
PCube: Improving Power Efficiency
in Data Center Networks

Lei Huang, Qin Jia, Xin Wang
Fudan University
Shanghai, China

08300240053@fudan.edu.cn
08300240080@fudan.edu.cn

xinw@fudan.edu.cn

Shuang Yang
Stanford University

California, USA
shyang@stanford.edu

Baochun Li
University of Toronto

Toronto, Canada
bli@eecg.toronto.edu

Abstract—To alleviate the growing concern of energy waste in
networked devices, we present PCube, a server-centric data center
structure that conserves energy by varying bandwidth availability
based on traffic demand. PCube not only supports a low-power
mode for existing data centers offering full bisection bandwidth
without hardware modification or re-wiring, but also provides an
alternative for new data centers at a lower construction cost. The
bandwidth demand could be dynamic and scalable in the optimal
way when considering conserving the energy waste. To further
reduce the cost, we take advantage of traffic locality, and propose
Hybrid PCube, in order to offer different bandwidth to different
servers. We use samples of traffic from a real-world production
data center with full bisection bandwidth across thousands of
servers, and evaluate our proposed algorithm using these collected
samples. Our experimental results have shown convincing evidence
that the proposed algorithm is able to substantially reduce energy
costs incurred by networked devices in data centers.

Index Terms—Energy Efficiency; Data Center Network; Local-
ity Architecture;

I. INTRODUCTION

Energy use is a central issue for data centers. Power draw
for data centers ranges from a few kW for a rack of servers
in a closet to several tens of MW for large facilities [1]. For
higher power density facilities, electricity cost is dominant
operating expense and account for over 10% of the total cost
of ownership (TCO) of a data center [2]. Data centers alone
contribute significantly to the energy consumption problem:
the US Environmental Protection Agency estimates that data
centers consume about 61 billion kilowatt-hours of electricity
in 2006, which costs $4.5 billion and accounts for 1.5% of the
total bill for electricity used in the entire United States [3].
Due to the need of interconnecting servers in data centers, a
large number of network switches are used to form network
topologies within a data center. Network switches themselves,
however, are computing devices and their energy consumption
should not be ignored.

1This work is supported in part by 863 program of China under Grant No.
2009AA01A348, National Key S&T Project under Grant 2010ZX03003-003-
03, Shanghai Municipal R&D Foundation under Grant No. 09511501200 and
FDUROP (Fudans Undergraduate Research Opportunities Program). Xin Wang
is the corresponding author.

The good news is that there exist abundant opportunities to
optimize energy consumption of network switches in data cen-
ters. Recently proposed data center structures, such as BCube
[4], fat-tree [5] and VL2 [6], offer full bisection bandwidth.
With such network structures, observations in previous work
have shown that fewer than 10% links are more than 95%
utilized, and more than 80% of these links have very light traffic
[7].

By budgeting power output for different Ethernet cable
lengths, and by automatically powering down ports with no
links, existing works have already taken initial steps towards
conserving the energy used by switches. Gupta et al. have
proposed several line cards sleeping algorithms, taking advan-
tage of intermittent traffic patterns [8], [9]. Green switches as
products have already appeared in the market [10]. However,
most of such green switches are designed to reduce power on
the line cards only. Recent experiments have identified that an
idle switch still consumes about 70% of the electricity costs
[11].

Fig. 1 shows samples that we collected on an operational data
center in a 24-hour period, performing MapReduce for machine
learning on July 20, 2010. It is clear that traffic volumes vary
significantly over the 24-hour period, but remain far lower than
the daily peak most of the time. It is therefore conceivable that,
if new algorithms and structures could be designed to allow
most of the switches in a network structure to remain dormant
most of the time, energy consumption levels may adapt to traffic
volumes in a rhythmic fashion over time.

In this paper, we present PCube, an elastic data center
structure that is designed to optimize power efficiency. PCube
allows energy consumption in a network structure to scale
according to traffic demand patterns, yet still maintains full
bisection bandwidth, enjoyed by recent data center network
structures in the literature. The highlight in the PCube design
is to power off some of the switches in order to support various
network bandwidth demand and conserve energy. PCube can be
directly applied to existing hypercube structured data centers,
e.g., BCube [4] and MDCube [12], without any hardware
modification or re-wiring. After powering off a subset of
switches, the residual network structure in PCube is still able to

2

12:00 p.m. 5:00 p.m. 10:00 p.m. 3:00 a.m. 8:00 a.m.
time

Tr
af

fic
 ra

te
Aggregate rate of the entire network
Aggregate rate of top 20 servers

(a) Machine learning service using MapReduce.

12:00 p.m. 5:00 p.m. 10:00 p.m. 3:00 a.m. 8:00 a.m.
time

Tr
af

fic
 ra

te

Aggregate rate of the entire network
Aggregate rate of top 20 servers

(b) Storage service.

Fig. 1. Aggregate throughput collected from an operational data center with
thousands of servers on July 20, 2010.

maintain favorable properties of hypercube structures, such as
fault tolerance and support for broadcast traffic. PCube can, of
course, be also deployed when a new data center is constructed.

A highlight of PCube is its flexibility: PCube can be adaptive
to traffic patterns over time. When traffic is light, the number
of edge-disjoint spanning trees in PCube, q, could be small.
For example, in Fig. 2(b), a PCube(2, 4, 3) accommodates the
same number of servers as PCube(2, 4, 4), but powers off 25%
of all switches, offering a speedup of 3 for broadcast. Therefore,
PCube(2, 4, 3) saves 25% of the energy used by switches, as
compared with PCube(2, 4, 4). PCube(2, 4, 3) could turn to
PCube(2, 4, 2) by powering 8 more switches off, thus saving
50% of the switch power while offering a speedup of 2 for
broadcast, as shown in Fig. 2(c). The details of the PCube’s
parameters will be presented in Sec. III.

To take PCube a step further, we take traffic locality into
consideration. In Fig. 1(b), 20 most heavily loaded servers
account for about 80% of the total traffic load in the data
center with thousands of servers. We propose Hybrid PCube
so that differentiated bandwidth availability may be allocated
to different servers. The simulation which establishes Hybrid
PCube can conserve 20% to 50% electricity cost by network
devices.

The remaining of the paper is organized as follows. Sec. II
compares PCube and recently proposed data center network
architectures. Sec. III describes the structure of PCube, in-
cluding its construction and graph properties. In Sec. IV, we
introduce Hybrid PCube to provision bandwidth with locality.
The configuration and routing of PCube is introduced in Sec. V,
and its energy efficiency is evaluated in Sec. VI. Finally,
Sec. VII concludes the paper.

(a) BCube3(2) or PCube(2, 4, 4)

(b) An example of PCube(2, 4, 3), uses 25% less switches and
NIC power, and possesses 3 edge-disjoint paths for any two
servers.

(c) An example of PCube(2, 4, 2), uses 50% less switches and
NIC power, and possesses 2 edge-disjoint paths for any two
servers.

Fig. 2. Examples of BCube and PCube with 16 servers.

II. RELATED WORK

In recent literature, there are two main streams of data center
network structure designs: server-centric and switch-centric.
DCell [13] and BCube [4] are two representative server-centric
data center structures. In server-centric data center structures,
most routing tasks are performed at the servers. In this context,
we focus on BCube, since it offers higher bandwidth with more
potential for conserving energy.

BCube is a new network architecture designed for shipping
container based, modular data center. The servers in BCubek(n)
are organized in hypercube nk. The BCube architecture exhibits
high performance in one-to-one, one-to-all and all-to-all traffic
cases. Fig. 2(a) illustrates BCube3(2).

Comparing with BCube, PCube, proposed in this paper,
offers different levels of bandwidth. A PCube(n, k, q) structure
deploys nk servers with q edge-disjoint spanning trees to
provide bandwidth. Fig. 2(a) is also a special case of PCube —
PCube(2, 4, 4). BCubek−1(N) has Nk k-port servers connected
by kNk−1 N -port mini-switches. BCubek−1(N) has k edge-
disjoint spanning trees, thus providing one-to-all traffic at a
speedup of k.

Moreover, as BCubek−1 is expanded to BCubek to serve
more servers, all servers have to add one additional network
interface (NIC), and the speedup of one-to-all traffic has to
increase by one, which is not necessary in PCube. As a result,
PCube could accommodate more servers using fewer switches,
NICs and less power. For example, only 8 servers with 3 NICs
can be connected by the 2-port mini-switches in BCube, but in
Fig. 2(b), 16 servers are connected.

Fat-tree [5] and VL2 [6] are typical switch-centric data center
structures. Based on fat-tree, ElasticTree [11] was proposed to

3

conserve energy by managing network-wide traffic. Although
both PCube and ElasticTree try to design solutions to providing
bandwidth and power scalability in data centers, they belong
to two different categories, as PCube is server-centric and E-
lasticTree is switch-centric. A comparison between ElasticTree
and PCube is very much like that between fat-tree and BCube
[4]: PCube (BCube) provides better one-to-all traffic support
than ElasticTree (fat-tree); besides, PCube is more feasible
for deployment since servers are more programmable than
switches. With respect to energy saving, the maximum energy
consumption in network devices in PCube is about half of that
in ElasticTree with the same number of servers [4].

Gyarmati László and Trinh Tuan Anh discussed the impact
of data center architecture on reducing energy consumption
[14]. They offer one solution by designing data center with
more parameters [14]. Therefore, the data center could adapt
to more application environment with more precise energy con-
sumption. PCube offers more parameter than other architectures
such as BCube and DCell and we will see this parameter of
bandwidth will contribute to the conservation of energy.

The energy aware routing in the data centers [15] try to use
less network switches to provide services. The energy aware
routing method analyzes the bandwidth demand in a static
environment and uses heuristic routing algorithm to reduce the
number of switches in the active network. Comparing with ap-
plying energy aware routing in BCUbe, PCube provides a more
simple and efficient path-finding. PCube can be dynamically
reconfigured and be able to reduce more switches because of
the graceful network properties of PCube discussed later.

III. PCUBE STRUCTURES

PCube is designed to be able to dynamically adjust its
network structure according to traffic volumes. When the traffic
demand is low, we turn off a subset of switches for power sav-
ing; when traffic demand rises, we power on more switches to
increase the network capacity. The adjustment is performed in
a way that there are always multiple parallel paths between any
two servers. PCube therefore provides high network capacity
and is power efficient at the same time. Of course, even when
dynamic network structure is not preferred, PCube can still
be used for cost saving when full bisection bandwidth is not
needed. To describe the PCube structure precisely, we start by
introducing some notations in PCube.

A. Identifying Servers and Switches

There are two types of devices in PCube network: servers
and switches. A server has q network ports (q ≥ 2) and a
switch has n ports (n ≥ 2). We use PCube(n, k, q) to denote a
PCube network, where k is the number of levels of the switches
(k ≥ q).

Servers are organized as a hypercube of nk, and switches
connect the servers through the hypercube. Thus, each server
and switch can be identified by a unique id of k dimensions.
Every server is assigned a server id akak−1 . . . a1, where
ai(i ∈ [1, k]) ∈ [0, n − 1]. Every switch is assigned a switch
id bkbk−1 . . . bj+1xbj−1 . . . b1, where bi(i ∈ [1, k], i 6= j) ∈

[0, n − 1]. x is just a place holder, and the position of x (in
this case is j) denotes which layer (or dimension) the switch
locates.

A switch with id bk . . . bj+1xbj−1 . . . b1 connects to n server-
s, whose identifiers are only different at the jth dimension,
in the form of bk . . . bj+1djbj−1 . . . b1, where dj can be any
number in [0, n − 1]. For example, in PCube(4, 4, 4), switch
x111 connects to four servers with id 0111, 1111, 2111, 3111,
respectively.

Fig. 3 gives a PCube(2, 4, 3) network, from which we see
each server uses 3 ports, and each switch has 2 ports. The
server identifiers are 0000, 0001, . . . , 1110, 1111. The first layer
of switches are identified as 000x, 001x, . . . , 111x. the second
layer of switches are identified as 00x0, 00x1, . . . , 11x1, etc.

Next, we introduce how PCube is constructed in detail.

B. Constructing a PCube Structure
There are two guiding principles as we design PCube.

First, PCube can be obtained by powering off some network
switches in BCube, with the same set of servers. Second, PCube
maintains q parallel paths between all pairs of servers, yet with
the use of the smallest number of switches and NICs.

Based on these principles, we recursively construc-
t PCube(n, k, q) from PCube(n, k−1, q−1), where k ≥ q > 2.
We will first introduce the construction of the special case
PCube(n, k, 2), henceforth referred to as the primary PCube,
as the base case in our recursive construction.

In the primary PCube(n, k, 2), the switches in the ith dimen-
sion are as follows:

– bkbk−1 . . . b2x for i = 1;
– bkbk−1 . . . bi+1xei−1oi−2 . . . o1 for i ∈ [2, k − 1];
– xbk−1ok−2ok−3 . . . o1 for i = k.
Where ej is an even number in [0, n − 1] and oj is an odd

number in [0, n−1]. Indeed, the odd number and even number
are just one of the ways to split the numbers into two sets. Any
other method of spliting could work in PCube. In addition, we
choose the odd and even number for load balance and graceful
expressions.

An example of primary PCube switch identifiers can be
found in Fig. 3, where 8 switches are in PCube(2, 3, 2), as
illustrated with identifiers in lower 3-dimensions 00x, 01x, 10x,
11x, 0x0, 1x0, x01, x11.

Let us now consider the general case. A PCube(n, k, q)
(k ≥ q > 2) is constructed from n PCube(n, k − 1, q − 1)
and a new layer of nk−1 switches. As we know, a server in a
PCube(n, k, q) is denoted as akak−1 . . . a1. 0ak−1 . . . a1 there-
fore denotes the servers in the first PCube(n, k− 1, q− 1) and
1ak−1 . . . a1 denotes the servers in the second PCube(n, k −
1, q − 1), etc. The newly introduced switches are denoted
as xbk−1 . . . b1. Server akak−1 . . . a1 is connected to switch
xak−1 . . . a1. Eight switches that connect the two sub-PCubes
are shown at the top of Fig. 3.

From the recursive construction procedure, we can explicitly
identify the set of switches in any PCube(n, k, q) (n ≥ 2, k ≥
q ≥ 2). The set of switch identifiers at the ith dimension is
listed as follows:

4

Fig. 3. Constructing PCube(2, 4, 3) with two PCube(2, 3, 2).

– bkbk−1 . . . b2x for i = 1;
– bkbk−1 . . . bi+1xei−1oi−2 . . . o1 for i ∈ [2, k − q + 1];
– bkbk−1 . . . bk−q+3xbk−q+1ok−q . . . o1 for i = k − q + 2;
– bk . . . bi+1xbi−1 . . . b1 for i ∈ [k − q + 3, k].

C. Graph Properties of PCube Structures

In this section, we will establish a number of important graph
properties of PCube(n, k, q).

The size of PCube(n, k, q). Based on our construction
method, we can obtain the following theorem with respect to
the size of PCube.

Theorem 1: PCube(n, k, q) is constructed by qnk−1 switch-
es with n ports and nk servers with q ports.

Proof: The number of servers can be got straightforward
because of the way of PCube construction. Since each server
is connected to q switches and each switch is connected to n
servers. We can get that the number of switches is qnk−1.

With Theorem 1, we may infer the amount of energy con-
sumption using a general PCube(n, k, q) structure. Considering
both network switches and network interface cards (NICs), the
energy cost of PCube(n, k, q) can achieve q

k of BCubek−1(n)
by turning the unused switches and NICs off because BCube
is a special case of PCube.

The subgraph property of PCube. A PCube structure can
not only be deployed incrementally based on BCube, but also
be evolved from another configuration of PCube. One of the
most essential properties of PCube can be derived from its
construction algorithm:

Theorem 2: PCube(n, k, q − 1) is a subgraph of
PCube(n, k, q), with the same set of servers, when q > 2.

Proof: Compare PCube(n, k, q) and PCube(n, k, q − 1),
only when a switch marked x at the (k − q + 2)th and
(k− q+3)th positions is different between PCube(n, k, q) and
PCube(n, k, q − 1). It is not difficult to reveal that the set of
switches in PCube(n, k, q − 1) is a subset of the switches set
in PCube(n, k, q) in both of the dimensions.

Therefore, PCube(n, k, q − 1) (q > 2) can be obtained by
powering some switches off in PCube(n, k, q), and its set of
switches is a subset of PCube(n, k, q).

With this property, when building a data center with nk

servers and the bandwidth damand is not as high as k, it
is possible to build a non-full PCube(n, k, q) instead of full

PCube(n, k, k) or BCube at the beginning. By powering off
some switches in PCube(n, k, q1), the structure of the network
will evolve to PCube(n, k, q2), (k ≥ q1 > q2 ≥ 2). For
example, it is possible to build a PCube(8, 6, 4) using four-port
servers, instead of six-port servers in BCube.

The diameter of PCube. To investigate the diameter of the
PCube structure, defined as the maximum length of the shortest
paths, we start with a study of path length in the primary PCube.

It is clear that every server has two ports that connect to
switches in the primary PCube. One connects to a switch
at the 1st dimension. Depending on the identifier at the last
several dimensions, the other port connects to a switch at a
corresponding dimension.

According to the construction of primary PCube, transform-
ing the ith dimension requires preparation that transforms all
lower dimensions. The shortest path algorithm in the primary
PCube is described in Algorithm 1.

Algorithm 1 Find the shortest path in primary PCube(n, k, 2)
getShortestPathP(node A, node B)

Step 1: If (A = B) return emptyPath.
Step 2: Let p be the highest dimension that ap 6= bp. If
p = 1, return edge(A, B).
Step 3: Let node C be A. Find the smallest p′ such that
for all i ∈ [p′, p− 2], bi is odd. If such p′ does not exist,
go to step 4. If p = k or bp−1 is even, let ci be bi where
i ∈ [p′, p− 1], and ci be ai or ai⊕ 1 where i ∈ [1, p′− 1],
depending on ai is even or odd.
Step 4: Let D be C, except dp = bp.
Step 5: return getShortestPathP(A, C) +
edge(C, D) + getShortestPathP(D, B).

Algorithm 1 is recursively defined by finding a relay edge (C,
D). Transforming the pth dimension requires some preliminary
work on transforming all lower dimensions. Therefore, we
find the relay edge from the highest dimension, as defined in
step 2. Since it is entirely possible that we could get some
other dimensions ready during this preliminary work, step 3
establishes how an optimal relay node C is found, which is not
only on the shortest path but also getting most dimensions in
place.

Based on the shortest path algorithm in the primary PCube,
the shortest path algorithm in a general PCube(n, k, q) (q > 2)
can be recursively defined as follows:

When the two servers are in the same primary PCube, the
path can be obtained by directly call the shortest path algorithm
for the primary PCube defined in Algorithm 1. Otherwise, when
two servers are in different sub-PCubes we firstly route starting
server A to the server with the same id but in the sub-PCube
where end server B locates, and recursively find the shortest
path in the sub-PCube.

Based on these ideas, we are able to prove the following
theorem with respect to the diameter of PCube, defined as the
maximum length of the shortest paths.

5

Theorem 3: The diameter of PCube(n, k, q) is 2k−q+1+(q−
2).

Proof: We consider the primary PCube(n, k, 2) first. Ac-
cording to Algorithm 1, the distance of transforming the first
dimension is 1 hop, i.e., d(1) = 1. To transform the ith

dimension, it has to transform at most i− 1 lower dimensions
for preparation. Therefore, d(i) =

∑
j<i d(j). In addition,

by getting the highest dimension in place, the (k − 1)th

dimension will be in place, since there are no restrictions for
the (k − 1)th dimension. Therefore, the diameter would be
d = d(k) +

∑
j∈[1,k−2] d(j) = 2k−1.

When q > 2, the PCube is constructed with n smaller
sub-PCube(n, k − 1, q − 1). For two servers in the same sub-
PCube, the distance would be no larger than the diameter of
PCube(n, k−1, q−1). For two servers in different sub-PCubes,
it needs two more links to get to the same sub-PCube. Thus, the
diameter for PCube(n, k, q) is d(n, k, q) = d(n, k−1, q−1)+1.
Therefore, it is easy to derive that d(n, k, q) = 2k−q+1+(q−2).

The diameter of a PCube structure is closely related to
network performance such as latency and all-to-all throughput.
Theorem 3 suggests that the diameter of PCube is acceptable,
compared with other server-centric structures such as DCell
[13], whose diameter is 2k+1. As a result, PCube is able to
achieve an acceptably low latency and a reasonably high all-
to-all throughput.

Bandwidth availability in PCube. We now turn our attention
to the bandwidth availability in PCube. We show that the
throughput achieved by PCube is able to offer a q times
speedup, with respect to both one-to-one and one-to-all traffic.

Theorem 4: There are q edge-disjoint paths between any two
servers in PCube(n, k, q).

Proof: We prove this theorem by constructing q edge-
disjoint paths, using Algorithm 2 for primary PCube and an
modified algorithm of Algorithm 2 for general PCube.

We first study the primary PCube. Considering every server
with exactly two links, the shortest path occupies one link at
the starting point and the end point. We could find another
path using the rest of links. Algorithm 2 presents the method
for obtaining two edge-disjoint paths in the primary PCube.

In Algorithm 2, we find the path deductively, by using the
vacant link from each server while always aiming at node B.

Now we turn to the general PCube structure. There
are q edge-disjoint paths between any pairs of servers in
PCube(n, k, q). These edge-disjoint paths can be found recur-
sively by finding q − 1 edge-disjoint paths in a sub-PCube
first, and the disjoint path finding method of a general PCube
is relatively complex and the general idea is presented in the
following:

In the first case, the two servers are in two different sub-
PCubes of (k− 1)-dimensions with different id. We take q− 1
edge-disjoint paths from A to akbk−1 . . . b1, the server with
the same id in the sub-PCube of (k− 1)-dimensions as B. For
q−2 of these paths, they cross the kth dimension at the second
server. The remaining path extends to two paths, which cross

Algorithm 2 Find two edge-disjoint paths in the primary
PCube(n, k, 2)
getMultiPathP(node A, node B)

Step 1: Path1 = getShortestPath(A, B)
Step 2: Start with the unused link from server A. For each
server arrived, there will be only one link out, which is
followed. For each switch arrived, the next hop would be
ci = bi ⊕ 1 or bi, depends on the odevity required to use
the link of different high dimensions in the next hop.
Step 3: If all dimensions are ready except one, and the di-
rect link is used, switch another dimension to an arbitrary
one, and switch these two dimensions respectively. Path2
is this path ended at B.
Step 4: return {Path1, Path2}.

the kth dimension at the first and the last servers.
In the second case, the two servers are directly connected

at the kth dimension. The q edge-disjoint paths can be easily
constructed through the q directly connected switches by one
or three server hops.

In the last case, the two servers are in the same sub-
PCube of (k− 1)-dimensions. Recalling the construction from
PCube(n, k− 1, q− 1) to PCube(n, k, q), there are q− 1 edge-
disjoint paths from A to B within this sub-PCube. Another path
needs a detour to another sub-PCube.

In summary, we have provided algorithms finding q edge-
disjoint paths in PCube(n, k, q). Therefore, the correctness of
Theorem 4 has been proved.

Theorem 4 suggests that there exist q parallel paths between
any pairs of servers. Therefore, the one-to-one speedup is q by
sending packets through all q paths simultaneously. Compared
to a BCube structure of the same size, PCube(n, k, q) achieves
q
k of the one-to-one throughput. In the next step we will show
that PCube can build q edge-disjoint arborescences to speed up
one-to-all traffic.

Lemma 1: For any graph G, there exist k mutually edge-
disjoint arborescences rooted at r, if and only if there are k
mutually edge-disjoint paths from r to every other node. [16]

An arborescence at root r is a spanning tree with directed
edges, where there exists a path from r to all nodes in the
graph. Since the switches in data centers are mostly full duplex,
arborescences describe network properties better.

Theorem 5: In PCube(n, k, q), there exist q mutually edge-
disjoint arborescences rooted at any server.

Proof: According to Lemma 1 and Theorem 4 that q edge-
disjoint paths exist between any two servers, this theorem is
proved.

The q edge-disjoint arborescences can be found by Tarjan’s
algorithm [17]. Theorem 5 suggests that the network achieves
a one-to-all speedup of q by building q edge-disjoint arbores-
cences, which is better than existing switch-centric structures,
such as ElasticTree[11]. Comparing with BCube, the one-to-all
throughput of PCube(n, k, q) is also q

k of the BCube.

6

Fig. 4. An example of Hybrid PCube(2, 4, {2, 3}).

In closing, by evaluating graph properties of PCube struc-
tures, we are convinced that it achieves lower energy costs
without sacrificing much margin with respect to performance.

IV. HYBRID PCUBE

We have introduced the Pure PCube, which offers the
same bandwidth and power consumption throughout the entire
network. However, traffic locality is common in data center
networks, which may lead to further energy saving. For exam-
ple, we have collected traffic traces for storage service in an
operational data center, as illustrated in Fig. 1(b). The traffic
from the top 5 servers occupy more than 40% of the total
traffic, and top 20 servers occupy about 80% traffic most of
the time, while the number of servers in the entire network is
in the thousands. In other words, most servers do not need high
bandwidth in which occasion offering different servers different
bandwidth would be helpful. In this section, we introduce
Hybrid PCube, an interconnect method that provides different
levels of bandwidth in different regions of the network.

In the construction method of Sec. III, to build a PCube
with (k+1)-dimension, we add nk switches connecting n sub-
PCube of k-dimension with the same q. However, it is feasible
to connect n sub-PCube with a different bandwidth parameter
q. Fig. 4, for example, illustrates a PCube in which the 4th

dimension switches connect PCube(2, 3, 2) and PCube(2, 3, 3)
as its sub-PCube.

Taking Hybrid PCube into consideration, we extend the
definition of the bandwidth parameter q to q(k), indicating
the bandwidth at the k−dimension PCube. q(k) can be an
integer in [2, k] for a Pure PCube, or a sequence of n band-
width parameters {q0(k− 1), q1(k− 1), . . . qn−1(k− 1)} for a
Hybrid PCube connecting n (k− 1)-dimension PCubes whose
bandwidth parameters are q0(k−1), q1(k−1), . . . , qn−1(k−1),
respectively.

Now we discuss the bandwidth availability in a Hybrid
PCube. Consider a Hybird PCube with bandwidth parameter
{q0(k− t), q1(k− t), . . . , qn−1(k− t)}. Servers in the ith sub-
PCube have at most qi(k − t) + t edge-disjoint paths to other
servers. Therefore, there are min(k − k1 + q1(k1), k − k2 +
q2(k2)) edge-disjoint paths between servers in the two sub-
PCubes.

Furthermore, since there are min
i∈[1,t]

(k − ki + qi(ki)) edge-

disjoint paths within these sub-PCubes, Lemma 1 indicates
min
i∈[1,t]

(k − ki + qi(ki)) mutually edge-disjoint arborescences

exist. Therefore, the broadcast speedup within some Pure sub-
PCubes with bandwidth parameters q1(k1), q2(k2), . . . , qt(kt)
in a Hybrid PCube of k-dimension is min

i∈[1,t]
(k − ki + qi(ki)).

Clearly, Hybrid PCube offers biased bandwidth to different
sub-PCubes. In addition, the two theorems above indicate that
the total bandwidth is constrained by the sub-PCube with the
lowest bandwidth. A PCube which provides equal bandwidth
everywhere avoiding bottleneck edges has the ability to evolve
to a Hybrid PCube. In the next section, we introduce how a
Hybrid PCube can be configured according to traffic demands.

V. DYNAMIC CONFIGURATION AND ROUTING OF PCUBE

The objective of configuring PCube is to dynamically adjust
the network topology in order to provide sufficient throughput
based on the traffic demand, and to conserve as much energy as
possible. Consider a data center with thousands of flows. It is
unnecessary and infeasible to monitor the network-wide traffic
demand precisely. In addition, the network cannot respond to
the traffic change quickly by monitoring current traffic, due
to the starting time of the switch [10]. Therefore, in PCube,
servers report their bandwidth requirement to a monitoring
server, referred to as the network manager.

The PCube offers coarse-grained bandwidth level from 2 to
k, so that every server sends its bandwidth requirement in [2, k]
to the network manager. A server sends its new bandwidth
requirement, when the total traffic, including both server traffic
and relay traffic, exceeds the current bandwidth, or can be
served by a lower bandwidth. Since bandwidth availability is
coarse-grained, this adjustment is acceptable.

Of course, to shrink or to extend the PCube still brings
overhead on energy consumption and delay. To overcome the
overhead cost we should make a trade off here, e.g., adjust the
length of the server report time period. The response time could
also be optimized by using rapid response devices[18] such as
SSD or use a asynchronous monitor to catch up the potential
traffic volumes peak in the near future.

Assuming the network manager receives all server’s band-
width requirement bi, where i is the id of the server and bi is the
larger one of the ingress and egress requirements, Algorithm 3
obtains the bandwidth parameter for a Hybrid PCube to satisfy
the bandwidth needs.

Algorithm 3 Building a Hybrid PCube based on server require-
ments
getHybridPCube(int k, subCube C)

Step 1: If the requirements of all servers in C are 2,
return 2.
Step 2: For all sub-PCube Ci of C at the (k − 1)-
dimension, qi ← getHybridPCube(k − 1, Ci).
Step 3: return {max(2, q0 − 1),max(2, q1 −
1), . . .max(2, qn−1 − 1)}.

Algorithm 3 builds a Hybrid PCube and returns its bandwidth
parameter. As stated in Sec. IV, the bandwidth parameter can
either be an integer or be a set of bandwidth parameters. This
algorithm may also build a Pure PCube, if all servers report the
same bandwidth requirement.

PCube employs dynamically configured source routing.
When the network manager decides how the PCube structure

7

can be transformed, it also calculates the modified routing
paths. With global information, the network manager is able
to balance the load on the new topology. Both topology trans-
formation and routing information is broadcast to all servers.
If the network manager decides to power some switches off,
switches will be powered off after a few seconds, which is
enough for most servers to receive and react to the topology
change. On the other hand, if some switches need to start again,
they will start immediately, since a longer period of time, on
the order of 10-20 seconds, is necessary for switches to resume
from their power-off states.

When servers receive the topology transformation message,
they immediately switch to a new path for every flow according
to the routing message received from the network manager. If
servers are not able to receive these messages on time, which
rarely happens, they will react as if they are dealing with link
failures and probe for new paths [4].

Other details of routing are similar to BCube source routing
[4], since BCube and PCube share essential properties.

VI. EVALUATION

In this section, we evaluate PCube in four aspects. We obtain
the amount of relay traffic in PCube, demonstrate the stepwise
energy consumption with traffic, evaluate the performance of
PCube, and finally, we establish our simulation results with
respect to power efficiency using traffic samples collected in a
real-world production data center.

A. Average Relay Ratio

First, in order to obtain the total traffic at one server, we
get the average relay ratio rq for different q in PCube(8, 4, 4)
with 4096 servers, indicating the relay traffic is rq times of the
service traffic. In other words, the total traffic at one server is
v(1 + rq), when the service traffic is v. We randomly generate
the traffic on the PCube(8, 4, 4) and Simulation results of rq
on the all-to-all traffic pattern are shown in Table I. In this
traffic pattern, there are flows between all pairs of servers, and
the algorithms described in Sec. III-C is used to find the paths.
The relay ratio is the highest in the all-to-all traffic pattern, for
this reason v(1 + rq) is larger than the bandwidth demand in
reality.

TABLE I
THE RATIO OF RELAY TRAFFIC TO SERVER TRAFFIC

structure ratio
PCube(8, 4, 4) 2.500
PCube(8, 4, 3) 3.048
PCube(8, 4, 2) 5.161

B. Energy Consumption

With the relay ratio, we can obtain the relationship between
traffic and energy consumption by switches and NICs. We
manually generate three kinds of traffic. Traffic pattern 1
indicates all servers have the same traffic demands. In traffic
pattern 2, all servers have 10% traffic except the traffic from

�

�

�

�

�

�
�

�
� �

� � �
�

�

�

�

�
�

�

� � � � � � � � � �

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Traffic Density�per 10s�

Ef
fic
en
cy

� PCube�4,6,4�� PCube�4,6,3�� PCube�4,6,2�

Fig. 5. relationship between the traffic density and efficiency of
PCube(4, 6, q).

�

�

�
� �

�

�

�

�

�

�

�

�

�
�

2 3 4 5 6
q

10

20

30

40

50

60

70

Link Usage���
� High Traffic Density
� Middle Traffic Density
� Low Traffic Density

Fig. 6. The relationship between bandwidth parameter q and link usage ratio.

one server. In traffic pattern 3, one server has 100% traffic and
all other servers have 10% traffic.

We use PCube(8, 4, 4) as testbed, PCube(8, 4, 4) can shrink
to PCube(8, 4, 3) and PCube(8, 4, 2), hence the stairs of en-
ergy consumption have three steps. The result shows that:
With traffic pattern 1, each step accounts for 25% of the
total energy. With respect to traffic pattern 2, the PCube
evolves from PCube(8, 4, 2), to PCube(8, 4, 3) and finally to
PCube(8, 4, {2, . . . , 2, 3}). Therefore, when only one server has
a significant demand of traffic, the energy consumption at the
last step is only 3.125% of the total traffic, which is 1

n of 25%.
Shown by traffic pattern 3, it is also 3.125% more energy when
PCube(8, 4, 3) grows to PCube(8, 4, {2, . . . , 2, 3, 3}).

C. Performance Evaluation

The average amount of traffic handled in a short time slide
obviously indicates the efficiency of a network. We measured
the link usage ratio and the efficiency to evaluate the perfor-
mance of PCube.

Fig. 5 shows the relationship between the traffic density and
efficiency of PCube(4, 6, q). It is clear that while the traffic
density grows, the PCube with higher bandwidth q stays more
efficient than the lower bandwidth ones. Therefore, we should
choose a higher bandwidth if the network traffic demand grows.

Fig. 6 indicates the relationship between the bandwidth
of PCube and the link usage ratio when the traffic demand
keeps unchanged. The figure shows that the lower bandwidth
parameter q can help to achieve a higher link usage ratio,
which also means, a higher energy efficiency. The traffic density
certainly affect the link usage ratio as well. In the figure, high
density means about 75 traffic queries per second, while 50 and
25 queries per second for middle and low respectively.

8

10:30 a.m. 4:30 p.m. 10:30 p.m. 4:30 a.m 10:30 p.m.
0

20%

40%

60%

80%

100%

time

Aggregate traffic ratio
Power consumption ratio

Fig. 7. Simulation results on energy efficiency for a machine learning service.

10:30 a.m. 4:30 p.m. 10:30 p.m. 4:30 a.m. 10:30 a.m.
20%

30%

40%

50%

60%

70%

80%

90%

100%

time

Aggregate traffic ratio
Power consumption ratio

Fig. 8. Simulation results on energy efficiency for a storage service.

Comparing with BCube, which can be refered as a PCube
with full bandwidth parameter, PCube offers a scalable band-
width which could definitely increase the link usage ratio and
decrease the processing capacity of the network. When the traf-
fic density is lower than the peak, which is common in general
usage of data center, the PCube provides adaptable method to
balance the needs of performance and energy consumption.

D. Efficiency in the Real World

To demonstrate the efficiency of PCube in the real world, we
have collected traffic traces from a non-blocking data center
with several kinds of service including machine learning using
MapReduce, storage, etc. We take samples every 15 minutes
on the current egress rate of every server on its own service
for a 24-hour period. In other words, the sampling does not
count relay traffic, if any. Some sampling results are shown in
Fig. 1. We extend the sampling proportionally and map them
randomly to 4,096 servers in PCube.

Fig. 7 illustrates the daily energy consumption for a machine
learning service on July 20, 2010. The traffic is light most of
the time, thus leading to a 50% energy consumption of net-
work devices including NICs and switches in comparison with
BCube, where 50% energy is the minimal energy consumption
for PCube with k = 4. In fact, in traffic traces for other days,
the daily peak might be less than 10% of the peak on July 20,
leading to the minimal energy consumption in an entire day.
Therefore, applying PCube leads to considerable energy saving
for this kind of service.

Fig. 8 illustrates another case. With respect to the storage
service, a few servers occupy about 80% of the total traffic as
shown in Fig. 1(b). In other words, there are a few servers with
a substantial amount of traffic volume. In addition, the traffic
of those servers do not vary much, even when the total traffic
grows significantly. Shown in the simulation results, the energy

consumption is dominated by these servers with large traffic.
Therefore, the energy consumption does not increase with the
total traffic.

VII. CONCLUSION

In this paper, we have proposed a server-centric data center
structure PCube. Compared with existing data centers, PCube
succeeds in the flexibility to dynamically adjust the network
topology according to the traffic demands. Therefore, PCube
not only offers full bisection bandwidth, but also conserve
substantial amount of energy costs. PCube also provides an
alternative for low cost data center construction, with several
favorable graph properties . In our experiments on real-world
traffic samples, PCube has shown its significant improvement
on energy conservation.

REFERENCES

[1] M. Gupta and S. Singh, “Greening of the Internet,” in Proc. ACM
SIGCOMM, pp. 19 – 26, Aug. 2003.

[2] J. G. Koomey, C. Belady, M. Patterson, A. Santos, and K.-
D. Lange, “Assessing Trends over Time in Performance, Costs,
and Energy Use For Servers,” http://www.intel.com/assets/pdf/general/
servertrendsreleasecomplete-v25.pdf, August 2009.

[3] “EPA Report on Server and Data Center Energy Effi-
ciency.” [Online]. Available: http://www.energystar.gov/index.cfm?
c=prod development.server efficiency study.

[4] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: a High Performance, Server-Centric Network Architecture
For Modular Data Centers,” in Proc. ACM SIGCOMM, pp. 63–74, 2009.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data
Center Network Architecture,” in Proc. ACM SIGCOMM, pp. 63–74,
2008.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a Scalable and Flexible
Data Center Network,” in Proc. ACM SIGCOMM, pp. 51–62, 2009.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” in Proc. 1st ACM workshop on Research
on Enterprise Networking (WREN), pp. 65–72, 2009.

[8] M. Gupta, S. Grover, and S. Singh, “A Feasibility Study for Power Man-
agement in LAN Switches,” in Proc. 12th IEEE International Conference
on Network Protocols (ICNP), pp. 361–371, Oct. 2004.

[9] M. Gupta and S. Singh, “Using Low-Power Modes for Energy Conserva-
tion in Ethernet LANs,” in Proc. IEEE INFOCOM, pp. 2451–2455, May
2007.

[10] [Online]. Available: www.dlink.com.
[11] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks,” in Proc. 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April 2010.

[12] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: A High Perfor-
mance Network Structure for Modular Data Center Interconnection,” In
Proc. ACM CoNEXT, December 2009.

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A Scalable
and Fault-tolerant Network Structure for Data Centers,” in Proc. ACM
SIGCOMM, pp. 75–86, 2008.

[14] G. László and T. T. Anh, “How can architecture help to reduce energy
consumption in data center networking?” e-Energy ’10, pp. 183–186,
2010. [Online]. Available: http://doi.acm.org/10.1145/1791314.1791343

[15] S. Yunfei, L. Dan, and X. Mingwei, “Energy-aware Routing in Data
Center Network,” In Proc. Green Networking, pp. 1–8, 2010. [Online].
Available: http://doi.acm.org/10.1145/1851290.1851292

[16] J. Edmonds, “Edge-disjoint Branches,” Combinatorial Algorithms, Aca-
demic Press, pp. 91–96, 1973.

[17] R. E. Tarjan, “A Good Algorithm for Edge-disjoint Branching,” Informa-
tion Processing Letters, vol. 3, no. 2, pp. 51–53, 1974.

[18] M. David, G. B. T., and W. T. F., “Powernap: eliminating server idle
power,” SIGPLAN Not., vol. 44, pp. 205–216, March 2009. [Online].
Available: http://doi.acm.org/10.1145/1508284.1508269

