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Abstract fic, especially when the number of peers in the session in-
creases dramatically in a short period of time. Such peri-
In most large-scale peer-to-peer (P2P) applications, it odic reporting essentially morphs intala factoDistributed
is necessary to collect vital statistics data — sometimes re Denial of Service (DDoS) attack to the logging servers, as
ferred to adogs— from up to millions of peers. Traditional the server bandwidth is not sufficient to handle an excessive
solutions involve sending large volumes of such data to cen-number of simultaneous uploading flows, with either TCP
tralized logging servers, which are not scalable. In addi- or UDP as the transport layer.
tion, they may not be able to retrieve statistics data from  Naively, these logging servers may be able to mitigate
departed peers in dynamic peer-to-peer systems. In this pathis problem by periodically changing the peers that they
per, we solve this dilemma through an indirect collection proactively pull data from. However, with limited band-
mechanism that distributes data using random network cod-width, the servers can only download from a small subset
ing across the network, from which servers proactiyaiit of all the peers at the same time, leaving most of the peers
such statistics. By buffering data in a decentralized fash- waiting for service. Aggravated by the phenomenon of peer
ion with only a small portion of peer resources, we show dynamics, a large number of peers may have already left
that our new mechanism provides a “buffering” zone and the system before any of the servers actually become avail-
a “smoothing” factor to collect large volumes of statistics able to “pull” from them, losing such statistics permangntl
with appropriate resilience to peer dynamics and scal&pili  Ironically, since peers tend to leave soon after the quality
to a large peer population. degrades, such statistics from departed peers may be the
most useful to diagnose system outages or protocol defi-
ciencies! Even if all peers may eventually be probed by
1 Introduction logging servers, the bandwidth available on the pair-wide
Internet path between a peer and a central logging server
Collecting vital statistics data from peers has become may be too low to successfully report all vital statistics.
critical to monitor and diagnose large-scale peer-to-peer In a nutshell, with current solutions using centralized
(P2P) multimedia applications, especially when they are logging servers, the amount of data that can be instanta-
in live operation as a commercial platform. Traditionally, neously collected from a large-scale P2P system is strictly
these commercial P2P live streaming systemslogging limited by the server bandwidth. While such bandwidth
serversto collect vital statistics data from the participating may be more than sufficient to handle teeragerate of
peers periodically. Such statistics data consist of measur collecting such vital statistics, it may not be able to aceom
ments of important performance metrics in the P2P appli- modate flash crowds of peer arrivals and large-scale peer de-
cation at each peer, and are used by network administrapartures in a short period of time. In order to achieve better
tors and analysts to improve the protocol design or to trou- scalability, one possible remedy is to increase the number o
bleshoot network outage. bandwidth of such logging servers, trying to accommodate
It has recently become apparent that the use of centralthe peakload of collecting statistics, rather than theer-
ized logging servers is naicalableto the large number of age This is extremely costly and fails to take advantage
participating peers. As has been observed in previous P2Pof statistical multiplexing of resources. Since the task of
measurement studies such as measurements from UUSe&atistics collection is usually not time-sensitive, we able
Inc. [14, 15] — a leading provider in mainland China for to trade-offtimelinessfor bandwidth, byallowing peers to
P2P live streaming solutions — periodic statistics data col buffer such data in a decentralized fashiomuch like a dis-
lection actually consumes a very substantial volume of traf tributed storage for vital statistics.



In this paper, we design, analyze, and simulate an indi- we require peers exchange data blocks with each other peri-
rect data collection mechanism that is specifically designe odically by a gossiping protocol that will be described tate
for collecting vital statistics in large-scale peer-t@psys- Servers can retrieve the desired data by randomly probing
tems, such as P2P streaming. Our design has two simplghe online peers, shown in Fig. 1(b). This approach not
objectives: scalability, where the design must be scalable only eases the server bottleneck by buffering up data for
to handle a large number of peers, with some trade-offs onfuture delivery, but also achieves better data persistence
delay; andresilience,where losses of vital statistics from the event of peer dynamics.
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In particular, our new mechanism requires that peers first N e
exchange their statistics data blocks with their neighbers @
ing random_n.etwork coding and probabilistic gossip proto- Poori  Poor2 Poora  Poard  Peere  Peerd
cols. By utilizing peer resources to form a “buffering” ppol @ (b)
the transmission of statistics from peers to logging server
is “cushioned,” such that server bandwidth is provisioreed t Figure 1. (a) Traditional pull-based approach
handle onlyaveragdoad, rather than thpeak To some ex- (b) Indirect data collection.
tent, our new mechanism is akin to delay tolerant networks:
by spreading data blocks across the network, the data tha.Eh
the servers are unable to collect immediately are stored for
future delivery in a delayed fashion. Such “cushioningbals
plays an important role to prevent losing vital statisti€s o

In order to further increase data persistence, we leverage
e wisdom of random network coding [6], [1], [5] to spread
data blocks across the network in their coded form. As
coded blocks are all equally useful, network coding elim-

. inates the risk suffered by the non-coding case, where cer-
departing peers. ) _ _ tain data blocks could become rare and thus more vulner-
The remainder of this paper is organized as follows. In 56 15 |osses than other blocks upon peer departures [8].
Sec. 2, we describe our algorithms for indirect data collec- However, the computational complexity of network coding
tion in P2P networks. In Sec. 3, we interpret network events o1 qates that, in reality, network coding needs to be per-
via a random bipartite graph process and formulate a syS+qrmeqd withinsegments The basic idea oSegment based
tem of ordinary differential equations (ODEs) to character onyork codingr group network codingd] is to group the
ize system states. Based on these ODEs, we evaluate thﬁriginal data blocks produced at each peer istgments
performance of our new scheme in Sec. 4. Simulation re-aach with a prescribed number eblocks, a quantity we

sults are presented along.with the analytical results.llfina (4o to as thesegment sizeA random linear code (RLC) is
we discuss related work in Sec. 5, and conclude the Papelyylied to each segment in the following way:

in Sec. 6. Assume a certain segmeirgenerated at peet has orig-
inal blocksBY) = [Bi Bi,..., B], then a coded block
2 Algorithm Description from segment is a linear combination dfB}, Bs, . . ., Bi]
in the Galois field GE{®). Coding operation is not limited
We consider the problem of collecting vital statistics data to the source: if a peer (including the source) has bufféred

from a total number ofV peers in a P2P network. To ac- (I < s) coded blocks of segmerit[b}, b3, ..., bi], when
commodate the fluctuating nature of the upload demand atransferring to another peer, it independently and ran-
each peer, we assume original statistics data blocks are gerdomly chooses a set of coding coefficiefits, c5, . . ., ¢/

erated at each peer in a Poisson process with¥atethat in GF@®), and encodes all the blocks it has from segnient
the average upload demand of each pear Bach peer has  and then produces one coded black Zgzl - b} The
an average upload bandwidth pfset aside for reporting  coding coefficients used to encoddginal blocksto z are

statistics. embedded in the header of the coded block. As soon as the
Fig. 1(a) illustrates the traditional mechanism of us- server has collected a total etoded blocks from segment
ing logging servers to “pull” directly from peers. Such a i x = [z¢,2%,...,2%] that are linearly independent, it will

scheme is not scalable, as the aggregate bandwidth of logbe able to decode segmeéni he decoding complexity turns
ging servers may not be able to accommodate the peak loadut to be approximatel (s) operations per input block [8].

of reporting vital statistics. Furthermore, if any peertdoeé Naturally, we can vary the coding complexity by changing
session before it can be serviced by any of the servers, théhe segment size. When network coding is applied in seg-
statistics in it will be lost permanently. In the case of col- ments of sizes, segments of blocks are injected at each
lecting vital statistics for postmortem analysis, we arestno peer in a Poisson process with ratés, resulting in a same
likely able to trade-off the timeliness of retrieving suctal block rate of\. Note thats = 1 indicates the non-coding
and tolerate some degree of delay. Thus, in our approachgase.



Coded blocks are spread across the network by the fol-
lowing gossiping protocol: 1) At rate, each peer, say peer
A, chooses a segmentuniformly at random (u.a.r.) from

of blocks in the network equals to the total number of edges
in G, denoted byE(t). Letz := +Y; andw; = +X;
denote the rescaled degree sequencesénd= < E(t)

among all the segments of which it has at least one (coded)e the average number of blocks in each peer. Actions of

block in its buffer to generate a coded blogk2) A then
transmitsqg to peerB chosen u.a.r. from among its neigh-
bors which have not receivediinearly-independent coded
blocks of segment. (The neighbors of a peer are the peers
that maintain data connections with it.)

To ensure smooth data collection in light of fluctuat-

ing traffic and peer dynamics, the servers adopt a coupon-

collector-like algorithm to collect data. Assume there are
N servers in collaboration, each with a capacity:aof For

the simplicity of notation in the analysis, we define tioe-
malized server capacitgsc := ¢;N;/N. At ratec,, each
server chooses a peen.a.r. from among all the peers with
non-null buffers and chooses a random segment in peer
which then transmits one coded block of this segment to the

server. Note that servers may collect redundant blocks of a
segment that is already decodable, as no buffer comparison
is made between a server and peers or among the servers.

However, we will show that even with such simplicity, the
collection efficiency, or the session throughput can be made
close to optimal probabilistically by adjusting the segten
size for coding and various other parameters.

To prevent redundant data from flooding the network, we
require each (coded) block to have a time to live (TTL)
at each peer exponentially distributed with mear. A
(coded) block is deleted once its TTL has expired to make

storage spaces for newly generated or obtained blocks.

Moreover, each peer’s buffer is set to have a cap of size
B. If a peer’s buffer is full, it will not accept blocks from its
neighbors.

3 A Differential Equation Characterization

In what follows, we map the proposed algorithms for
indirect data collection onto a random bipartite graph pro-

the peers and servers can be interpreted by the following
graph operations:

e Segment Injection (Adding Edges and Vertices). At
rate \/s, s new edges are added to each pee(Gin
whose degree is no more thdh — s, together with
a new segment incident to thesedges.

e Block Encoding and Transfer (Adding Edges). At rate
1, each peer in G whose degree is non-null picks
u.a.r. a segment from all the segments adjacent to it
and picks u.a.r. from all the peers a péehat needs
blocks of segment, and whose degree is less th&n
Add a new edged to G.

Block Deletion (Deleting Edges). At ratg each edge

in G is deleted. Particularly, if a segment ¢% has
degree zero after an edge is deleted, then the segment
is deleted fronG.

Server Collection. Assume each segment is in one of
thes+ 1 states; a segment is in statéand only if the
servers have collectedinearly independent blocks of
this segmenti(= 0,1, ...,s). Atratec; = ¢- N/Nj,
each server chooses a peeu.a.r. from all the peers
with non-zero degrees. It then chooses a segment
u.a.r. from all the segments adjacent to pédncrease
the state value of segmenby one if its state value is
less thars. Otherwise, do not increase its state value,
since a segment in statecan already be decoded and
any further collection of blocks from this segment will
be redundant.

Segment 1 Segment 2

[eXeXe)

O
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cess, which can be asymptotically characterized by a set of

ODEs as the number of peeds — oco. As illustrated in

Fig. 2, segments and peers correspond to vertices on dif-

ferent sides of a bipartite graph respectively. For every
(coded) block of segmentin peer A, there is an edge in
G between peerd and segment. Multiple edges can be

[e)eXe)

O
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Peer1  Peer2

Figure 2. A bipartite graph representation.

We now formulate a system of ODEs on the graph pro-

allowed for a segment-peer pair, as each peer can buffer ugessG; mentioned above to characterize its asymptotic be-
to s linearly independent (coded) blocks of a certain seg- havior asNV — co. We take the approach of considering the
ment. For example, in Fig. 2, Peer 1 has three blocks fromexpected changes of; andY; contributed by different op-
Segment 1 and one block from Segment 3. Servers are noerations ass,; evolves to establish the system behavior in its
shown inG. limiting case. The proof of the correctness of this approach

Denote byX;(¢) the number of segments of degreat
time ¢ and byY;(t) the number of peers of degree A
segment is of degregeif and only if there are blocks of
this segment in the network. A peer is of degigéand
only if it contains: blocks in its buffer. The total number

and the asymptotic approximation of the derived ODEs to
the underlying process; can be found in [12].

Let us first consider block encoding and transfer. Con-
sider the change df; in At, during which only one action
of edge addition or deletion occurs. When a segmeist



chosen for encoding, a peéiis chosen u.a.r. from all the  Dividing by N At on both sides, we get
peers with degrees less th&rthat still need blocks of seg- ’ ’
mentp. Edgepd is then added. The probability of choosing 74 — (1 — Dwi—1(t) —dwi(t) 1= 2 ()
a degree peer is(Yi(t) — F,i(t))/(N — Yg(t) — F,(t)), ' e(t)
where F),;(t) denotes the number of edges already present Let us now consider block deletion. I, an edge is
2§Eg§?ﬁ:ﬁ82§g§ 3?% dpge:srsp?;sii?rszt\?;gﬁg(gllCiﬁ;e deleted with probability®(¢)yAt from G;. Since the dele-
: . tion process is Poisson, this edge is uniformly distributed
peers, which equals to the degreeof As the maxi- among all edges. The probability that the deleted edge is

mum degree of any peer is bound_edBylt turns out that adjacent to a degreipeer isiY;(¢)/E(t). By a similar ar-
F,i(t) and F,,(t) can only take finite values as well, that . o
gument, we get the evolution of under block deletion:

iS Fpi(t) < Fp(t) = o(N) for all p. Thus, the expected

number of peers of degréehanging ta + 1 in At is 20 = (1= 6:5)(0 + Dziga (t) — iz (1)) - 7,
(1) _ i=0,1,...,B. 3
1O (v o)
Yz) B(t) = o(N)) Similarly, the evolution ofy; is given by
i (T
= (= +o(1) - (N = Yo(t)) uAt
NV oW Vel Wi(t) = (G D) — fws(t) -, = 1,2,...0)
where(N — Yy(t))uAt is the probability that one edge is  Finally, we consider the contribution of segment injec-
added inAt. When a peer changes its degree fricimi + 1, tion. A segment is injected into the network it with
Y; decreases by one andl, ; increases by one. Hence, probability (N — Y{;)(t)) - 2 - At, where Y (t) =
ZkB:Ble Yi(t). This segment appears in a degiee-
E{Y;(t+ At) = Yi(1)|G} peer with probabilityY; (t)/(N — Y{;(t)). Thus, the ex-
B ((1 —6,0)Yi—1(t) — (1 — ;) Yi(t) +o(1)) pected number of degreéepeers changing to degreet s
= N~ Vs () ° is simply [(V — Y{5) (1) AAL/s] - [¥i(1)/ (N = Y5 ()] =
(N — Yo(t))uAt, Y;(t)\At/s. Hence, wherB is large enough, we have

whered;; = 1if i = jandd;; = 0if i # j is the Kronecker E{Y;(t + At) - Yi(1)|Gi} _
delta function. Recall that;(¢) := LY;(t). Dividing by _ { —Yi(t)A\At/s i=0,...,5—1

= % _ .
N - At on both sides, we get (Yis(t) = Yi(t)NAt/s i =s,5+1,...
, (1= 6i0)zi—1(t) — (1 = 8ip)zi(t) Dividing by IV - At on both sides, we get
b (1) Z((t):{ _Zi(t)'; \ 1=0,1,...,s—1
To determine the change &f; due to segment encoding ' (zi-s(t) —2i(t)) - 5 85+ 1,

and transfer, we assume the followings are equivalent: 1) _ ('{_’)

Choosing a pees u.a.r. from all the peers with non-zero AS for the change ofX;, a new segment with degreeis

degrees and then choose a segmant.. from all the seg- added_ whenevgr a segment |As injected. Thus, the expected

ments adjacent to peerin G, 2) Choosing a segmenpt  Plockincrease igN —Y()(t))- 5 -At for degrees segments

from all the segments with probability dgg/ E(t), where ~ @nd zero for other segments. Wharis large, we have

deqp) is the degree of segmenind E(t) is the total num- A A

ber of edges irt7;. wi(t) = 6i5-;-(1—z(f)(t)) = 6i5-§, i=1,2,.... (6)
This essentially means that the more blocks a segment

has in the network, the higher the chance it is chosen byPutting (1), (3), and (5) together, and (2), (4), and (6)

the servers. Thus, when adding an edge due to segment eriogether, we finally arrive at the following ODE systems

coding and transfer, the probability of a degiesegment  (z—1(¢) = 0):

being chosen isX;(t)/E(t). And the expected number

of segments of degreechanging to degree+ 1in Atis 7 — ZisL 7% g oy, AL (6 + Dzipr — izi)7,
(iX,(8)/E(t)) - (N — Yo(t))uAt. Similarly, 1-zp s
i=0,1,...,5—1,
E{Xi(t AD - ).(i(t)‘Gt} o= I (L )t (2ims — 1) A
. (Z — I)Xifl(t) - ZXi(t) N — Vo) uAt 1—2p S
B E(t) ( - 0( )):U/ ’ +((7’+1)22+1 _izi)77 i=ss+1,..., (7)



. (= Dwiq — iw; 4 Performance Evaluation

—1 3 . .
w; = ; (L= z0)p + (1 + Dwigr — 1w; )y _ _ :
e(t) In this section, we evaluate the proposed protocol in
A terms of storage overhead, session throughput, data deliv-
+0is - =, 1=1,2,3,. (8)
s ery delay, and loss resilience. We derive analytical result
To characterize the server collection progess we | intro- with respect to these metrics from the differential equeio
duce thesegment collection matrid = (M (t)), i =  and provide more insights with simulations. Based on the
1,2,...,j =0,1,...,s, whereM/ () denotes the number  analytical and simulation results in this section, we discu

of degre& segments that have (coded) blocks collected  how to choose parameters for the proposed protocol in var-
by the servers already. Leb = (m!(t)) = (%M (t)) ious settings.

be therescaled segment collection matrii we onIy con- Let us consider the steady-state network by setting the

sider the effects of segment encoding, transfer, and blockderivatives in (7), (8), (12) to zero. Let(t), w;(t), m? (t)

deletion, the behavior ofi! (¢) is similar to that ofw; (¢): and &(t) denote the steady-state value for(t), w;(t),

am? (i —D)yml_, —im] ‘ ‘ m(t) ande(t). First, we can show the storage overhead
T eEt)l L (1=zo)p+((i+1)ml  —im] )y, of ‘the indirect collection protocol is upper-bounded;by

in the following theorem.

)

Consider server collection operation. By the linear ap- Theorem 1 (Storage Overhead) Assume the buffer dize
proximation mentioned above, each block is collected by is large enough, regardless of the valuespin steady-state
the servers with a probability proportlonal to its degree in network, the average number of (coded) blocks in a peer’s
G;. SIHCGM] increases by one ariW‘ decreases by one pufferis
whenever a server obtains a block from a degrsegment p=(1—=2Z2)u/y+ A/, (13)
which already hag;j — 1) blocks collected by the servers,
the expected change of; (¢) is

E{M;(t+At)—M;(t)|G:} =

Moreover, the average storage overhead of a peer is

i(MIH ) — M (1)) NAL Overhead= (1 — Zo)u/y < /7. (14)

E(t wherez, is given byz, = e~(1=20)1/7=A/7 for s = 1, and

(10) s given by the steady-state solution to (7) for 2
Dividing by NV - At on both sides, including the cases for 's given by the steady-state solution to (7) for 2.

j = 0, s, and also considering the effect of segment injec-  Proof: Setting the derivatives in (7) to zeros, af-
tion, we getfori = 1,2,... ter tedious yet straightforward deduction, we can get

. . = Zp/il, i = 0,1,...,B, where =

. _ t t 519>\ — 0 24 - zop /Z~, ? ] ~7 ’ 14 )

dm (t) _ ¢ (Zm 1()t/)6£ L@t(tg)/éit) J _ 1’ e 1 (1—2)pn/(1—Z2B)y + A/v. And Z, can be determined
dt ¢ im? (1) /e(t) ! j _ S’ Y " through>""  z; = 1. If buffer size B is large enough, we

a1) havel = 375 = % - X0, 0'/il ~ % - er. Thus,
Combining all the effects in (9) and (11) together, we have 20 ~ ¢ *. Sincezp ~ 0 when B is large, we have
fori=1,2,... p=(1—Zo)u/v+ A/

Take the summation of ali;, we get the rescaled total

0 ]

dmi(t) _ (i =Dm_y —imj (1 — 20(0) number of edges in the steady state'éts = S iz =

dt e(?) , PP fop -1 = S 5 = (1-Z)p ~ p,

i+ Dm im?) - — im?(t) et g A whenB is large. Since the number of edgegiirequals to
iy — ) e(t) ** s’ the total number of block copies in the network, we have
j . j g the average number of block copies at each peer equals to

dmj(t) _ (i—1)mj_, —im; > g DR

dt = e(t) '(1720@)),“' %'Zf;ozm:ZZOZ-%:ZZOZ.zize(t):p_ O

i iy Theorem 1 shovys the storagg overhead of the proppsed
(i 4+ V)ml,, —imd) v+ i(m] m; (t)) .. protocol can be limited to a rela_tlvely small valu_e by seftin
the bandwidth. and block deletion rate appropriately. In
i=12...,s—1 our simulationsy/ is set to be less than 20.
(i—Dms | —im We define the session throughput as the actual rate
(1= 20(t))p (blocks/unit time) at which servers obtain original datee W
ms=1 can show that if the fluctuating traffic is modeled as Poisson
e (12)processes at the peers, with the proposed indirect caltecti
e(t) mechanism, servers provisioned with bandwidth that only
Our analytical results will be drawn from (7), (8), (12), handles an average traffic can achieve a throughput close to
which characterize system evolution. the throughput capacity for the session.

(@ + Dmiyy —im7) - ..



Theorem 2 (Session Throughput) Assume< pu. The
throughput capacity of the session is the aggregate server
capacity: C = ¢, - Ny = ¢ - N. For the non-coding case
(s = 1), in steady-state network, the session throughput is
given by

1

1— —

Throughpufl) = 7
+

whered,. is the maximum root afiy2? + a1z + ag = 0,
g =—qv, o1 =qy+y+ 5, 02 =—y,andg =1-X/py.

Whereas for the coded case with a segments(ze> 2),

o0

1= ims

i=1

Throughputs) =

t)/p), (16)

wherem: (¢) is the steady-state solution to (12).

Proof: The collection efficiency of serversin the long
run equals to the probability that a server collects a block
from a segment needed by the servers in each trial in the
steady state, which equals to the probability that a server
picks a segment whose blocks have been pulled for less thal
stimes. Thus, we have = 1 — >, im$(t)/é(t). Thus,
the session throughput is given 6y- n» = Ncn. When
s = 1, we can explicitly solve forn{ (t) andé(t) to obtain
n(l)=2(1- 7-) and (15). 0
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Figure 3. Session throughput as a function of
segment size s. A =20, p =10, v = 1.

We plot the numerical results regarding throughput ac-
cording to Theorem 2 as well as the simulation results in
Fig. 3. In theY -axis, we normalize the session throughput

down. This is the essential insight behind Theorem 2.
Moreover, the use of a small segment sieeg( around
20~30) is sufficient to achieve high throughput as shown
in the figure, with an acceptable computational complexity
incurred. It is also worth noting that it is harder for the
throughput to approach its capacity (dashed lines) as the
normalized server capacityincreases, since the benefit of
an indirect mechanism is more salient when server capacity
is insufficient.

-e-8=8,c=2,L=2
—~-s=8,c=2,L=50
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Figure 4. Session throughput as a function of
w under different scenarios. A =8, v = 1.

We also simulate to study the session throughput in a dy-
namic network. Peer dynamics is simulated via a replace-
ment model [7], [8], where each peer is assigned a random
lifetime L and leaves the network upon the expiration of its
lifetime. A new peer will join at the same time to replace
the departed peer. The peer lifetime follows an exponential
distribution with mearl. Such a model allows us to decou-
ple the impact of the change in the number of online peers
and fully focus on the effect of thedtynamicnature.

The impact of churn on session throughput is plotted in
Fig. 4 under various parameter settings. When server ca-
pacity compares to user demands=¢ 8), throughput is
degraded for the case of severe peer churn (dashed lines)
as a larger segment size is used, and as more buffering is
performed with a largep.. This is because, buffering by
gossiping and network coding is actually not needed when
server capacity is high enough, whereas the use of a larger
segment size in this case could make segments become un-
decodable when peers abort too frequently. However, when

by dividing it by NV - ), that is the aggregate peer upload server capacity is insufficient, i.e,/\ is small, servers can-
demand. Each dashed horizontal line in the figure denotesnot collect all the generated data immediately anyway. In-

the throughput capacity for a certain valuecof
It is clearly shown in Fig. 3 that by increasing segment

troducing a higher data redundancy will aid the collection

of these data in a delayed fashion before they disappear.

sizes, session throughput can be made close to the through-Thus, when server capacity is insufficient, throughput ben-

put capacity under that value af This is because when net-
work coding is used, all coded blocks from a segment are
equally useful, and the probability that servers colleet re
dundant blocks using the coupon-collector algorithm falls

efits from having a larger segment sizeand higher peer
bandwidthy, even in the presence of peer churn, as shown
in Fig. 4.

We defineblock delayas the delivery delay of a segment



divided by the segment size, that is the average delivery dethroughput and delay, a segment size betwzeand40 is

lay of each original block. We can derive block delay using preferred.

Little’s Theorem in queueing theory based on the session Finally, we show that at the end of the stream collec-
throughput. tion session, there is a guarantee of a certain amount of data

) buffered in the network so that the servers can still collect
Theorem 3 (Block Delivery Delay) In steady-state net- hem in a delayed fashion.

work, if an original block can eventually be reconstructéd a

the server, the average time from the injection of this block Theorem 4 Suppose the streams of upload requests end in
to its delivery is steady-state network, then the amount of data in terms of

- — original blocks saved up in the network for future delivery
2o Wi D™ [

T(s) = - , an " o
Yoo S=N 53 (@i - ), a®)
where w; is the steady-state solution to (8%(s) = i=s
Throughput(s)/N . wherew; is the steady-state solution to (8).
Proof: Let o(s) = Throughput(s)/NX. Let Ty, de- Proof: The number of segments buffered for future de-

note the average time from the injection of a Segmentlivery equals to the number of decodable segments that have
to its extinction from the network. By Little's Theorem, NOt been reconstructed by the servers yet. The number of
T, = Y0, Xi/M = 537 /), where Y2 X, decodable segments}s ;= X; = N -3 ;7 ;. Among

is the number of distinct segments in the network and these segments there 8¢~ M7 = N} °7° s recon-
N)/s is segment injection rate. We call a segment a Structed by the servers already. Upon the decoding of a seg-
good segmerif the segment has been pulled by the servers ment,s original data blocks are reconstructed at the servers.
for s times and is still available in the network. Simi- Thus, we have§ = N -s32* (w; — ;). O

larly, the average time during which a segment is good is
Ty = 300, My /N2 — 557 g /Ao. Hence, the av-
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2 0.01 %, ] erage number of original blocks buffered in
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510 20 20 60 80 100 by the servers. A =20, u =10, v = 1.

Segment Size s

Figure 5. Average block delivery delay T for
different values of s. A =20, u =10,y = 1.

We plot the number of original blocks buffered in each
peer that have not been reconstructed by the servers in
Fig. 6. This amount of data is saved up for future deliv-

Fig. 5 shows the numerical results on block delay. We ery when statistics data are streamed at each peer at a much
can see that there is a peak of block delay arouads. The lower rate. According to Theorem 1, the total amount of
reason is that without coding & 1), although many blocks  data buffered in the peers are the same regardless of the
are lost due to a low throughput, yet a block is collected segment size used. However, as the segment size increases,
immediately if it can be collected as servers do not have to network throughput increases according to Theorem 2. As
buffer a sufficient number of (coded) blocks to reconstruct more data in the network are already reconstructed in the
a segment. When a larger segment size is used, servers tergtream collection session, each peer buffers less “fresh”
to collect blocks from different segments in an alternating segments that have not been reconstructed by the servers.
fashion, resulting in a longer delay to reconstruct eite¥ 0 However, regardless of the segment size, the system ben-
of them. However, when is sufficiently large, the delay efits by using an indirect collection mechanism which al-
decreases again, as blocks in the network tend to belongvays buffers gguaranteecamount of data for future deliv-
to a few large segments. Taking into consideration of both ery when the volume of traffic falls down.



5 Related Work can always retrieve buffered data in a delayed fashion that

L L they were not able to collect during a flash crowd scenario.
The problem of statistics collection in distributed sys-

tems has been approached with various methods before
Stutzbactet al. [10] design a crawler to capture snapshots
of Gnutella network, which focuses on increasing snapshot
leverages the two-tier topology of Gnutella networks and I(:r;tl;::’)]c.Cc()anltlr](-)tlha’r‘il\g@:%Atzrtgcgzrgf;%%%e on Communi-
is difficult to b_e gene_rallzed to arbltrary network topolo- 2] A G. ’Dimakis, P B Cgodprey, M. J. Wainwright, and
glies. NetPrOﬂ_lgr [9]_'5 a peer-to-peer 'nf@s”ucwre pro- K. Ramchandran. Network Coding for Distributed Storage
posed for profiling wide-area networks, which aggregates Systems. IrProc. of IEEE INFOCOM2007.

information along DHT-based attribute hierarchies andthu  [3] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubig-
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