
Self-Diagnostic Peer-Assisted Video Streaming
through a Learning Framework

Di Niu
Department of Electrical and

Computer Engineering
University of Toronto

dniu@eecg.toronto.edu

Baochun Li
Department of Electrical and

Computer Engineering
University of Toronto

bli@eecg.toronto.edu

Shuqiao Zhao
Multimedia Development

Group
UUSee, Inc.

shuqiao.zhao@gmail.com

ABSTRACT
Quality control and resource optimization are challenging problems
in peer-assisted video streaming systems, due to their large scales
and unreliable peer behavior. Such systems are also prone to per-
formance degradation in the event of drastic demand changes, such
as �ash crowds and large-scale simultaneous peer departures. In
this paper, we demonstrate the de�ciency of state-of-the-art video
streaming systems by analyzing real-world traces from UUSee, a
popular commercial P2P media streaming system based in China,
during the 2008 Beijing Olympics. We show how simple machine
learning techniques combined with periodic collection of statistics
can be used for automatedmonitoring anddiagnosis of peer-assisted
video streaming systems. With such a framework, it is possible to es-
timate performance given certain resource usage patterns, making
resource utilization more e�cient. It also enables the prediction of
large-scale performance degradation due to irregular demand pat-
terns. �e e�ectiveness of our proposed framework is validatedwith
extensive trace-driven evaluations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques; Model-
ing Techniques; C.2.3 [NetworkOperations]: NetworkMonitoring;
Network Management

General Terms
Algorithms, Measurement, Performance, Reliability

Keywords
Video Streaming, Peer-to-Peer, Learning, Measurement, Diagnosis,
Prediction, Resource Allocation, Troubleshooting

1. INTRODUCTION
It has been widely recognized that taking advantage of peer as-

sistance is important to bandwidth-intensive applications, and live
multimedia streaming in particular. By leveraging upload capacities
of peers to upload to one another, the burden on server bandwidth is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

substantially alleviated. To achieve scalability and robustness in the
presence of peer dynamics, it has been proposed that peers exchange
availability information and explicit requests for content in a mesh
topology [13]. Due to its simplicity and resilience to peer dynam-
ics, such a design has been adopted in most real-world commercial
peer-assisted live streaming systems.

A successful peer-assisted video streaming system involves a large
number of media channels — on the order of tens of thousands —
and attracts millions of users at peak times. Due to the unprece-
dented scale and the unpredictable behavior of end users using the
system, it is a fundamental challenge to o�er any kind of quality as-
surance to the users, evenwith a large collection of dedicated stream-
ing servers [6]. �is o�en causes unexpected performance bottle-
necks and issues, which would best be avoided in media streaming
systems that have stringent quality requirements.

In this paper, by analyzing the operational traces collected from
UUSee Inc. — a major commercial P2P media streaming service
in China — during the 2008 Beijing Olympics, we seek to identify
problems and de�ciencies that exist in real-world peer-assisted live
streaming systems. We �nd that current systems lack appropriate
mechanisms to utilize resources e�ciently, which leads to unnec-
essarily high server costs. For example, the server bandwidth used
to serve a channel sometimes exceeds the amount needed to main-
tain smooth playback by a substantial margin, while at the same
time some other channels are su�ering from performance issues.
�e UUSee system is also particularly prone to severe performance
degradation in the presence of �ash crowds or large-scale peer de-
partures, which have occurred frequently in popular media chan-
nels. In contrast to a centralized solution that uses only dedicated
servers in the cloud, one major obstacle that prevents peer-assisted
media streaming from being reliable is that peer bandwidth contri-
butions are much less reliable and much more dynamic than ded-
icated servers. Such bandwidth contributions are good to have as
they reduce operating costs of servers, but are di�cult to predict.

Learning
Engine

Online
Observations

Estimation/
Prediction

Data

Model

Statistics
Collection

Server/Peer Actions

Figure 1: �e concept of self-diagnostic peer-assisted streaming.

To provide a highly reliable streaming service, the health of peer-
assisted systems should be carefully monitored, and both peers and
dedicated servers should make their decisions based on such online
networkmeasurements. In this paper, we propose a newmonitoring
and learning framework, that enables the learning of internal system
dependencies with the aid of periodic collection of online statistics.

�e gist of our new framework is illustrated in Fig. 1. Once operat-
ing rules in the system have been determined by learning, they can
subsequently be used to estimate performance under a certain re-
source con�guration, to direct server and peer algorithms, and to
forecast performance anomalies, based on online observations. �e
operating model can be initially learned through the collected trace
data, and be re�ned online bymore recently collected traces and fast
online observations.
As a �rst step towards a self-diagnostic peer-assisted streaming

architecture, we demonstrate the use of our monitoring and learn-
ing framework in two important applications: (1) making decisions
on how much server bandwidth is to be provisioned in each media
channel, when multiple channels co-exist; and (2) predicting large-
scale performance degradation due to �ash crowds or peer depar-
tures. Note that the solutions to these problems in current systems
heavily depend on heuristics and human expertise. Our proposed
algorithms are designed to target actual problems that have been ob-
served from the UUSee system, and their e�ectiveness is also eval-
uated based on real-world traces.
�e remainder of the paper is organized as follows. Sec. 2 de-

scribes our learning framework in general. We then analyze the ex-
isting performance issues in UUSee streaming system in Sec. 3, and
shed lights on how such a learning framework could improve system
performance and reliability. Sec. 4 focuses on explaining how the
network behavior under its normal states may be learned. In Sec. 5,
we demonstrate the application of our learning framework in the
context of provisioning server bandwidth across di�erent channels
in the UUSee system. In Sec. 6, we describe and evaluate a learning
algorithm based on neural networks, with an objective of predicting
performance anomalies caused by �ash crowds or peer departures.
Sec. 7 reviews previous work related to this paper. In Sec. 8, we draw
conclusions and outline directions for future research.

2. DEPENDENCY CHARACTERIZATION
THROUGH LEARNING

Although current-generation peer-assisted streaming systems can
provide satisfactory streaming quality to users in general cases, they
are not without de�ciencies. �ese systems usually incorporate �ne-
tuned partner selection algorithms [7] and block request mecha-
nisms [12] to maximize the upload contribution from peers. How-
ever, much less e�ort is invested in optimizing how server resources
should be used. As server resource usage is directly linked to the
monetary cost incurred to a streaming service provider, it should
be meticulously managed to save cost, yet with an optimized user
experience. In fact, it has been recognized in [9, 10] that carefully
provisioning server capacities across channels that coexist in a peer-
assisted system can bring salient bene�ts with regard to the aggre-
gate system performance. In reality, extreme peer dynamics such as
�ash crowds and peer departures have also posed additional chal-
lenges to peer-assisted streaming systems. In these cases, the sys-
tem performance o�en becomes unstable, degrading the quality of
media streams presented to users.
Despite their constant e�ort in improving streaming protocols at

individual peers, current systems still su�er from the above prob-
lems, due to the lack of a fundamental understanding of the run-
time relationships among demand, server bandwidth supply, peer
bandwidth supply and performance. Unlike streaming services us-
ing a client-server architecture, peer contributions in a peer-assisted
system is highly dynamic and unpredictable. Relying on peer band-
width contributions may cause performance issues, yet underutiliz-
ing peer contributions may incur unnecessary server costs. To pro-
vide optimized and highly reliable peer-assisted streaming services,

Table 1: Frequently used notations.
N c

t the number of peers in channel c at time t

S c
t the total server bandwidth allocated to channel c at time t

sct the average server sending rate per peer in channel c at time t

uc
t the average peer sending rate in channel c at time t

rct the average peer receiving rate in channel c at time t

qct the ratio of peers with smooth playback in channel c at time t

P
c

t the average number of partners per peer in channel c at time t

we need amechanism that can automatically learn and diagnose the
network behavior.

In a complex peer-assisted streaming system, the time series of
di�erent quantities are interdependent. Notations for frequently used
quantities are listed in Table 1. Fig. 2 illustrates our model for repre-
senting such multi-level dependencies, which can be classi�ed into
three modules, capturing application speci�c peer behavior, server
behavior, as well as network behavior that links the former two. For
the purpose of this paper, the server behavior module can be omit-
ted. �ere are both causal relationships represented by directed edges,
and non-causal correlations denoted by undirected edges.

�e core of this learning framework is the network behaviormod-
ule. It tries to learn a network response p(rct ∣s

c
t) for each channel c,

which yields a distribution of the average peer receiving rate rct given
the server bandwidth supply per peer sct . Since

r
c
t = s

c
t + u

c
t , (1)

we can obtain p(uc
t ∣s

c
t) �rst, and then derive p(rct ∣s

c
t). Note that

the response p(rct ∣s
c
t) is non-linear in nature and can exhibit very

complex behavior under di�erent network conditions and demand
patterns.

Receiving Rate
Playback

Smoothness

Buffer Count Playback Rate

The Playback Behavior of a Peer

Total Server

Bandwidth

Average Peer

Sending Rate
Server Sending

Rate per Peer

Number of Peers

Network Behavior

Average Peer

Receiving Rate

Network

p(u|s)

Number of

Partners per Peer

Figure 2: �e dependencies in a streaming channel. White boxes
denote easily observable parameters. Shadowed boxes are quan-
tities to be inferred. A directed edge denotes a causal relation-
ship. An undirected edge denotes a non-causal correlation.

In reality, some of the easily obtainable quantities such as the peer
population, the server bandwidth allocated and the number of part-
ners per peer can be periodically monitored, forming the observa-
tion time series. �e observed time series can then be used to pre-
dict performance related quantities such as peer receiving rates and
the playback quality, based on learned dependencies. �e learned
model can also direct server and peer algorithms to improve per-
formance and save cost. In the following section, we analyze real-
world traces from UUSee Inc. to see how our learning framework
can help the system to diagnose itself and make better decisions in
a wide range of settings, in the context of live streaming. However,

! "! #! $! %! &! '! (!
!

#!

%!

'!

)!

"!!

"#!

"%!

*+,-./0,1

23044-5#67!2&$86#!!)!!)!"'

9

9

:;--<.9=>?<,05+@-AB

C-D-+E-91-<9;--<9=FG1.B

H-<E-<9H-4A91-<9;--<9=FG1.B

GIJJ-<92?I4/91-<9;--<

;--<.9K+/39L,1/M9GIJJ-<.=NB

Deficit

Surplus

Surplus

Channel_2_2008-8-16

Time

/

/

Figure 3: Traces from a live channel on Aug 16, 2008. �e per peer
quantities are averaged over the statistics from all peers in the chan-
nel at the same time.

1 1,634 1 1634 1 1634 1 1634 1 1634
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Timestamp

P
la
y
b
a
c
k
 S
k
ip
 R
a
ti
o

channel2 channel3 channel4 channel5channel1

Time

Figure 4: �e playback skip ratio during the period Aug 8-19, 2008
for 5 popular channels. �e period includes 1634 timestamps for
each channel.

such a framework is not limited to live streaming, and can be easily
generalized to other peer-assisted content distribution systems such
as on-demand streaming and �le sharing.

3. ANALYZING REAL-WORLD TRACES
We now seek to uncover performance issues that exist in the cur-

rent UUSee live streaming system, and shed lights on how these
problems can be tackled based on our learning framework. UUSee
is one of the leading P2P multimedia solution providers in China,
featuring online broadcasting rights to the 2008 BeijingOlympics. It
simultaneously broadcasts over 800 live streaming channels, mostly
encoded to video streams with a bit rate of around 500 kbps, to mil-
lions of users distributed across over 40 countries in the world.
Similar to most commercial P2P streaming protocols, UUSee’s

live streaming protocol allows each peer to download media blocks
that will be played in the immediate future from servers or from
other peers, and to cache them in its playback bu�er. Amedia block
will be removed once it is played. Once a new peer joins a channel in
UUSee, an initial set of partners (up to 50) is supplied by one of its
tracking servers. Each peer requests media blocks from its partners
based on the periodically exchanged bu�er maps. UUSee incorpo-
rates a number of algorithms in optimizing peer selection, so that a
peer with better quality and higher uploading bandwidth will serve
more partners, and a peer that experiences low streaming quality
can identify better partners to request from.
To inspect the run-time behavior of UUSee P2P streaming, we

have implemented detailed measurement and reporting capabilities
within each UUSee client so�ware. Each peer collects a set of its
vital statistics, encapsulates them into “heartbeat” reports, and sends
them to dedicated logging servers every 10 minutes via UDP. �e
statistics include its IP address, the channel it is watching, its bu�er
availabilitymap, its bu�er count (the number of blocks in its current
bu�er), as well as a list of all its partners, with their corresponding IP
addresses, and current sending/receiving rate to/from each partner.
Our study is based on the measurements collected from 5 pop-

ular UUSee live channels in a 12-day period during 2008 Summer
Olympics, from 14:51:58, Friday, August 8, 2008 (GMT+8) to 23:43:56,
Tuesday, August 19, 2008 (GMT+8). We believe this set of traces
have captured the characteristics of UUSee in a variety of typical
scenarios, including large �ash crowds gathered to watch popular
Olympic games.

3.1 Inefficient Server Resource Usage
�e �rst apparent problem of the current UUSee streaming sys-

tem is that it is not allocating server bandwidth to channels with
any awareness of performance. �is leads to an ine�cient and un-

fair allocation of server capacity across channels, incurs high server
cost, and undermines the overall system performance. Analyzing
UUSee traces, we �nd P2P streaming systems can operate in 3 dif-
ferent states, namely de�cit, normal, and surplus states. In the de�cit
state, the total bandwidth supply is insu�cient to satisfy the de-
mand, leading to network-wise performance issues. In the surplus
state, the total demand is satis�ed, however, with resources exces-
sively allocated. �e normal state leads to a rough balance between
supply and demand, and is the healthy state for the system to operate
in.

For example, Fig. 3 shows the average statistics over a period of
half a day in a typical live channel on Aug 16, 2008. Intuitively, to
guarantee smooth playback, each peer only needs to receive media
blocks at a rate that is slightly higher than the required playback
rate (around 500 kbps). However, the �gure shows that at certain
times, the average peer receiving rate reaches 90 KB/s (720 kbps)
or even 100 KB/s (800 kbps), which exceeds the playback rate by a
substantial margin. At each point of the surplus receiving rate, we
have also observed an excessively high server sending rate per peer.
�is implies that the existence of surplus states is due to a surplus
allocation of server bandwidth when peers already have good up-
load abilities themselves. Nevertheless, when peer upload abilities
degrade, the allocated server bandwidth does not increase to com-
pensate the de�cit bandwidth supply, leading to network-wise per-
formance degradation in the channel. An example of such de�cit
states can also be observed in Fig. 3.

To optimize performance and save server cost, it is desirable to
run the system in its normal state. To prevent surplus states and
save server cost, we can let the system learn the network response
p(rct ∣s

c
t) in its normal state for each channel c. We can then �nd

an appropriate rate cap on the server bandwidth allocated to chan-
nel c, by increasing sct until the resulted r

c
t exceeds the playback rate

by a certain margin. Furthermore, to improve the system overall
performance when multiple channels co-exist, the limited amount
of server capacity should be optimally allocated to di�erent chan-
nels so as to optimize the aggregate receiving rate in all channels. In
Sec. 4, we will propose a learning mechanism that allows the system
to learn the network response in its normal state, given the collected
noisy data with all possible states. We will address the problem of
learning-based server provisioning in Sec. 5. We show thatwith such
performance-aware server capacity provisioning, the server cost can
be greatly reduced and the overall performance of all channels can
be enhanced.

3.2 Performance Anomalies
Another problem of the current UUSee system is that, although

the system normally performs well, there exist performance anoma-

!" #" $" %" &" '" (")"
"

#"

%"

'"

)"

!""

!#"

*+,-./0,1

23044-56#6#"")!)!7

8

8

9:--;.8<4=;,05+>-?@

AB-;0C-89:0;/4-;.

AB-;0C-81--;8;-D-+B-8<EFG.@

AB-;0C-81--;8.-4?8<EFG.@

H-;B-;8.-4?81-;81--;8<EFG.@

AB-;0C-8FIJJ-;8D=I4/

K,1/L81--;.<M@

Time

Figure 5: Traces from a live channel on Aug 9, 2008. An anomaly
happens around time 30 a�er the �ash crowd. �e playback skip ra-
tio equals to the percentage of empty peers in the channel.

!" #" $" %" &" '"
"

&"

!""

!&"

()*+,-.*/

01.22+34&4#""5!5!!&

6

6

78++9,6:2;9*.3)<+=>

?@+9.A+678.9-2+9,

?@+9.A+6/++969+B+)@+6:CDE,>

?@+9.A+6/++96,+2=6:CDE,>

F+9@+96,+2=6/+96/++96:CDE,>

?@+9.A+6DGHH+96B;G2-

I*/-J6/++9,:K>

Time

Figure 6: Traces from a live channel on Aug 15, 2008. An anomaly
happens around time 22 due to peer departures. �e playback skip
ratio equals to the percentage of empty peers in the channel.

lies, at which points a channel will su�er from substantial perfor-
mance degradation. We de�ne a performance anomaly as a point in
time when the channel has an extremely low average peer receiv-
ing rate, and an abnormally high playback skip ratio. We observe
that such anomalies usually happen in those popular channelswhere
peers are highly dynamic and �ash crowds happen frequently.

Table 2: Anomaly ratios in the 12-day period.
Channels 1 2 3 4 5

Peak Population 33,431 29,926 88,810 56,979 26,630

Lowest Population 231 3 1,006 1,069 19

Average Daily Peak 17,248 7,250 37,624 29,392 9,868

Average Daily Lowest 748 46 2,333 1,490 90

Anomaly Ratio 0.43% 6.73% 0.61% 0.37% 2.63%

We de�ne the playback skip ratio in a channel at a particular time
as the percentage of peers in the channel that can not play the video
smoothly at this time. Since the UUSee live streaming protocol en-
sures that blocks closest to their playback deadlines are downloaded
�rst, a peer can playback smoothly as long as there is at least one
media block in its bu�er. �us, the playback skip ratio equals to the
percentage of peers with empty bu�ers in the channel. �e play-
back skip ratio sampled at each timestamp (with sampling interval
being 10 minutes in the traces) forms a coarse-grained indicator of
the channel quality. We further de�ne the anomaly ratio of a chan-
nel as the percentage of timestamps in the 12-day period that exhibit
a playback skip ratio greater than 10%.
�e playback skip ratios for the 5 representative channels are plot-

ted in Fig. 4. Although most of the time the playback skip ratios
are below 5%, anomalies do exist. During anomalies, the playback
skip ratio can increase up to over 80%. �e anomaly ratios of these
5 channels together with their population statistics are listed in Ta-
ble 2. We can seemore anomalies happen in channels 2 and 5 than in
the other 3 channels. Table 2 actually reveals a correlation between
the anomaly ratio and the population evolution in the channel. Al-
though all 5 channels attract large peak and daily peak populations,
channels 2 and 5 have much smaller lowest and daily lowest popu-
lations. �is leads to the conjecture that, it is not the popularity of
the channel, but the drastic change of the number of online peers
between large and small values, that renders the system unstable.
In particular, we have identi�ed two types of anomalies. �e �rst

type happens a�er a �ash crowd, and is illustrated in Fig. 5. A se-
rious network-wide performance degradation happens in the chan-
nel between time 28 and 33, a�er the actual �ash crowd around time
25-30. �e second type of anomalies are caused by the simultane-
ous departures of a large number of peers, as illustrated in Fig. 6.
Around time 20-24, a large number of peers leaves the channel and
triggers an anomaly. Another example of this type of anomalies has

been shown in Fig. 3 around the de�cit point. Although peer dy-
namics constitute the root causes for performance anomalies, they
do not necessarily lead to anomalies. For example, in Fig. 5, there is
another �ash crowd around time 55. But the performance remains
in its normal state. Similar �ash crowds also frequently happen in
channels 1, 3 and 4, but most of them do not lead to anomalies. �is
implies that it is almost impossible to predict anomalies only based
on the change of peer population.

In Sec. 6, we will develop a neural network approach that can pre-
dict sharp decreases in peer receiving rates and increases in the play-
back skip ratio based on network monitoring. Such monitoring is
lightweight and only requires the recent measurements of peer pop-
ulation N c

t , the server rate per peer s
c
t , which can be easily obtained

from the tracking server, and the average number of partners per

peer P
c

t , which can also be accurately reported. Referring to Fig. 2,
the predictor actually forecasts the transition of network behavior
into de�cit states and sends alarms to the system administrator, who
will take prevention actions accordingly.

4. LEARNING NETWORK BEHAVIOR IN
NORMAL STATES

Learning the network behavior enables performance estimation
given a certain server bandwidth supply, which can be used to direct
e�cient and optimized server provisioning across concurrent chan-
nels. As has been mentioned in Sec. 3.1, the network can behave in 3
di�erent states. We useD to denote the set of de�cit states,N to de-
note normal states, andS to denote surplus states. As we are dealing
with individual channels in this section, we omit the superscript c
in the notations rct , u

c
t and sct .

As the network response p(r t ∣s t) can exhibit complex behavior
under di�erent states, given the collected real-world traces, the dif-
�culty lies in automatically learning the network response patterns
in di�erent states, while classifying these states in themeantime. We
plot the datasets {(s t , u t)} and {(s t , r t)} collected from channel 2
during the period Aug 8-19, 2008, on 2-D planes in Fig. 7 and Fig. 8,
respectively. First, note that classi�cation by setting hard thresholds
for the server sending rate or the peer receiving rate can hardly sepa-
rate the states. As the average peer receiving rate in the normal state
can �uctuate around the required playback rate in a certain range,
as shown in Fig. 3 and Fig. 5, it is hard to determine this range ex-
actly. In other words, it is hard to know how low/high a receiving
rate should be, for it to be labeled as de�cit/surplus. Even if a high
playback skip ratio can help indicate a de�cit state, it is still uncer-
tain howhigh a receiving rate should be so as to be labeled as surplus
instead of normal.

To avoid the dilemma of setting classi�cation thresholds, we pro-

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Server Sending Rate per Peer (KB/s)

A
ve

ra
ge

 P
ee

r
S

en
di

ng
 R

at
e

(K
B

/s
)

Channel2

Normal states
Linear regression of normal states
Deficit states
Absorbing line for deficit states
Surplus states
Absorbing line for surplus states

Figure 7: States clustering based on {(s t , u t)}. �e iterative cluster-
ing procedure is only applied to the data points with s t ≤ 80KB/s.
Data points with s t > 80KB/s are automatically considered as sur-
plus states.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

Server Sending Rate per Peer (KB/s)

A
ve

ra
ge

 P
ee

r
R

ec
ei

vi
ng

 R
at

e
(K

B
/s

)

Channel2

Normal states
Linear regression of normal states
Deficit states
Absorbing line for deficit states
Surplus states

Figure 8: Clustering based on {(s t , r t)}. �e vertical line is used to
set an upper limit on the server rate that may be allocated to the
channel. Data points with s t > 80KB/s are automatically considered
as surplus states.

pose a novel clustering procedure that automatically classi�es the
data {(s t , r t)} collected from a channel c into three classes, de�cit
D, normalN , and surplus S , and learns the mean response f c(⋅) of
the normal state:

f
c(s t) ∶= E(r t ∣s t , (s t , r t) ∈N). (2)

�e extraction is based on a simple fact that in the normal state of
a channel, increasing the server sending rate per peer will decrease
the average peer sending rate. �e underlying reason is that under
a pull-based P2P streaming protocol [6], a peer will stop request-
ing data from its partner peers if it already receives su�cient server
bandwidth to support its playback rate.
�is complementary property between server and peer sending

rates can be observed from Fig. 5 and Fig. 6. When the network
operates in the normal state, the sum of server sending and peer
sending rate per peer, which is the average peer receiving rate, al-
ways �uctuates around the playback rate. However, the complemen-
tary property does not hold in other states. In the de�cit state, both
server and peer sending rates are low, as shown in Fig. 5 around
timestamp 30 and in Fig. 6 around timestamp 23. In the surplus
state, the server bandwidth allocated to the channel is more than
su�cient, as shown in Fig. 5 around timestamp 24, where the aver-
age peer receiving rate almost reaches 90 KB/s (720 kbps).
�e proposed extracting-learning algorithm, as shown in Table 3,

is a novel combination of K-means clustering and polynomial curve
�tting [2]. It involves performing regression and clustering alter-
nately in an iterative way. First, we do the initial classi�cation on
{(s t , u t)}; if the server sending rate per peer is less than 20 KB/s,
the state is a de�cit state, whereas if it is greater than 60 KB/s, the
state is a surplus state, otherwise, it is a normal state. However, now
the normal set includes those states with a high peer sending rate.
�ese states should be labeled as surplus instead, as the peer sending
rate is su�ciently high and the server rate should be further reduced
to save cost. Similarly, the de�cit set includes states with low server
rates but high peer sending rates. �ese states should belong to the
normal set instead.
Next, the iterative regression and clustering procedure is performed

to re�ne the classi�cation and to learn E(u t ∣s t) for the normal set.
We �rst �t the current normal set N to a polynomial y(s t , w⃗) that
best describes all (s t , u t) ∈N in a least squares sense. We then �nd
two other polynomials y′ and y′′ that are parallel to y and pass the
means of the current de�cit setD and surplus setS , respectively. We
call y′ and y′′ absorbing polynomials, since they are used to absorb
de�cit and surplus states. We subsequently assign each point in the
plane to one of the 3 sets by comparing its distances to the 3 polyno-
mials y, y′ and y′′ obtained in the regression. A�er the clustering is
done, a new iteration of regression-clustering process starts.

Table 3: Iterative Extracting-Learning Algorithm

1. Initial Clustering. Let r t = s t + u t . If r t < α, (s t , u t) ∈ D.
If r t > β, (s t , u t) ∈ S . Otherwise, (s t , u t) ∈N .

2. Linear Regression.

(a) Regression for Normal States. Let y(s t , w⃗) = w0 +
∑M

j=1 w js
j
t be a polynomial of degree M, and є be a

zero mean noise term. Assume u t = y(s t , w⃗) + є,
∀(s t , u t) ∈ N . Fit y(s t , w⃗) to all (s t , u t) ∈ N using
the least squares approach. Update w⃗.

(b) Absorbing De�cit and Surplus States. Find two
other polynomials y′ and y′′ that are parallel to y such

that y′(s t , w⃗′) = w
′
0+∑

M
j=1 w js

j
t passes themean of all

(s t , u t) ∈ D, and y′′(s t , w⃗′′) = w
′′
0 +∑

M
j=1 w js

j
t passes

the mean of all (s t , u t) ∈ S . Update w′0 and w
′′
0 .

3. Clustering. For each (s t , u t), compare the error terms
∣u t − y∣, ∣u t − y′∣ and ∣u t − y′′∣. (s t , u t) is assigned to the
corresponding cluster with the smallest error term. Return
to Step 2.

We �nd that polynomials of degree M = 1, i.e., lines, su�ce to
yield good regression here. WhenM = 1, the learned f c(⋅) a�er the
algorithm terminates is

f
c(s t) = w0 + (w1 + 1)s t . (3)

�e algorithm convergence is fast; 4 iterations su�ce to provide the
stable classi�cation in Fig. 7. �e algorithm can be applied to the
dataset {(s t , r t)} in a similar way.

From Fig. 8, we see that in normal states, no matter how much
server bandwidth is allocated, a peer’s receiving rate will be roughly
around the playback rate. However, an interesting phenomenon is
that, as we increase the server sending rate per peer, there is an in-
crease, although slightly, in the average peer receiving rate. �is is
because a server can serve data blocks to more positions in a peer’s
bu�er than another peer peer can, because data availability is higher
in a server in general. �e learned relationship f c(⋅) between the
server supply and peer receiving rate in each channel c will be used
to direct server capacity provisioning across channels.

5. SERVER PROVISIONING
�eautomated learning of network behavior forms a basis for im-

proving server and peer algorithms. Here, we illustrate the idea with
one important application: multi-channel server capacity provision-
ing in the UUSee streaming system. We train the network response

1 2 3 4 5
0

20

40

60

80

100

Channel

K
B

/s

Computed Server Rate Cap
The Resulted Peer Receive on Cap
Playback Rate

Figure 9: �e computed caps on
the server bandwidth allocation
to 5 channels and the resulted
average peer receiving rates.

1 2 3 4 5
0

20

40

60

80

100

120

Channel

P
er

ce
nt

ag
e

(%
)

Percentage of Surplus States
Cost Saving on High Server Rates
Total Cost Saving

Figure 10: �e server cost saved
from server rate limiting in 5
channels.

rct = f c(sct) using data from the �rst 6 days for each of the 5 chan-
nels. �e proposed server provisioning algorithms are then applied
to the rest of the 12 days based on the trained model. We try to see
how much saving on server cost or enhancement on performance
the learning-based algorithms can bring to theUUSee system in this
period.

5.1 Server Rate Limiting
�eupshot of peer-assisted streaming is tomaximally utilize peer

resources for uploading. �e server bandwidth should be allocated
sparingly only to result in a receiving rate that sustains smooth play-
back at each peer. However, from Fig. 8 we observe that the server
bandwidth allocated o�en exceeds the amount required by the chan-
nel. To prevent surplus allocation and resource waste, we can set a
cap on server rate so that the per peer server bandwidth allocated
to channel c ∈ C, sct , cannot exceed Rc . Note that no heuristics can
easily determine the value of such a server rate cap. However, such
a task becomes feasible with the understanding of the relation be-
tween server sending and peer receiving rates.
To �nd the server rate cap Rc , we increase sct until the probabil-

ity that the channel operates in surplus states exceeds a threshold
α. Fig. 8 illustrates the process of �nding R2 for channel 2. When
α = 0.6, the computed server rate caps for channels 1 − 5 are 39,
49, 37, 39, and 53 KB/s, respectively, as shown in Fig. 9. When the
server rate allocated to each channel equals to its cap value, the re-
sulted average peer receiving rates are 70, 62, 67, 72, and 68 KB/s,
respectively, which are higher than the playback rates to guarantee
the playback quality. Any further allocation of server bandwidth be-
yond the computed cap will lead to surplus allocation and incur a
waste of resource.
Fig. 10 plots the savings on server cost from server rate limiting in

the 5 channels as compared to the current UUSee system, assuming
the cost is linear to the total bandwidth usage over the 6-day period
for evaluation. We can see that there are signi�cant savings at those
timestamps when the server rate in UUSee exceeds the cap, while
the savings on the total server cost in the period is also signi�cant
in certain channels, e.g., there is a total saving of 58% in channel 2.

5.2 Server Rate Allocation
Given a certain amount of server bandwidthUt available at time t,

it should be optimally allocated to a set of channels C so that the ag-
gregate receiving bandwidth∑c∈C N

c
t r

c
t is maximized. An increased

receiving bandwidth at peers would improve their viewing experi-
ence or allow the streaming of media data with better quality and
a higher playback rate. �is requires the estimation of the total re-
ceiving bandwidth in each channel, given a certain amount of server
bandwidth allocated. We assume that the server rate limiting mech-
anism is already applied to each channel to prevent surplus alloca-

100 200 300 400 500
58

60

62

64

66

68

70

Time

K
B

/s

The average peer receiving rate of all 5 channels

Proportional allocation
UUSee traces
Optimized allocation

Figure 11: �e average peer receiving rate across all 5 channels 1)
in the UUSee traces, Aug 16-19, 2008, 2) under the proportional
server rate allocation, and 3) under the optimized server rate al-
location.

tion. Associating each channel c ∈ C with a priority parameter pc ,
the server bandwidth allocation problem can be formulated as

Optimized Allocation: max∑
c∈C

p
c
N

c
t r

c
t (4)

subject to ∑c∈C s
c
tN

c
t ≤ Ut ,

rct = f c(sct), ∀c ∈ C ,

0 ≤ sct ≤ R
c , ∀c ∈ C ,

where the time-invariant function f c(⋅) is the sct — rct relationship
in normal states learned by the extracting-learning algorithm in Ta-
ble 3 based on recently collected statistics. When rct = f c(sct) is �tted
by a line, problem (4) is a linear program where the optimal sct can
be computed e�ciently.

To evaluate the bene�t of the learning based optimized server
provisioning, we compare its performance with the original UUSee
traces and the proportional allocation. In proportional allocation,
the amount of server bandwidth allocated to channel c is propor-
tional to N c

t , i.e.,

Proportional Allocation: s
c
t =

Ut

∑c∈C N
c
t

, ∀c ∈ C . (5)

We simulate the systemperformance by replaying the traces in the
period Aug 8-19, 2008 as in the original system. Assume collected
statistics come into the database D on a daily basis. We pre-train
f c(⋅) and Rc using the data of �rst 6 days. As solving (4) is extremely
fast, we perform server provisioning across the 5 channels for every
timestamp t in the remaining 6 days. Since learning is also e�cient,
starting from the 6th day, we perform the extracting-learning algo-
rithm every day to adjust f c(⋅) and Rc based on the data available
thus far. Ut is set to be the total available server bandwidth in the
original traces of this 5 channels at time t. Assume all the channels
are equally important, i.e., pc = 1 for all c ∈ C. For each computed
server allocation value sct , we �nd the resulted r

c
t based on the traces

by computing the conditional mean of rcτ , given that (scτ , r
c
τ) ∈ D

and scτ = sct . For example, for channel 2 in Fig. 8, this is equivalent
to �nding the mean of the corresponding r t values under a certain
value of s t .

In Fig. 11, we plot the resulted average peer receiving rate that is
averaged across all the peers in all 5 channels in the last 4 days. We
observe that the proportional server allocation is very close to the
current UUSee system performance. �is con�rms that the current
pull-based UUSee system passively allocates server bandwidth by
simply responding to peers’ requests, and thus, the more requests
from peers in a channel, themore server bandwidth the channel ob-
tains. In contrast, the learning based optimized server allocation has

0 5 10 15
0

50

100

150

Improvement (%)

Figure 12: Histogram of the
aggregate bandwidth im-
provements in all 5 channels
at di�erent times due to opti-
mized server provisioning.

55 60 65 70 75 80 85
94

95

96

97

98

99

100

Average Receive Rate of Peers (KBps)

P
e
e
rs
 w
it
h
 S
m
o
o
th
 P
la
y
b
a
c
k
(%
)

Channel 1
Channel 2
Channel 3
Channel 4
Channel 5

/

Figure 13: �e ratio of peers
with smooth playback in a
channel as the average peer
receiving rate varies.

a salient bene�t. �is indicates the insu�ciency of the passively re-
sponding mechanism of the UUSee servers, and justi�es the neces-
sity of understanding the network behavior, especially the relation-
ship between server supply and the aggregate bandwidth achieved
in each channel, when doing server provisioning.
Fig. 12 plots the histogram of the aggregate bandwidth improve-

ments in the system at di�erent times due to optimized allocation.
We can see that if the performance-aware server provisioning is ap-
plied, there is still a signi�cant portion of time at which the sys-
tem aggregate receiving bandwidth could be increased by over 10%.
Since only 5 channels are considered in our experiments, we con-
jecture that a real system with thousands of channels could improve
from performance-aware server provisioning by amuch largermar-
gin. With improved server e�ciency, videos of higher bitrates can
be streamed to users without upgrading the server capacity.
Alternatively, we could link the server allocation sct to other per-

formance metrics, e.g., the channel playback quality qct . �is can be
done by statistically learning the peer playback behavior combined
with the learned network behavior rct = fc(s

c
t). For example, Fig. 13

shows that there is an approximate concave relationship between rct
and qct under a given channel playback rate, and thus a similar con-
cave relationship between sct and q

c
t . We can thus formulate a convex

optimization problem that �nds the optimal server rates allocated
to di�erent channels so as to maximize the aggregate quality. Other
quality metrics include PSNR, which is an objective video quality
evaluation and can be characterized as a concave function of bitrate
for di�erent types of videos [3].

6. ANOMALY PREDICTION
Flash crowd joins and large-scale simultaneous peer departures

are common events in P2P systems. In these scenarios, the system
behavior o�en becomes unstable and is prone to move into de�cit
states with both insu�cient server and peer sending rates, causing
performance anomalies. In this section, we propose a neural net-
work based forecast mechanism that predicts performance anoma-
lies based on lightweight observations from the network with man-
ageable false positives. Currently, such anomaly prediction heav-
ily relies on human expert knowledge. Network administrators can
troubleshoot performance issues more accurately with the aid of the
predictor and take prevention actions accordingly.

6.1 Root Causes of Anomalies
First, it is important to note that in the normal state of the net-

work, a drop of either server sending rate or peer sending rate will
not cause performance degradation. �e decrease in one quantity
is o�en because there is an increase in the other, and the network
has a automatic mechanism to maintain the average peer receiving

Peer

Departures
Flash Crowd

Empty Peers
Receiving Rate

per Peer

Partners per

Peer

Server Sending

Rate per Peer

Peer Sending

Rate

Figure 14: �e root causes of performance degradation. While
�ash crowds and peer departures are the root causes of anoma-
lies, the server sending rate and average number of partners per
peer can help predict anomalies.

rate around the channel playback rate. �is has been observed from
Fig. 5 and Fig. 6 when the network is in its normal state. During a
performance anomaly, however, the complementary relationship be-
tween server sending and peer sending rates no longer holds. In
this case, the systemmay move into the de�cit state, where the total
bandwidth supply begins to drop quickly.

As shown in Fig. 14, the root causes of large-scale performance
degradation is due to �ash crowds or peer departures. Both kinds of
peer dynamics can cause the average server sending rate that each
peer receives to change. �is is because in a pull-based streaming
system, servers respond to requests passively and thus there is no
secure match between the server rate allocated to a channel and the
number of peers in this channel. When the number of peers changes
drastically, the average server rate each peer receives can easily drop.
If the server sending rate per peer decreases, the average peer send-
ing rate will not ramp up as in normal states due to the complemen-
tary property, since the newly joined peers do not have the ability to
serve yet. As a result, the receiving rate per peer will decrease, re-
sulting in a higher number of peers with low bu�er counts. �e in-
crease of empty peers will undermine the peer sending ability which
in turn hurts peer receiving rates. �us, a cascaded degradation of
a series of performance metrics is triggered.

Such a process is typically observed in Fig. 5 around time 25-35. A
�ash crowd join happens around time 25. Since the new peers do not
have the ability to serve yet, most peers have to request data from the
server, and the server contribution soon becomes the dominant por-
tion in each peer’s receiving rate. However, at time 27, many peers
start to leave the channel. �e departure of these peers, which may
be receiving high server sending rates, leads to a drop in the average
server rate received per peer. As the recently joined peers still have
low sending ability and the passively responding servers do not have
a mechanism to compensate bandwidth proactively, the channel is
trapped into a cascaded performance degradation.

Large-scale peer departures can trigger another series of detri-
mental events. Even if the server sending rate per peer is stable,
simultaneous departures of a large number of peers will cause the
remaining peers to lose their existing partners, incurring a delay
for partner rediscovery. Until the topology is reformed, the aver-
age peer sending ability is undermined, which triggers the cascaded
degradation as shown in Fig. 14. An example of this phenomenon
is illustrated in Fig. 6. We can see the server rate remains low most
of the time in this channel, as the channel mainly relies on peers’
contribution for data uploading. However, a large number of peers
leave the channel around time 20, which causes a sharp decrease
in the number of partners per peer and the peer sending rate. At
this point, since the server only passively responds to requests, it
does not compensate bandwidth proactively, and thus the cascaded
degradation happens.

6.2 Prediction using Neural Networks
Our anomaly prediction is performed separately in each channel

at each timestamp t. �e target T⃗ t to be predicted is a 2-D vector.

Let T⃗ t = (0, 1) if a performance anomaly happens at time t, and

T⃗ t = (1, 0) otherwise. We set T⃗ t = (0, 1) if and only if the decrease
in average receiving rate r t exceeds a threshold βr and at the same

time the ratio of empty peers exceeds βe . Otherwise, we set T⃗t =
(1, 0) to denote a normal state.
Since the average peer receiving rate r t is the sum of the average

server rate per peer s t and average peer sending rate u t , we can pre-
dict the decrease of r t bymonitoring the past trend of s t , s t−1 , . . . and
u t , u t−1 , �e average server sending rate per peer can be easily

calculated from s t = S t/N t , where the total server rate allocated to

the channel S t and the online number of peers N t are readily avail-
able at a centralized session tracker.
Nevertheless, obtaining accurate peer sending rates is hard, since

it requires each peer to closely monitor its outgoing bandwidth and
report it accurately. To keep observation collection lightweight, we
monitor the average number of partners per peer P t instead of peer
sending rates. Using P t is an even better choice than using u t in
prediction because of several reasons. First, there is a close relation-
ship between the peer sending ability and the number of partners
per peer, as shown in Fig. 5 and Fig. 6. �is is because in a pull-
based system, a peer with better sending ability will be requested by
more other peers and thus involved inmore connections. Second, A
small average number of partners per peer could indicate the illness
of the system, such as the occurrence of large-scale peer departures
and topology destruction. In addition, the number of partners of
a peer changes much more slowly with less variation, and thus has
more “memory” of the network behavior, which can be used to pre-
dict relatively further future. Each peer can also easily report its ex-
act number of partners to the predictor online, where the average
number of partners per peer P t is calculated accurately. �erefore,
to predict performance anomalies, we only require a lightweight ob-

servation of P t and s t = S t/N t sampled at recent timestamps.
�e input into the predictor is thus an L-dimensional vector

x⃗ t = (x1 , . . . , xL) = (s t−L1+1 , . . . , s t , P t−L2+1 , . . . , P t)/100, (6)

which is composed of the most recent L1 measurements of per peer
server sending rate normalized by 100, and L2 measurements of the
average number of partners per peer normalized by 100. Our goal

is to predict the target T⃗ t given an observation vector x⃗ t at time t,
based on the supervised learning from collected data. Many well-
developed machine learning tools, such as support vector machines
(SVMs) and neural networks (NNs) [2], can e�ciently solve this
problem. Here we use a simple 2-layer neural network for predic-
tion.
�e neural network is uniquely identi�ed by its weights w⃗ in its 2

layers. It is essentially a nonlinear function that given an L-dimensional
input x⃗ t = (x1 , . . . , xL), outputs the probability PrE(t) that an anomaly
happens at time t. In other words, the weights w⃗ encode the rela-
tion between the input and output vectors, which in our case is the
relation between the observed (s t−L1+1 , . . . , s t , P t−L2+1 , . . . , P t) and
the possibility of a performance anomaly at time t.
Fig. 15 illustrates the prediction process of our 2-layer neural net-

work. It �rst transforms the input x⃗ t = (x1 , . . . , xL) into a layer of
M hidden units (z1 , . . . , zM), and then transforms the hidden units
to an output vector y⃗ = (y1 , y2) as follows:

⎧⎪⎪
⎨
⎪⎪⎩

z j = ∑L
i=1 w

(1)
ji x i +w

(1)
j0 , j = 1, . . . ,M ,

yk = ∑M
j=1 w

(2)

k j
h(z j) +w

(2)

k0
, k = 1, 2,

Hidden units

Input vector at time

Output vector y1 y2

x1 x2 xL...........

.......................

t

Softmax

z1 z2 zM

w
(2)
2M

w
(1)
ML

w
(1)
11

w
(2)
11

PrE

Probability of

anomaly

Figure 15: Anomaly prediction using the 2-layer neural network.
Given the input observations x⃗ t at time t, the neural network will
output the probability PrE(t) that an anomaly happens.

where [w
(1)
ji] and [w

(2)
k j
] are the weights for linear transformation

from x⃗ to the M hidden units and from the hidden units to the
output y⃗ = (y1 , y2), respectively. h(x) = 1/(1 + e−x) is the logis-
tic sigmoid function applied to the hidden units to introduce non-
linearity into the transformation. �eneural network �nally outputs
the probability that an anomaly happens at time t, using so�max
outputs:

PrE(t) = Pr(T⃗ t = (0, 1)∣x⃗ t) =
e y2

e y1 + e y2
. (7)

�e weights [w
(1)
ji], [w

(2)

k j
] of the neural network can be trained us-

ing the error backpropagation algorithm [2], which e�ciently �nds
the appropriate weights that minimize the prediction error in the
training data.

6.3 Removing False Positives
In our experiments, we �nd that if the prediction is solely based

on the past measurements of server rate per peer s t and the aver-
age number of partners per peer P t , there will be a large number of
false positives. Although the neural network will seldom fail to pre-
dict a true anomaly, it could generate many false alarms where the
anomaly does not happen. To remove false positives, we make use
of the statistics on the number of online peers. As has been shown
in Fig. 14, the root causes of performance anomalies are due to peer
dynamics and the anomalies only happen when the number of on-
line peers changes drastically. Furthermore, we also observe from
the traces that at the beginning of a �ash crowd, when the number
of peers start to increase, each peer can actually receive su�cient
server rate, as shown in Fig. 5. It is only during the latter phase of
the �ash crowd, when the peers start to leave the network, that the
server rate per peer will drop dramatically. Due to the above rea-
sons, we only consider an anomaly alarm made by the neural net-
work valid, if there is a sharp drop in the online peer population Nt

at this time.
However, the question is how sharp a decrease in the peer pop-

ulation should be considered signi�cant? Referring to Fig. 5 again,
there is a dramatic drop of the number of online peers from 3487 at
time 54 to 1305 at time 58, but no anomaly happens in this period.
However, in Fig. 6, when the number of online peers changes from
208 at time 18 to 71 at time 21, the anomaly does happen. �e reason
is that a larger peer population is more tolerant to the topology de-
struction caused by peer departures. �is motivates us to take the
following consideration into account: for a larger peer population,
there should be a larger decrease in the number of online peers for
it to be considered signi�cant enough.

�erefore, to remove false positives, we only consider an alarm at
time t valid if the following selector is satis�ed:

max
j=1, . . . ,∆t

(logNt− j − logNt) > log γ ⋅
Nt

100
, (8)

where ∆t is a small integer between 1-10 and γ is an important sensi-
tivity parameter. Alternatively, we can view the selector as a coarse-

Table 4: Prediction Errors over 12 days in 5 channels.

NN Prediction NN with FP removal

Channels 1 2 3 4 5 1 2 3 4 5

Anomalies 4 16 5 2 7 4 16 5 2 7

FN 0 0 0 0 1 0 1 0 0 1

Alarms 12 41 14 6 28 4 16 4 2 10

FP 8 28 10 4 20 0 3 0 0 3

grained predictor, whose prediction is re�ned by the neural network
prediction. �us, γ should be set to a small value for the selector to
be generous. To �nd the appropriate value for γ given the training
data, γ is set to itsmaximumvalue so that the selector will not falsely
remove any true positives (true anomalies) in the training set.

6.4 Performance Evaluation
In our evaluation, we assume an anomaly happens at time t, i.e.,

T⃗ t = (0, 1), if the decrease in average peer receiving rate r t−1 − r t >
βr = 8KB/s, and r t < 55KB/s, and the ratio of empty peers ex-
ceeds βe = 10%. We use (s t−1 , s t , P t−4 , . . . , P t)/100 as the input ob-
servation, i.e., L1 = 2, L2 = 5. �e number of hidden units in the
neural network is set to be M = L = L1 + L2 = 7. We assume the
server rate limiting scheme in Sec. 5.1 has been applied and excessive
server sending rates are chopped to the server rate caps. As a result,
the dataset only consists of channel average statistics in normal and
de�cit states.
For each channel, the data of one day with performance issues is

chosen as the training set. �e weights of the neural network are
trained for 1000 iterations using error backpropagation [2], which
only takes 40 seconds on aMacBook with 2.26GHz Intel Core2 Duo
processor. �is means that the neural network can be easily re-
trained as new data are collected. To determine a proper selector,
we �rst set ∆t = 5 in (8). For each channel, γ is set to its maxi-
mum value such that the selector will not falsely remove any true
positives (true anomalies) in the training set of this channel. Note
that we only train the neural network and the selector based on the
data of one day, and test the prediction performance by applying the
trained model to the entire 12-day period. �is will test the ability
of our prediction algorithm to generalize to larger data sets.
To optimize performance, the predictor decides there is a perfor-

mance issue if PrE > 0.9 or the increase of PrE exceeds 0.15. We
also smoothed out the input in both training and prediction by let-
ting each of the L input values to be the average of this value and
its corresponding previous measurement. We group the consecu-
tive performance anomalies and also group the consecutive alarms
made by the predictor. A sequence of consecutive (0, 1) in the tar-
gets is deemed as one single performance anomaly. A sequence of
consecutive (0, 1) in the predicted targets is deemed as one single
anomaly alarm. An alarm is correct, i.e., is a true positive, if and
only if it overlaps with at least one performance anomaly.
�eprediction errors of all 5 channels over the 12-day period from

Aug 9-19, 2008 are shown in Table 4. We can see that the neural
network (NN) approach has very few false negatives (FNs), which
means it seldom falsely predicts an anomaly as normal, although it
does incur many false positives (FPs). With FP removal by checking
the change in the online peer population, the number of false posi-
tives are successfully reduced to a level that the network administra-
tor can tolerate. For channel 2, where the most anomalies happen,
the performance contrast betweenNN andNNwith FP removal can
be observed from Fig. 16 and Fig. 17, which plot the prediction per-
formance on each day in this channel.
To take a closer look at how the predictor works, we plot the pre-

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

Day

Channel2

Anomalies
False Negatives
Alarms Made
False Positives

Figure 16: �e neural network
approach applied to channel
2 over 12 days. �e model is
trained using the data on Aug
19, 2008.

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

Day

Channel2

Anomalies
False Negatives
Alarms Made
False Positives

Figure 17: Neural network
with false positive removing
based on peer population
statistics applied to channel 2
over 12 days. γ = 1.8.

diction results of channel 2 on Aug 9, 2008 for NN and NN with FP
removal in Fig. 18 and Fig. 19, respectively. �e data on Aug 19 is
used to train the model. γ for the selector is computed as 1.8. We
can see NN alone reports 6 alarms, among which 5 are false posi-
tives. For example, NN reports the 4th and 5th alarms forecasting
anomalies because it observes a decrease in the server rate per peer,
whereas the number of partners per peer does not increase (refer-
ring to Fig. 5, note the di�erent time limits in Fig. 5). In NNwith FP
removal, however, the selector checks the decrease in the number
of online peers at this time, e.g., from 3487 to 1305 at the 4th alarm.
For Nt = 1305, such a decrease is not signi�cant enough according
to (8). �us, the 4th alarm is identi�ed as a false positive and re-
moved. �e 1st and 2nd alarms are removed as well, since there is
no big change in the number of online peers around time of these
false alarms.

7. RELATED WORK
Since mesh-based P2P media streaming has been proposed in

CoolStreaming by Zhang et al. [13], such systems have been suc-
cessfully deployed on the Internet. Signi�cant research e�orts [5, 6,
11] have been devoted to the measurements of their performance.
�is paper represents one of the �rst attempts to characterize the
dependencies among the performance statistics inside P2P multi-
media streaming systems. We have shown how the learned depen-
dencies can be leveraged to optimize system operation and forecast
performance issues due to irregular demand patterns.

Recently, there has been an increasing interest in applying infer-
ence, learning and statistical tools to diagnose and improve the re-
liability of large-scale networking systems. Bahl et al. [1] propose
Sherlock that discovers the dependencies among services, so�ware
andphysical components in a large enterprise network based onnet-
work tra�c, and leverages such dependencies to detect and local-
ize problems. Chen et al. [4] further study the performance and
limitations of automated dependency discovery from network traf-
�c, and propose Orion that discovers dependencies in an enterprise
network, using the delay information between every pair of network
�ows. Mahimkar et al. [8] focus on characterizing performance is-
sues in a large-scale IPTV network, and propose Giza that applies
multi-resolution data analysis to localize regions and physical com-
ponents in the IPTV distribution hierarchy that are experiencing
performance problems.

Diagnosing and learning the operating rules of P2P multimedia
streaming systems pose unique challenges to networking researchers.
In contrast to traditional client-server applications in enterprise net-
works and IPTV systems, P2P networks are designed to be resilient
by dynamically changing the set of hosts with which a peer com-

0 20 40 60 80 100 120 140
0

0.25

0.5

0.75

1

1.25

Time

Figure 18: Prediction performance for Channel 2 on Aug 9, 2008,
using the neural network alone. �e legend is shown in Fig. 19. �e
predicted probability PrE is subtracted by 0.4 so that an anomaly is
predicted if PrE > 0.5 or the increase in PrE exceeds 0.2.

0 20 40 60 80 100 120 140
0

0.25

0.5

0.75

1

1.25

Time

Normalized # Peers
Target for Anomaly
Predicted Target
Predicted Probability
Average Peer Receiving Rate
Ratio of Empty Peers

Figure 19: Prediction performance forChannel 2 onAug 9, 2008, us-
ing the neural network combined with false positive removal based
on population statistics. �e false positives are removed at those
points when population changes are not signi�cant enough. γ = 1.8.

municates. As a result, the �ow or service level dependencies of
these applications can change from time to time. In this paper, we
take a novel approach of aggregating the statistics at channel lev-
els and characterizing the dependencies among the di�erent time-
series that are related to channel average performance. Instead of
localizing the problems in a particular physical or so�ware compo-
nent, we use such learned dependencies to improve server and peer
decisions, and predict the performance issues caused by collective
events happening in the network such as �ash crowds or simultane-
ous peer departures.
Peterson et al. [9] propose Antfarm, a BitTorrent-like P2P �le

sharing system based on managed swarms. When multiple swarms
co-exist, Antfarm gathers information on swarm dynamics and di-
rects bandwidth allocation to each peer so as to minimize the over-
all download latencies. Wu et al. [10] also propose a server capac-
ity provisioning algorithm for P2P live streaming systems, which
proactively adjusts the server bandwidth allocated to concurrent chan-
nels, based on the demand and performance prediction. In this
paper, we also leverage the knowledge of system characteristics to
aid e�cient allocation of resources. However, our algorithm for
learning channel operating rules have advanced the state of the art,
as they focus on relationships between more detailed performance
metrics in the system on a �ne-grained time scale, e.g., within an
interval of 10 minutes in the UUSee traces.

8. CONCLUDING REMARKS
In this paper, we propose a new learning framework that allows

peer-assistedmedia streaming systems to discover the inherent rela-
tionships among demand, supply and various performance metrics
during their operations, based on periodic statistics collection. We
show how our learning framework can be used to aid performance-
aware server capacity provisioning across concurrent streaming chan-
nels, and to forecast performance anomalies caused by peer dynam-
ics such as �ash crowds and large-scale peer departures. We demon-
strate the e�ectiveness and bene�ts of the proposed algorithms us-
ing real-world traces collected from UUSee live streaming during
the 2008 Beijing Olympics. An integrated framework of measure-
ment collection, automated learning, performance prediction and
decision making opens a promising area for future research, and
paves theway formore diagnostics and intelligence in practical peer-
assisted systems.

9. REFERENCES
[1] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,

and M. Zhang. Towards Highly Reliable Enterprise Network
Services Via Inference of Multi-level Dependencies. In Proc.
of SIGCOMM’07, Kyoto, Japan, 2007.

[2] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[3] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou. Utility
Maximization in Peer-to-Peer Systems. In Proc. of ACM
SIGMETRICS ’08, Annapolis, Maryland, USA, June 2008.

[4] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
Network Application Dependency Discovery: Experiences,
Limitations, and New Solutions. In Proc. of OSDI ’08, 2008.

[5] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A
Measurement Study of a Large-Scale P2P IPTV System. IEEE
Transactions on Multimedia, December 2007.

[6] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang.
Inside the New Coolstreaming: Principles, Measurements and
Performance Implications. In Proc. of IEEE INFOCOM, 2008.

[7] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer
Receiver-drIven MEsh-based Streaming. In Proc. of IEEE
INFOCOM, 2007.

[8] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and Q. Zhao. Towards Automated Performance Diagnosis in
a Large IPTV Network. In Proc. of SIGCOMM’09, Barcelona,
Spain, 2009.

[9] R. S. Peterson and E. G. Sirer. AntFarm: E�cient Content
Distribution with Managed Swarms. In Proc. of 6th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’09), April 2009.

[10] C. Wu, B. Li, and S. Zhao. Multi-Channel Live P2P Streaming:
Refocusing on Servers. In Proc. of IEEE INFOCOM ’08,
Phoenix, Arizona, 2008.

[11] Y. Huang and Tom Z. J. Fu and Dah-Ming Chiu and John C.S.
Lui and Cheng Huang. Challenges, Design and Analysis of a
Large-scale P2P-VoD System. In Proc. of SIGCOMM’08,
Seattle, Washington, USA, August 17-22 2008.

[12] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang. A Peer-to-Peer
Network for Live Media Streaming: Using a Push-Pull
Approach. In Proc. of ACMMultimedia 2005, November 2005.

[13] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum.
CoolStreaming/DONet: A Data-Driven Overlay Network for
E�cient Live Media Streaming. In Proc. of IEEE INFOCOM,
2005.

