

s = s
∑

∞

i=1 m̃s
i /λσ. Hence, the av-

erage block delayT = (TL − TM)/s =
∑

∞

i=1 w̃i/λ −
∑

∞

i=1 m̃s
i /λσ(s). ⊓⊔

�
5 10 20 40 60 80 100

0

0.01

0.02

0.03

0.04

0.05

0.06

Segment Size s

P
a
c
k
e
t
D
e
la
y
 T

c/!=0.25

c/!=0.5

c/!=0.75

c/!=1

c/!=1.25� verage Block D
e
la
y
 T

Figure 5. Average block delivery delay T for
different values of s. λ = 20, µ = 10, γ = 1.

Fig. 5 shows the numerical results on block delay. We
can see that there is a peak of block delay arounds = 5. The
reason is that without coding (s = 1), although many blocks
are lost due to a low throughput, yet a block is collected
immediately if it can be collected as servers do not have to
buffer a sufficient number of (coded) blocks to reconstruct
a segment. When a larger segment size is used, servers tend
to collect blocks from different segments in an alternating
fashion, resulting in a longer delay to reconstruct either one
of them. However, whens is sufficiently large, the delay
decreases again, as blocks in the network tend to belong
to a few large segments. Taking into consideration of both

throughput and delay, a segment size between20 and40 is
preferred.

Finally, we show that at the end of the stream collec-
tion session, there is a guarantee of a certain amount of data
buffered in the network so that the servers can still collect
them in a delayed fashion.

Theorem 4 Suppose the streams of upload requests end in
steady-state network, then the amount of data in terms of
original blocks saved up in the network for future delivery
is

S = N · s
∞
∑

i=s

(w̃i − m̃s
i), (18)

wherew̃i is the steady-state solution to (8).

Proof: The number of segments buffered for future de-
livery equals to the number of decodable segments that have
not been reconstructed by the servers yet. The number of
decodable segments is

∑

∞

i=s X̃i = N ·
∑

∞

i=s w̃i. Among
these segments there are

∑

∞

i=s M̃s
i = N

∑

∞

i=s m̃s
i recon-

structed by the servers already. Upon the decoding of a seg-
ment,s original data blocks are reconstructed at the servers.
Thus, we haveS = N · s

∑

∞

i=s(w̃i − m̃s
i). ⊓⊔

5 10 15 20 25 30 35 40
0

3

6

9

12

15

Segment Size s

D
at

a
sa

ve
d

(o
rig

in
al

 b
lo

ck
s)

c/λ=0.25
c/λ=0.5
c/λ=0.75
c/λ=1

Figure 6. Data saved in each peer, or the av-
erage number of original blocks buffered in
each peer that have not been reconstructed
by the servers. λ = 20, µ = 10, γ = 1.

We plot the number of original blocks buffered in each
peer that have not been reconstructed by the servers in
Fig. 6. This amount of data is saved up for future deliv-
ery when statistics data are streamed at each peer at a much
lower rate. According to Theorem 1, the total amount of
data buffered in the peers are the same regardless of the
segment size used. However, as the segment size increases,
network throughput increases according to Theorem 2. As
more data in the network are already reconstructed in the
stream collection session, each peer buffers less “fresh”
segments that have not been reconstructed by the servers.
However, regardless of the segment size, the system ben-
efits by using an indirect collection mechanism which al-
ways buffers aguaranteedamount of data for future deliv-
ery when the volume of traffic falls down.

5 Related Work

The problem of statistics collection in distributed sys-
tems has been approached with various methods before.
Stutzbachet al. [10] design a crawler to capture snapshots
of Gnutella network, which focuses on increasing snapshot
accuracy by increasing crawling speed. Such an approach
leverages the two-tier topology of Gnutella networks and
is difficult to be generalized to arbitrary network topolo-
gies. NetProfiler [9] is a peer-to-peer infrastructure pro-
posed for profiling wide-area networks, which aggregates
information along DHT-based attribute hierarchies and thus
may not adapt well to high peer churn rates. Astrolabe [11]
aggregates information for distributed system monitoring,
with gossip-based information distribution and replication.
Echelon [13] leverages the power of network coding to col-
lect application-specific measurements on each peer, and
disseminate them to other peers in a coded form.

Our work differs from all previous work in two aspects.
First, our algorithms aim at providingQuality of Service
(QoS) guaranteesin face of peer dynamics and fluctuating
traffic. Second, we demonstrate such QoS guarantee using
both theoretical analysis and simulations, while most previ-
ous work is only experimental. Such a modeling effort with
theoretical rigor helps us to draw more insights than mere
experimental work can do.

Network coding has been introduced for distributed stor-
age in [3, 4] for a sensor network scenario. The idea has
subsequently been extended to P2P storage [2]. In our pa-
per, we utilize a similar idea to spread coded blocks across
the network from which servers pull data. However, the fo-
cus of this paper is not to maintain a long-lasting distributed
storage system. Instead, to keep a low storage overhead, the
buffered data at each peer are only ephemeral with short
lifetimes. Our goal is to circumvent the server bottleneck
suffered by the centralized logging server approach, usinga
best-effort indirect collection scheme that probabilistically
collects as much data as possible from the network.

6 Concluding Remarks

In most large-scale peer-to-peer (P2P) applications, it is
necessary to collect statistics data to diagnose system per-
formance and network outage. With current logging server
solutions, such statistics collection is not scalable to up
to millions of participating peers, due to the bottleneck at
servers. In this paper, we propose an indirect statistics col-
lection scheme based on network coding to collect large vol-
umes of data in a delayed fashion. We analyze the system
performance via a random bipartite graph process and show
that by utilizing peer resources to buffer data in a decentral-
ized way, the server bandwidth needs to be provisioned to
handle onlyaverageload rather than thepeak. Furthermore,
as data blocks are distributed across the network, the servers

can always retrieve buffered data in a delayed fashion that
they were not able to collect during a flash crowd scenario.

References

[1] P. A. Chou, Y. Wu, and K. Jain. Practical Network Coding.
In Proc. of 41th Annual Allerton Conference on Communi-
cation, Control and Computing, October 2003.

[2] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and
K. Ramchandran. Network Coding for Distributed Storage
Systems. InProc. of IEEE INFOCOM, 2007.

[3] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiq-
uitous Access to Distributed Data in Large-Scale Sensor
Networks through Decentralized Erasure Codes. InProc.
of IPSN, 2005.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran.
Decentralized Erasure Codes for Distributed Networked
Storage. IEEE Transactions on Information Theory,
52(6):2809–2816, June 2006.

[5] C. Gkantsidis and P. Rodriguez. Network Coding for Large
Scale Content Distribution. InProc. of IEEE INFOCOM
2005, March 2005.

[6] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros.
The Benefits of Coding over Routing in a Randomized Set-
ting. In Proc. of ISIT, 2003.

[7] D. Leonard, V. Rai, and D. Loguinov. On Lifetime-Based
Node Failure and Stochastic Resilience of Decentralized
Peer-to-Peer Networks. InProc. of ACM SIGMETRICS’05,
Banff, Alberta, Canada, June 2005.

[8] D. Niu and B. Li. On the Resilience-Complexity Tradeoff
of Network Coding in Dynamic P2P Networks. InProc. of
IWQoS 2007, Evanston, Illinois, USA, June 2007.

[9] V. N. Padmanabhan, S. Ramabhadran, and J. Padhye. Net-
Profiler: Profiling Wide-Area Networks Using Peer Cooper-
ation. InProc. of IPTPS 2005, February 2005.

[10] D. Stutzbach and R. Rejaie. Capturing Accurate Snapshots
of the Gnutella Network. InProc. of IEEE Global Internet
Symposium, March 2005.

[11] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A Robust and Scalable Technology for Distributed System
Monitoring, Management and Data Mining.ACM Transac-
tions on Computer Systems, 21(2):164–206, May 2003.

[12] N. C. Wormald. Differential Equations for Random Pro-
cesses and Random Graphs.The Annals of Applied Proba-
bility, 5(4):1217–1235, November 1995.

[13] C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis
with network coding. InProc. of IWQoS 2006, New Haven,
CT, USA, June 2006.

[14] C. Wu, B. Li, and S. Zhao. Magellan: Charting Large-
Scale Peer-to-Peer Live Streaming Topologies. InProc. of
of ICDCS 2007, Toronto, Ontario, Canada, June 2007.

[15] C. Wu, B. Li, and S. Zhao. Multi-channel Live P2P Stream-
ing: Refocusing on Servers. InProc. of IEEE INFOCOM
2008, Phoenix, Arizona, April 2008.

