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Abstract—Motivated by peer-to-peer content distribution and
media streaming applications, we study the broadcasting problem
in a time-discretized model, with integer valued upload and
download capacity constraints at nodes. We analyze both de-
terministic centralized and randomized decentralized protocols
that can achieve optimal packet receiving rates at the nodes.
In particular, we consider a simple scheme that requires each
node, in each time slot, to transmit to a random neighbor that
is not yet chosen by any other nodes in that slot. We prove that
such a surprisingly simple scheme can asymptotically achieve the
optimal receiving rates in complete graphs with homogeneous
node capacity. The proof involves applying randomized network
coding and deriving the max-flow bounds achieved in the result-
ing transmission schedule. We extend the results to more general
topologies, and bound the performance of randomized neighbor
selection with randomized network coding.

I. INTRODUCTION

Peer-to-peer content distribution and media streaming sys-
tems have gained enormous popularity in reality. For example,
in peer-to-peer file sharing systems, a seed node may share
bulk files to tens of thousands of other hosts. Peer-to-peer
media streaming systems rely on clients’ ability to store and
forward media data generated at the server, so that the media
can be played back at all the users at a required quality.
Underlying the core of such applications is broadcasting,
preferably performed in a decentralized and randomized fash-
ion to achieve scalability and robustness.

Motivated by these applications, we consider the follow-
ing node-capacitated broadcasting problem. Packets are being
streamed from a single source node to all the other nodes
in a connected undirected graph. Communication happens
in synchronized time slots. Each node has both an upload
capacity and download capacity, which limit the number of
packets it can send or receive in each time slot. Since a packet
is the minimum data unit in our problem, we assume both
upload and download capacity take integer values. Each node
has the freedom to decide which packet to upload to which
peer in each time slot. Such transmission schedules may be
generated at a centralized coordinating unit or at the nodes in
a decentralized way.

We ask the question — under the above model, what is
the maximum rate at which each node in the network can
receive information? And what is the protocol that supports
such rates? We first give two deterministic protocols that can

achieve the optimal receiving rates at nodes. However, these
protocols require a high degree of centralized coordination,
and thus are not easy to be implemented. They are also too
rigid to adapt to network topology and condition changes, and
incur unfair delay performance at users, i.e., some users always
receive packets later than other users.

To tackle these problems, we further ask the question —
is there any sufficiently simple decentralized protocol that
requires the least possible control overhead and yet still
achieves the optimal rates? We give an affirmative answer
to this question by considering a very simple protocol: in
each time slot, each node uploads to a random neighbor that
has not yet been chosen by any other node in that time
slot. We prove the surprising result that in complete graphs
with homogeneous node capacity, this simple random neighbor
selection scheme can asymptotically achieve the optimal rates
at all nodes in the long run. The proof involves applying
randomized network coding [1], and deriving the max-flow
bound achieved by network coding [2], [3] on the resulted
transmission trellis graph, using renewal reward theory [4].

As a by-product, we have shown that simply by letting
each node forward the packet received in the previous time
slot (latest packet first), approximately one half of the optimal
rate can be achieved at each node, with the random neighbor
selection scheme. We also extend to analyze a more general
class of graphs which have at least one Hamiltonian cycle,
and derive the exact rate achieved by latest packet first.
This forms a lower bound on the optimal rates that random
neighbor selection combined with randomized network coding
can asymptotically achieve.

The remainder of the paper is organized as follows. Sec. II
reviews the related work. The problem is formulated in
Sec. III. Sec. IV presents two rate-optimal deterministic pro-
tocols, followed by an analysis of their delay-performance.
We analyze the simple decentralized protocol in Sec. V and
prove its rate-optimality. In Sec. VI, we extend our analysis
to networks with Hamiltonian cycles, and demonstrate the
usefulness of our results with examples. Sec. VII concludes
the paper and discusses the future work.

II. RELATED WORK

Broadcasting in a directed network with edge capacity
constraints is a well studied problem. Edmonds [5] shows



that the optimal broadcast rate for a directed graph can be
achieved by packing edge-disjoint spanning trees rooted at the
source. However, such an algorithm is centralized in nature and
is unsuitable for peer-to-peer content dissemination. Closely
related to our work is [6], presented by Massoulie et al.,
who also study node-capacitated broadcasting problems with
decentralized algorithms. They have shown that random useful
packet forwarding combined with most deprived neighbor
selection achieves the optimal broadcast rate in complete
networks, if each packet transmission takes exponential time.

Our work is different from [6] in the following ways. The
neighbor selection and packet selection in [6] heavily depend
on each other, and thus incur a high degree of message
passing and coordination in the network. In contrast, we study
neighbor selection and packet selection (coding) algorithms
that are completely decoupled. In particular, the much simpler
random neighbor selection only requires the minimum control
overhead. Furthermore, adopting a discrete-time model, our
results are not contingent on the assumption of exponential
packet transmission time. In addition, our optimality result is
proved under both upload and download capacity constraints,
while in [6] the download capacity of each node is assumed
to be infinite.

The delay of broadcasting k packets using decentralized
protocols in a discrete time model has also been studied.
Yeung [7] shows that network coding achieves the optimal
delay to broadcast k packets for any neighbor selection sched-
ules. Deb et al. [8] show that randomized network coding can
achieve a shorter broadcast delay of k& packets in complete
graphs, as compared to a naive sequential dissemination.
Mosk-Aoyama et al. [9] further analyze the broadcast delay
using network coding in arbitrary graphs and show its corre-
lation with the spectral properties of the graph. Sanghavi et
al. [10] consider the problem of broadcasting multiple packets
in P2P networks, and propose a decentralized packet exchange
algorithm based on pushes and pulls that has a close-to-optimal
performance.

IIT. PROBLEM FORMULATION

Consider the network as an undirected graph G = (V, E).
There is one source node s, and N = |V| — 1 sinks that wish
to receive the same data from s. We assume the broadcast
happens in synchronized time slots in the following manner:

o Each node can only transmit to its neighbors.

o Each node v has an integer upload capacity of U,
and an integer download capacity of D,. Specifically,
in each time slot, node v can upload U packets with
U €{0,1,...,U,}, and can download D packets with
D e{0,1,...,D,}.

Each node can only upload an integer number of packets
at each time, because a packet is the minimum data unit
in our problem. In this paper, we only consider the case of
homogeneous node capacity. Without loss of generality, we
assume U, =D, =1, Yo eV.

A routing protocol decides for each node what packets
to transmit to which receivers at time ¢. Alternatively, a

routing protocol can be viewed as a combination of a receiver
selection protocol and a network code that might or might not
be inter-dependent. The receiver selection protocol decides the
sender-receiver pairs in each time slot subject to the capacity
constraints, while the network code determines for each sender
what packet to transmit (with the encoding of packets allowed)
in each time slot.

Let R,(t) be the number of new packets that node v receives
in slot £. Define the time average receiving rate of node v as

t
o1
R, = lim ;;Ry(r) (1)

Let T, (p) denote the delay from the issuance of packet p at
source s to the reception of p at node v, e.g., if s transmits
a new packet p to v; at time ¢, and v; transmits p to vy at
time ¢+ 1, then T, (p) = 1, To,, (p) = 2. Let P, (t) be the set
of packets received by node v by time t. We define the time
average propagation delay at node v as

T, = tlim 7,(t) = lim

tamm Z T,(p) (2)

PEPy (L)

The goal of the broadcast problem is to find a routing
schedule such that each node receives information at the
maximum rate while maintaining the fairness with respect to
the propagation delays at all nodes. For example, when the
network is a complete graph, and U, = D, =1 forallv € V,
one rate-optimal protocol is to let all the nodes form a chain,
with s being the head and each node ¢ (: = 1,2,...,N — 1)
forwarding the packet it has just received to node i+ 1. Clearly,
this protocol does not perform well in terms of delay fairness:
node i always suffers a delay of 7; = ¢ hop(s).

Implementability is another important factor to consider
when choosing protocols. Ideally, the receiver selection and the
network code should be decoupled so that minimum control
overhead is required in a decentralized setting.

IV. OPTIMAL DETERMINISTIC SCHEDULES

We first consider the case of complete graphs. In this
section, we propose two deterministic routing protocols that
can yield the optimal R, for each node v while attempting to
minimize max, 7.

Let v1,...,vy be a permutation of 1,...,N. We say a
packet p takes the route s — v; — ... — vy, if s transmits p
to vy att = 1, vy transmits p to v, at £ = 2, and so on. Since
U, =D, =1forall v € V, finding a rate-optimal schedule is
equivalent to determining the routes for all the packets issued
by s, subject to the capacity constraint.

Longest Delay First (LDF). The source s issues a new
packet p; at time ¢ (t = 1,2,...). p; takes the route s —
— N. Given the routes of pi,...,p;—1, packet p;
starts from s and chooses the jth (j = 1,...,N) node v;
in its route one by one. v; is a node such that the capacity
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Fig. 1. A schedule given by LDF for N = 4.
When N = 4, FBA generates the same schedule.
However, FBA and LDF are different in general
when N is even.
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Fig. 2. The time average propagation delay
of LDF for even IN. Each small dot denotes
the time average delay 7, of each node v for
the corresponding IN. The circle denotes the
average across all nodes: % ZueV\s% =
(N +1)/2. For each N, we run the simulation
for 20N rounds to get the time average.
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Fig. 3. The time average propagation
delay of FBA for even N. Each small
dot denotes the time average delay 7, of
each node v for the corresponding N. The
circle denotes the average across all nodes:

% ZveV\s T, = (N + 1)/2-

constraint U, = D, = 1 is not violated at time ¢ + j, and

t—1

max Z T,(pr).

v; = arg
J
v:vg{s,v1,...,v-1} 1

Forward Backward Alternate (FBA). The source s issues
a new packet p; at time ¢t (t = 1,2,...). p; takes the route
— N. Given the routes of py,...,p:—1, packet
py starts from s and chooses the jth (j = 1,...,N) node v;
in its route one by one. v; is a node such that the capacity
constraint U,;, = D, = 1 is not violated at time ¢ + j, and

-]

It is easy to check that when N is odd, LDF and FBA will
generate the same schedule, i.e., packet p; will take the route
s —1— ... — N for odd t, and take the route s — N —

. — 1 for even t. Clearly, when N is odd, R, = 1 and
T, =(N+1)/2 forall v e V\s.

s—1— ...

for p; with even ¢,
for p; with odd t.

arg MaxX;:1 <i<N,i¢{v1,...,v;_1} b
arg min;. 1 <;<N,i¢{vy,....,v;_1} &

When N is even, we still have R, = 1 for all v € V\s.
However, the delay performance is more complicated. Fig. 1
illustrates the schedule given by LDF or FBA for transmitting
the first 10 packets when N = 4. Note that at any time, each
node uploads and downloads at most one packet.

First, let us show that when N is even, for both LDF and
FBA, we have ) N1
Jr
= 2 h=—f 3)

2
veV\s

Note that t — N < |P,(t)| < t. We have

t—N 1 1 t

Z;Tv(pf) < B Y. L) < — ZTv(pT)

T= PEP, () T=1 4
(

S

From the right hand side of (4), we have

N vevs iMoo 7o (t) t
S % ZUEV\S hmt—’oo t_LN ZT:ltTIU (p‘f')
= (limy— o0 7757 ) - (iMoo § D7y & Dopers To(pr))
N+1

— 1 1\
= limy_o t ZT:1 2
_ N+1

5=

Similarly, we can show =; Yvevys To = (N +1)/2. Thus,
we have proved (3).

However, from the simulation results in Fig. 2 and Fig. 3,
we can see FBA incurs much lower variance with respect
to the delays at different nodes, and thus has lower worst-
case propagation delay. From the numerical results, we have
observed that for FBA, when NV is even, a half of all the nodes
have their 7, tend to N/2 and the other half have their 7,, tend
to N/2 + 1 when ¢ is big. Thus, we conjecture that when N
is even, the worst-case propagation delay of FBA is

max 7, = g—i—l. 5)

However, to prove such a conjecture rigorously is non-trivial
and is not the focus of this paper.

Although LDF and FBA achieve the optimal rates, they both
require the packets to “remember” the nodes they have visited
in their routes and a high degree of centralized scheduling
to reinforce the capacity constraint. Longest Delay First even
needs to calculate the propagation delay at each node. Due to
these reasons, these algorithms are not easy to implement.

Furthermore, due to the deterministic scheduling of LDF
and FBA, delay fairness is hard to be guaranteed — certain
nodes always suffer longer delays than others. The determin-
istic scheduling is also too rigid to be extended to a general
network topology with heterogeneous node capacity.

V. A RANDOMIZED APPROACH TO RATE-OPTIMALITY

In this section, we consider protocols that adopt a random
receiver selection scheme, which is extremely flexible in all
kinds of networks, suitable for decentralized implementation,



Fig. 4.

A trellis graph of 4 nodes. Solid edges model the actual packet Fig. 5.
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For random receiver selection in complete graphs, the solid edges of

transmissions, while the dashed edges model information accumulation in the the trellis in Fig. 4 can be decomposed into 4 independent stripes.

same node along the time line.

while ensuring delay-fairness at all nodes. Consider the case
of complete graph first.

« Random receiver selection. In each time slot, starting
from an arbitrary node, and following an arbitrary order,
each node v € V' chooses as its receiver another random
node v, € V (v, # v) that has not yet been chosen, until
all N 4 1 nodes have chosen their receivers.

A main result of this paper is the following theorem.

Theorem 1: Assume the network is a complete graph and
U, = D, =1 for all v € V. Given the random receiver
selection, there exists a network code that does not depend on
the receiver selection, and can achieve a receiving rate of

RE=1, ©)

which is the optimal receiving rate at node v, for all v € V'\s.
Since R, < D, =1, R} =1 is apparently an upper bound
on R,. Now we prove its achievability.

A. Network Coding and the Max-flow Bound

We introduce the following randomized network coding
scheme [1] that plays an essential role in proving the achiev-
ability of R} = 1.

« Randomized network coding (RNC). Assume K pack-
ets are to be broadcast to the network from s. At each
time ¢, each sender v € V' linearly encodes all the (coded)
packets it has obtained so far using random coefficients
in GF(27) and transmits the encoded packet.

We consider a trellis graph G* = (V*, E*) constructed from
the nodes V', as shown in Fig. 4. For all v € V, let v; € V*
represent node v at time ¢. There is a directed edge of capacity
1 joining v; and w41 if node v transmits a packet to node u at
time ¢. To model the information accumulation at the nodes,
for each node v € V, we link v; along the time line with edges
of infinite capacity, denoted by the dashed lines. Denote the
value of a maximum flow from node sg to a node v, € V* by
maxflow(v;). Then have the following lemma.

Lemma 1: Given the random receiver selection and K
packets to be broadcast, randomized network coding achieves
the optimal receiving rate for all v € V\s as K — oo, and
this rate is given by

v t—o00

1
R = lim ;maxﬂow(vt). @)

Proof. Note that G* is an acyclic graph since each edge
in E* goes from a node at an earlier time to a node at a
later time. By the celebrated max-flow bound for multicast in
acyclic graphs [2], [3], we have

¢
Z R, (7) < maxflow(v;), (8)
=1

and thus for any K > 1, we have

t
1
R,(7) < lim ;maxﬂow(vt). )

t—oo

1

Ry = lim —

t
T=1
Furthermore, according to [1], such an upper bound is achieved
with high probability by applying a random linear code at each
node. g

B. The Rate of Latest Packet First

To derive R}, we first derive the rate of an inferior protocol
defined as follows:

o Latest packet first (LPF). At each time ¢, the source s
transmits a new packet. Each node v € V'\s transmits a
packet that it has received in the previous slot.

We then find the difference between R and the max-flow
bound limy_, +maxflow(v;) to get R}.

Theorem 2: Assume the network is a complete graph and
U, =D, =1 forall v €V.Forall v €V\s, latest packet
first achieves a time average receiving rate of

N+1

RIFF = ——— 10
v N (10)
and a time-average propagation delay of
2N
LPF
= ) 11
Y N+1 ()

To prove this theorem, we need the following lemma:

Lemma 2: Let {N(¢);t > 0} be a renewal process with
renewal epochs Sp,S5,... and expected inter-renewal time
E[X] = X. Let {R(t);t > 0} be a non-negative randomly
varying reward function associated with {N(¢);¢ > 0}. R(¥)
depends only on the inter-renewal interval [Sy sy, Sn(t)+1)-
Define R,, as the accumulated reward in the nth renewal



interval,
Sn

R(r)

T=Sn-1

If X < oo or E[R,] < 0o, then with probability 1

t
1 E
lim - R(r) = LRn}
t—oo t = X

(12)

Proof Sketch. A proof of this theorem for non-arithmatic ¢
is given in [4]. Here we provide a proof sketch for arithmatic
t. Please refer to [4] for details. It is not hard to verify for
non-negative R(t),

N(t) 1 t N(t)+1
= X_:R ;Z:R Z R,. (13)
The left hand side of (13) can be broken into
Sty B _ 3 Ry N(t) "
t N(t) t
As t — oo, N(t) — oo, and thus, YN R /N(t) —

E[R,] w.p. 1 by the strong law of large numbers. Also
N(t)/t — 1/X by the strong law for renewal processes.
Thus, if X < oo or E[R,] < oo, the left hand side of (13)
approaches E[R,,]/X. Similarly, we can show the right hand
side of (13) approaches the same limit and thus prove the
theorem. O

Proof of Theorem 2. Let M denote the set of all the
matchings between the transmitting ports and receiving ports
of all nodes so that no node is transmitting to itself. It is easy
to check the random receiver selection will yield a random
matching in M.

Referring to Fig. 4, for latest packet first, the trellis can be
decomposed into N + 1 edge disjoint paths, starting from s,
node 1, ..., node N, respectively, as shown in Fig. 5. We call
each of the edge disjoint paths a stripe. R, is the sum of the
receiving rate of v in all the stripes. Let R, (t) = Z;y:ﬁl Ii(t),
where

j 1, if v receives a new packet in stripe j at ¢,
B =1,

otherwise.
(15)
we have
t N+1 N+1 1 t
R, = lim - lelp 1}5&;21]5(7) (16)
T=1j J= T=

It is easy to verify that each stripe forms a random walk
with the same transition matrix P = [p;;]:

_J N, ujeVi#],
pm{ 0, t,jeV,i=j. an
Although the N + 1 stripes start from different nodes, stripes
2,...,N +1 are delayed renewal processes of stripe 1, which

starts from s. Hence, for j =2,..., N + 1,
1
im = J - 1

We can thus get R, by determining the receiving rate of node
v in stripe 1, and multiplying by N + 1.

Consider the random walk in stripe 1. We analyze a renewal
process defined by the revisits to s. Let T},,, denote the time to
return to v starting from v for each v € V, and 7, = 1 /TUU
be the steady-state fraction of time spent in v. Let g, denote
the probability that starting from s, the random walk in stripe
1 hits v before returning to s. Let R,, denote the accumulation
of I'(t) in the nth inter-renewal interval. We have E[R,,] =
1 qus +0-(1—¢qys) = gus. Using Lemma 2, we have

: E[R,]  qus

It — = = w.p. 1.
i e

lim —
t—oo
=1

(19)

To derive ¢,s, we modify the random walk in stripe 1 to a
new Markov chain defined by P’ = [p;]. For i,j € V, pj;
satisfies

1/N, i#vandi#j,
Py =1 1, i=wvand j = s, (20)
0, otherwise.

The new Markov chain P’ is illustrated in Figure 6.

SVjy Viyg .. 8 ... VS ... VS8 ... 8...

Fig. 6. An illustration of the modified random walk P’ in stripe 1. Note
that there is no v in the Ist and 4th inter-renewal interval.

Let 7, be the steady-state fraction of time spent in v in
the new chain and T;U = 1/n}. Consider the renewal process
defined by the revisits to s in the new chain. We define a
reward function for the new process as

no-{ g

Let R] be the accumulation of the reward I](¢) in the
nth inter-renewal interval of the new process. Apparently,
E[R)] =1 qus +0- (1 — qys) = quvs. Using Lemma 2 again,
we have

if the new chain is in state v at ¢,

otherwise. @1

t
E[R,] _q
/ o nl _ Hus
— = Jim — ;IU(T) =7 =7 wp. 1. (22
Combining (19) and (22), we have
1 o 1 !
Jim ;Iv (r) = o T WP 1. (23)
Combining (16), (18), and (23), we obtain
™,
Ry = W—g -5 (N+1) wp. L. (24)
Clearly, 7 = 1/(N + 1). 7, and 7/, satisfy
m = () &
=T %+, (25)
Tt T+, =1,



/

}7r Solvmg (25), we get m, =

S

). Substituting into (24), we

where 7/ = ZzEV \{s.0
2N/(N + 1), «l, = 1/(N +
can obtain (10).

To derive the time-average propagation delay 7,,, we notice
that starting from state s, we have

7, = E[Tg,|random walk P hits v before hitting s]
= E[T),|random walk P’ hits v before hitting s]

Assume random walk P’ starts from state s. Define Y;
as Y7 := T!, given that random walk P’ reaches v before
reaching s, and Ys as Y := T, given that random walk P’
reaches s before reaching v. Then 7, =E[Y] - L

Let K be the number of “s...s” intervals encountered
before reaching v, and the sequence of such intervals are
denoted Yz(l), }/2(2), o ,YQ(K). Apparently,

K .
i=1

It is not hard to check that K is a stoppin,
quence of LI.D. random variables YQ(U, Y2(2 ,..., and follows
the geometric distribution with mean E[K] = (1 —qys)/qvs =
(wl — xl)/m.,. Applying Wald’s equality to (26), we have

(26)

time for the se-

7, = E[l] -1
=T,, — EY;] E[K] - 1
/ /
where
E[Y5] = E[T,s|random walk P does not visit v]
=1/al\V), (28)

with ng\v) being the stationary fraction of time spent in
s if v is removed from the network. When the network is a
complete graph, 7, = 1/(N + 1), « Vo) = =1/N, and 7, =

2N/(N + 1)2. Substituting into (27), we get 7, = o2y, O

C. Deriving R,

Now we are ready to derive the value of R; =
lims_ oo %maxﬂow(vt).

Lemma 3: Assume the network is a complete graph and
U, =D, =1 for all v € V. Referring to the trellis, we have

1
lim ;maxﬂow(vt) =1,

t—o0

Yo € V\s. (29)

Proof Sketch. Due to the space limit, we provide a sketch of
the proof here. Focus on a particular node v. Since D, =1,
we apparently have

1
lim ;maxﬂow(vt) <1,

t—o0

Yo € V\s. (30)

We transform the trellis in Fig. 4 into an equivalent graph in
Fig. 7. A max-flow from sq to v; is composed by all the edge-
disjoint paths, each from a certain s,, to a certain v,, with
1 <7 <1 <t. Two paths are considered edge-disjoint, if

stipe 1 @—'Q—'@—’@—'@—'@—'@
Stripe 2 ( : F‘—»(:E—*—»@ (:) 7 ' C) > C) \//\\:®
Strlpes(:F‘P(:;—L\’@_r’@ /\ @\ @/71\‘ @

NG S S S e e G,

t=1

t=2 t=3 t=5 t=6 t=7

Fig. 7. An equivalent graph of the trellis in Fig. 4. Bold highlighted lines
(s5,3,3,2and s, 1, 1, 3) are two examples of the cross-stripe paths of the type
described in (32).

they do not traverse the same solid edge of capacity 1.

Such edge-disjoint paths consist of solid-edge paths that do
not cross stripes, and cross-stripe paths that cross stripes via
dashed edges. For each s in Fig. 7, let a solid-edge path be
the path of solid edges from s to the first v that appears after
that s in the same stripe. We call such v a typical

The number of typical v’s is ZNH ZT L Ii(7), as has
appeared in (16). To prove (29), we only need to show that
the number of edge-disjoint cross-stripe paths maxflow(v;) —

ZNH S, T (7) satisfies

N+1 ¢
tlggo [maxflow (vy) Z Z I(
j=1 =1
PNt
> _ _ J
L LYY e
j=1 =1
N -1
=1-RLF =——. 31
v ON (D

Thus, we need to find at least one more edge-disjoint path
for each of the (N — 1)/2N non-typical v’s.

For a non-typical v at time 7 < ¢, denoted by v&n), consider
a path with vg”) as the tail and constructed in the following
way. Assume vﬁ") is preceded by w,_; in the same stripe.
Let v&") traces back to u,_i, which further traces back to
Ur;_2, Ur_3, etc., until the path reaches a certain u,, (1 <
71 < 7 —2), such that in the stripe of u,,, u, is immediately
preceded by an s, and the s...s interval that contains u,, in
this stripe does not contain a v. Then a new path

p:STl—17uT17uTl+1)" sy Ur—2,Ur—1, 70 () (32)

is found to be edge-disjoint with all the solid-edge paths.

Now we show the number of non-typical v’s preceded by a
u is asymptotically equal to the number of s. .. s intervals that
do not contain a v with the first s succeeded by a u. First, in
any interval [t1,?2] (1 < ¢; < t2), the number of non-typical
v’s and the number of s... s intervals that do not contain a v
both equal to

N+1 to

> 2 L)

j=1 7=t1

to —t1 — (33)

In complete graphs, the probability that the above s...s
interval have the first s succeeded by a u ¢ {s,v} equals



to the probability that the non-typical v is preceded by u, and
equals to 1/(IN —1). During any interval [t1, 2] (1 < ¢1 < t2),
on expectation, we can find the same number of s, _1, u,, and
Ur_1, vﬁ") pairs of the above kind. Linking them together via
u’s and dashed-edges will create a path that is edge-disjoint
with all other cross-stripe paths.

By the law of large numbers, as t — oo, in [1,t], the
difference between the number of s, _i,u, and that of
uT_l,vgn) of the above kind divided by ¢ goes to 0. Thus,
the total number of edge-disjoint cross-stripe paths created
divided by ¢ goes to

1 N+1 t .
lim —(t— Y Y Ii(r))=1-RL"". (34)
j=1 =1

t—oo t

Hence, we have shown (31) is true and thus proved (29). O
Combining Lemma 1 and Lemma 3, we have proved
Theorem 1.

VI. RANDOMIZED PROTOCOL FOR OTHER NETWORKS

In this section, we analyze the performance of the random-
ized protocol for a more general class of undirected graphs
G = (V, E) that have at least one Hamiltonian cycle.

To better describe the receiver selection algorithm, we define
a bipartite graph Gp = ((V1,Va), Ep), with Vi, V5 being
copies of V, and denote senders and receivers, respectively.
There is an edge between v; € V; and ug € Vb, and an edge
between u; € V; and vy € Vb, if and only if there is an edge
uv in G.

Note that a bipartite matching in G corresponds to a
receiver selection schedule in a time slot. Let M, denote
the set of perfect matchings in Gp. (In a perfect matching,
every vertex in G'p is incident to exactly one edge of the
matching.) We consider those graphs whose corresponding G g
have at least one perfect matching, i.e., |M,| > 1. The random
receiver selection is now modified to the following:

« Random receiver selection. In each time slot, a pairing
relationship between all senders and receivers is chosen
so that it corresponds to a random perfect matching in

Gp.

Let G5 = ((V1,V2), Elz), where E; is formed by aggre-
gating all M € M,,. If an edge u v2 € Ep appears in multiple
perfect matchings, then it counts as multiple edges in E;. We
state the following fact without proof.

Lemma 4: If |M,| > 1 in Gp, G5 can be transformed
into an equivalent graph G’ = (V, E’) with node set V' and
undirected edges £’ (multiple edges are possible), so that the
number of edges between u; and vy in G5 equals to the
number of edges between v; and ug in G'g, and equals to
the number of edges between u and v in G’. This number is
denoted by wy,,,.

Now consider a random walk P = [p;;] (i,j € V) on
G’, where a particle at a node v will follow each of its d(v)
outgoing edges with probability 1/d(v).

Lemma 5: For odd |V|, the random walk on G’ is irre-
ducible and aperiodic if the original graph G has at least one
Hamiltonian cycle.

Proof. If G has a Hamiltonian cycle, this cycle corresponds
to a perfect matching in G g, so that G’ also has a Hamiltonian
cycle. Hence, G’ is strongly connected, and thus the random
walk on G’ is irreducible. Since the Hamiltonian cycle is of
length V|, which is an odd number, G’ is non-bipartite. Thus,
the random walk on G’ is aperiodic (by Lemma 7.12 in [11]).

O

Theorem 3: If the original network G has at least one
Hamiltonian cycle and |V| is an odd number, then for all
v € V\s, latest packet first achieves a time-average receiving

rate of
RLPF _ d(s) + wsy

O (35)
and a time-average propagation delay of
2d(s)
qLpr _ __285) 36
v d(S) + wsv ’ ( )

where d(s) is the degree of source s in G’, and wy, is the
number of edges between s and v in G'.

Proof. Since G has a Hamiltonian cycle, by Lemma 5,
random walk P on G’ is irreducible and aperiodic. Thus, for
finite |V|, random walk P on G’ is ergodic and has a unique
stationary distribution 7 = (7, 71,...,7N).

Similar to the case of complete graph, to derive R,, we

define a modified Markov chain of P as P’ = [p;]. For
i,j € V, pj; satisfies
pij, 17 vandi#j,
pi;=4q 1, i=vandj=s, 37
0, otherwise.

Let ' = (n},7},...,m) be the stationary distribution of
the modified chain P’. Since each time the sender-receiver
pairings corresponding to a perfect matching in M, (24) still
holds.

It is not hard to check that 7, = d(s)/)_, d(v) (see
Theorem 7.13 [11]). To obtain 7, and «,, we divide node set
V into three subsets: {v}, {s} and O = V\{v, s}. Let Doy, Psv
and p,s denote the transition probability from O to v, from s
to v and from O to s in the modified chain, respectively. Let
N (v) be the neighborhood of v. We have pg, = ws,/d(s),

and

_ Zuej\/(v)ﬂ(’) TuPuv _ d(’l}) — Wgy (38)
. ZUEO T Zue@ d(u)’
and similarly,
Dos = Zue.f\/(s)ﬂo TuPus _ d(s) — Wsy (39)
” 2o Mu > uco du)
7, 7w, and 7! satisfy
W; = 7T/opov + ﬂ—gpsv
7l = 7 pos + T (40)

/ !/ !
my +m, + 1, =1,



Fig. 8. An illustration of ring lattice. Each node is connected to k other
nodes that are within k/2 hops away from it on the ring.

which gives

l;; _ Pov + DsvPos d(U)d(S) — wfv @l
ﬂ—g B Pov + Dos B (d(’l)) + d(S) — 2wsv)d(8) '

Substituting 7, /7, and 74 into (24), we obtain

V] - (d(s)d(v) — w3,)

(d(v) +d(s) — 2wsy) Y, d(v)
Since G’ is equivalent to G'5, which is formed by aggregating
all the perfect matchings in M,, it is easy to check 7, = 7,
and thus d(v) = d(u), Yv,u € V. Substituting d(v) = d(s)
into (42) proves (45).

Similarly, to derive 7,, we note that (27) still holds. Now

Ry =

(42)

7\ is eiven by
d(s) —w
(V\v) _ sv
7o) — . 43)
> uev d(u) = 2d(v)
(V\v)

Substituting 7/, 7, and s into (27), we can obtain

_2d(s)d(v) — weyd(s) — weyd(v)
T A g,

Substituting d(v) = d(s) into (44) proves (36). O

For this more general type of networks, it is hard to
derive the exact rate achieved by randomized network coding.
However, we can provide a lower bound on R} based on
Theorem 3.

Corollary 4: If the original network G has at least one
Hamiltonian cycle and |V is an odd number, then for all v €
V\s,

(44)

d(s) + wsy
Ry > ——
v 2d(s)
We demonstrate the use of Theorem 3 and Corollary 4 on a
ring lattice illustrated in Fig. 8. Assume the number of nodes
in the ring |V| is odd. Each node has a degree of k. Then we
have

(45)

if v is a neighbor of s,

otherwise. (46)

1 1
RZ>R5PF={ N
2

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study the broadcasting problem on an
undirected graph, with integer valued node upload and down-
load capacity. We first give two deterministic centralized
protocols that achieve the optimal receiving rates, analyze
their insufficiency in terms of delay fairness. We proceed to
consider a simple randomized decentralized neighbor selection
scheme that results in a random matching between all the
sending ports and receiving ports of the nodes. We prove that

this surprisingly simple protocol can asymptotically achieve
the optimal rates at nodes in the long run, for complete
and homogeneous networks. Such a proof involves applying
randomized network coding at each node. We further extend
the results to networks with Hamiltonian cycles and bound
the rates of randomized neighbor selection with randomized
network coding. We also derive the exact rates achieved by
randomized neighbor selection with latest packet first.

Although we have proved the rate-optimality of random
neighbor selection, the proof requires applying randomized
network coding across an infinite number of packets, which
is impractical. Low-complexity network code needs to be
cleverly designed to achieve near optimal broadcasting rate.
The exact rate achieved by randomized neighbor selection with
network coding is yet to be characterized for non-complete
graphs with homogeneous node capacity. We conjecture such
a rate equals to the optimal rate. Furthermore, it is still an open
question to find sufficiently simple decentralized protocols
that achieve the optimal rates in heterogeneous networks. One
challenging direction for future investigation is to characterize
the performance of greedy neighbor selection algorithms for
an arbitrary network with heterogeneous node capacity.
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