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Abstract—Federated learning is exposed to model poisoning
attacks as compromised clients may submit malicious model
updates to pollute the global model. To defend against such
attacks, robust aggregation rules are designed for the centralized
server to winnow out outlier updates, and to significantly reduce
the effectiveness of existing poisoning attacks. In this paper, we
develop an advanced model poisoning attack against defensive
aggregation rules. In particular, we exploit the catastrophic
forgetting phenomenon during the process of continual learning
to destroy the memory of the global model. Our proposed
framework, called OBLIVION, features two special components.
The first component prioritizes the weights that have the most
influence on the model accuracy for poisoning, which induces a
more significant degradation on the global model than equally
perturbing all weights. The second component smooths malicious
model updates based on the number of selected compromised
clients in the current round, adjusting the degree of poisoning
to suit the dynamics of each training round. We implement
a fully-functional prototype of OBLIVION in PLATO, a real-
world scalable federated learning framework. Our extensive
experiments over three datasets demonstrate that OBLIVION can
boost the attack performance of model poisoning attacks against
unknown defensive aggregation rules.

I. INTRODUCTION

Federated learning is a popular distributed learning
paradigm that has already been adopted by many well-known
companies such as Google [1], Apple [2], and Facebook
[3]. In federated learning, a central server aggregates local
updates submitted by edge devices (referred to as clients)
to establish a global model. The fact that local datasets are
kept private by clients gives rise to the concern of model
poisoning attacks, where a fraction of compromised clients
submit malicious model updates to pollute the global model,
as shown in Fig. 1. To deal with such risks, a line of defensive
aggregation rules (AGRs) have been developed to sift through
the model updates for outliers [4]–[9]. Although adaptive
model poisoning attacks [10]–[12] have been proposed to
constrain the poisoning perturbations so as to avoid being
discarded by the AGR, it is shown in a recent study that the
effectiveness of these attacks was greatly suppressed by state-
of-the-art defensive AGRs.
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Fig. 1: Model poisoning attacks in federated learning.

Inspired by the catastrophic forgetting phenomenon ob-
served in continual learning [13], [14], we seek to boost the
effectiveness of model poisoning attacks by concentrating on
destroying the model weights that are most important to the
learning task. More specifically, we develop a model poisoning
framework, called OBLIVION, that aims to induce amnesia
of the global model by offsetting the memory of benign
updates. OBLIVION features two novel components to solve
the following corresponding challenges:
B How do we adjust the amount of poison perturbation

over different weights?
Not all model weights are created equal. However, to our

best knowledge, all existing works treat the weights in the
global model as equal; i.e., the total budget of poisoning
perturbations is equally divided across the model weights.
Unfortunately, to evade being abandoned by defensive ag-
gregation rules, the total budget of poisoning perturbations is
bounded, usually by a tight constraint. As the global model in
federated learning normally has a large scale (e.g., millions of
weights), the poisoning perturbation assigned to each weight
is infinitesimal, imposing a minuscule impact on the global
model. To deal with this issue, we propose to prioritize the
weights that are most critical in learning for poisoning, in-
spired by explanatory work that only a few weights memorize
the most useful information during training, while others are
redundant. To assess the importance of weights, we leverage
the Elastic Weight Coalescing (EWC) [15] method, which is
used to score the importance of weights based on their changes
during training. With the weight prioritization component, we



can carefully channel the poison budget to achieve the highest
poisoning effect.

B How can we continually degrade the influence of previ-
ously learned knowledge?

Existing works compute the current amount of poisoning
perturbations to disturb a benign update in the current round.
Nonetheless, only considering the current training round limits
the poisoning effect for two reasons. First, federated learning
is a continual iterative learning process where the training
results of previous rounds will continue to influence the global
model. Second, training results in each round have large
variations as different sets of benign and compromised clients
are selected by the server to participate in training. To account
for these issues, we design a dynamic smoothing mechanism
that considers the momentum history of benign and malicious
updates during the model poisoning process.

Equipped with both weight prioritization and dynamic
smoothing components, OBLIVION intensifies the poisoning
effect in federated learning even if defensive aggregation rules
were adopted and unknown to the attacker. We have conducted
an extensive array of experiments on three datasets to evaluate
the effectiveness of OBLIVION against 4 defensive aggregation
rules, in comparison with 3 state-of-the-art poisoning attacks.
We show that OBLIVION enhances the poisoning effect by
as much as 39.2%, which is a significant degradation to the
federated learning model considering the scale of the global
model. By proposing OBLIVION, we reveal the vulnerability
of federated learning to potential advanced poisoning attacks,
which may inspire further research into more robust federated
learning aggregation rules.

Our original contributions in this paper are as follows.
B We design OBLIVION, an advanced model poisoning

attack framework that prioritizes critical weights for
poisoning to induce catastrophic forgetting of the global
model under defensive aggregation rules.

B We optimize the poisoning perturbations by considering
the history of model updates with a carefully-designed
dynamic smoothing mechanism, and by intensifying the
poisoning perturbations of important weights determined
by a prioritization algorithm.

B We conduct an extensive array of performance evaluations
in a real-world scalable framework, PLATO, and verify
the effectiveness of OBLIVION on 3 datasets under 4
defensive aggregation rules.

II. PRELIMINARIES AND RELATED WORK

A. Federated Learning

Federated learning is a popular form of distributed machine
learning in which many data owners (referred to as clients)
collaborate to train a global model without sharing private
local data. Consider a federated learning scenario with a set C
of clients and a server S. Each client ci ∈ C has a local dataset
Di. The local datasets of clients may not be independent and
identically distributed (i.i.d.). Client ci can use its local dataset
Di to fine-tune the received global model. Let L(θi,Di) denote

the loss function of client ci, where θi denotes the set of
model weights. The server maintains a global model θG via
aggregating the local models uploaded by clients. Specifically,
the pipeline for federated learning has three major steps.

1) Initialization. The server initializes the global model
weights as θ0G. It then randomly selects a subset of clients
C0 ⊆ C to participate in the first round of training.

2) Local training. At the t-th round of training, the server
randomly selects a subset of clients Ct ⊆ C to receive and
fine-tune the global model θt−1G using their local datasets.
Specifically, a selected client ci ∈ Ct aims to solve the
optimization problem minθti L(θ

t
i ,Di|θ

t−1
G ), where θti is

the local model weights of client ci at the t-th training
round initialized by θt−1G . The optimization problem is
usually solved by stochastic gradient descent. The model
update of client ci, calculated as ∇ti = θti − θt−1G , is
uploaded to the server.

3) Server aggregation. Having received the local updates by
all clients in Ct, the server applies a model aggregation
rule fagr to aggregate the local updates and obtain the
global model update∇tG = fagr({∇ti}ci∈Ct). The server
updates the global model as θtG = θt−1G + η∇tG, where
η is the learning rate adjusted to reach stable and fast
convergence. The local training and server aggregation
steps are then iterated until convergence, or until the
maximum number of training rounds is reached.

B. Model Poisoning Attacks in Federated Learning
In model poisoning attacks, the attacker manipulates model

updates sent from compromised clients to the server, aiming at
degrading the performance of the global model. According to
the goal of the attacker, poisoning attacks can be divided into
targeted poisoning attacks [17]–[19] and untargeted poisoning
attacks [11], [20], [21]. Targeted poisoning attacks aim to
minimize the accuracy of the global model on specific samples
while ensuring high accuracy on the other samples. In contrast,
untargeted poisoning attacks aim to minimize the accuracy
of the global model indiscriminately on any sample. As
untargeted poisoning attacks pose a wider threat to federated
learning, we focus on untargeted model poisoning attacks in
this work.

Based on the attacker’s knowledge about the aggregation
rule adopted by the server, existing untargeted model poison-
ing attacks [10], [12], [16], [22] can be categorized into AGR-
tailored attacks [22] and AGR-agnostic attacks [16].
B AGR-tailored attacks. The attacker is assumed to know

the aggregation rule adopted by the server; thus the
attacker is able to design its strategies to achieve the
best performance under the specific aggregation rule.
Nevertheless, the attack strategy may be ineffective if the
server changes the aggregation rule.

B AGR-agnostic attacks. The attacker does not have to know
the server’s aggregation rule. The attack strategies can be
generalized to various aggregation rules.

AGR-agnostic attacks are more practical as the server will
not reveal its aggregation rule in normal cases. Let ∇m



TABLE I: Representative AGR-agnostic attack methods.

Attack Methods Objective Function Perturbation Function

LIE [16] argmax
γ

||∇b −∇m||2 ≤ ||∇b −∇+||2 & ||∇− −∇b||2 ≤ ||∇− −∇m||2 ∇p
std

Min-Max [12] argmax
γ

max
i∈[n′]

||∇m −∇i||2 ≤ max
i,j∈[n′]

||∇i −∇j ||2 ∇p
uv || ∇

p
std || ∇

p
sgn

Min-Sum [12] argmax
γ

∑
i∈[n′]

||∇m −∇i||22 ≤ max
i∈[n′]

∑
j∈[n′]

||∇i −∇j ||22 ∇p
uv || ∇

p
std || ∇

p
sgn

denote the crafted malicious update for each compromised
client controlled by the attacker. ∇m is usually formed as the
summation of the estimated average benign update ∇b and
the scaled poisoning perturbation γ∇p, where the poisoning
perturbation is generated as ∇p = P(∇b) and γ is a scaling
factor. The scaling factor γ scales up ∇p to intensify the attack
performance, lest the benign updates from other clients dilute
the poisoning effect. However, γ cannot be too large; otherwise
the malicious update may be discarded by the aggregation
rule. ∇b is the average of all benign model updates ∇{i∈[n′]}
available to the attacker. AGR-agnostic attacks are conducted
by designing the perturbation function P(·) and choosing the
scaling factor γ to achieve certain optimization goals.

We now introduce three of the most popular AGR-agnostic
attacks that will be compared with our designs in Section V.
Table I summarizes the objective and perturbation functions
adopted by these attacks.

Little Is Enough (LIE). LIE [16] assumes that benign up-
dates ∇{i∈[n′]} are symmetrically distributed around ∇b. Be-
nign updates lying in the desirable and undesirable directions
of the attacker are treated as supporters (∇+) and opposers
(∇−). The malicious update is crafted between ∇b and ∇+ to
mislead the server to regard ∇− as outliers. Specifically, LIE
perturbs each dimension of ∇b by adding the inverse standard
deviation ∇p

std = −std(∇{i∈[n′]}) scaled by γ.
Minimize Maximum Distance (Min-Max). Min-Max [12]

applies three different perturbation functions to optimize the
attack performance, i.e., inverse unit vector ∇p

uv = − ∇b

||∇b||2 ,
inverse standard deviation ∇p

std, and inverse sign perturbation
∇p

sgn = −sign(∇b). It searches the largest γ such that the
distances between the malicious update and any benign update
(||∇m −∇i||2) are upper bounded by the maximum distance
between any two benign updates ( max

i,j∈[n′]
||∇i −∇j ||2).

Minimize Sum of Distances (Min-Sum). Min-Sum [12] is
similar to Min-Max, but uses a different strategy to evade
being detected as outliers. γ is computed such that the sum
of distances of the malicious update from all benign updates
(
∑
i∈[n′]

||∇m−∇i||22) is upper bounded by the sum of distance

between any two benign updates (max
i∈[n′]

∑
j∈[n′]

||∇i −∇j ||22).

III. PROBLEM FORMULATION

A. System Model

We consider a typical federated learning scenario with a
server S and a set of clients denoted as C. The server is
assumed to be a trustworthy entity that aims to aggregate a

global model based on the contributions of the clients. There
is an attacker who conducts model poisoning attacks via a
small subset of controlled clients (referred to as compromised
clients), denoted as Cm. In each training round, the server
dispatches the latest global model to a subset of randomly-
selected clients. A benign client who receives the global model
will fine-tune the model with its local dataset and then send the
model update back to the server. A compromised client who is
selected, in contrast, will follow the instructions of the attacker
to send malicious model updates to the server. After receiving
the model updates from all selected clients, the server updates
the global model according to a certain aggregation rule.
This process repeats until the global model converges or the
maximum number of training rounds is reached.

B. Threat Model
We define the threat model in terms of the knowledge,

capability, and goal of the attacker.
Knowledge. The attacker knows all the information about

the compromised clients (e.g., local datasets) but knows noth-
ing about the benign clients. In a certain training round,
the attacker is able to know the current global model if
any compromised client is selected; otherwise, the attacker
does not know the current global model. We assume that the
attacker does not know the aggregation rule adopted by the
server, which is a challenging but practical setting.

Capability. The attacker can manipulate the model updates
of all compromised clients. The attacker cannot interfere with
either the benign clients or the server.

Goal. The attacker aims to degrade the accuracy of the
global model as much as possible. In particular, we consider
an untargeted poisoning attack, which aims to indiscriminately
minimize the accuracy of the global model on any test sample.

C. Crafting Model Poisoning Attacks: Problem Formulation
Given the goal of sabotaging the global model, the attacker

carefully designs its poisoned model updates in each training
round. Existing works on AGR-agnostic model poisoning at-
tacks adopt a variety of objective functions F and perturbation
functions P , as summarized in Table I.

We define a generic AGR-agnostic model poisoning attack
as

argmax
γ,∇p

F(∇m,∇{i∈[n′]}) (1)

s.t. ∇b = favg(∇{i∈[n′]}), (2)

∇p = P(∇b), (3)
∇m = ∇b + γ∇p. (4)
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Fig. 2: OBLIVION: an architectural overview.

∇b is the average aggregate of all selected benign clients in
a given round. In fact, the attacker does not know ∇b as it
does not have access to the information of benign clients. We
assume that the attacker can estimate ∇b as it can leverage
the local datasets of compromised clients to train the current
global model and obtain a proximate ∇b. In other words, ∇b
is calculated as the average benign model updates ∇{i∈[n′]}
of compromised clients. ∇m is the poisoned model update of
each compromised client to be uploaded to the server. The
perturbation ∇p is obtained through the function P based on
the benign update ∇b.

IV. OBLIVION: DETAILED CONSTRUCTION

A. Design Rationale

The key to solving the optimization problem in Eq. (1) is to
determine the optimal poisoned model update ∇m by finding
the optimal combination of the perturbation∇p and the scaling
factor γ. Existing studies solve the optimization problem by
first determining the perturbation function P , e.g., the inverse
standard deviation∇p

std or the inverse sign of the benign update
∇p

sgn, and then computing the optimal γ that conforms to the
constraint. However, existing methods did not consider the
importance of different weights and the influence of the history
of model updates.

To enhance the effectiveness of model poisoning attacks,
we make full use of the available knowledge of the attacker
to refine poisoning perturbations with two specially designed
components in OBLIVION, as shown in Fig. 2.

Weight prioritization. According to explanatory analysis
on learning models [23], [24], only a fraction of all weights
is critical in determining the prediction results, while most
of the weights in a large-scale learning model are redundant.
Therefore, given the constraint on the perturbations, rather than
poisoning all the weights, it is better to focus on perturbing
the most important ones. To achieve this goal, we exploit the
catastrophic forgetting effect [25], [26] in continual learning,
which states that the model will easily forget what it has
learned in previous rounds, especially if the critical weights are
altered. Inspired by this fact, we intentionally incur amnesia
of the global model by perturbing the most important weights,
which is also the provenance of the name OBLIVION.

Dynamic smoothing. The history of benign model updates
in previous rounds will have a continual influence on the global
model. Rather than only perturbing the current benign model
updates, we come up with a dynamic smoothing strategy that
incorporates the history of benign model updates in calculating
malicious model updates in the current round.

B. Weight Prioritization

The weight prioritization component in OBLIVION aims
to pinpoint the most important weights towards inducing
catastrophic forgetting based on the currently received global
model θt−1G . Elastic Weight Coalescing (EWC) is a typical
method that is designed to protect neural networks from
catastrophic forgetting. It proposes an efficient way to calculate
the importance of weights and avoid catastrophic forgetting
by penalizing changes in the weights with large importance
scores.

Specifically, EWC deems a weight as critical if the weight
plays a significant role in minimizing the loss function during
training. Suppose that at the t-th round of training, at least one
compromised client is selected by the server to participate in
updating the current global model. Let Db denote the local
benign datasets available to the attacker. Following EWC,
we retrain the current global model θt−1G with Db until
convergence. The importance score of weight w in the updated
global model θtG is calculated as

Iw =
∂2L(θtG,Db|θ

t−1
G )

∂w2
, (5)

where L is the loss function of fine-tuning the current global
model θt−1G with the local dataset Db.

Rather than avoiding catastrophic forgetting, our goal is
to manipulate model updates to prompt the global model to
forget what it has learned from benign updates. Hence, instead
of penalizing changes in important weights, we promote
forgetting by reinforcing modifications to important weights.
To achieve this, we rank all weights in a non-ascending order
of their importance scores. Let ε denote the fraction of weights
to prioritize and |θ| denote the total number of weights in the
global model. We construct a |θ|-dimensional priority vector
I. For the top ε|θ| weights with the highest importance score,
we assign a priority of α1 to the corresponding elements in I.
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Fig. 4: Toy example of dynamic smoothing.

The remaining elements are assigned a priority of α2 < α1.
After that, when calculating the poisoned model update, the
weights with a high priority will be given a larger poisoning
perturbation. The detailed process of using the priority vector
I to intensify the poisoning perturbation of important weights
is given in Section IV-D.

Toy example. As shown in Fig. 3, given a global model with
5 weights, we fine-tune the global model with a local dataset
and then compute the importance score as I1 = 10, I2 =
3, I3 = 8, I4 = 15, I5 = 2. We aim to select a fraction of ε =
0.4 of the weights to prioritize. Therefore, the top 0.4×5 = 2
weights are given a priority of α1 = 2, and the remaining
weights are given a priority of α2 = 0. The priority vector is
I = [2, 0, 0, 2, 0].

C. Dynamic Smoothing

Existing works [12], [16] directly use the current perturba-
tion P(∇b) as the poisoning perturbation, which ignores the
influence of the history of benign updates in previous training
rounds. To tackle this problem, we apply a dynamic smoothing
algorithm to the current benign update as

∇̃bt = βt∇bt + (1− βt)∇̃bt−1, (6)

where ∇bt is the benign update of the t-th round, ∇̃bt is
the smoothed benign update of the t-th round, and βt is
the smoothing factor determined by the number of selected
compromised clients in the t-th round.

Algorithm 1: OBLIVION

Input: P,F of a specific model poisoning attack,
global model θt−1G , local dataset Di, estimated
benign update ∇bt , prioritization fraction ε,
priority score α1 and α2, smoothing factors βt
and ξt, dynamic smoothing threshold κ.

Output: smoothed poisoned model update ∇̃mt .
1 Train the current global model θt−1G on the local

datasets Db until convergence;
2 Compute the importance score Iw of all weights;
3 Set the prioritization vector I by giving the top ε|θ|

weights a priority of α1 and the remaining weights a
priority of α2;

4 Smooth the benign update to obtain ∇̃bt ;
5 Compute the perturbation vector ∇pt = I� P(∇̃bt);
6 Compute the optimal γt based on F , ∇pt ;
7 Compute the poisoned model update as
∇mt = ∇bt + γt∇pt ;

8 Smooth the poisoned model update to obtain ∇̃mt .

Moreover, we can also apply the dynamic smoothing algo-
rithm to the entire poisoned model update as

∇̃mt = ξt∇mt + (1− ξt)∇̃mt−1, (7)

where ∇̃mt is the smoothed poisoned update of the t-th round
and ξt is the smoothing factor.

Intuitively, if more compromised clients are selected in
the t-th FL round, the model poisoning attack can be more
powerful, thus we may choose larger βt and ξt to intensify the
effect of the current round of model updates; otherwise, we
may choose smaller βt and ξt to be more conservative about
the attack. In our experiments, the values of βt and ξt are
determined by a threshold κ. If the number of compromised
clients selected in the t-th round is greater than κ, we set
βt = βht ∈ (0.5, 1] and ξt = ξht ∈ (0.5, 1], respectively.
Otherwise, we set βt = 1− βht and ξt = 1− ξht .

Toy example. As shown in Fig. 4, our dynamic smoothing
algorithm is applied to the benign update and the entire poi-
soned model update. To smooth the benign update, the current
benign update ∇bt scaled by the smoothing factor βt = 0.8
is summed with the smoothed benign update of the (t − 1)-
th federated learning round ∇̃bt−1 scaled by (1 − βt) = 0.2
to obtain the smoothed benign update of the current round
∇̃bt = [6, 7, 3, 8, 2]. The smoothed poisoned model update
∇̃mt = [10, 6, 5, 14, 4] can be computed in a similar way.

D. OBLIVION: An Integrated Framework

To prompt the global model to forget what it has learned
from benign updates, our intuition here is to reinforce the
modifications to important weights. Recall that the priority
vector I is computed in the weight prioritization component,
where important weights are assigned a larger priority than
unimportant weights. By using I to adjust the primitive per-
turbation vector P(∇̃bt), we can perturb ∇bt in a smarter way.



With I and P(∇̃bt), the perturbation vector ∇pt is computed as

∇pt = I� P(∇̃bt), (8)

where � is the Hadamard product.
We summarize the integrated framework of OBLIVION in

Algorithm 1. Given the perturbation function P and the objec-
tive function F of a specific model poisoning attack (e.g., Min-
Max), OBLIVION equips the attack with the weight prioritiza-
tion and the dynamic smoothing components to intensify the
model poisoning effect. As shown in Algorithm 1, in line 1∼3,
we calculate the importance score of each weight given the
current global model. In line 4∼5, we compute the forgetting-
augmented perturbation ∇pt based on the smoothed benign
update ∇̃bt and the prioritization vector I. Note that in this way
the perturbation budget of the primitive perturbation vector
P(∇̃bt) will be reallocated by I to amplify the catastrophic
forgetting phenomenon. In line 6, we find the optimal scaling
factor γt by using the corresponding objective function F and
the calculated perturbation vector ∇pt . In line 7∼8, we further
smooth the poisoned model update and send the result ∇̃mt to
the server.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets and models. We consider three datasets: FEMNIST
[27], CIFAR-10 [28], and Purchase [29]. All datasets are
partitioned in a non-i.i.d. manner to simulate the production
federated learning practice. To make a fair evaluation, we
follow the experiment settings adopted in the existing literature
[20], [21].
B FEMNIST is a grayscale image dataset built for the char-

acter classification task with 62 classes, 3,550 users, and
805,263 images of size 28×28 pixels. Each of the 3,550
users has personal data of handwritten digits or letters. We
consider a total of 3,400 clients participating in federated
learning and assign the first 3,400 pre-divided user data
to these clients. LeNet5 [30] is used for the global model.

B CIFAR-10 is a 10-class class-balanced image dataset
with 60,000 images of size 32 × 32 pixels (50,000 for
training and 10,000 for testing). We consider 500 clients
participating in federated learning and divide the 50,000
training samples using the Dirichlet distribution [31] with
concentration parameter α = 1 among the clients. VGG-
11 [32] is used for the global model architecture.

B Purchase is a class-imbalanced dataset built for the
customer classification task with 100 classes and 197,324
binary feature vectors. The feature vector of each sample
has a length of 600. The first 180,000 samples are used
for training and the remaining are used for testing. We
consider 1,000 clients participating in federated learning.
We divide the 180,000 training data samples using the
Dirichlet distribution with α = 1 among the clients. A
fully-connected network with a layer size of {600, 1024,
100} is used for training the global model.

TABLE II: Parameter settings.

Datasets Baseline ε α1 α2 β1 = ξ1 κ P

FEMNIST
LIE 10% 2 0 0.7 6 ∇pstd

Min-Max 30% 2 0 0.7 6 ∇psgn
Min-Sum 30% 1.5 0.5 0.7 6 ∇puv

CIFAR-10
LIE 10% 2 0 0.7 6 ∇pstd

Min-Max 10% 2 0 0.7 6 ∇pstd
Min-Sum 10% 2 0 0.7 6 ∇pstd

Purchase
LIE 10% 2 0 0.7 6 ∇pstd

Min-Max 10% 2 0 0.7 6 ∇puv
Min-Sum 10% 2 0 0.7 6 ∇puv

Aggregation rule. Aggregation rules are designed to defend
against poisoning attacks in federated learning. We evalu-
ate the performance of OBLIVION under one non-defensive
aggregation rule, FEDAVG (the most popular and effective
aggregation rule) and four popular defensive aggregation
rules, namely MULTI-KRUM, TRIMMED-MEAN, MEDIAN,
and AFA. Suppose that at most m of a total of n clients
are compromised by the attacker.
B MULTI-KRUM [4] is an advanced version of KRUM [4],

which selects the model update closest to its n−m− 2
neighboring model updates in terms of Euclidean dis-
tance as the global model. In MULTI-KRUM, the server
maintains a selection set (initialized to the set of model
updates received in the current round of iteration) and a
remaining set (initialized to empty). The server selects
a model update using KRUM from the remaining set
and adds it into the selection set. This process repeats
until the selection set includes b model updates such that
n − b > 2m + 2. The final aggregate is the average of
the model updates in the selection set.

B TRIMMED-MEAN [5] aggregates each dimension of
model updates separately. For each dimension, it first
sorts the value of the dimension of the received model
updates and then removes p largest and p smallest values
in each dimension. The average of the rest values is set
as the aggregate of this dimension.

B MEDIAN [5] also aggregates each dimension of model
updates separately. Different from TRIMMED-MEAN,
MEDIAN directly sets the average value of the model
updates in one dimension as its aggregate.

B AFA [8] utilizes the difference of cosine similarity
between malicious and benign updates to remove the
malicious updates. AFA computes the ranges in terms
of the mean, median, and standard deviation of cosine
similarity and discards the out-of-range updates.

Federated learning framework. We implement and eval-
uate a fully-functional prototype of OBLIVION on PLATO1,
an open-source real-world framework for scalable federated
learning. To the best of our knowledge, we are the first to
implement model poisoning attacks in real-world federated
learning scenarios. The same federated learning setting is used
for all experiments. Specifically, the maximum number of

1Online at: https://github.com/TL-System/plato



TABLE III: Attack performance of OBLIVION. ? denotes the highest accuracy of the global model in a non-convergence case.

Non-Robust AGR Robust AGR
Datasets Attack Methods

FEDAVG TRIMMED-MEAN MULTI-KRUM AFA MEDIAN Average Io
LIE 3.5%? 39.3%? 60.2% 55.7% 29.8%

OBLIVION-LIE 2.4%? 30.6%? 58.9% 48.4% 22.2%? 6.2%

Min-Max 2.6%? 36.2% 59.8% 62.2% 26.2%
OBLIVION-Min-Max 2.4%? 29.5% 58.0% 53.6% 22.3%

5.3%

Min-Sum 3.8%? 37.7% 51.4% 59.2% 30.0%

Purchase

OBLIVION-Min-Sum 2.4%? 33.2% 39.3% 53.3% 21.9%
7.7%

LIE 2.6%? 29.0% 69.0% 7.0%? 49.5%?

OBLIVION-LIE 2.4%? 19.0%? 29.8%? 5.4%? 22.5%? 19.5%

Min-Max 2.6%? 55.4% 67.8% 64.2% 51.4%
OBLIVION-Min-Max 2.4%? 53.2% 55.4% 56.9% 48.1%

6.3%

Min-Sum 2.6%? 59.6% 68.2% 62.4% 51.8%

FEMNIST

OBLIVION-Min-Sum 2.4%? 56.5% 62.2% 55.6% 43.1%
6.2%

LIE 11.6%? 57.8% 61.9% 59.3% 54.5%
OBLIVION-LIE 17.9%? 56.0% 58.6% 52.9% 51.9%

3.5%

Min-Max 16.5%? 58.2% 59.2% 63.9% 52.5%
OBLIVION-Min-Max 12.0%? 55.8% 59.0% 35.3% 51.5%

8.1%

Min-Sum 16.8%? 59.7% 62.8% 63.9% 51.2%

CIFAR-10

OBLIVION-Min-Sum 18.6%? 56.7% 60.2% 58.9% 47.2%
3.7%

training rounds is set as 200. In each round of training, the
server randomly selects 30 clients to participate in the training.
For local training by each client, we use a batch size of 10,
a local training epoch number of 1, and the SGD optimizer
with a learning rate of 0.05. Unless specified otherwise, we
assume that the attacker compromises 20% of the clients.

OBLIVION settings. We apply the weight prioritization and
the dynamic smoothing components of OBLIVION to existing
AGR-agnostic model poisoning attacks to form their enhanced
version. The parameters of OBLIVION include the percentage
of important parameters ε, the priority parameters α1 and
α2, the threshold κ, the smoothing factors β and ξ, and
the perturbation function P . In the experiments, we set the
values of β and ξ to be the same. We integrate OBLIVION
with three AGR-agnostic model poisoning attacks to obtain
the enhanced version. Unless specified otherwise, the default
parameter settings of OBLIVION are shown in Table II. Recall
that to get the priority vector I in OBLIVION, we need to
use Db (the local benign datasets of clients available to the
attacker) to train the global model until convergence, which
will take a relatively long time if the dataset is large. In the
experiments, we utilize the local datasets of all compromised
clients to compute the priority vector I in the initial round and
use the computed I in subsequent training.

Evaluation metrics. For a given federated learning setting,
we evaluate the accuracy of the global model under the
existing attack (denoted as Ag) and under the OBLIVION-
enhanced attack (denoted as Aog). We find in our experiments
that the global model may fail to converge in the face of
powerful poisoning attacks. In this case, the accuracy of
the global model first increases and then keeps decreasing.
We report the highest accuracy achieved during the process
as Ag and Aog under these circumstances. We define attack
improvement, Io = Ag −Aog , as the reduction in the accuracy
of the global model due to the introduction of OBLIVION.

B. Overall Attack Performance

To evaluate the performance of OBLIVION, we first integrate
OBLIVION with three state-of-the-art AGR-agnostic model
poisoning attacks (LIE, Min-Max, and Min-Sum) and compare
the performance of the three attacks with and without OBLIV-
ION. Table III shows that OBLIVION can enhance existing
AGR-agnostic model poisoning attacks under any combination
of aggregation rules and datasets. The results followed by ?

indicate that the global model does not converge.
For Purchase, we can observe that OBLIVION enhances

the attack effect of Min-Sum by an average 7.7% reduction
in the accuracy of the global model. It is obvious that such
a drop in global model accuracy can impose huge losses on
federated learning, especially when the dataset is large. Simi-
larly, OBLIVION also boosts the attack effect of Min-Max and
Min-Sum against various aggregation rules. For CIFAR-10, we
can observe that OBLIVION dramatically reduces the accuracy
of the global model under AFA by 28.6% compared to the
original Min-Max. For the given four defensive aggregation
rules, OBLIVION-AFA achieves an average attack improve-
ment of 19.5%. Similar effects can be seen in FEMNIST.
The introduction of OBLIVION to LIE can even change the
global model from convergence to non-convergence under
MULTI-KRUM and TRIMMED-MEAN, and increase the attack
performance by 39.2% and 10.0% respectively in regard of the
highest global model accuracy, which further demonstrates the
effectiveness of OBLIVION.

C. Ablation Study

OBLIVION consists of two key components, i.e., weight
prioritization and dynamic smoothing. To investigate the con-
tribution of weight prioritization and dynamic smoothing com-
ponents to the attack performance of OBLIVION, we conduct
ablation studies to test the contribution of the two components
to the attack performance.



TABLE IV: Ablation study of the weight prioritization and the dynamic smoothing components. The dataset is Purchase and
results report attack improvement Io. ? denotes the highest achieved accuracy of the global model in a non-convergence case.

Baseline Components TRIMMED-MEAN MULTI-KRUM AFA MEDIAN

LIE
weight prioritization 4.1%? 0.3% 6.3% 4.4%?

dynamic smoothing 3.4%? 22.1% 6.2% 5.8%?

weight prioritization & dynamic smoothing 8.7%? 1.3% 7.3% 7.6%?

Min-Max
weight prioritization 2.0% 0.8% 7.8% 3.0%
dynamic smoothing 0.6% 0.4% 7.8% 2.1%

weight prioritization & dynamic smoothing 6.7% 1.8% 8.6% 3.9%

Min-Sum
weight prioritization 4.9% 0.6% 4.3% 6.7%
dynamic smoothing 0.6% 11.2% 3.4% 7.4%

weight prioritization & dynamic smoothing 4.5% 12.1% 5.9% 8.1%

The attacks with weight prioritization or dynamic smoothing
can be seen as two variants of the OBLIVION by fine-tuning the
default parameter settings. For OBLIVION that only activates
the weight prioritization component, denoted as OBLIVION-
P, we set κ = 0 and β = ξ = 1. For OBLIVION that
only activates the dynamic smoothing component, denoted as
OBLIVION-S, we set α1 = α2 = 1 to stop the forgetting
augmentation with the priority vector I. We use OBLIVION
to denote the integrated attack with both weight prioritization
and dynamic smoothing components.

Table IV reports the attack improvement Io. It can be seen
that both OBLIVION-P and OBLIVION-S promote the perfor-
mance of AGR-agnostic attacks, since the attacks, after adding
either weight prioritization or dynamic smoothing component,
outperform the original attacks. We can also observe that, in
most cases, OBLIVION with both weight prioritization and
dynamic smoothing components leads to a stronger attack
than merely using one of them. For instance, when facing
TRIMMED-MEAN, OBLIVION enhances Min-Max by reducing
the accuracy of the global model by 4.7% and 6.1% compared
to OBLIVION-P and OBLIVION-S, respectively.

We also compute the expectation and standard deviation
of the attack improvement Io for OBLIVION-P, OBLIVION-
S, and OBLIVION to provide more insight into the ablation
study results. The results show that OBLIVION has the largest
expectation of E(Io) = 6.4%. OBLIVION-S has a slightly
lower expectation than OBLIVION with E(Io) = 5.9%, and
OBLIVION-P has the lowest expectation E(Io) = 3.8%.
When it comes to the standard deviation, OBLIVION-S has
the most fluctuating performance with Std(Io) = 6.1%, while
OBLIVION-P shows the most stable attack enhancement with
Std(Io) = 2.5%, and OBLIVION has a similar stability with
Std(Io) = 3.1%. From the analysis of the statistics, we can
know that using dynamic smoothing brings a higher reward
compared to weight prioritization, but the gains come at a
price of instability. Weight prioritization is the most steady
method to improve attack performance. OBLIVION combines
the advantages of weight prioritization and dynamic smoothing
to find a balance between attack performance and generality.

D. Robustness

We now evaluate the impact of parameters on the attack
performance of OBLIVION in terms of the proportion of
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Fig. 5: Effect of compromised clients proportion on attack
improvement Io.

compromised clients, the fraction of perturbed weights, and
the smoothing factor. The threshold κ is set as the expectation
of compromised clients selected in each round.

Effect of the proportion of compromised clients. Fig. 5
shows the attack improvement Io by adding OBLIVION to
Min-Max attack when the proportion of compromised clients
varies from 10% to 25% for Purchase. We note that OBLIV-
ION-Min-Max outperforms Min-Max for all the combinations
of defensive aggregation rules and the proportion of com-
promised clients. Meanwhile, we can observe that as the
proportion of compromised clients increases, the attack im-
provement Io of OBLIVION with respect to Min-Max under all
defensive aggregation rules first rises and then decreases. This
is because our dynamic smoothing component is less effective
in improving attack performance when many compromised
clients participate in training. Recall that for a given federated
learning round, the attacker uses the average aggregate of
benign updates to approximate the average aggregate ∇b of
all selected benign clients. With more compromised clients,
the attacker can better approximate the average benign update
∇b, resulting in a more aggressive poisoned model update
∇m. When the proportion of compromised clients is low, the
dynamic smoothing component in OBLIVION can use the his-
tory benign model updates to help the attacker better approach
∇b. When the proportion of compromised clients exceeds



TABLE V: The impact of the fraction of important weights ε
on the attack performance of OBLIVION. The baseline is Min-
Max. The dataset is Purchase. ? denotes the highest achieved
accuracy of the global model in a non-convergence case.

Attack Methods
Non-Robust AGR Robust AGR

FEDAVG TRIMMED-MEAN MULTI-KRUM AFA MEDIAN

Baseline 2.6%? 36.2% 59.8% 62.2% 26.2%

ε = 0.1 2.4%? 29.5% 58.0% 53.6% 22.3%

ε = 0.3 2.3%? 30.3% 50.1% 49.6% 24.7%

ε = 0.5 2.3%? 37.2% 52.3% 56.0% 26.0%

a threshold, the role of historical information in improving
attack performance is gradually weakening. The experimental
results indicate that OBLIVION has a good improvement effect
in attack performance when the proportion of compromised
clients is relatively low, which is the most practical setting in
production federated learning [22].

Impact of the fraction of important weights. We then
investigate the impact of the value of ε on the performance
of OBLIVION. Recall that ε is the fraction of the weights
to prioritize. The larger ε is, the more weights are iden-
tified as important and given intensified perturbation. Then
the resulting poisoned model update has a stronger attack
capability, thereby weakening the dilution of the poisoning
effect by updates from benign clients. However, as ε continues
to increase, the more likely that the poisoned update will be
identified as anomalous and be removed, which will lead to a
decrease in attack performance. Hence, there is a sweet spot
between perturbation strength and attack performance.

As shown in Table V, with the increase of ε, the accuracy
of the global model under the defense of MULTI-KRUM and
AFA first decreases and then increases. We can also observe
that the accuracy of the global model under the defense of
TRIMMED-MEAN and MEDIAN keeps increasing when the
value of ε increases from 0.1 to 0.5. This is because the sweet
spot of TRIMMED-MEAN and MEDIAN in terms of ε is smaller
than 0.1. It indicates that TRIMMED-MEAN and MEDIAN are
more sensitive to ε compared to MULTI-KRUM and AFA. It
is known that TRIMMED-MEAN and MEDIAN are dimension-
wise aggregation rules that aggregate each dimension of model
updates separately. They can better detect OBLIVION since
OBLIVION employs dimension-wise perturbation reinforce-
ment. Thus, TRIMMED-MEAN and MEDIAN have better attack
performance when ε is relatively small.

Impact of smoothing factors. We also evaluate the impact
of β and ξ on the attack performance of OBLIVION. In the
dynamic smoothing algorithm we designed, the larger the
values of β and ξ, the greater the influence of the model
update calculated in the current round on the final poisoned
model update. Table VI depicts the change in the global model
accuracy when varying the defense methods and the smoothing
factor values. The results show that, with the increase of β, the
accuracy of the global model under all defensive aggregation
rules first decreases and then rises. This is because when the
values of β and ξ are set too large, the attacker will focus

TABLE VI: Impact of smoothing factors β and ξ on the attack
performance of OBLIVION. The baseline is Min-Max. The
dataset is Purchase. ? denotes the highest achieved accuracy
of the global model in a non-convergence case.

Attack Methods
Non-Robust AGR Robust AGR

FEDAVG TRIMMED-MEAN MULTI-KRUM AFA MEDIAN

Baseline 2.6%? 36.2% 59.8% 62.2% 26.2%

ξ = β = 0.9 2.4%? 31.5% 58.3% 56.0% 28.5%

ξ = β = 0.7 2.4%? 29.5% 58.0% 53.6% 22.3%

ξ = β = 0.5 2.6%? 32.1% 59.6% 59.9% 25.6%

too much on the current round of learning without using the
historical information sensibly, thereby limiting the perfor-
mance of model poisoning attacks. Conversely, if the values
of β and ξ are set too small, the attack will lose too much
information learned in the current round of training, resulting
in the degradation of the attack performance. In Table VI,
we can also observe that although the attack performance of
OBLIVION-Min-Max varies with the values of β and ξ, it
consistently outperforms the original Min-Max attack. This
further demonstrates the effectiveness of OBLIVION.

Discussions. Our experimental results verify that OBLIVION
can effectively enhance the poisoning effect of existing AGR-
agnostic model poisoning attacks in federated learning. In this
work, we consider a strong threat model that the attacker does
not know the aggregation rule adopted by the server. Thus, we
are more concerned about generalizing OBLIVION to enhance
the poisoning effect under different unknown aggregation rules
(transferability); i.e., the average attack improvement over all
defensive aggregation rules. Under a weaker threat model, if
the attacker knows the specific aggregation rule adopted by
the server, we can launch a stronger version of OBLIVION by
fine-tuning the parameters against the target aggregation rule.

VI. CONCLUDING REMARKS

In this paper, we present the motivation, design, and
evaluation of OBLIVION, an AGR-agnostic model poisoning
attack that enhances the attack performance in federated learn-
ing under defensive aggregation rules. OBLIVION intensifies
the poisoning effect with weight prioritization and dynamic
smoothing components. The former concentrates the poisoning
perturbations on the most important weights, and the latter
takes into account the influence of history benign updates.
Extensive experimental results confirm the effectiveness of
OBLIVION for corrupting the global model.

The promising results of OBLIVION may spur future re-
search in various aspects. First, more powerful poisoning
attacks may be designed based on new explanation theories
that reveal the fundamental vulnerability of learning models.
Second, to defend against model poisoning attacks in federated
learning, more robust aggregation rules should be proposed
to better differentiate anomalous model updates even if the
attacker adjusts its strategies to evade being detected. Finally,
other forms of attacks under the federated learning settings,
e.g., membership inference attacks, may be further enhanced
with similar strategies.
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