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Abstract—
Recent work in network coding shows that, it is necessary to

consider both the routing and coding strategies to achieve optimal
throughput of information transmission in data networks. So far,
most research on network coding has focused on the model of di-
rected networks, where each communication link has a fixed direc-
tion. In this paper, we study the benefits of network coding in undi-
rected networks, where each communication link is bidirectional.
Our theoretical results show that, for a single unicast or broadcast
session, there are no improvements with respect to throughput due
to network coding. In the case of a single multicast session, such an
improvement is bounded by a factor of two, as long as half integer
routing is permitted. This is dramatically different from previous
results obtained in directed networks. We also show that multicast
throughput in an undirected network is independent of the selec-
tion of the sender within the multicast group. We finally show that,
rather than improving the optimal achievable throughput, the ben-
efit of network coding is to significantly facilitate the design of effi-
cient algorithms to compute and achieve such optimal throughput.

I. INTRODUCTION

The throughput of information transmission within a data net-
work is constrained by the network topology and link capacities.
Traditional techniques in improving transmission throughput fo-
cus on strategically routing information flows along high band-
width or multiple paths from the source to the destinations. Re-
cently, it is shown that such routing strategies alone may not be
sufficient. Rather, it is necessary to consider encoding/decoding
data on nodes in the network, in order to achieve the optimal
throughput [1], [2]. Since these coding operations are not re-
stricted to source or destination nodes, they are referred to as
network coding. A classic example that illustrates the power of
network coding is shown in Fig. 1, where each link has unit ca-
pacity. With network coding, the achievable throughput is two.
Without coding, the achievable throughput is only one, if integral
routing is required.
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Fig. 1. With network coding, the achievable multicast throughput is 2.

Similar to source erasure codes, encoding and decoding op-
erations in network coding are also defined over finite fields,
which have fixed length representation of symbols. Therefore,
information flows do not increase in size after being encoded.
The introduction of network coding has essentially expanded the
available strategies to achieve optimal transmission throughput:
rather than only relying on routing strategies, an optimal trans-
mission strategy to achieve the maximum throughput includes
both a routing scheme and a corresponding coding scheme. Op-
timal throughput achieved with coding is always lower bounded
by that achieved without coding.

While previous studies of network coding focus on directed
networks with unidirectional links, in this paper, we consider
undirected networks with bidirectional links. We compare the
achievable throughput with coding to other parameters that have
been previously defined to reflect a communication network’s
connectivity or capacity. Such parameters include the packing
number (which is also the achievable throughput without cod-
ing), strength, and connectivity. We consider three types of
communication sessions: unicast (one-to-one), broadcast (one-
to-all) and multicast (one-to-many). We examine the relative or-
der among the above four quantities, from which we derive upper
bounds for the coding advantage, i.e., the ratio of throughput im-
provement due to network coding. In contrast to previous work,
which shows the coding advantage is not finitely bounded in di-
rected networks [3], we show that the coding advantage is always
bounded by a constant factor of two in undirected networks. Our
proof holds for half-integer routing, where each information flow
being transmitted has either an integer or half-integer rate.

In addition, we prove that the achievable throughput is inde-
pendent of the location of the information source within the com-
munication group, which is a unique property that is only valid
in undirected settings. Finally, we show that in many cases, in-
cluding in both directed and undirected networks, with both inte-
gral and fractional routing, optimal throughput with network cod-
ing is much more amenable to compute than optimal throughput
without coding.

The remainder of the paper is organized as follows. We in-
troduce related work on network coding in Sec. II, compare
throughput with coding to other network parameters in Sec. III,
discuss the source independence property of coded transmission
in Sec. IV, and investigate the benefit of applying network cod-
ing from the perspective of computational complexity in Sec. V.
Finally we conclude the paper and point out open problems in
Sec. VI.
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II. RELATED WORK

Ahlswede et al. [1] initiated the study of network coding. They
show examples that demonstrate the benefit of network coding,
in terms of throughput improvement. They also prove the funda-
mental result that, for a multicast transmission in a directed net-
work, if a rate x can be achieved for each receiver independently,
it can also be achieved for the entire session.

Koetter et al. [2] also derived this result for directed acyclic
networks within an algebraic framework. They further extend the
discussion to multiple transmissions, and examined the benefit of
network coding in terms of robust networking.

Li et al. [4] show that linear codes suffice in achieving optimal
throughput for a multicast transmission. The bound on the neces-
sary base field size is first given by Koetter et al. [2]. They show
that for a multicast session with throughput r and number of re-
ceivers k, there exists a solution based on a finite field GF (2m),
for some m ≤ �log2(kr + 1)�. This bound is then improved by
Ho et al. to m ≤ �log2(r + 1)� [5].

Li et al. [4] proposed the first code assignment algorithm,
which performs an exponential number of vector independence
tests. Sanders et al. [3] observed that, exploiting flow infor-
mation in the routing strategy dramatically simplifies the task,
and designed a polynomial time code assignment algorithm ac-
cordingly. They also show that, in directed networks with inte-
gral routing, the coding advantage may increase proportionally
as Ω(log |V |), and therefore may be arbitrarily high.

Zhu et al. [6] utilize network coding in designing their mul-
ticast scheme in overlay networks. In their empirical studies,
throughput improvement over existing overlay multicast proto-
cols with routing only are observed.

III. OPTIMAL THROUGHPUT IN UNDIRECTED NETWORKS:
A COMPARISON STUDY

Network coding introduces a new dimension into the infor-
mation transmission problem. Traditionally, only the routing di-
mension is considered in a transmission strategy; with network
coding, a transmission strategy includes both the routing scheme
and the coding scheme. Considering both dimensions together
is necessary to achieve the maximum information transmission
rate. We use χ(N) to denote the maximum throughput of a net-
work N containing a single transmission session. We compare
χ(N) with other parameters that have been defined to character-
ize the connectivity or capacity of a communication network, in-
cluding the packing number, strength and connectivity. We study
and compare the four parameters for unicast, broadcast, and mul-
ticast transmissions, respectively.

Packing refers to the computation of pairwise edge-disjoint
sub-trees of G, in each of which the communication group re-
mains connected. The packing number of a communication
network N is denoted as π(N), and is equal to the maximum
throughput without coding. The reason is that, each tree can
be used to transmit one unit information flow from the sender
to all receivers, therefore the packing number gives the maxi-
mum number of unit information flows that can be transmitted.
Strength is a kind of partition connectivity of the network [7],
and is denoted as η(N). It is defined as the minimum ratio of
|Ec|/(p − 1), where p is the number of components the commu-
nication group is separated into, Ec is the set of inter-component

links, and the partition is required to have at least one source or
destination node in each component. Connectivity refers to the
minimum edge connectivity between a pair of nodes in the com-
munication group, and is denoted as λ(N).

We use a simple graph G = (V,E) to represent the topol-
ogy of a network, and use a rational function C : E → Q+

to denote link capacities. The communication group is M =
{S, T1, . . . , Tk} ⊆ V , with S being the sender of the unicast,
broadcast, or multicast session, by default. In our graphical illus-
trations, nodes in the communication group are black, and relay
nodes are white. We focus on fractional routing in this section,
and will discuss integral routing in the following sections. For
integral routing, all link capacities and flow rates have integer
values. For fractional routing, we assume link capacities may be
shared fractionally in both directions, and flows can be split and
merged at arbitrarily fine scales.

A. Unicast

In an undirected network with a unicast session N =
{(G(V,E), C:E→Q,M = {S, T} ⊆ V }, the packing number
π(N) becomes the number of edge-disjoint S-T paths. Through-
put χ(N) is the maximum information rate that can be achieved
in the S→T transmission. Strength η(N) is now minimized over
all simple cuts separating S and T , since no valid partition with
more than two components exists. Connectivity becomes the
edge-connectivity between S and T , i.e., the minimum amount
of edge capacity one needs to remove from the network, in order
to separate S and T .

Based on previous results, we can show that the four quantities
turn out to be all equal for a unicast transmission:

Theorem 1. For a unicast transmission in an undirected network,
N ,

π(N) = χ(N) = η(N) = λ(N).

Proof: Due to the fact that η(N) can be minimized over simple
cuts only, it becomes identical to λ(N), and both are equal to the
min-cut between S and T . Furthermore, observe that uncoded
throughput is always bounded by coded throughput, therefore
π(N) ≤ χ(N). Then, the S→T information rate is bounded
by the S-T min-cut, i.e., χ(N) ≤ η(N). In order to finish the
proof, it is sufficient to show π(N) = λ(N), which is implied
by Menger’s Theorem [8]: Let u, v be two vertices of a graph G.
The maximum number of pairwise edge-disjoint u-v paths equals
to the minimum number of edges whose removal separates u from
v in G. ��

It follows from Theorem 1 that network coding is not neces-
sary in order to achieve the maximum throughput for a unicast
session:

Corollary 1. The coding advantage for a unicast session is al-
ways 1.

B. Broadcast

Let N = {G(V,E), C : E→Q+,M = V = {S, T1, . . . , Tk}}
be an undirected network containing a broadcast session, with S
being the broadcast sender, and all other nodes in the network
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being receivers. The packing number π(N) becomes the span-
ning tree packing number, i.e., the maximum number of pair-wise
edge-disjoint spanning trees that can be identified in the network.
Throughput χ(N) is the maximum information rate from S to
every other node in the network, simultaneously. Strength η(N)
is still as defined; just note that for a broadcast network, every
partition is valid, since each component within a partition always
contains some node from the communication group. Connec-
tivity λ(N) becomes the size of the minimum simple cut of the
network.

The fact that all nodes in the network request the same infor-
mation leads to the following nice property for broadcast trans-
missions:

Theorem 2. For a broadcast transmission in an undirected net-
work, N ,

1
2
λ(N) ≤ π(N) = χ(N) = η(N) ≤ λ(N)

Proof: We first show that π(N) = χ(N) = η(N). Tutte-Nash-
Williams Theorem characterizes the relationship between inte-
gral spanning tree packing and network strength [8], [9], [10]:
A graph G has x pairwise edge-disjoint spanning trees if and
only if, for every vertex partition, there are at least (p − 1)x
edges with endpoints in different components, where p is the num-
ber of components in the partition. Tutte-Nash-Williams Theo-
rem shows that, for the integral spanning tree packing problem,
π(N) = �η(N)	. In the fractional flow model, one can apply
the technique of scaling edge capacities up, and then scaling the
solution down accordingly, to derive π(N) = η(N) from the in-
tegral packing result. Furthermore, since the spanning tree pack-
ing number π(N) is equal to the uncoded throughput, it can not
exceed the coded throughput χ(N), i.e. π(N) ≤ χ(N). Next,
we observe that, if the network is partitioned into p components,
each component not containing the source needs a total incom-
ing edge capacity x in order to achieve throughput x; therefore
(p− 1)x inter-component edge capacity is required in total. This
leads to χ(N) ≤ η(N). Combining the above results, we have
π(N) = χ(N) = η(N).

By definition, η(N) ≤ λ(N), since λ(N) can be viewed as a
special case of η(N), where only partitions containing two com-
ponents are considered. We now prove that 1

2λ(N) ≤ χ(N),
using Nash-Williams’ Weak Graph Orientation Theorem [11]:
a graph G has an x-edge-connected orientation if and only if
it is 2x-edge-connected. The weak orientation theorem implies
that, in the fractional model, a broadcast network N always has a
1
2λ(N)-edge-connected orientation, i.e., an orientation where the
max-flow between each pair of nodes is at least 1

2λ(N). Then by
the results in directed networks, a transmission rate that can be
independently achieved for each receiver can be achieved for the
entire session, this implies 1

2λ(N) ≤ χ(N). ��
From Theorem 2, we can see that network coding has no po-

tential in improving broadcast throughput either:

Corollary 2. The coding advantage for a broadcast session is
always 1.

C. Multicast

Multicast is a more general form of communication than both
unicast and broadcast. A unicast session can be viewed as a spe-
cial case of multicast, where exactly two nodes in V are in the
multicast group M . A broadcast session can be viewed as a spe-
cial case of multicast, where all nodes in V are in the multicast
group M . In general, the multicast group M can be any subset of
V that has size two or larger, and the packing problem becomes
steiner tree packing.

Theorem 3. For a multicast transmission in an undirected net-
work, N={G(V,E), C : E→Q+,M = {S, T1, . . . , Tk} ⊆ V },

1
2
λ(N) ≤ π(N) ≤ χ(N) ≤ η(N) ≤ λ(N).

Proof: The fact that uncoded throughput is bounded by coded
throughput again leads to π(N) ≤ χ(N). And the partition
condition is necessary for a certain throughput to be feasible
in multicast networks as well, therefore χ(N) ≤ η(N). Next,
η(N) ≤ λ(N) still holds due to the same argument as in the
broadcast case — λ(N) can be considered as a special case of
η(N) where only partitions containing two components are al-
lowed.

The proof of 1
2λ(N) ≤ π(N) contains one more step than in

the broadcast case. We first need to remove relay nodes in V -
M . In order to do so, we introduce Mader’s Undirected Splitting
Theorem [11]: Let G(V + z,E) be an undirected graph so that
there is no node-cut incident to z and the degree d(z) is even.
Then there exists a complete splitting at z preserving the local
edge-connectivities of all pairs of nodes in V .

A splitting operation at node z refers to the replacement of
some 2-hop path u-z-v by a direct edge between u and v, as
illustrated in Fig. 2. A complete splitting at z means repeatedly
apply split off operations at z until z is isolated.

u v

z

u v

z

Fig. 2. A split off at node z.

The Undirected Splitting Theorem says that, if a graph has
an even-degree non-cut node, then there exists a split off oper-
ation at that node, after which the pairwise connectivity among
the other nodes remain unchanged; and by repeatedly applying
such split off operations at this node, one can eventually isolate
it from the rest of the graph, without affecting the pairwise edge-
connectivity of nodes in it.

Now, consider repeatedly applying one of the following two
operations on a multicast network: (1) Apply a complete splitting
at a non-cut relay node, preserving pairwise edge connectivities
among multicast nodes in M ; and (2) add a relay node that is a
cut node into the multicast group M .

In order to meet the even node degree requirement in the undi-
rected splitting theorem, we first double each link capacity in the
input network, then we scale the solution down by a factor of 1

2
at the end. Note that, assuming the input network has integer link
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capacities, then each node has an even degree after doubling link
capacities. Furthermore, a split-off operation does not affect the
parity of the degree of any node in the network. Therefore the
Undirected Splitting Theorem guarantees that as long as there
are relay nodes that are not cut nodes, operation (1) is possible.
Furthermore, operation (1) does not increase π(N). Therefore, if
1
2λ(N) ≤ π(N) holds after applying operation (1), it holds be-
fore applying operation (1) as well. Operation (2) does not affect
either π(N) or λ(N). So, again we can claim that for opera-
tion (2), if 1

2λ(N) ≤ π(N) holds after applying the operation, it
holds before applying the operation as well.

As long as there are relay nodes in the multicast network, at
least one of the two operations can be applied. If both operations
are possible, operation (1) takes priority. Since each operation
reduces the number of relay nodes by one, eventually we obtain
a broadcast network. By Theorem 2, 1

2λ(N) ≤ π(N) holds.
Finally, note that we obtained an integral transmission strategy

achieving throughput 1
2λ(N), after doubling each link capacity.

Therefore, after we scale the solution back by a factor of 1
2 , the

transmission strategy is half-integral. ��
Corollary 3. For a multicast transmission in an undirected net-
work, the coding advantage is upper-bounded by a constant factor
of two, as long as half-integer routing is allowed.

Proof: By Theorem 3, 1
2λ(N) ≤ π(N) and χ(N) ≤ λ(N) as

long as half integer routing is allowed. Therefore we conclude
1
2χ(N) ≤ π(N), i.e., the coding advantage χ(N)/π(N) ≤ 2.
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(a) Half-integer routing, 
     optimal throughput = 1.5.

(b) Arbitrary fractional routing, 
      optimal throughput = 1.875.

Fig. 3. Throughput without coding, for the example shown in Fig.1.

Fig. 3 shows the optimal throughput without coding of the
multicast session given in Fig. 1, assuming half-integral routing
and arbitrarily fractional routing respectively, with the network
being undirected. Links labeled with the same letter or number
form a steiner tree. For example, the tree labeled with ‘a’ has
been highlighted in bold edges. In (a), each tree has capacity 0.5;
in (b), trees labeled with a letter have capacity 0.25, and trees
labeled with a number have capacity 0.125. As a result, uncoded
throughput achieved is 1.5 in (a) and 1.875 in (b) respectively,
by transmitting a flow along each steiner tree, with the flow rate
equal to the tree capacity. Since optimal throughput with coding
is 2, the corresponding coding advantages are 1.333 and 1.067,
respectively.

IV. SOURCE INDEPENDENCE IN UNDIRECTED NETWORKS

In this section, we show that the achievable throughput for a
multicast transmission does not depend on which node in the

multicast group acts as the sender. In other words, if we move
the information source from one node in the multicast group onto
another, the optimal coded throughput remains unchanged. First,
note that such a property does not hold in directed networks,
where the connectivity between two nodes can be arbitrarily dif-
ferent in two directions. Second, it is rather obvious that this
property holds for multicast without coding. The uncoded mul-
ticast problem is equivalent to the steiner tree packing problem,
and the packing number is defined upon the network topology
and the steiner set, regardless of which node in the steiner set is
the “sender”.

However, with network coding considered, it is less obvious
whether the source independence property still holds. In Theo-
rem 4, we show that it is the case.

Theorem 4. The optimal throughput of a multicast transmission
in an undirected network is completely determined by the net-
work topology, the link capacities, and the multicast group; it is
not dependent on the selection of the sender within the multicast
group.

A

B

C

A

B

C

Fig. 4. Two scenarios of reversing the A→B flow. Darker links are being
reversed.

Proof: The proof we present below is based on the following
fact: a directed multicast transmission is feasible if and only if
it satisfies all the simple cut conditions [2].

Suppose we exchange the sender and receiver roles between
two multicast nodes A and B, and the optimal throughput before
the exchange is f . Consider reversing the A→B flow, which has
rate f . We show that after the reversal, simple cut conditions
are still satisfied. Let C be another multicast node. Consider a
cut that separates B and C. There are two cases, either A is in
the same partition as B, or A is in the same partition as C, as
shown in Fig. 4. In the first case, we have net flow of rate f
traversing the cut from the AB component to the C component
before the reversal, and an equal amount of flow in both direc-
tions will be reversed; therefore after the reversal, we still have
the same amount of flow going from the AB component towards
the C component. In the second case, similarly, the total flow go-
ing from the AC component towards the B component is f be-
fore the reversal, and all flows crossing the cut will be reversed.
Therefore, after the flow reversal, we have flows of strength f
going from the B component towards the AC component. ��

Our proof also shows that, after the information source is
moved, the same multicast throughput can be achieved with ex-
actly the same bandwidth consumption on each link. Therefore,
we can derive the following corollary:

Corollary 4. A multicast rate is feasible if and only if it is feasi-
ble with the information source separated into independent sub-
sources and redistributed among the multicast group.
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Fig. 5 shows an example containing the same network as in
Fig. 1, with the two unit information sources at the top multicast
node moved onto the two bottom multicast nodes respectively.
Each information source can still be transmitted to all three mul-
ticast nodes, after the movement.
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Fig. 5. Optimal transmission strategy after splitting and moving the information
source, for the network shown in Fig. 1.

Corollary 4 is relevant to video conferencing, where each par-
ticipant multicasts his/her local audio/video data to every other
participant, and receives audio/video data from them as well. By
Corollary 4, a video conferencing session is feasible with a cer-
tain sending throughput requirement at each participant, if and
only if the multicast transmission obtained by congregating all
throughput requirement at one of the participants is feasible.

V. BENEFIT OF NETWORK CODING: THE COMPLEXITY

PERSPECTIVE

In Sec. III, we have shown that the benefit of network coding is
rather limited, from the perspective of throughput improvement.
The coding advantage is 1 for both unicast and broadcast, and
is at most 2 for multicast. Our empirical experiences show that
even for multicast, the coding advantage is usually much smaller
than the theoretical bound 2: for contrived networks in which
network coding are necessary to achieve optimal throughput, the
largest coding advantage value we observed is 1.125; for large
scale random networks, the coding advantage we observed is al-
ways 1 [12].

Although its potential of improving throughput is limited, we
have found that applying network coding has another major ad-
vantage: reducing the computational complexity for computing
and achieving the optimal throughput. In this section, we illus-
trate this advantage with three examples, with both directed and
undirected networks, fractional and integral routing considered.

A. Information Exchange

In an information exchange session, two nodes A and B need
to transmit information to each other, with throughput require-
ment fAB and fBA respectively. This form of communication
arises in scenarios such as: two sensor nodes exchange sensed
data with each other [13][14], two receivers in an asynchronous
file downloading session reconcile received data with each other
[15], or two online messaging applications stream multimedia
data to each other concurrently. An information exchange session
can also be viewed as two simultaneous unicast sessions between
a pair of nodes, in opposite directions.

If network coding is ignored, then even a problem as simple
as determining the feasibility of a single information exchange

session is NP-hard, in directed networks with integral routing.
One may derive this NP-hardness result from the proof given by
Fortune et al. [16] that shows the edge-disjoint path problem is
NP-hard for two opposite commodities. On the other hand, when
network coding is taken into consideration, the information ex-
change problem becomes nicely tractable. As shown in Fig. 6,
we can transform the coded information exchange problem into a
coded multicast problem, which requires just two max-flow com-
putations [1]. In the transformation, we add an extra source node
to be the multicast sender, then assume the two unicast nodes are
multicast receivers. Connect the sender S with A and B with an
edge of capacity fAB and fBA respectively. Then we can ver-
ify that the original information exchange session is feasible if
and only if the resulting multicast session can achieve through-
put fAB + fBA with coding. The latter requirement is equivalent
to have both the S→A max-flow and the S→B max-flow to be
at least fAB + fBA [1].

S

A B

fAB fBA

Fig. 6. Transforming the coded information exchange problem to the coded
multicast problem.

B. Multicast with Integral Routing

We now switch back to undirected networks, and consider
a multicast session with integral routing requirement. As dis-
cussed previously, the achievable multicast throughput equals to
the steiner tree packing number. It has been shown that the steiner
tree packing problem is NP-Complete [17], [18]; it is even worse
in the integral case: there does not exist any known polynomial
time algorithm that can approximate the problem to any constant
ratio.

On the other hand, by taking network coding into considera-
tion, we are led to a 2-approximation for the optimal multicast
throughput. We show this claim by examining the relation be-
tween connectivity and throughput in the integral model. We
have shown that 1

2λ(N) ≤ π(N) ≤ χ(N) holds in the frac-
tional model; more accurately, it holds as long as half-integer
flows are allowed. In the integral model, it is not known whether
1
2λ(N) ≤ π(N) still holds or not. In fact, it is a well known
open problem in graph theory. Even if the ratio 1

2 is replaced
with any other small constant ratio, the answer is still unknown.
In network terminologies, this means that even if we know the
multicast group has connectivity cx, for some arbitrarily large
constant c, we still do not know whether throughput without cod-
ing can achieve x or not, with the integral routing requirement.
On the other hand, we show that throughput with coding can still
achieve half connectivity in the integral routing model.

Theorem 5. For a multicast transmission in an undirected net-
work, N , � 1

2λ(N)	 ≤ χ(N) holds under the integral routing
requirement.
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Proof: Our proof is based on Nash-Williams’ Strong Graph Ori-
entation Theorem [11]: every undirected graph G(V,E) has an
orientation G′ = (V,D) for which λG′(u, v) ≥ � 1

2λG(u, v)	,
for all u, v ∈ V .

From the theorem above, we know that if λ(N) = x, then
there is an integral orientation of the network, such that the
directed connectivity among the multicast group M is at least
� 1

2x	. This implies that the integral max-flow from S to each
receiver Ti is at least � 1

2x	. Then by the Directed Multicast The-
orem, there is an integral routing scheme to achieve χ(N) ≥
� 1

2x	. ��
Corollary 5. The optimal multicast throughput problem in undi-
rected networks with integral routing can be approximated within
a factor of two in polynomial time.

Proof: The claim χ(N)≤λ(N) in Theorem 3 still holds in the
integral case. Combined with Theorem 5, we have �1

2λ(N)	 ≤
χ(N) ≤ λ(N). Therefore computing λ(N) gives a 2-
approximation for χ(N). Note that λ(N) is obviously com-
putable in polynomial time — in the worst case, one can com-
pute the max-flow between each pair of multicast nodes, and
take the minimum value among them. It is also possible to find
the detailed transmission strategy that achieves the approximated
throughput value, since polynomial time algorithms exist for both
the orientation [11] and code assignment [3].

C. Multicast with Fractional Routing

If we remove the integral routing requirement, the optimal
multicast throughput problem without coding is equivalent to
the fractional steiner tree packing problem, which is still NP-
Complete and APX-hard [17]. However, once network coding
is supported, the optimal throughput can then be computed effi-
ciently. We have been able to formulate the computation of opti-
mal multicast throughput with coding as a problem of computing
rates of conceptual flows, which can be solved as a linear opti-
mization problem. The interested reader is referred to our other
work [12] for more details.

To conclude, in all the above three examples we have shown,
the optimal transmission throughput problem is much more
tractable with network coding considered. In the first and the
third example, the problem is NP-Complete without network
coding, and is P with network coding. In the second exam-
ple, the problem does not have known constant ratio approxima-
tions within polynomial time, while it has a 2-approximation in
polynomial time with network coding. Therefore, although net-
work coding may not lead to much higher values for the optimal
throughput, it leads to more efficient algorithms that computes
such optimal throughput.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have compared the coded transmission
throughput with the packing number, strength, and connectivity,
in an undirected network with a unicast, broadcast, and multi-
cast transmission, respectively. Our results lead to small constant
bounds on the coding advantage. We also show that achievable
throughput with coding is independent of the selection of sender

within the communication group. Finally, we make the obser-
vation that applying network coding makes it possible to design
efficient algorithms that compute and achieve the optimal trans-
mission throughput.

The following questions on the coding advantage are still open.
First, for multiple unicast sessions that concurrently co-exist in
the same network, is the coding advantage always 1, assuming
undirected networks with fractional routing? Second, with arbi-
trary fractional routing, can the bound of two for coding advan-
tage be further tightened? Third, is the bound of two still valid
if we replace the half-integer routing requirement with integral
routing? Finally, is the bound of two still valid if we have mul-
tiple concurrent communication sessions? We intend to study
these important questions as part of our future work.
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